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Abstract— Objectives: This paper introduces a novel method for
the detection and classification of aortic stenosis (AS) using the
time-frequency features of chest cardio-mechanical signals
collected from wearable sensors, namely seismo-cardiogram
(SCG) and gyro-cardiogram (GCG) signals. Such a method could
potentially monitor high-risk patients out of the clinic. Methods:
Experimental measurements were collected from twenty patients
with AS and twenty healthy subjects. Firstly, a digital signal
processing framework is proposed to extract time-frequency
features. The features are then selected via the analysis of variance
test. Different combinations of features are evaluated using the
decision tree, random forest, and artificial neural network
methods. Two classification tasks are conducted. The first task is
a binary classification between normal subjects and AS patients.
The second task is a multi-class classification of AS patients with
co-existing valvular heart diseases. Results: In the binary
classification task, the average accuracies achieved are 96.25%
from decision tree, 97.43% from random forest, and 95.56% from
neural network. The best performance is from combined SCG and
GCG features with random forest classifier. In the multi-class
classification, the best performance is 92.99% using the random
forest classifier and SCG features. Conclusion: The results
suggest that the solution could be a feasible method for classifying
aortic stenosis, both in the binary and multi-class tasks. It also
indicates that most of the important time-frequency features are
below 11 Hz. Significance: The proposed method shows great
potential to provide continuous monitoring of valvular heart
diseases to prevent patients from sudden critical cardiac
situations.

Index Terms— Aortic stenosis, gyro-cardiography (GCG),
machine-learning, MEMS accelerometer, MEMS gyroscope,
seismo-cardiography (SCG), signal processing, time-frequency
analysis.

I. INTRODUCTION

Valvular heart diseases (VHDs) are abnormal conditions of

the heart caused by damages of the heart valves. VHDs
affect a huge population and have high mortality rates
compared to other cardiovascular diseases (CVDs) [1]. There
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are four heart valves in the heart: the aortic valve, the mitral
valve, the pulmonary valve, and the tricuspid valve [2]. These
valves can be influenced by two types of mechanical incidents:
stenosis and insufficiency (also known as regurgitation).
Stenosis is the narrowing of the valvular orifice that prevents
an adequate outflow of blood, and insufficiency describes the
inability of the valve to prevent the backflow of blood [3].
Hence, there are majorly eight types of VHDs from the
combination of four valves and two incidents. Among all
valvular heart diseases, aortic stenosis (AS) has the highest
prevalence [3]. AS affects 2%-5% of the population, especially
in the senior citizens [3]. According to the Euro Heart Survey
on VHDs, 43.1% of VHD incidents are AS [4]. Although AS
is a fairly common disease, between one-third and two-thirds
of the AS patients go untreated [3]. One main reason is that
treatment is fairly conservative before the detection of
symptoms [3]. It is therefore critical to detect AS so that proper
treatment could be performed. There are several tools for the
detection of AS, such as echocardiography, computed
tomography, magnetic resonance imaging, and cardiac
catheterization [3]-[6]. These methods are often costly and
constraining. Furthermore, they are often deployed inside the
clinic. A prolonged, continuous monitoring of high-risk
subjects outside of the clinic is not feasible with the modalities
stated above.

Wearable sensors using non-invasive modalities have been
considered as one of the most promising devices to be used in
a home-based ubiquitous monitoring scenario for high-risk
populations [7]-[9]. In our scope, a wearable device that is
capable of detecting cardiovascular abnormalities such as AS
could potentially prevent the progressive development of this
disease and increase the ratio of successful treatments.

Chest cardio-mechanical sensing is a non-invasive wearable
sensing modality that has been enthusiastically researched in
recent years [ 10]. It can be categorized into two types, seismo-
cardiography (SCG), which is the measurement of the linear
acceleration components of the chest wall induced by the
heartbeat [11], [12], and gyro-cardiography (GCG), which is
the recording of heart-induced rotational vibrations of the chest
wall in the form of angular speed [13]. SCG and GCG signals
can be conveniently acquired by placing a micro-
electromechanical system (MEMS) inertial measurement unit
(IMU) on the chest wall, where the accelerometer picks up the
SCG signal and the gyroscope measures the GCG waveform.

Seismo- and gyro-cardiogram signals have been effective for
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the evaluation or classification of multiple CVDs such as
coronary artery disease [14], [15], myocardial infarction [16],
[17], atrial fibrillation [18], [19] and heart failure [20].
Specifically, our research group has conducted a study on the
binary classification of cardiovascular system abnormality
based on SCG and GCG signals, which is presented in [21].
However, there are no studies in the literature that are related
to the detection and classification of aortic stenosis (AS) based
on cardio-mechanical recordings.

The development of AS is a complicated progress.
Furthermore, AS might be accompanied by different co-
existing cardiac diseases which happen concurrently with the
major disease. For instance, in a study performed on 240 AS
patients, 32.5% of the patients had at least moderate mitral
regurgitation co-existing with AS [22]. In this work, we
propose a classification framework of AS. We evaluate the
topic in two aspects to address the complicated development of
AS. The first aspect is the classification between healthy
subjects and general AS patients. We aim to extract the features
that can distinguish between normal subjects and AS patients
regardless of the specific AS conditions. In other words, we
propose a binary classification framework that can detect
general AS. The second aspect is the classification of AS with
different co-existing cardiac diseases. There are many kinds of
co-existing cardiac diseases such as VHDs, coronary artery
diseases, and pulmonary hypertension [22]. In this study, we
focus on the classification of AS with three different co-
existing VHDs as explained in the next section.

In the literature, features from the heartbeat and heartbeat
segments are generally used for feature extraction. For example
in [19], features from HR and three different orders of HRV
were used for the training and testing of a binary classifier of
atrial fibrillation (AF). However, the development of AF is
closely correlated with HR and HRV since AF corresponds to
heart arrthythmia. On the other hand, aortic stenosis (AS) is a
structural disease of the heart. According to a long-term study,
there are no correlations between changes in HR and the
progression of AS [23]. The seismo-cardiogram (SCG) and
gyro-cardiogram (GCQG) signals used in this study are closely
related to valve activities [11]-[13]. It has been reported that
the time-frequency components of SCG and GCG can be used
to assess left ventricular health [12], [13], [16]. The aortic
valve, located in the human heart between the left ventricle and
the aorta, is closely related to the health of the left ventricle.
Therefore, the features extracted from the time-frequency
components of SCG and GCG reveal great potential to classify
between healthy and AS patients. Hence in this work we focus
on these features statistically and morphologically.

From the SCG and GCG recordings, we extract features out
of single-cycle and multi-cycle segments. The empirical mode
decomposition (EMD) and continuous wavelet transform
(CWT) techniques are applied to perform time-frequency
analyses. The significance level of the features is assessed by
the analysis of variance (ANOVA) method. Then the selected
components are fed to machine learning classifiers for two
classification tasks.

TABLE I SUMMARY OF DEMOGRAPHIC INFORMATION OF SUBJECTS
PARTICIPATED IN EXPERIMENTS. (AVERAGE + STANDARD DEVIATION)

Category Age (years) Height (cm) Weight (kg)
AS 68.90 + 8.43 162.47 £11.30 72.31£13.71
Healthy 24.75+1.83 170.59 + 8.62 64.95 +11.30

To the best of our knowledge, this is the first time that the
feasibility of AS classification is evaluated using cardio-
mechanical modalities. Our work also reveals the important
features for the classification of AS. It is, however, worth
mentioning that impedance cardiography (ICG) has been
proposed as a non-invasive modality to perform classification
of VHDs. In a study using the ICG signal, it was revealed that
the use of cepstral features is effective for the detection of
cardiovascular diseases including VHDs [24]. These features
were extracted from the ICG signals of twenty-five CVD
classes and used as an input to a classifier. The classification
had an accuracy of 95.40%. In another study, five classes of
VHDs were classified using a combination of temporal and
time-frequency features from 75 patients [25]. These features
were fed to the support vector machine classifier and a
diagnostic accuracy of 98.94% was reported.

Compared to other modalities such as ICG, there are two key
advantages in using chest cardio-mechanical signals. The first
advantage is that they do not need direct contact with the skin
via electrodes, and are therefore more convenient for users to
wear, especially for long-term monitoring at home.
Furthermore, the wide availability of IMUs in daily electronics,
such as smartphones and wearable gadgets, makes seismo- and
gyro-cardiography promising solutions for a low-cost,
ubiquitous, and mobile healthcare system. For instance, several
pilot studies have validated the feasibility of extracting seismo-
and gyro-cardiogram signals from IMUs in smartphones [17],
[26], [27].

The layout of this paper is as follows. Section II presents the
experimental protocol and data acquisition. The methodology
of extracting, selecting, and training the features is introduced
in Section III. Section IV introduces the experimental results
and Section V provides discussions of the results. We conclude
the paper and outline the future work in Section VI.

II. EXPERIMENTAL PROTOCOL AND DATA ACQUISITION

A. Datasets
Twenty inpatient subjects from the cardiac care units of
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Fig. 1. Experimental setup with the sensor nodes which collect SCG, GCG,
PPG, and ECG.



TABLE II
SUMMARY OF CO-EXISTING VHDS OF PATIENTS WITH AORTIC STENOSIS
Subject Mitral . . Tricuspid
Indjex Insufficiency Mitral Stenosis Regurgitl:ltion
1 No No Yes
2 No No No
3 No No Yes
4 No No No
5 No No Yes
6 No No Yes
7 No No No
8 No Yes Yes
9 No No No
10 No Yes No
11 No No No
12 No Yes No
13 Yes No No
14 No No No
15 No No No
16 No No Yes
17 No No No
18 No No No
19 Yes No No
20 Yes Yes Yes

(Mitral insufficiency is also known as mitral regurgitation, which is used in
the original records from CUMC).

Columbia University Medical Center (CUMC) participated in
the collection of AS recordings. All the patients were measured
prior to receiving any treatments. A control group of twenty
healthy subjects also participated in this study. Measurements
from normal subjects were performed at Stevens Institute of
Technology. The AS cohort includes ten male and ten female
subjects whose ages, weights and heights varied as 69-97 years
old, 44-91 kg, and 139-182 cm, respectively. The healthy
subjects’ recordings correspond to ten male and ten female
subjects of 22-35 years old, 52-80 kg, and 154-180 cm. Table I
summarizes the statistical demographic information of all the
recruited subjects in average and stand deviation.

Table II shows the co-existing VHDs of the AS subjects.
The VHD conditions of the AS group include aortic stenosis
(AS) with or without concurrent mitral insufficiency (MI), AS
with or without concurrent mitral stenosis (MS), and AS with
or without concurrent tricuspid regurgitation (TR). As seen in
Table II, three patients have a co-existing VHD of MI, four
patients have a co-existing VHD of MR, and seven patients
have AS with TR. Nine out of the twenty patients do not have
any of these VHDs. It is to be noted that the co-existing VHDs
are not mutually exclusive. A patient could possibly have
multiple co-existing VHDs. For instance, subject #20 has MI,
MS, and TR simultaneously. In this scenario, an ultimate
solution to the classification problem is a multi-label
classification, in which the co-existing VHDs are evaluated

Fig. 2. Block diagram of the signal processing framework.
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individually. The subjects could then be classified into multiple
co-existing VHD classes at the same time. However, the
training of such a multi-label classifier requires a larger
database with wider coverage of co-existing VHD
combinations than the patient database in this study. Therefore,
we select a more practical multi-class classification, where we
classify among four different AS classes: AS without any co-
existing disease, AS with MI, AS with MR, and AS with TR.
Therefore, the data for the training and testing of the multi-class
classification are from AS patients with only one co-existing
VHD or without any co-existing VHDs. In other words,
subjects #8 and #20 were excluded from the training and testing
of the multi-class classification. On the other side, all of the
patient data were used for binary classification since the
classification task is to detect general AS regardless of the
specific kind of the co-existing VHD.

B. Experimental Protocol

The subjects were asked to sit at rest on a bed or chair for at
least five minutes during each experiment. It is to be noted that
the subjects can also be measured at other postures such as the
supine position without any significant influence on the results.
Subjects breathed naturally without controlling their breathing
depths. The patient experimental protocol was approved by the
Institutional Review Board of CUMC under protocol number
AAAR4104. The experiments with healthy subjects were
approved by the Committee for the Protection of Human
Subjects at Stevens Institute of Technology under protocol
number 2017-008 (N).

III. METHODS

A. The Hardware System

As shown in Fig. 1, a commercial wearable sensor node
(Shimmer 3 from Shimmer Sensing, marked by the orange
circle [28]) is attached to the center of the sternum along the
third rib using a chest strap. A three-axis MEMS accelerometer
(Kionix KXRB5-2042, Kionix, Inc.) measures the SCG signal,
and a three-axis MEMS gyroscope (Invensense MPU9150,
Invensense, Inc.) records the GCG signal. Both sensors share
the same axis definition, where the z-axis refers to the dorso-
ventral direction of the body, the y-axis is along the head-to-
foot direction, and the x-axis is along the shoulder-to-shoulder
direction. Reference heartbeat measurements are also taken by
a standard four-lead ECG system (the blue circle in Fig. 1),
which is wire-connected to the center chest sensor. In addition,
an ear-lobe photoplethysmography (PPG) sensor marked by
the red circle on the right side of the figure is connected to a
second shimmer sensor node attached to the left side of the
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chest wall to provide additional cardiovascular information as
illustrated in Fig. 1. Both the ECG and PPG signals work as
references to provide segmentation information during the
signal pre-processing, which will be introduced in Section I1.B.
The accelerometer and gyroscope ranges are =2 g and £250
degrees per second (DPS) respectively, and all the sensor
recordings are sampled at a sampling rate of 256 Hz. Data are
transmitted via Bluetooth to a computer for digital signal
processing. The recorded data from the two sensor nodes are
synchronized by the software provided by the manufacturer
and imported into MATLAB (R2018) for further processing.

Fig. 2 illustrates the block diagram of the proposed signal
processing framework. This framework is extended from our
previous study in [21]. First, the raw signals are pre-processed
and segmented into equal-length segments and cycle-to-cycle
segments. Then, the features are extracted from processed
cardio-mechanical signals using time-frequency analyses by
CWT and EMD methods. This step is followed by a feature
selection which selects the most significant features via
analysis of variance (ANOVA). Finally, the features from
labeled observations that will be fed into training algorithms.
Details of the signal processing steps are introduced in the
following sections.

B. Signal Pre-processing and Segmentation

Although seismo- and gyro-cardiogram signals are recorded
from all three axes of the devices, we focus on recordings from
one axis in each modality. For the SCG signal, the z-axis in our
system, i.e., the standard single-axis SCG signal, is chosen. For
the GCG modality, the y-axis rotation signal is selected due to
the higher quality for this axis reported in [12] and [29].

Raw SCG signal after pre-filtering
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Fig. 3. (a) Raw seismo-cardiogram (SCG) signal after band-pass filtering. (b)
RMS-filtered SCG signal with median product threshold line (red-dot line).
(c) Equally-segmented SCG measurements based on (1)-(3). (d) Single-cycle
segmentation of SCG from the tenth equally-segmented recording. (Unit of x-
axis: seconds for (a) to (c), samples for (d)).
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All signals are pre-filtered with zero-phase infinite impulse
response (IIR) bandpass filters to remove baseline wandering
and focus on the informative bandwidths. The frequency band
for SCG and GCG is from 0.8 Hz to 25 Hz. The ECG signal is
pre-filtered from 5 Hz to 30 Hz, and the PPG signal from 0.8
Hz to 60 Hz.

The filtered SCG and GCG signals are divided into low-
noise equal-length segments by using a threshold-based
exclusion method with a root-mean-square (RMS) filter
modified from [19]. The purpose of this step is to reject noisy
segments for the time-frequency analysis and feature
generation steps. Features from equal-length segments provide
the highest consistency of observations for the best results of
classification training. In this study, we use a period length of
10 s, which is an experimental number based on our trials in
[21] and references [19]. The step size of the RMS filter is set
to 500 ms, and the threshold is set to 1.5 times of the median
RMS value. More details of the equal-length segmentation
could be found in [21].

After the segmentation of the 10-second recordings, the
segments are further separated into single cardiac cycles. The
segmentation of the cardiac cycles starts with the detection of
the R-peaks in the simultaneous ECG recordings.

The R-peaks are marked as the local maxima in the ECG
signal with a minimum value of 40% of the maximum peak and
a minimum distance of 30 data samples between consecutive
peaks. This is a modified heartbeat detection algorithm [30]
constructed to apply with our sensing device. LL-LA ECG
recordings were used for most of the patients while the LL-RA
ECG recordings worked as a back-up. In other words, the
highest-priority segmentation source was LL-LA ECG. In the
cases where the LL-LA ECG signal was noisy, the LL-RA
ECG signal was selected. The PPG recordings supplied
additional information when both LL-LA and LL-RA ECG
recordings were noisy. In such cases, the cardio-mechanical
recordings were segmented based on the PPG peaks instead of
ECG peaks. The systolic maximum peaks in PPG are
considered as the segmentation markers and are detected with
the method described in [31]. A fixed offset of 45 samples is
applied to adjust the difference between ECG and PPG cycles.

Fig. 3 illustrates this step on a representative seismo-
cardiogram graph. It is seen that the recordings with large
motion artifacts have been excluded due to the RMS filtering
step in Fig. 3 (b). After the equal-length segmentation in Fig. 3
(c), the temporal recording segments are further divided into
cardiac cycles. As an example, the recordings are separated into
15 single-cycle segments as shown in Fig. 3 (d) from one ten-
second segment.

C. Feature Extraction

The training of the classification algorithms requires a set of
labeled observations, i.e., many groups of features which are
categorized into different classes (normal, AS, and AS with co-
existing VHDs). In this study, one observation is defined as the
features from one ten-second segment combined with the
features from all the single-cycle segments that are related to



that ten-seconds segment. As shown in Fig. 2, the ten-second
segment is processed with continuous wavelet transform while
the single-cycle segments are processed via empirical mode
decomposition. The detailed procedures are as follow.

1) Continuous Wavelet Transform

Our preliminary study in [21] indicates that the abnormality
of cardio-mechanical signals may occur in intermediate cycles
in between several regular cycles. In addition, the abnormal
signal might have a dominant component at certain
frequencies. Therefore, we expand the signal in the time-
frequency domain by using the continuous wavelet transform
(CWT) method [35]. The wavelet used in this study is a Morse
wavelet. The equation for this wavelet is expressed as follows.

p2
¥p, (@) = U(wap,wre (1).

In (1), P is the time-bandwidth product and y is the symmetry
parameter. In this study, y is selected as 3 and the value of P is
120. In combination with the sampling frequency of 256 Hz,
the configured CWT results in a high-resolution region
between 0.8 Hz and 25 Hz (the passing band of our pre-filter).
To focus on this band, we then select from 0.79 Hz to 25.39 Hz
precisely. More details about our CWT method can be found in
[21].

Several statistical features are extracted from the full-
wavelet array. The first feature is the maximum power which
is defined in detail in [21]. Also, additional statistical features
are extracted in each frequency band including mean, standard
deviation, and median. These features are designed to detect
abnormal activities in the scope of a ten-second segment. Next,
we perform an empirical mode decomposition (EMD) of each
single-cycle cardio-mechanical beat.

2) Empirical Mode Decomposition

The empirical mode decomposition (EMD) is the method
used in Hilbert-Huang transform as a time-frequency analysis
technique [36]. It decomposes the signal into components
called intrinsic mode functions (IMFs) which are determined
using a technique named the sifting process [36], [37]. This
technique analyzes the envelopes of the signal based on the
local maxima and local minima, denoted as Hmax(n) and
Huin(n), respectively. For a given signal s(n), the mean m(n) of
the two envelopes is calculated as follows:

Hmax(M)+Hmin(n) (2)

my(n) = 2

The first IMF is determined as:
IMF;(n) = s(n) —my(n) 3)

The subsequent IMFs are then obtained by considering the
first IMF as new input and repeating the procedure iteratively.
The iterations of finding new IMFs are stopped when the
standard deviation of the differences between two adjacent
IMFs is smaller than 0.2. The maximum number of iterations
is set to 100.

Fig. 4 illustrates the EMD results of a representative SCG
single-cycle recordings. All 4 IMFs are plotted to show the
different signal components. The order of the IMFs from low
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Fig. 4. A representative EMD of a single-cardiac-cycle seismo-cardiogram
recording showing the ensemble-averaged signal, all 4 of the IMFs, and the
residual signal.

to high represents the density of the frequency components, i.e.,
the first IMF contains the highest frequency components.

For each ten-second measurement, the IMFs are extracted
from all the related signal-cycle recordings and then ensemble-
averaged. Then the features are extracted from each of the four
ensemble-averaged IMFs, including the mean, the standard
deviation, the skewness, and the entropy.

3) Feature Selection

Table III summarizes the features from CWT and EMD
outputs. It is shown that 4 features are generated from 55
frequency bins based on CWT, which summarizes as 220
features in total. Moreover, 4 features are extracted from 4
IMFs of the EMD. As a result, 236 features are generated from
each of the SCG and GCG signals.

In this study, we conduct two separate one-way ANOVA
tests for the classification training tasks. The first test is for the
binary classification of AS in general. The PCs extracted from
the time-frequency analyses are collected into a table with
observation marks of either ‘AS’ or ‘normal’. Then the
ANOVA test evaluates the significance between the two
classes. The second test is for the multi-class classification of
AS with co-existing VHDs. AS patients with different co-
existing VHDs are labeled as ‘aortic stenosis (AS)’, ‘AS +
mitral insufficiency (MI)’, ‘AS + mitral stenosis (MS)’, and,
‘AS + tricuspid regurgitation (TR)’. Then the ANOVA test is
applied to all these four classes.

The selected features after the ANOVA are then fed into the

machine learning algorithm as introduced in the following
section.



TABLE III
SUMMARY OF FEATURES FROM CWT AND EMD

Source Feature Type I Range (number of features)
CWT
. 0.79-25.39 Hz (55 from each
Maximum .
modality)
0.79-25.39 Hz (55 from each
Mean modality)
SCG and GCG . 0.79-25.39 Hz (55 from each
Standard Deviation .
modality)
Median 0.79-25.39 Hz (55 from each
modality)
EMD
Mean IMF 1-4 (4 from each modality)
SCG and GCG Standard deviation | IMF 1-4 (4 from each modal%ty)
Skewness IMF 1-4 (4 from each modality)
Entropy IMF 1-4 (4 from each modality)
Total 236 from each modality

D. Machine-learning Classifier Training

In this study, we have used three types of classifiers: The
decision tree (DT), the random forest (RF), and the neural
network (NN).

1) Decision Tree

The decision tree (DT) is a decision support tool
representing a set of choices in a tree-like graph [40], [41]. In
this study, a medium tree with a maximum of 20 splits is
applied. The split criterion is based on entropy. The maximum
depth is set to 7. We optimize the minimum number of leaf size
by using the automatic optimization function in MATLAB,
which searches among integers in the range from 1 to half of
the observations at log-scale.

2) Random Forest

Random forest (RF) is an ensemble learning method that
constructs multiple decision trees. [41]. The number of trees is
30, and the maximum number of splits is 798. The minimum
leaf size is set to 1, and the number of variables for each
decision split is selected by the square root rule, which takes
the square root of the number of variables.

3) Neural Network

We implemented a simple neural network with 30 input, 20
hidden, and 10 output neurons. The initial learning rate is
0.001.

4) Evaluation Metrics and Validation Methods

To evaluate the performance of the classification algorithm,
several metrics are calculated. The class-specific metrics are
sensitivity (SE), specificity (SP), and accuracy (AC), which are
defined as follows:

TP

SE = ———x 100% (4)
TN
SP = ———x100% (5)
TP+TN
AC = Trvenrnarr < 100% ©

where TP, FP, TN, and FN are true positives, false positives,
true negatives, and false negatives accordingly.
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In addition to the class-specific metrics, the overall accuracy
is also calculated to evaluate the general performance of the
multi-class classification results. The overall accuracy is
defined as the percentage of the true positives from all classes
divided by all the classification datapoints.

The average recording length of all the subjects is 5.7
minutes. A total of 1157 segments are extracted from 40
subjects. For the binary classification, a total of 960 seismo-
cardiogram (SCG) segments are collected as the balanced
training set from 16 AS patients (480 abnormal segments) and
16 healthy subjects (480 normal segments). Similarly, a total
of 960 gyro-cardiogram (GCG) segments are extracted from
the same group of patients and healthy subjects. The trained
models are validated using the classic ten-fold cross-validation
method. Data from the remaining 4 patients (88 segments) and
4 healthy subjects (88 segments) are left out for testing.

Only the data from AS patients are used in the multi-class
classification. As mentioned in Section II, eighteen out of the
twenty AS patients are selected for the classification of co-
existing VHDs. A total of 540 segments are extracted from the
SCG and GCG recordings. There are 56 segments from
subjects with AS + MI, 55 segments from subjects with AS +
MS, and 158 segments from subjects with AS + TR. The
subjects with no co-existing CVD provide 271 segments. The
evaluation method for the multi-class classifier model is ten-
fold cross-validation.

Iv. EXPERIMENTAL RESULTS

A. Feature Selection Results

All seismo- and gyro-cardiogram segments are extracted
into 55 frequency bins with four features per bin, and four IMFs
with four features per IMF.

1) Feature Selection for Binary AS Classification

Table IV shows the ANOVA results for the binary
classification based on seismo- and gyro-cardiogram features.
The selected features are based on the threshold of p < 0.05.

It is reported that 24 features are extracted from SCG. Out of
the 24 features, 22 are from CWT. There are 13 maximum
features, which range from 1.07 Hz to 9.20 Hz. 3 features from
2.30 Hz to 4.60 Hz are extracted based on mean values.
Standard deviations of the CWT outputs provide 4 features
from 1.00 Hz to 1.23 Hz while the median values give 2
features at 1.32 Hz and 2.14 Hz. Only two of the features are
from EMD, which are the mean value from IMF1 and the
skewness from IMF3. Overall, the frequency range of the
selected features is from 1.00 Hz to 9.20 Hz.

The gyro-cardiogram (GCG) reports significant results from
30 features. Specifically, 27 of the features are from CWT.
Particularly, 18 features ranging from 3.03 Hz to 10.58 Hz are
extracted from the maximum features. 4 features are extracted
based on mean values from 0.87 Hz to 1.07 Hz. Furthermore,
3 features are from standard deviations ranging from 4.29 Hz
to 4.94 Hz. It is also seen that 2 median features are selected at
4.00 Hz and 4.29 Hz. The EMD provides 3 features which are
mean features from IMF1 and IMF3 and the skewness feature



TABLE IV
ANOVA TEST RESULTS FOR BINARY CLASSIFICATION

TABLE V
ANOVA TEST RESULTS FOR MULTI-CLASS CLASSIFICATION

Source Feature Type Range and number of features Source Feature Type Range and number of features
SCG SCG
CWT Maximum 1.07 - 9.20 Hz, 13 features CWT Maximum 1.07 — 6.51 Hz, 10 features
Mean 2.30 - 4.60 Hz, 3 features Mean 2.30 - 4.29 Hz, 3 features
Standard Deviation 1.00 - 1.23 Hz, 4 features Standard Deviation 0.87 - 1.23 Hz, 3 features
Median 1.32 and 2.14 Hz, 2 features Median 1.32 and 1.15 Hz, 2 features
EMD Mean IMF1 EMD Mean IMF1
Skewness IMF3 Skewness IMF 2, IMF 3
Total 24 Total 21
GCG GCG
CWT Maximum 3.03 - 10.58 Hz, 18 features CWT Maximum 4.29 —9.87 Hz, 15 features
Mean 0.87 - 1.07 Hz, 4 features Mean 0.87 - 1.41 Hz, 5 features
Standard Deviation 4.29-4.94 Hz, 3 features Standard Deviation 4.29-4.94 Hz, 4 features
Median 4.00 and 4.29 Hz 2 features Median 3.03 — 6.51 Hz 3 features
EMD Mean IMF 1, IMF 3 EMD Mean IMF 3
Skewness IMEF 3 Skewness IMF 2
Total 30 Total 29

from IMF3. In summary, the features from GCG range from
0.87 Hz to 10.58 Hz.

We can observe that most of the significant features are
based on CWT maximum values. Also, there are more features
from CWT than from EMD. It is also shown that the features
are mostly below 11 Hz.

2) Feature Selection for the Multi-class Classification of AS
with Co-existing VHDs

The features for multi-class classification are also analyzed
with a one-way ANOVA test. Table V summarizes the
ANOVA test results of seismo- and gyro-cardiogram features
with multi-class labels. The selected features are based on the
threshold of p < 0.05. The SCG results provide 21 features in
total. It is seen that 18 out of the 21 features are from CWT and
3 are from EMD. The features have a frequency range of 0.87
Hz to 6.51 Hz. Also, 10 features from 1.07 Hz to 6.51 Hz are
from the maximum features of CWT, which are the majority of
the features.

Moreover, there are 29 features selected from GCG. Among
them, 27 are from CWT and 2 from EMD. The features range
from 0.87 Hz to 9.87 Hz.

Comparing the feature selection results of binary and multi-
class classifications, it is observed that the selected features are
different. For instance, SCG-based features have a larger
frequency range for binary classification than for multi-class
classification (1.00 — 9.20 Hz vs. 0.87 — 6.51 Hz respectively).
This difference suggests that the best features for the binary
classification of AS are not the same as the best features for the
classification of AS with co-existing VHDs. In other words, the
features that represent the difference between normal and
general AS patients may not represent the difference among AS
patients with different co-existing VHDs.

B. Classification Results

As mentioned, we use three different classifiers, decision
tree (DT), random forest (RF), and the neural network (NN).
The SCG and GCG features can be used independently for

training or can be combined as one set of features. Therefore,
three combinations of extracted features (SCG only, GCG only,
and SCG + GCQG) are used as inputs to these two classifiers.
Hence, we analyze the performance with nine methods, i.e., 1)
SCG + DT, ii) SCG + RF, iii) SCG + NN, iv) GCG + DT, v)
GCG + RF, vi) GCG + NN, vii) SCG + GCG + DT, viii) SCG
+ GCG + RF, and ix) SCG + GCG + NN. These nine
methodologies are evaluated and compared.

1) Binary Classification of General AS

Table VI summarizes the binary classification metrics of the
trained classification model with seismo-cardiogram (SCQ),
gyro-cardiogram (GCG), and combined SCG + GCG features
respectively. The means of the classification results during the
10-fold cross-validation are presented. The test results based on
the leave-out data were also summarized. It is observed that the
metrics from leave-out data analysis are lower than the
corresponding values from the cross-validation test. This result
is expected since the cross-validation doesn’t rule out subject-
dependent factors. The test with the leave-out data is closer to
future application scenarios. Therefore, the results from the
leave-out data test are evaluated as the final performance
metrics of this binary classification task.

As shown in Table V, the RF classifier outperforms the DT
classifier. The results from SCG + RF are better than the results
from SCG + RF. The SE, SP and AC are 95.83%, 93.75%, and
94.79% from DT and 96.46%, 95.42%, and 95.94% from RF.
The sensitivity (SE), specificity (SP) and accuracy (AC) are
higher from GCG + RF (97.29%, 97.50%, and 97.40%,
respectively) compared to GCG + DT (96.88%, 97.08%, and
96.98%, respectively). Similarly, all the three metrics from
SCG + GCG + RF are higher than the results from SCG + GCG
+ DT. The reports mention SE of 98.33% vs. 96.25%, SP of
99.58% vs. 97.71%, and AC of 98.96% vs. 96.98%,
respectively.

The performance of SCG + NN is lower than that of SCG +

DT in SE (94.38% vs. 95.83%), SP (92.71% vs. 93.75%), and
AC (93.54% vs. 94.79%). Similarly, GCG + DT also



TABLE VI
RESULT METRICS OF THE BINARY CLASSIFICATION
10-Fold Cross Validation Leave-out Data Test
Features Classifier
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

DT 95.83% 93.75% 94.79% 93.64% 91.82% 92.73%

SCG RF 96.46% 95.42% 95.94% 94.55% 94.55% 94.55%
NN 94.38% 92.71% 93.54% 91.82% 92.73% 92.27%

DT 96.88% 97.08% 96.98% 95.45% 93.64% 94.55%

GCG RF 97.29% 97.50% 97.40% 96.36% 93.64% 95.00%
NN 96.25% 95.83% 96.04% 94.55% 91.82% 93.18%

DT 96.25% 97.71% 96.98% 96.36% 97.27% 96.82%

SCG + GCG RF 98.33% 99.58% 98.96% 97.27% 98.18% 97.73%
NN 96.04% 98.13% 97.08% 92.73% 96.36% 94.55%

(DT: decision tree, RF: random forest, NN: neural network).

outperforms GCG + NN. The results give 96.25%, 95.83%, and
96.04% from the NN classifier and 96.88%, 97.08%, and 96.98%
from the DT classifier in SE, SP, and AC respectively.
However, the SE and AC are higher from SCG + GCG + NN
than from SCG + GCG + DT. The SE from DT is slightly lower
than the SE from NN.

Based on these obtained results from Table V, we noticed
that the RF classifier fed with combined SCG + GCG features
provides the highest performance results compared to the other
five methodologies. Also, the results from GCG are higher than
results from SCG in all classifiers. This observation is similar
to the observation in our earlier work in [21], where GCG
reported better results in the classification of general
cardiovascular abnormalities than SCG.

Fig. 5 illustrates the classification accuracy values using the
three classifiers with different feature combinations. It shows
that the RF classifier has the highest accuracy among all three
feature combinations.

It can be summarized that using the DT classifier provides
an average AC of 96.25%, an average SE of 96.32%, and an
average SP of 96.18% regardless of the type of features used.
Also, the RF classifier provided similar results of average
accuracy, average sensitivity, and average specificity of
97.43%, 97.50%, and 97.36% respectively. The results from
NN report average AC, SE, and SP of 95.55%, 95.56%, and

100.00%

98.96%
99.00%

98.00% 97.40%

96.98% 97.08%

SCG +GCG

96.98%
97.00%

96.04%

GCG

DT “RF ®NN

95.94%
96.00%

95.00% 94.79%

94.00% 93.54%
93.00%

92.00%

91.00%

90.00%
SCG

Fig. 5. A comparison of the accuracy in binary classification with different sets
of features and methods (DT: Decision tree, RF: Random forest, NN: Neural
network).

95.56% respectively. Compared to the metrics from the DT and
NN classifier, the average metrics from the RF classifier are the
highest. In conclusion, the experimental results suggest that the
RF method slightly outperforms the DT and NN method in
binary classification. The features from combined SCG and
GCG provide the highest sensitivity and specificity in both
classifiers. As a result, the combination with the best
performance is SCG + GCG + RF, which reports SE of 98.33%,
SP of 99.58%, and AC of 98.96%. The corresponding metrics
are highlighted in green in Table V.

2) Multi-class Classification

Table VII shows the class-specific performance results for
the four classes of diseases (AS, AS + MI, AS + MS, AS + TR)
using the DT and RF classifiers fed with SCG, GCG, and
combined SCG and GCG features. The mean values during the
10-fold cross-validation are presented for each metric.

On average, the SCG + RF combination reports the highest
values of SE = 92.25% and AC = 94.26% for the class of AS.
The highest SP is reported from SCG + GCG + DT, which is
96.65%. The corresponding table cells are highlighted in green.
The highest AC for the class of AS + M1 is 97.22% from SCG
+ GCG + RF results, which also reports the highest SE of 94.64%
and the highest SP of 97.52%. These table cells are highlighted
in red. For the class of AS + MS, the best results come from
SCG + GCG + DT with SE of 96.36% and AC of 97.41%.
Moreover, the best SP is 97.94% which is from SCG + GCG +
RF. These cells are highlighted in blue. The SCG + RF
combination produces the best classification of AS + TR with
SE of 90.51%, SP of 97.64%, and AC of 95.56%. The
corresponding table cells are highlighted in orange.

The class-specific accuracy metrics for the average of the
three classifiers are 92.84%, 96.23%, 96.71%, and 94.38% for
AS, AS + MI, AS + MS, and AS + TR respectively. It can be
observed that the AS reports the lowest accuracy among all the
classes. The results from the co-existing VHD of MS has the
highest accuracy of 96.71%.

We also compared the overall performance among the three
classifiers by averaging the metrics from all classes and all
features combinations. The average accuracy from the DT



classifier is 94.85%, which is slightly lower than the value from
the RF classifier which reports as 95.56%. However, it is higher
than the result from NN, which is 94.72%. Similarly, the
average SE from DT is 90.24%, slightly lower than the value
0f91.70% from RF but higher than the value of 89.35% from
NN. The average SP of all the classes from DT is 96.43%,
which is marginally lower than the average SP of 96.88% from
RF and higher than the average SP of 96.33% from NN.

The overall accuracy metrics from all the methods are
illustrated in Fig. 6. It can be observed from this figure that the
classification performances based on SCG features are higher
than the results based on GCG and SCG + GCG features for
both types of classifiers. The overall sensitivity of all classes
from SCG is 88.28% for DT, 92.99% for RF, and 90.25% for
NN methods. In comparison, the results from GCG are 90.42%,
90.58%, and 89.37% for DT, RF, and NN classifiers

respectively. The SCG results report lower values in DT and
TABLE VII
CLASS-SPECIFIC RESULTS OF THE MULTI-CLASS CLASSIFICATION

Features | Classifier Detection SE SP AC
Classes
AS 88.56% | 94.80% | 91.67%
DT AS+MI | 87.50% | 96.90% | 95.93%
AS +MS | 89.09% | 97.53% | 96.67%
AS+TR | 87.97% | 94.24% | 92.41%
AS 92.25% | 96.28% | 94.26%
AS+MI | 94.64% | 97.52% | 97.22%
SCG RF AS +MS | 94.55% | 97.73% | 97.41%
AS+TR | 90.51% | 97.64% | 95.56%
AS 90.41% | 95.54% | 92.96%
NN AS+MI | 91.07% | 96.49% | 95.93%
AS+MS ] 90.91% | 97.11% | 96.48%
AS+TR | 88.61% | 97.12% | 94.63%
AS 89.30% | 95.91% | 92.59%
DT AS+MI | 92.86% | 96.49% | 96.11%
AS+MS | 90.91% | 97.32% | 96.67%
AS+TR 88.61% | 96.07% | 93.89%
AS 90.04% | 94.80% | 92.41%
AS+MI 92.86% | 96.69% | 96.30%
GCG RF AS+MS 92.73% | 96.70% | 96.30%
AS+TR 86.71% | 97.38% | 94.26%
AS 89.30% | 94.80% | 92.04%
NN AS+MI | 89.29% | 96.90% | 96.11%
AS+MS | 90.91% | 96.49% | 95.93%
AS+TR | 87.97% | 96.60% | 94.07%
AS 90.77% | 96.65% | 93.70%
DT AS+MI 91.07% | 96.90% | 96.30%
AS+MS 96.36% | 97.53% | 97.41%
AS+TR 89.87% | 96.86% | 94.81%
AS 91.88% | 95.17% | 93.52%
SCG RF AS+MI 92.86% | 97.31% | 96.85%
+GCG AS+MS 90.91% | 97.94% | 97.22%
AS+TR 90.51% | 97.38% | 95.37%
AS 90.41% | 94.42% | 92.41%
NN AS+MI | 87.50% | 96.28% | 95.37%
AS+MS | 87.27% | 97.32% | 96.30%
AS+TR | 88.61% | 96.86% | 94.44%
Green Best results to the class of AS
Red Best results to the class of AS + MI
Blue Best results to the class of AS + MS
Orange Best results to the class of AS + TR

(DT: decision tree, RF: random forest, NN: neural network, AS: aortic
stenosis, MI: mitral insufficiency, MS: mitral stenosis, TR: tricuspid
regurgitation).
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NN classifiers but higher values in the RF method. The outputs
from SCG + GCG features are slightly higher than the results
from GCG-only features, with a sensitivity of 92.02%
compared to 90.42% via the DT classifier, and an accuracy of
91.54% compared to 90.58% via the RF classifier. However,
the result from the NN classifier is the lowest among the three
methods. In conclusion, the highest overall sensitivity is from
SCG + RF.

Compared to the results of the binary classification in the
previous section, the results in Table VI are lower in SE, SP,
and AC. The highest accuracy from the binary classification is
98.33% (SCG + GCG + RF), while the highest class-specific
accuracy from the multi-class classification is 96.36% (AS +
MS with SCG + GCG + DT method). The best overall
performance in accuracy comes from SCG + GCG + RF for
binary classification (AC = 98.96%), while the best overall
performance in overall performance for multi-class
classification is from SCG + RF (92.99%). Furthermore, the
results from GCG is generally better than SCG in binary
classification, but worse than SCG in multi-class classification.
Among the three classifiers, the performance of RF is the best
in most cases. DT is comparable with slightly inferior metrics
than RF. The results of NN are higher than those from DT and
lower than those from RF in most tests.

V. DISCUSSION

Table VIII summarizes the comparison of performance
metrics between our work and other studies. Compared to other
binary classification algorithms that deal with other types of
CVD using SCG and GCG features [17], [19], and [26], our
results show a slightly better performance in accuracy (AC). In
[17], a binary classification of acute myocardial infarction was
conducted with 17 patients and 23 healthy subjects. The highest
results reported were 95.7% in specificity (SP) and 82.4% in
sensitivity (SE). In our work in comparison, the highest SP is
99.58% and the highest SE is 98.96%, which are obtained from
SCG + GCG + RF in binary classification. In [19], atrial
fibrillation (AF) was classified using a linear least-square
classifier with data from 13 patients. The specificity and
sensitivity results were 96.4% and 99.9% respectively. The SP
is lower than the SP 0£ 99.58% in our work, and the SE is higher
than the SE of 98.33% in our work. In [26], AF was detected

94.00%

92.99%
93.00%

92.02%

9200% 91.54%

91.00% 90.42% 90.58%
90.25% il

90.00%
89.37%

89.00% o
88.28% 8845%

88.00%
87.00%
86.00%

85.00%

SCG GCG SCG +GCG

DT “RF ®NN
Fig. 6. A comparison of the overall sensitivity of multi-class classification
with different sets of features and methods (DT: Decision Tree, RF: Random
Forest, NN: Neural Network).



using a binary classifier trained with data from 16 patients and
23 healthy subjects. The best final accuracy, sensitivity, and
specificity results are 97.4%, 93.8%, and 100% respectively.
The AC and SE from [26] are lower than the AC 0f 98.96% and
SE 0f 98.33% from our results with SCG + GCG + RF in binary
classification. However, the SP from [26] is higher than the SP
0f 99.58% from our work.

In our previous study in [21], we conducted a binary
classification of general cardiovascular abnormalities using
SCG and GCG features. The classifiers were trained with data
collected from 12 patients and 12 healthy subjects. The best
performance of leave-out validation in AC, SE, and SP were
97.7%, 96.9%, and 97.0% respectively. In this work, the best
performance in AC, SE, and SP are 98.96%, 99.58%, and
98.33% respectively from SCG + GCG features with RF
classifier, which are all higher than the results in [21].

The results from ICG-based methods can also be compared
with this work. In [24], features were extracted from the ICG
signals of twenty-five CVD classes and used as an input to a
classifier. The classification had an AC of 95.40%. In another
study [25], five classes of VHDs from 75 patients were
classified using a combination of temporal and time-frequency
features. These gave a diagnosis accuracy of 98.94%. Our
binary classification results report the highest AC of 98.96%,
which is higher than the results in [24] and [25]. Our multi-
class classification results are however lower than the values
from ICG-based methods in [25].

In summary, our binary classification results report higher
AC and SE values than the binary classification results with the
same modalities that detect other cardiovascular abnormalities.
The reported SP from our work is lower than the best result
(100%) from [26]. Also, the results from the binary
classification are comparable with results from ICG-based
multi-class  classifications. However, the multi-class
classification results are less satisfactory compared to the
results from other modalities and methods.

The classification of AS with co-existing VHDs is a more
challenging task than regular CVD classifications since the
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differences among AS with co-existing VHDs are less
significant than the differences among different categories of
CVD. This result is therefore expected. There are also other
factors related to the classification results. For instance, the
number of subjects included in the database influence the
performance of a classifier. The segments extracted for the four
co-existing CVDs are not well-balanced. The population bias
might also influence the results of the classifiers. The severity
and stages of the VHDs also bring differences to the
characteristics of the subjects [42], [43].

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel approach to detect and classify
aortic stenosis (AS) using seismo-cardiogram (SCG) and gyro-
cardiogram (GCGQ) signals. Different combinations of features
are evaluated using DT, RF and NN methods. Feature analysis
results suggest that the major features are maximum statistical
features from CWT below 11 Hz. Our results suggest that the
proposed solution could be used to classify and detect general
aortic stenosis as well as to classify different co-existing
VHDs. The accuracy of multi-class classification is lower than
the binary classification, which remains to be further improved.
There is a difference between the feature-method combinations
that achieve the highest accuracy in the two different
classification tasks. This indicates that binary and specific
aortic stenosis classifications should be treated individually for
optimized performances.

It is also worth mentioning that the segmentation of cardiac
cycles relies on the modalities of ECG and PPG in the current
framework. In future setups, a standalone segmentation
algorithm could be used such as the methods in [44]-[47].
Without the integration of ECG and PPG, the form factor and
cost of the device could be minimized. Moreover, the device
will be more convenient to the users since no electrodes or clips
are needed.

To achieve increased robustness of the system and better
performance among specific AS classes, future research would
encompass the use of other classification methods, such as the
K-nearest neighbors (KNN) method [48]. The tuning of the

TABLE VIII
PERFORMANCE COMPARISON WITH OTHER RESEARCH METHODS
Methods Target CVD(s) Classifier(s) AC ‘ SP | SE ‘ Reference
Binary Classification
SCG + GCG General Abnormality SVM 97.7% 97.0% 96.9% [21]
SCG + GCG Acute Myocardial Infarction Kernel SVM N/A 95.7% 82.4% [17]
SCG + GCG Atrial Fibrillation RF 97.4% 100% 93.8% [26]
SCG Atrial Fibrillation Linear Least- N/A 96.4% 99.9% [19]
square
Proposed Method Aortic Stenosis (AS) RF 98.96% 99.58% 98.33%
Multi-class Classification
ICG 25 CVD classes Discriminant 95.40% N/A N/A [24]
analysis
SVM with ICG 5 VHD classes SVK“;;“C' 98.94% 100% 97.85% [25]
Proposed Method 4 AS classes RF 96.36% 97.94% 97.41%

(DT: decision tree, RF: random forest, SVM: support vector machine, KNN: K-nearest neighbor)



parameters could further optimize the performance of the
models [49], [50]. The importance of the features could also be
analyzed using other methods such as the elastic net [S1]. We
could also increase the number of features to improve the
learning of the classifiers. For example, we can add temporal
and spectral features from and combine them with the time-
frequency features. A larger database of subjects with a more
extensive variety of co-existing VHDs should also be collected
to improve the demographic significance and increase the
coverage of co-existing VHDs. In addition, the full wavelet
array could be used as a 2-D feature for a deep-learning task
based on graphics [52]. Although this classifier would need
more computing power, it could potentially reveal many new
applications.

In the future, a two-stage classification framework could be
envisioned in which the recordings are fed into a binary
classification of AS as the first stage. The observations which
are classified as AS will then be sent to the next stage where a
multi-class classification algorithm determines the specific AS
conditions. Furthermore, the multi-class classification could
be replaced by a multi-label classification algorithm [53], [54].
The framework could then classify AS with multiple co-
existing VHDs more effectively. The method proposed in this
study shows promising potential for use in the monitoring of
VHDs to prevent patients from sudden critical cardiac
situations.
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