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Abstract— Objectives: This paper introduces a novel method for 
the detection and classification of aortic stenosis (AS) using the 
time-frequency features of chest cardio-mechanical signals 
collected from wearable sensors, namely seismo-cardiogram 
(SCG) and gyro-cardiogram (GCG) signals. Such a method could 
potentially monitor high-risk patients out of the clinic. Methods: 
Experimental measurements were collected from twenty patients 
with AS and twenty healthy subjects. Firstly, a digital signal 
processing framework is proposed to extract time-frequency 
features. The features are then selected via the analysis of variance 
test. Different combinations of features are evaluated using the 
decision tree, random forest, and artificial neural network 
methods. Two classification tasks are conducted. The first task is 
a binary classification between normal subjects and AS patients. 
The second task is a multi-class classification of AS patients with 
co-existing valvular heart diseases. Results: In the binary 
classification task, the average accuracies achieved are 96.25% 
from decision tree, 97.43% from random forest, and 95.56% from 
neural network. The best performance is from combined SCG and 
GCG features with random forest classifier. In the multi-class 
classification, the best performance is 92.99% using the random 
forest classifier and SCG features. Conclusion: The results 
suggest that the solution could be a feasible method for classifying 
aortic stenosis, both in the binary and multi-class tasks. It also 
indicates that most of the important time-frequency features are 
below 11 Hz. Significance: The proposed method shows great 
potential to provide continuous monitoring of valvular heart 
diseases to prevent patients from sudden critical cardiac 
situations. 

 
Index Terms— Aortic stenosis, gyro-cardiography (GCG), 

machine-learning, MEMS accelerometer, MEMS gyroscope, 
seismo-cardiography (SCG), signal processing, time-frequency 
analysis. 

I. INTRODUCTION 
alvular heart diseases (VHDs) are abnormal conditions of 
the heart caused by damages of the heart valves. VHDs 

affect a huge population and have high mortality rates 
compared to other cardiovascular diseases (CVDs) [1]. There 

are four heart valves in the heart: the aortic valve, the mitral 
valve, the pulmonary valve, and the tricuspid valve [2]. These 
valves can be influenced by two types of mechanical incidents: 
stenosis and insufficiency (also known as regurgitation). 
Stenosis is the narrowing of the valvular orifice that prevents 
an adequate outflow of blood, and insufficiency describes the 
inability of the valve to prevent the backflow of blood [3]. 
Hence, there are majorly eight types of VHDs from the 
combination of four valves and two incidents. Among all 
valvular heart diseases, aortic stenosis (AS) has the highest 
prevalence [3]. AS affects 2%-5% of the population, especially 
in the senior citizens [3]. According to the Euro Heart Survey 
on VHDs, 43.1% of VHD incidents are AS [4]. Although AS 
is a fairly common disease, between one-third and two-thirds 
of the AS patients go untreated [3]. One main reason is that 
treatment is fairly conservative before the detection of 
symptoms [3]. It is therefore critical to detect AS so that proper 
treatment could be performed. There are several tools for the 
detection of AS, such as echocardiography, computed 
tomography, magnetic resonance imaging, and cardiac 
catheterization [3]-[6]. These methods are often costly and 
constraining. Furthermore, they are often deployed inside the 
clinic. A prolonged, continuous monitoring of high-risk 
subjects outside of the clinic is not feasible with the modalities 
stated above.  

 Wearable sensors using non-invasive modalities have been 
considered as one of the most promising devices to be used in 
a home-based ubiquitous monitoring scenario for high-risk 
populations [7]-[9]. In our scope, a wearable device that is 
capable of detecting cardiovascular abnormalities such as AS 
could potentially prevent the progressive development of this 
disease and increase the ratio of successful treatments. 

Chest cardio-mechanical sensing is a non-invasive wearable 
sensing modality that has been enthusiastically researched in 
recent years [10]. It can be categorized into two types, seismo-
cardiography (SCG), which is the measurement of the linear 
acceleration components of the chest wall induced by the 
heartbeat [11], [12], and gyro-cardiography (GCG), which is 
the recording of heart-induced rotational vibrations of the chest 
wall in the form of angular speed [13]. SCG and GCG signals 
can be conveniently acquired by placing a micro-
electromechanical system (MEMS) inertial measurement unit 
(IMU) on the chest wall, where the accelerometer picks up the 
SCG signal and the gyroscope measures the GCG waveform. 

Seismo- and gyro-cardiogram signals have been effective for 
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the evaluation or classification of multiple CVDs such as 
coronary artery disease [14], [15], myocardial infarction [16], 
[17], atrial fibrillation [18], [19] and heart failure [20]. 
Specifically, our research group has conducted a study on the 
binary classification of cardiovascular system abnormality 
based on SCG and GCG signals, which is presented in [21]. 
However, there are no studies in the literature that are related 
to the detection and classification of aortic stenosis (AS) based 
on cardio-mechanical recordings. 

The development of AS is a complicated progress. 
Furthermore, AS might be accompanied by different co-
existing cardiac diseases which happen concurrently with the 
major disease. For instance, in a study performed on 240 AS 
patients, 32.5% of the patients had at least moderate mitral 
regurgitation co-existing with AS [22]. In this work, we 
propose a classification framework of AS. We evaluate the 
topic in two aspects to address the complicated development of 
AS. The first aspect is the classification between healthy 
subjects and general AS patients. We aim to extract the features 
that can distinguish between normal subjects and AS patients 
regardless of the specific AS conditions. In other words, we 
propose a binary classification framework that can detect 
general AS. The second aspect is the classification of AS with 
different co-existing cardiac diseases. There are many kinds of 
co-existing cardiac diseases such as VHDs, coronary artery 
diseases, and pulmonary hypertension [22].  In this study, we 
focus on the classification of AS with three different co-
existing VHDs as explained in the next section. 

In the literature, features from the heartbeat and heartbeat 
segments are generally used for feature extraction. For example 
in [19], features from HR and three different orders of HRV 
were used for the training and testing of a binary classifier of 
atrial fibrillation (AF). However, the development of AF is 
closely correlated with HR and HRV since AF corresponds to 
heart arrhythmia. On the other hand, aortic stenosis (AS) is a 
structural disease of the heart. According to a long-term study, 
there are no correlations between changes in HR and the 
progression of AS [23]. The seismo-cardiogram (SCG) and 
gyro-cardiogram (GCG) signals used in this study are closely 
related to valve activities [11]-[13]. It has been reported that 
the time-frequency components of SCG and GCG can be used 
to assess left ventricular health [12], [13], [16]. The aortic 
valve, located in the human heart between the left ventricle and 
the aorta, is closely related to the health of the left ventricle. 
Therefore, the features extracted from the time-frequency 
components of SCG and GCG reveal great potential to classify 
between healthy and AS patients. Hence in this work we focus 
on these features statistically and morphologically. 

From the SCG and GCG recordings, we extract features out 
of single-cycle and multi-cycle segments. The empirical mode 
decomposition (EMD) and continuous wavelet transform 
(CWT) techniques are applied to perform time-frequency 
analyses. The significance level of the features is assessed by 
the analysis of variance (ANOVA) method. Then the selected 
components are fed to machine learning classifiers for two 
classification tasks.  

To the best of our knowledge, this is the first time that the 
feasibility of AS classification is evaluated using cardio-
mechanical modalities. Our work also reveals the important 
features for the classification of AS. It is, however, worth 
mentioning that impedance cardiography (ICG) has been 
proposed as a non-invasive modality to perform classification 
of VHDs. In a study using the ICG signal, it was revealed that 
the use of cepstral features is effective for the detection of 
cardiovascular diseases including VHDs [24]. These features 
were extracted from the ICG signals of twenty-five CVD 
classes and used as an input to a classifier. The classification 
had an accuracy of 95.40%. In another study, five classes of 
VHDs were classified using a combination of temporal and 
time-frequency features from 75 patients [25]. These features 
were fed to the support vector machine classifier and a 
diagnostic accuracy of 98.94% was reported.  

Compared to other modalities such as ICG, there are two key 
advantages in using chest cardio-mechanical signals. The first 
advantage is that they do not need direct contact with the skin 
via electrodes, and are therefore more convenient for users to 
wear, especially for long-term monitoring at home. 
Furthermore, the wide availability of IMUs in daily electronics, 
such as smartphones and wearable gadgets, makes seismo- and 
gyro-cardiography promising solutions for a low-cost, 
ubiquitous, and mobile healthcare system. For instance, several 
pilot studies have validated the feasibility of extracting seismo- 
and gyro-cardiogram signals from IMUs in smartphones [17], 
[26], [27]. 

The layout of this paper is as follows. Section II presents the 
experimental protocol and data acquisition. The methodology 
of extracting, selecting, and training the features is introduced 
in Section III. Section IV introduces the experimental results 
and Section V provides discussions of the results. We conclude 
the paper and outline the future work in Section VI. 

II. EXPERIMENTAL PROTOCOL AND DATA ACQUISITION  

A. Datasets 
Twenty inpatient subjects from the cardiac care units of 

TABLE I SUMMARY OF DEMOGRAPHIC INFORMATION OF SUBJECTS 
PARTICIPATED IN EXPERIMENTS. (AVERAGE ± STANDARD DEVIATION) 

Category Age (years) Height (cm) Weight (kg) 
AS 68.90 ± 8.43 162.47 ± 11.30 72.31 ± 13.71 

Healthy 24.75 ± 1.83 170.59 ± 8.62 64.95 ± 11.30 
 

 
Fig. 1. Experimental setup with the sensor nodes which collect SCG, GCG, 
PPG, and ECG. 
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Columbia University Medical Center (CUMC) participated in 
the collection of AS recordings. All the patients were measured 
prior to receiving any treatments. A control group of twenty 
healthy subjects also participated in this study. Measurements 
from normal subjects were performed at Stevens Institute of 
Technology. The AS cohort includes ten male and ten female 
subjects whose ages, weights and heights varied as 69-97 years 
old, 44-91 kg, and 139-182 cm, respectively. The healthy 
subjects’ recordings correspond to ten male and ten female 
subjects of 22-35 years old, 52-80 kg, and 154-180 cm. Table I 
summarizes the statistical demographic information of all the 
recruited subjects in average and stand deviation.  

Table II shows the co-existing VHDs of the AS subjects.  
The VHD conditions of the AS group include aortic stenosis 
(AS) with or without concurrent mitral insufficiency (MI), AS 
with or without concurrent mitral stenosis (MS), and AS with 
or without concurrent tricuspid regurgitation (TR). As seen in 
Table II, three patients have a co-existing VHD of MI, four 
patients have a co-existing VHD of MR, and seven patients 
have AS with TR. Nine out of the twenty patients do not have 
any of these VHDs. It is to be noted that the co-existing VHDs 
are not mutually exclusive. A patient could possibly have 
multiple co-existing VHDs. For instance, subject #20 has MI, 
MS, and TR simultaneously. In this scenario, an ultimate 
solution to the classification problem is a multi-label 
classification, in which the co-existing VHDs are evaluated 

individually. The subjects could then be classified into multiple 
co-existing VHD classes at the same time. However, the 
training of such a multi-label classifier requires a larger 
database with wider coverage of co-existing VHD 
combinations than the patient database in this study. Therefore, 
we select a more practical multi-class classification, where we 
classify among four different AS classes: AS without any co-
existing disease, AS with MI, AS with MR, and AS with TR. 
Therefore, the data for the training and testing of the multi-class 
classification are from AS patients with only one co-existing 
VHD or without any co-existing VHDs. In other words, 
subjects #8 and #20 were excluded from the training and testing 
of the multi-class classification. On the other side, all of the 
patient data were used for binary classification since the 
classification task is to detect general AS regardless of the 
specific kind of the co-existing VHD. 

B. Experimental Protocol 
The subjects were asked to sit at rest on a bed or chair for at 

least five minutes during each experiment. It is to be noted that 
the subjects can also be measured at other postures such as the 
supine position without any significant influence on the results. 
Subjects breathed naturally without controlling their breathing 
depths. The patient experimental protocol was approved by the 
Institutional Review Board of CUMC under protocol number 
AAAR4104. The experiments with healthy subjects were 
approved by the Committee for the Protection of Human 
Subjects at Stevens Institute of Technology under protocol 
number 2017-008 (N).  

III. METHODS 

A. The Hardware System 
As shown in Fig. 1, a commercial wearable sensor node 

(Shimmer 3 from Shimmer Sensing, marked by the orange 
circle [28]) is attached to the center of the sternum along the 
third rib using a chest strap. A three-axis MEMS accelerometer 
(Kionix KXRB5-2042, Kionix, Inc.) measures the SCG signal, 
and a three-axis MEMS gyroscope (Invensense MPU9150, 
Invensense, Inc.) records the GCG signal. Both sensors share 
the same axis definition, where the z-axis refers to the dorso-
ventral direction of the body, the y-axis is along the head-to-
foot direction, and the x-axis is along the shoulder-to-shoulder 
direction. Reference heartbeat measurements are also taken by 
a standard four-lead ECG system (the blue circle in Fig. 1), 
which is wire-connected to the center chest sensor. In addition, 
an ear-lobe photoplethysmography (PPG) sensor marked by 
the red circle on the right side of the figure is connected to a 
second shimmer sensor node attached to the left side of the 

 
Fig. 2. Block diagram of the signal processing framework.  
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TABLE II  
SUMMARY OF CO-EXISTING VHDS OF PATIENTS WITH AORTIC STENOSIS  

Subject 
Index 

Mitral 
Insufficiency Mitral Stenosis Tricuspid 

Regurgitation 
1 No No Yes 
2 No No No 
3 No No Yes 
4 No No No 
5 No No Yes 
6 No No Yes 
7 No No No 
8 No Yes Yes 
9 No No No 

10 No Yes No 
11 No No No 
12 No Yes No 
13 Yes No No 
14 No No No 
15 No No No 
16 No No Yes 
17 No No No 
18 No No No 
19 Yes No No 
20 Yes Yes Yes 

(Mitral insufficiency is also known as mitral regurgitation, which is used in 
the original records from CUMC). 
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chest wall to provide additional cardiovascular information as 
illustrated in Fig. 1. Both the ECG and PPG signals work as 
references to provide segmentation information during the 
signal pre-processing, which will be introduced in Section II.B. 
The accelerometer and gyroscope ranges are ±2 g and ±250 
degrees per second (DPS) respectively, and all the sensor 
recordings are sampled at a sampling rate of 256 Hz. Data are 
transmitted via Bluetooth to a computer for digital signal 
processing. The recorded data from the two sensor nodes are 
synchronized by the software provided by the manufacturer 
and imported into MATLAB (R2018) for further processing. 

Fig. 2 illustrates the block diagram of the proposed signal 
processing framework. This framework is extended from our 
previous study in [21]. First, the raw signals are pre-processed 
and segmented into equal-length segments and cycle-to-cycle 
segments. Then, the features are extracted from processed 
cardio-mechanical signals using time-frequency analyses by 
CWT and EMD methods. This step is followed by a feature 
selection which selects the most significant features via 
analysis of variance (ANOVA). Finally, the features from 
labeled observations that will be fed into training algorithms. 
Details of the signal processing steps are introduced in the 
following sections. 

B. Signal Pre-processing and Segmentation 
Although seismo- and gyro-cardiogram signals are recorded 

from all three axes of the devices, we focus on recordings from 
one axis in each modality. For the SCG signal, the z-axis in our 
system, i.e., the standard single-axis SCG signal, is chosen. For 
the GCG modality, the y-axis rotation signal is selected due to 
the higher quality for this axis reported in [12] and [29]. 

All signals are pre-filtered with zero-phase infinite impulse 
response (IIR) bandpass filters to remove baseline wandering 
and focus on the informative bandwidths. The frequency band 
for SCG and GCG is from 0.8 Hz to 25 Hz. The ECG signal is 
pre-filtered from 5 Hz to 30 Hz, and the PPG signal from 0.8 
Hz to 60 Hz. 

The filtered SCG and GCG signals are divided into low-
noise equal-length segments by using a threshold-based 
exclusion method with a root-mean-square (RMS) filter 
modified from [19]. The purpose of this step is to reject noisy 
segments for the time-frequency analysis and feature 
generation steps. Features from equal-length segments provide 
the highest consistency of observations for the best results of 
classification training. In this study, we use a period length of 
10 s, which is an experimental number based on our trials in 
[21] and references [19]. The step size of the RMS filter is set 
to 500 ms, and the threshold is set to 1.5 times of the median 
RMS value. More details of the equal-length segmentation 
could be found in [21]. 

After the segmentation of the 10-second recordings, the 
segments are further separated into single cardiac cycles. The 
segmentation of the cardiac cycles starts with the detection of 
the R-peaks in the simultaneous ECG recordings. 

The R-peaks are marked as the local maxima in the ECG 
signal with a minimum value of 40% of the maximum peak and 
a minimum distance of 30 data samples between consecutive 
peaks. This is a modified heartbeat detection algorithm [30] 
constructed to apply with our sensing device. LL-LA ECG 
recordings were used for most of the patients while the LL-RA 
ECG recordings worked as a back-up. In other words, the 
highest-priority segmentation source was LL-LA ECG. In the 
cases where the LL-LA ECG signal was noisy, the LL-RA 
ECG signal was selected. The PPG recordings supplied 
additional information when both LL-LA and LL-RA ECG 
recordings were noisy. In such cases, the cardio-mechanical 
recordings were segmented based on the PPG peaks instead of 
ECG peaks. The systolic maximum peaks in PPG are 
considered as the segmentation markers and are detected with 
the method described in [31]. A fixed offset of 45 samples is 
applied to adjust the difference between ECG and PPG cycles. 

Fig. 3 illustrates this step on a representative seismo-
cardiogram graph. It is seen that the recordings with large 
motion artifacts have been excluded due to the RMS filtering 
step in Fig. 3 (b). After the equal-length segmentation in Fig. 3 
(c), the temporal recording segments are further divided into 
cardiac cycles. As an example, the recordings are separated into 
15 single-cycle segments as shown in Fig. 3 (d) from one ten-
second segment. 

C. Feature Extraction 
The training of the classification algorithms requires a set of 

labeled observations, i.e., many groups of features which are 
categorized into different classes (normal, AS, and AS with co-
existing VHDs). In this study, one observation is defined as the 
features from one ten-second segment combined with the 
features from all the single-cycle segments that are related to 

 
Fig. 3. (a) Raw seismo-cardiogram (SCG) signal after band-pass filtering. (b) 
RMS-filtered SCG signal with median product threshold line (red-dot line). 
(c) Equally-segmented SCG measurements based on (1)-(3). (d) Single-cycle 
segmentation of SCG from the tenth equally-segmented recording. (Unit of x-
axis: seconds for (a) to (c), samples for (d)). 
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that ten-seconds segment. As shown in Fig. 2, the ten-second 
segment is processed with continuous wavelet transform while 
the single-cycle segments are processed via empirical mode 
decomposition. The detailed procedures are as follow. 

1) Continuous Wavelet Transform 
Our preliminary study in [21] indicates that the abnormality 

of cardio-mechanical signals may occur in intermediate cycles 
in between several regular cycles. In addition, the abnormal 
signal might have a dominant component at certain 
frequencies. Therefore, we expand the signal in the time- 
frequency domain by using the continuous wavelet transform 
(CWT) method [35]. The wavelet used in this study is a Morse 
wavelet. The equation for this wavelet is expressed as follows. 

𝛹𝛹𝑃𝑃,𝛾𝛾(𝜔𝜔) = 𝑈𝑈(𝜔𝜔)𝑎𝑎𝑃𝑃,𝛾𝛾𝜔𝜔
𝑃𝑃2
𝛾𝛾 𝑒𝑒−𝜔𝜔𝛾𝛾                (1). 

In (1), P is the time-bandwidth product and γ is the symmetry 
parameter. In this study, γ is selected as 3 and the value of P is 
120. In combination with the sampling frequency of 256 Hz, 
the configured CWT results in a high-resolution region 
between 0.8 Hz and 25 Hz (the passing band of our pre-filter). 
To focus on this band, we then select from 0.79 Hz to 25.39 Hz 
precisely. More details about our CWT method can be found in 
[21]. 

Several statistical features are extracted from the full-
wavelet array. The first feature is the maximum power which 
is defined in detail in [21]. Also, additional statistical features 
are extracted in each frequency band including mean, standard 
deviation, and median. These features are designed to detect 
abnormal activities in the scope of a ten-second segment. Next, 
we perform an empirical mode decomposition (EMD) of each 
single-cycle cardio-mechanical beat. 

2) Empirical Mode Decomposition 
The empirical mode decomposition (EMD) is the method 

used in Hilbert-Huang transform as a time-frequency analysis 
technique [36]. It decomposes the signal into components 
called intrinsic mode functions (IMFs) which are determined 
using a technique named the sifting process [36], [37]. This 
technique analyzes the envelopes of the signal based on the 
local maxima and local minima, denoted as Hmax(n) and 
Hmin(n), respectively. For a given signal s(n), the mean m(n) of 
the two envelopes is calculated as follows: 

𝑚𝑚1(𝑛𝑛) = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛)+𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛)
2

                               (2) 

The first IMF is determined as: 

𝐼𝐼𝐼𝐼𝐼𝐼1(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) −𝑚𝑚1(𝑛𝑛)                          (3) 

The subsequent IMFs are then obtained by considering the 
first IMF as new input and repeating the procedure iteratively. 
The iterations of finding new IMFs are stopped when the 
standard deviation of the differences between two adjacent 
IMFs is smaller than 0.2. The maximum number of iterations 
is set to 100. 

Fig. 4 illustrates the EMD results of a representative SCG 
single-cycle recordings. All 4 IMFs are plotted to show the 
different signal components. The order of the IMFs from low 

to high represents the density of the frequency components, i.e., 
the first IMF contains the highest frequency components. 

For each ten-second measurement, the IMFs are extracted 
from all the related signal-cycle recordings and then ensemble-
averaged. Then the features are extracted from each of the four 
ensemble-averaged IMFs, including the mean, the standard 
deviation, the skewness, and the entropy. 

3) Feature Selection  
Table III summarizes the features from CWT and EMD 

outputs. It is shown that 4 features are generated from 55 
frequency bins based on CWT, which summarizes as 220 
features in total. Moreover, 4 features are extracted from 4 
IMFs of the EMD. As a result, 236 features are generated from 
each of the SCG and GCG signals.  

In this study, we conduct two separate one-way ANOVA 
tests for the classification training tasks. The first test is for the 
binary classification of AS in general. The PCs extracted from 
the time-frequency analyses are collected into a table with 
observation marks of either ‘AS’ or ‘normal’. Then the 
ANOVA test evaluates the significance between the two 
classes. The second test is for the multi-class classification of 
AS with co-existing VHDs. AS patients with different co-
existing VHDs are labeled as ‘aortic stenosis (AS)’, ‘AS + 
mitral insufficiency (MI)’, ‘AS + mitral stenosis (MS)’, and, 
‘AS + tricuspid regurgitation (TR)’. Then the ANOVA test is 
applied to all these four classes. 

The selected features after the ANOVA are then fed into the 
machine learning algorithm as introduced in the following 
section. 

 
Fig. 4. A representative EMD of a single-cardiac-cycle seismo-cardiogram 
recording showing the ensemble-averaged signal, all 4 of the IMFs, and the 
residual signal. 
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D. Machine-learning Classifier Training 
In this study, we have used three types of classifiers: The 

decision tree (DT), the random forest (RF), and the neural 
network (NN). 

1) Decision Tree 
The decision tree (DT) is a decision support tool 

representing a set of choices in a tree-like graph [40], [41]. In 
this study, a medium tree with a maximum of 20 splits is 
applied. The split criterion is based on entropy. The maximum 
depth is set to 7. We optimize the minimum number of leaf size 
by using the automatic optimization function in MATLAB, 
which searches among integers in the range from 1 to half of 
the observations at log-scale. 

2) Random Forest 
Random forest (RF) is an ensemble learning method that 

constructs multiple decision trees. [41]. The number of trees is 
30, and the maximum number of splits is 798. The minimum 
leaf size is set to 1, and the number of variables for each 
decision split is selected by the square root rule, which takes 
the square root of the number of variables. 

3) Neural Network 
We implemented a simple neural network with 30 input, 20 

hidden, and 10 output neurons. The initial learning rate is 
0.001. 

4) Evaluation Metrics and Validation Methods 
To evaluate the performance of the classification algorithm, 

several metrics are calculated. The class-specific metrics are 
sensitivity (SE), specificity (SP), and accuracy (AC), which are 
defined as follows: 

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%                            (4) 

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%                           (5) 

𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%                   (6) 

where TP, FP, TN, and FN are true positives, false positives, 
true negatives, and false negatives accordingly. 

In addition to the class-specific metrics, the overall accuracy 
is also calculated to evaluate the general performance of the 
multi-class classification results. The overall accuracy is 
defined as the percentage of the true positives from all classes 
divided by all the classification datapoints. 

The average recording length of all the subjects is 5.7 
minutes. A total of 1157 segments are extracted from 40 
subjects. For the binary classification, a total of 960 seismo-
cardiogram (SCG) segments are collected as the balanced 
training set from 16 AS patients (480 abnormal segments) and 
16 healthy subjects (480 normal segments). Similarly, a total 
of 960 gyro-cardiogram (GCG) segments are extracted from 
the same group of patients and healthy subjects. The trained 
models are validated using the classic ten-fold cross-validation 
method. Data from the remaining 4 patients (88 segments) and 
4 healthy subjects (88 segments) are left out for testing.  

Only the data from AS patients are used in the multi-class 
classification. As mentioned in Section II, eighteen out of the 
twenty AS patients are selected for the classification of co-
existing VHDs. A total of 540 segments are extracted from the 
SCG and GCG recordings. There are 56 segments from 
subjects with AS + MI, 55 segments from subjects with AS + 
MS, and 158 segments from subjects with AS + TR. The 
subjects with no co-existing CVD provide 271 segments. The 
evaluation method for the multi-class classifier model is ten-
fold cross-validation. 

IV.  EXPERIMENTAL RESULTS 

A. Feature Selection Results 
All seismo- and gyro-cardiogram segments are extracted 

into 55 frequency bins with four features per bin, and four IMFs 
with four features per IMF. 

1) Feature Selection for Binary AS Classification 
Table IV shows the ANOVA results for the binary 

classification based on seismo- and gyro-cardiogram features. 
The selected features are based on the threshold of p < 0.05.  

It is reported that 24 features are extracted from SCG. Out of 
the 24 features, 22 are from CWT. There are 13 maximum 
features, which range from 1.07 Hz to 9.20 Hz. 3 features from 
2.30 Hz to 4.60 Hz are extracted based on mean values. 
Standard deviations of the CWT outputs provide 4 features 
from 1.00 Hz to 1.23 Hz while the median values give 2 
features at 1.32 Hz and 2.14 Hz. Only two of the features are 
from EMD, which are the mean value from IMF1 and the 
skewness from IMF3. Overall, the frequency range of the 
selected features is from 1.00 Hz to 9.20 Hz.  

The gyro-cardiogram (GCG) reports significant results from 
30 features. Specifically, 27 of the features are from CWT. 
Particularly, 18 features ranging from 3.03 Hz to 10.58 Hz are 
extracted from the maximum features. 4 features are extracted 
based on mean values from 0.87 Hz to 1.07 Hz. Furthermore, 
3 features are from standard deviations ranging from 4.29 Hz 
to 4.94 Hz. It is also seen that 2 median features are selected at 
4.00 Hz and 4.29 Hz. The EMD provides 3 features which are 
mean features from IMF1 and IMF3 and the skewness feature 

TABLE III   
SUMMARY OF FEATURES FROM CWT AND EMD 

Source Feature Type Range (number of features) 
CWT 

SCG and GCG 

Maximum 0.79-25.39 Hz (55 from each 
modality) 

Mean 0.79-25.39 Hz (55 from each 
modality) 

Standard Deviation 0.79-25.39 Hz (55 from each 
modality) 

Median 0.79-25.39 Hz (55 from each 
modality) 

EMD 

SCG and GCG 

Mean IMF 1-4 (4 from each modality) 
Standard deviation IMF 1-4 (4 from each modality) 

Skewness IMF 1-4 (4 from each modality) 
Entropy IMF 1-4 (4 from each modality) 

Total 236 from each modality 
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from IMF3.  In summary, the features from GCG range from 
0.87 Hz to 10.58 Hz. 

We can observe that most of the significant features are 
based on CWT maximum values. Also, there are more features 
from CWT than from EMD. It is also shown that the features 
are mostly below 11 Hz. 

2) Feature Selection for the Multi-class Classification of AS 
with Co-existing VHDs 

The features for multi-class classification are also analyzed 
with a one-way ANOVA test. Table V summarizes the 
ANOVA test results of seismo- and gyro-cardiogram features 
with multi-class labels. The selected features are based on the 
threshold of p < 0.05. The SCG results provide 21 features in 
total. It is seen that 18 out of the 21 features are from CWT and 
3 are from EMD. The features have a frequency range of 0.87 
Hz to 6.51 Hz. Also, 10 features from 1.07 Hz to 6.51 Hz are 
from the maximum features of CWT, which are the majority of 
the features.  

Moreover, there are 29 features selected from GCG. Among 
them, 27 are from CWT and 2 from EMD. The features range 
from 0.87 Hz to 9.87 Hz. 

Comparing the feature selection results of binary and multi-
class classifications, it is observed that the selected features are 
different. For instance, SCG-based features have a larger 
frequency range for binary classification than for multi-class 
classification (1.00 – 9.20 Hz vs. 0.87 – 6.51 Hz respectively). 
This difference suggests that the best features for the binary 
classification of AS are not the same as the best features for the 
classification of AS with co-existing VHDs. In other words, the 
features that represent the difference between normal and 
general AS patients may not represent the difference among AS 
patients with different co-existing VHDs.      

B. Classification Results 
As mentioned, we use three different classifiers, decision 

tree (DT), random forest (RF), and the neural network (NN). 
The SCG and GCG features can be used independently for 

training or can be combined as one set of features. Therefore, 
three combinations of extracted features (SCG only, GCG only, 
and SCG + GCG) are used as inputs to these two classifiers. 
Hence, we analyze the performance with nine methods, i.e., i) 
SCG + DT, ii) SCG + RF, iii) SCG + NN, iv) GCG + DT, v) 
GCG + RF, vi) GCG + NN, vii) SCG + GCG + DT, viii) SCG 
+ GCG + RF, and ix) SCG + GCG + NN. These nine 
methodologies are evaluated and compared. 

1) Binary Classification of General AS 
Table VI summarizes the binary classification metrics of the 

trained classification model with seismo-cardiogram (SCG), 
gyro-cardiogram (GCG), and combined SCG + GCG features 
respectively. The means of the classification results during the 
10-fold cross-validation are presented. The test results based on 
the leave-out data were also summarized. It is observed that the 
metrics from leave-out data analysis are lower than the 
corresponding values from the cross-validation test. This result 
is expected since the cross-validation doesn’t rule out subject-
dependent factors. The test with the leave-out data is closer to 
future application scenarios. Therefore, the results from the 
leave-out data test are evaluated as the final performance 
metrics of this binary classification task. 

As shown in Table V, the RF classifier outperforms the DT 
classifier. The results from SCG + RF are better than the results 
from SCG + RF. The SE, SP and AC are 95.83%, 93.75%, and 
94.79% from DT and 96.46%, 95.42%, and 95.94% from RF. 
The sensitivity (SE), specificity (SP) and accuracy (AC) are 
higher from GCG + RF (97.29%, 97.50%, and 97.40%, 
respectively) compared to GCG + DT (96.88%, 97.08%, and 
96.98%, respectively). Similarly, all the three metrics from 
SCG + GCG + RF are higher than the results from SCG + GCG 
+ DT. The reports mention SE of 98.33% vs. 96.25%, SP of 
99.58% vs. 97.71%, and AC of 98.96% vs. 96.98%, 
respectively.  

The performance of SCG + NN is lower than that of SCG + 
DT in SE (94.38% vs. 95.83%), SP (92.71% vs. 93.75%), and 
AC (93.54% vs. 94.79%). Similarly, GCG + DT also 

TABLE IV   
ANOVA TEST RESULTS FOR BINARY CLASSIFICATION 

Source Feature Type Range and number of features 
SCG 

CWT  Maximum 1.07 - 9.20 Hz, 13 features 
Mean 2.30 - 4.60 Hz, 3 features 

Standard Deviation 1.00 - 1.23 Hz, 4 features 
Median 1.32 and 2.14 Hz, 2 features 

EMD 
 

Mean IMF1 
Skewness IMF3 

Total 24 
GCG 

CWT 
 

Maximum 3.03 - 10.58 Hz, 18 features 
Mean 0.87 - 1.07 Hz, 4 features 

Standard Deviation 4.29-4.94 Hz, 3 features 
Median 4.00 and 4.29 Hz 2 features 

EMD 
 

Mean IMF 1, IMF 3 
Skewness IMF 3 

Total 30 

 

TABLE V   
ANOVA TEST RESULTS FOR MULTI-CLASS CLASSIFICATION 

Source Feature Type Range and number of features 
SCG 

CWT  Maximum 1.07 – 6.51 Hz, 10 features 
Mean 2.30 - 4.29 Hz, 3 features 

Standard Deviation 0.87 - 1.23 Hz, 3 features 
Median 1.32 and 1.15 Hz, 2 features 

EMD 
 

Mean IMF1 
Skewness IMF 2, IMF 3 

Total 21 
GCG 

CWT 
 

Maximum 4.29 – 9.87 Hz, 15 features 
Mean 0.87 - 1.41 Hz, 5 features 

Standard Deviation 4.29-4.94 Hz, 4 features 
Median 3.03 – 6.51 Hz 3 features 

EMD 
 

Mean IMF 3 
Skewness IMF 2 

Total 29 

 



 8 

outperforms GCG + NN. The results give 96.25%, 95.83%, and 
96.04% from the NN classifier and 96.88%, 97.08%, and 96.98% 
from the DT classifier in SE, SP, and AC respectively. 
However, the SE and AC are higher from SCG + GCG + NN 
than from SCG + GCG + DT. The SE from DT is slightly lower 
than the SE from NN. 

Based on these obtained results from Table V, we noticed 
that the RF classifier fed with combined SCG + GCG features 
provides the highest performance results compared to the other 
five methodologies. Also, the results from GCG are higher than 
results from SCG in all classifiers. This observation is similar 
to the observation in our earlier work in [21], where GCG 
reported better results in the classification of general 
cardiovascular abnormalities than SCG. 

Fig. 5 illustrates the classification accuracy values using the 
three classifiers with different feature combinations. It shows 
that the RF classifier has the highest accuracy among all three 
feature combinations. 

It can be summarized that using the DT classifier provides 
an average AC of 96.25%, an average SE of 96.32%, and an 
average SP of 96.18% regardless of the type of features used. 
Also, the RF classifier provided similar results of average 
accuracy, average sensitivity, and average specificity of 
97.43%, 97.50%, and 97.36% respectively. The results from 
NN report average AC, SE, and SP of 95.55%, 95.56%, and 

95.56% respectively. Compared to the metrics from the DT and 
NN classifier, the average metrics from the RF classifier are the 
highest. In conclusion, the experimental results suggest that the 
RF method slightly outperforms the DT and NN method in 
binary classification. The features from combined SCG and 
GCG provide the highest sensitivity and specificity in both 
classifiers. As a result, the combination with the best 
performance is SCG + GCG + RF, which reports SE of 98.33%, 
SP of 99.58%, and AC of 98.96%. The corresponding metrics 
are highlighted in green in Table V. 

2) Multi-class Classification 
Table VII shows the class-specific performance results for 

the four classes of diseases (AS, AS + MI, AS + MS, AS + TR) 
using the DT and RF classifiers fed with SCG, GCG, and 
combined SCG and GCG features. The mean values during the 
10-fold cross-validation are presented for each metric.  

On average, the SCG + RF combination reports the highest 
values of SE = 92.25% and AC = 94.26% for the class of AS. 
The highest SP is reported from SCG + GCG + DT, which is 
96.65%. The corresponding table cells are highlighted in green. 
The highest AC for the class of AS + MI is 97.22% from SCG 
+ GCG + RF results, which also reports the highest SE of 94.64% 
and the highest SP of 97.52%. These table cells are highlighted 
in red.  For the class of AS + MS, the best results come from 
SCG + GCG + DT with SE of 96.36% and AC of 97.41%. 
Moreover, the best SP is 97.94% which is from SCG + GCG + 
RF. These cells are highlighted in blue. The SCG + RF 
combination produces the best classification of AS + TR with 
SE of 90.51%, SP of 97.64%, and AC of 95.56%. The 
corresponding table cells are highlighted in orange. 

The class-specific accuracy metrics for the average of the 
three classifiers are 92.84%, 96.23%, 96.71%, and 94.38% for 
AS, AS + MI, AS + MS, and AS + TR respectively. It can be 
observed that the AS reports the lowest accuracy among all the 
classes. The results from the co-existing VHD of MS has the 
highest accuracy of 96.71%. 

We also compared the overall performance among the three 
classifiers by averaging the metrics from all classes and all 
features combinations. The average accuracy from the DT 

TABLE VI   
RESULT METRICS OF THE BINARY CLASSIFICATION 

Features Classifier 
10-Fold Cross Validation Leave-out Data Test 

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

SCG 

DT 95.83% 93.75% 94.79% 93.64% 91.82% 92.73% 

RF 96.46% 95.42% 95.94% 94.55% 94.55% 94.55% 

NN 94.38% 92.71% 93.54% 91.82% 92.73% 92.27% 

GCG 

DT 96.88% 97.08% 96.98% 95.45% 93.64% 94.55% 

RF 97.29% 97.50% 97.40% 96.36% 93.64% 95.00% 

NN 96.25% 95.83% 96.04% 94.55% 91.82% 93.18% 

SCG + GCG 

DT 96.25% 97.71% 96.98% 96.36% 97.27% 96.82% 

RF 98.33% 99.58% 98.96% 97.27% 98.18% 97.73% 

NN 96.04% 98.13% 97.08% 92.73% 96.36% 94.55% 

(DT: decision tree, RF: random forest, NN: neural network). 

 
Fig. 5. A comparison of the accuracy in binary classification with different sets 
of features and methods (DT: Decision tree, RF: Random forest, NN: Neural 
network).  
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classifier is 94.85%, which is slightly lower than the value from 
the RF classifier which reports as 95.56%. However, it is higher 
than the result from NN, which is 94.72%. Similarly, the 
average SE from DT is 90.24%, slightly lower than the value 
of 91.70% from RF but higher than the value of 89.35% from 
NN. The average SP of all the classes from DT is 96.43%, 
which is marginally lower than the average SP of 96.88% from 
RF and higher than the average SP of 96.33% from NN. 

The overall accuracy metrics from all the methods are 
illustrated in Fig. 6. It can be observed from this figure that the 
classification performances based on SCG features are higher 
than the results based on GCG and SCG + GCG features for 
both types of classifiers. The overall sensitivity of all classes 
from SCG is 88.28% for DT, 92.99% for RF, and 90.25% for 
NN methods. In comparison, the results from GCG are 90.42%, 
90.58%, and 89.37% for DT, RF, and NN classifiers 
respectively. The SCG results report lower values in DT and 

NN classifiers but higher values in the RF method. The outputs 
from SCG + GCG features are slightly higher than the results 
from GCG-only features, with a sensitivity of 92.02% 
compared to 90.42% via the DT classifier, and an accuracy of 
91.54% compared to 90.58% via the RF classifier. However, 
the result from the NN classifier is the lowest among the three 
methods. In conclusion, the highest overall sensitivity is from 
SCG + RF.  

Compared to the results of the binary classification in the 
previous section, the results in Table VI are lower in SE, SP, 
and AC. The highest accuracy from the binary classification is 
98.33% (SCG + GCG + RF), while the highest class-specific 
accuracy from the multi-class classification is 96.36% (AS + 
MS with SCG + GCG + DT method). The best overall 
performance in accuracy comes from SCG + GCG + RF for 
binary classification (AC = 98.96%), while the best overall 
performance in overall performance for multi-class 
classification is from SCG + RF (92.99%). Furthermore, the 
results from GCG is generally better than SCG in binary 
classification, but worse than SCG in multi-class classification. 
Among the three classifiers, the performance of RF is the best 
in most cases. DT is comparable with slightly inferior metrics 
than RF. The results of NN are higher than those from DT and 
lower than those from RF in most tests. 

V. DISCUSSION 
Table VIII summarizes the comparison of performance 

metrics between our work and other studies. Compared to other 
binary classification algorithms that deal with other types of 
CVD using SCG and GCG features [17], [19], and [26], our 
results show a slightly better performance in accuracy (AC). In 
[17], a binary classification of acute myocardial infarction was 
conducted with 17 patients and 23 healthy subjects. The highest 
results reported were 95.7% in specificity (SP) and 82.4% in 
sensitivity (SE). In our work in comparison, the highest SP is 
99.58% and the highest SE is 98.96%, which are obtained from 
SCG + GCG + RF in binary classification. In [19], atrial 
fibrillation (AF) was classified using a linear least-square 
classifier with data from 13 patients. The specificity and 
sensitivity results were 96.4% and 99.9% respectively. The SP 
is lower than the SP of 99.58% in our work, and the SE is higher 
than the SE of 98.33% in our work. In [26], AF was detected 

TABLE VII  
CLASS-SPECIFIC RESULTS OF THE MULTI-CLASS CLASSIFICATION 

Features Classifier Detection 
Classes SE SP AC 

SCG 

DT 

AS 88.56% 94.80% 91.67% 
AS + MI 87.50% 96.90% 95.93% 
AS + MS 89.09% 97.53% 96.67% 
AS + TR 87.97% 94.24% 92.41% 

RF 

AS 92.25% 96.28% 94.26% 
AS + MI 94.64% 97.52% 97.22% 
AS + MS 94.55% 97.73% 97.41% 
AS + TR 90.51% 97.64% 95.56% 

NN 

AS 90.41% 95.54% 92.96% 
AS + MI 91.07% 96.49% 95.93% 
AS + MS 90.91% 97.11% 96.48% 
AS + TR 88.61% 97.12% 94.63% 

GCG 

DT 

AS 89.30% 95.91% 92.59% 
AS + MI 92.86% 96.49% 96.11% 
AS + MS 90.91% 97.32% 96.67% 
AS+TR 88.61% 96.07% 93.89% 

RF 

AS 90.04% 94.80% 92.41% 
AS+MI 92.86% 96.69% 96.30% 
AS+MS 92.73% 96.70% 96.30% 
AS+TR 86.71% 97.38% 94.26% 

NN 

AS 89.30% 94.80% 92.04% 
AS + MI 89.29% 96.90% 96.11% 
AS + MS 90.91% 96.49% 95.93% 
AS + TR 87.97% 96.60% 94.07% 

SCG 
+GCG 

DT 

AS 90.77% 96.65% 93.70% 
AS+MI 91.07% 96.90% 96.30% 
AS+MS 96.36% 97.53% 97.41% 
AS+TR 89.87% 96.86% 94.81% 

RF 

AS 91.88% 95.17% 93.52% 
AS+MI 92.86% 97.31% 96.85% 
AS+MS 90.91% 97.94% 97.22% 
AS+TR 90.51% 97.38% 95.37% 

NN 

AS 90.41% 94.42% 92.41% 
AS + MI 87.50% 96.28% 95.37% 
AS + MS 87.27% 97.32% 96.30% 
AS + TR 88.61% 96.86% 94.44% 

 
Green Best results to the class of AS 
Red Best results to the class of AS + MI 
Blue Best results to the class of AS + MS 

Orange Best results to the class of AS + TR 

 (DT: decision tree, RF: random forest, NN: neural network, AS: aortic 
stenosis, MI: mitral insufficiency, MS: mitral stenosis, TR: tricuspid 
regurgitation). 

 
Fig. 6. A comparison of the overall sensitivity of multi-class classification 
with different sets of features and methods (DT: Decision Tree, RF: Random 
Forest, NN: Neural Network).  
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using a binary classifier trained with data from 16 patients and 
23 healthy subjects. The best final accuracy, sensitivity, and 
specificity results are 97.4%, 93.8%, and 100% respectively. 
The AC and SE from [26] are lower than the AC of 98.96% and 
SE of 98.33% from our results with SCG + GCG + RF in binary 
classification. However, the SP from [26] is higher than the SP 
of 99.58% from our work. 

In our previous study in [21], we conducted a binary 
classification of general cardiovascular abnormalities using 
SCG and GCG features. The classifiers were trained with data 
collected from 12 patients and 12 healthy subjects. The best 
performance of leave-out validation in AC, SE, and SP were 
97.7%, 96.9%, and 97.0% respectively. In this work, the best 
performance in AC, SE, and SP are 98.96%, 99.58%, and 
98.33% respectively from SCG + GCG features with RF 
classifier, which are all higher than the results in [21]. 

The results from ICG-based methods can also be compared 
with this work. In [24], features were extracted from the ICG 
signals of twenty-five CVD classes and used as an input to a 
classifier. The classification had an AC of 95.40%. In another 
study [25], five classes of VHDs from 75 patients were 
classified using a combination of temporal and time-frequency 
features. These gave a diagnosis accuracy of 98.94%. Our 
binary classification results report the highest AC of 98.96%, 
which is higher than the results in [24] and [25]. Our multi-
class classification results are however lower than the values 
from ICG-based methods in [25]. 

In summary, our binary classification results report higher 
AC and SE values than the binary classification results with the 
same modalities that detect other cardiovascular abnormalities. 
The reported SP from our work is lower than the best result 
(100%) from [26]. Also, the results from the binary 
classification are comparable with results from ICG-based 
multi-class classifications. However, the multi-class 
classification results are less satisfactory compared to the 
results from other modalities and methods. 

The classification of AS with co-existing VHDs is a more 
challenging task than regular CVD classifications since the 

differences among AS with co-existing VHDs are less 
significant than the differences among different categories of 
CVD. This result is therefore expected. There are also other 
factors related to the classification results. For instance, the 
number of subjects included in the database influence the 
performance of a classifier. The segments extracted for the four 
co-existing CVDs are not well-balanced. The population bias 
might also influence the results of the classifiers. The severity 
and stages of the VHDs also bring differences to the 
characteristics of the subjects [42], [43]. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper introduces a novel approach to detect and classify 

aortic stenosis (AS) using seismo-cardiogram (SCG) and gyro-
cardiogram (GCG) signals. Different combinations of features 
are evaluated using DT, RF and NN methods. Feature analysis 
results suggest that the major features are maximum statistical 
features from CWT below 11 Hz. Our results suggest that the 
proposed solution could be used to classify and detect general 
aortic stenosis as well as to classify different co-existing 
VHDs. The accuracy of multi-class classification is lower than 
the binary classification, which remains to be further improved. 
There is a difference between the feature-method combinations 
that achieve the highest accuracy in the two different 
classification tasks. This indicates that binary and specific 
aortic stenosis classifications should be treated individually for 
optimized performances.  

It is also worth mentioning that the segmentation of cardiac 
cycles relies on the modalities of ECG and PPG in the current 
framework. In future setups, a standalone segmentation 
algorithm could be used such as the methods in [44]-[47]. 
Without the integration of ECG and PPG, the form factor and 
cost of the device could be minimized. Moreover, the device 
will be more convenient to the users since no electrodes or clips 
are needed. 

To achieve increased robustness of the system and better 
performance among specific AS classes, future research would 
encompass the use of other classification methods, such as the 
K-nearest neighbors (KNN) method [48]. The tuning of the 

TABLE VIII  
 PERFORMANCE COMPARISON WITH OTHER RESEARCH METHODS 

Methods Target CVD(s) Classifier(s) AC SP SE Reference 

Binary Classification 

SCG + GCG General Abnormality SVM 97.7% 97.0% 96.9% [21] 

SCG + GCG Acute Myocardial Infarction Kernel SVM N/A 95.7% 82.4% [17] 

SCG + GCG Atrial Fibrillation RF 97.4% 100% 93.8% [26] 

SCG Atrial Fibrillation Linear Least-
square N/A 96.4% 99.9% [19] 

Proposed Method Aortic Stenosis (AS) RF  98.96% 99.58% 98.33%  

Multi-class Classification 

ICG 25 CVD classes Discriminant 
analysis 95.40% N/A N/A [24] 

SVM with ICG 5 VHD classes SVM and 
KNN 98.94% 100% 97.85% [25] 

Proposed Method 4 AS classes RF 96.36% 97.94% 97.41%  

(DT: decision tree, RF: random forest, SVM: support vector machine, KNN: K-nearest neighbor) 
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parameters could further optimize the performance of the 
models [49], [50]. The importance of the features could also be 
analyzed using other methods such as the elastic net [51]. We 
could also increase the number of features to improve the 
learning of the classifiers. For example, we can add temporal 
and spectral features from and combine them with the time-
frequency features. A larger database of subjects with a more 
extensive variety of co-existing VHDs should also be collected 
to improve the demographic significance and increase the 
coverage of co-existing VHDs. In addition, the full wavelet 
array could be used as a 2-D feature for a deep-learning task 
based on graphics [52]. Although this classifier would need 
more computing power, it could potentially reveal many new 
applications.  

In the future, a two-stage classification framework could be 
envisioned in which the recordings are fed into a binary 
classification of AS as the first stage. The observations which 
are classified as AS will then be sent to the next stage where a 
multi-class classification algorithm determines the specific AS 
conditions.  Furthermore, the multi-class classification could 
be replaced by a multi-label classification algorithm [53], [54]. 
The framework could then classify AS with multiple co-
existing VHDs more effectively. The method proposed in this 
study shows promising potential for use in the monitoring of 
VHDs to prevent patients from sudden critical cardiac 
situations. 
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