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 Abstract— This paper reports a system for monitoring pulse 
transit time (PTT). Using an Android smartphone and a 
customized sensing circuit, the system collects seismo-cardiogram 
(SCG), gyro-cardiogram (GCG), and photoplethysmogram (PPG) 
recordings. There is no need for any other external stand-alone 
systems. The SCG and GCG signals are recorded with the inertial 
sensors of the smartphone, while the PPG signal is recorded using 
a sensing circuit connected to the audio jack of the phone. The 
sensing circuit is battery-less, powered by the audio output of the 
smartphone using an energy harvester that converts audio tones 
into DC power. PPG waveforms are sampled via the microphone 
channel. A signal processing framework is developed and the 
system is experimentally verified on twenty healthy subjects at 
rest. The PTT is measured as the time difference between the 
aortic valve (AO) opening points in SCG or GCG and the fiducial 
points in PPG.  The root-mean-square errors between the results 
from a stand-alone sensor system and the proposed system report 
3.9 ms from SCG-based results and 3.4 ms from GCG-based 
results. The detection rates report more than 97.92% from both 
SCG and GCG results. This performance is comparable with 
stand-alone sensor nodes at a much lower cost. 
 

Index Terms— gyro-cardiography (GCG), photo-
plethysmography (PPG), pulse transit time (PTT), seismo-
cardiography (SCG), signal processing, smartphone, wearable 
sensors. 

I. INTRODUCTION 
ARDIOVASCULAR health is a significant public 
concern. According to the American Heart Association, 

approximately 11.5% of American adults have been diagnosed 
with some form of cardiovascular disease (CVD), and this 
number is expected to reach 45.1% by the year 2035 [1]. The 
economic cost of CVD is also expected to rise. In 2013, the 
annual cost of CVD in the United States was estimated as 
$329.7 billion. This cost is expected to be increased to $749 
billion by 2035. Among all CVDs, hypertension has the highest 
occurrence among all demographic groups [1]. Providing an 
out-of-clinic, low-cost monitor can substantially increase the 
awareness ratio and reduce the associated costs of hypertension 
[2]. This will be hugely beneficial to a large population around 
the globe, especially in under-developed areas [3]. 

Current non-invasive blood pressure (BP) monitoring 
methods are majorly cuff-based. However, most of these BP 
monitors cannot provide measurements in a continuous manner, 
i.e., they cannot effectively track immediate BP variations [4]. 
Immediate BP variations could potentially reveal the 
effectiveness of medication or treatment for hypertension. 
Medical doctors can cross-check the detected immediate BP 
variations and the activities of the subject to optimize the 
treatment [4], [5]. Automated alarm systems could also be 
developed by analyzing BP variations [6]. Moreover, they are 
inconvenient for long-term monitoring.  

The arterial pulse transit time (PTT) is the time elapse of the 
blood pressure pulse when traveling from a proximal arterial 
site to a distal arterial location [4]. The velocity of this traveling 
pulse, named as the pulse wave velocity, is correlated with 
blood pressure [4], [7]. The variation of the pressure pulse can 
be recorded in a beat-to-beat manner. Therefore, PTT 
monitoring has been considered as a promising method for cuff-
less, continuous estimation of arterial BP [7]. 

Pulse arrival time (PAT) is commonly used as a surrogate of 
PTT in the literature [4]. PAT can be non-invasively measured 
as the traveling time of the pulse from the R-indices of the 
electrocardiogram (ECG) signal to the fiducial points of a 
photoplethysmogram (PPG) recording at a distal location [7]. 
However, the usefulness of employing PAT for BP monitoring 
has been interrogated as PAT contains the pre-ejection period 
(PEP), which might confound the results [4], [8].  

Cardio-mechanical sensing, i.e., non-invasive sensing 
modalities that can be measured by inertial sensors, have been 
enthusiastically studied in recent years [9]-[11]. The seismo-
cardiogram (SCG) is the vibrational signal recorded by placing 
accelerometers on the sternum of subjects, and the gyro-
cardiogram (GCG) is measured by placing gyroscopes at the 
same location as SCG measurements. Certain fiducial points on 
the SCG and GCG signals represent the aortic valve opening 
(AO) event [11], and can, therefore, provide proximal timing 
information for PTT estimation without the interference of PEP. 
In several recent works, a wearable sensor node has been used 
to record cardio-mechanical signals and PPG waveforms. They 
have shown that arterial PTT can be successfully extracted [12]-
[14]. 

In most wearable monitoring literature, a stand-alone device 
collects the data and communicates with a smartphone or 
computer [12]-[15]. However, such a setup has several 
disadvantages. Firstly, the cost of a stand-alone device is high 
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as it is embedded with microprocessors and communication 
modules. Secondly, the battery life is generally restricted, 
limiting their capability for long-term monitoring. On the other 
hand, a smartphone-only solution could have a lower cost.  The 
cost of the external hardware is lower, and there is no need for 
a stand-alone processor and communication module. The 
peripheral hardware will also have a better capability for long-
term monitoring. The stand-alone device needs to stream the 
data continuously via wireless communication, which is power-
consuming. In comparison, the peripheral hardware can send 
data via cable with lower power consumption. On the other 
hand, there are tradeoffs when using a smartphone-only system. 
For instance, wearing a smartphone is less comfortable than 
wearing a small sensor node. The signal quality of the internal 
sensors of the smartphone might also be lower than that from a 
stand-alone system. It is to be noted that our goal is not to 
replace stand-alone designs by developing a smartphone-only 
solution. We are motivated to provide a low-cost alternative 
solution so that the financially-challenged population could also 
benefit from continuous and home-based monitoring of BP. 

Smartphones have shown satisfactory performances in 
providing SCG and GCG signals using embedded inertial 
measurement units (IMU) [16]-[19]. In our preliminary works 
in [18] and [19], we investigated the feasibility of acquiring 
PTT signals with a smartphone for the first time. Specifically, 
the feasibility of extracting SCG and GCG waveforms from 
embedded IMUs were validated in [18]. However, the PPG 
signal was collected from a stand-alone device in [16] to 
evaluate the PTT accuracy. To evaluate a smartphone-only 
solution, a prototype circuit powered by the USB on-the-go 
(OTG) port of the smartphone was developed in [19]. A 
prototype PPG circuit built with off-the-shelf modules was 
implemented, and the PPG signal was sent via the audio jack of 
the phone. However, this prototype has several drawbacks. 
Firstly, the USB-OTG function is only supported in higher-end 
or newer models of smartphones [20], which influences the 
compatibility with a broader range of smartphone models. 
Furthermore, the signal acquisition circuit is power-consuming. 
Lastly, the signal quality is not satisfactory due to impedance 
and frequency matching challenges.  

In this paper, we push our work forward by implementing a 

battery-less PPG circuit that harvests power from the audio 
output and sends the PPG signal through the microphone input 
of the smartphone. Most smartphone devices are equipped with 
an audio jack, which improves the compatibility of our system 
with various models of smartphones. A low-power sampling 
circuit is also developed that addresses the impedance and 
frequency matching challenges during the transmission of the 
PPG signal. Finally, the system is tested with an extended 
number of subjects. 

Fig. 1 introduces the structure of the smartphone-only system 
in this work and the prospective application diagram. As 
illustrated in this figure, no external devices are needed. The 
smartphone can notify the user and when needed, communicate 
with care providers (e.g., clinics and hospitals) as a mobile 
communication device. 

It is also worth mentioning that there are a few PPG-equipped 
smartphones which are capable of medical applications [15], 
[21], [22]. However, in these designs, the PPG sensor is 
embedded in the smartphone and needs to be firmly pressed to 
record the signal. This affects the mechanical coupling when 
the cell phone is placed on the chest wall. Therefore, the IMU 
will not be able to accurately record the cardio-mechanical 
signals and a simultaneous recording of cardio-mechanical and 
PPG signals will not be possible. Hence, an external PPG circuit 
is still necessary for smartphone-only PTT measurements. 

The layout of the paper is as follows. In Section II, the 
methodology is introduced from hardware and software aspects. 
Section III summarizes the experimental setup and results, and 
Section IV provides discussions of the results. Section V 
introduces the conclusion and outlines future work. 

II. METHODS 

A. The Design of the Hardware System 
The diagram of the hardware setup is illustrated in Fig. 2. In 

this setup, we compare the smartphone-only system with a 
stand-alone off-the-shelf reference device. The smartphone-
only system consists of the smartphone hardware and the 
customized sensing circuit. The details are introduced in 
Section II.A.1 and Section II.A.2 respectively, followed by the 
reference device in Section II.A.3. 

 
Fig. 1. The presented smartphone-only BP monitoring solution with 
the customized circuit powered and connected via the audio jack 
(modified from Fig.1 in [17]). 
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Fig. 2. The flowchart of the DSP infrastructure (left side) and a photo 
of the proposed hardware setup (right side).  
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1) Design of the Smartphone-only System  
As illustrated in the right side of Fig. 2, a smartphone (Moto 

XT 1058) is attached to the subject based on the standard 
location of SCG/GCG sensing in [9], [11]. The smartphone is 
attached with a sport smartphone carrying strap, which is 
removed in Fig. 2 to show the overlay of the smartphone and 
the stand-alone sensor node device. The axis system is shown 
in Fig. 2. The backplate of the smartphone faces towards the 
chest wall so that the pitch and roll axes of the smartphone 
gyroscope match with the x- and y-axes respectively. In 
addition, the z-axis recordings of the smartphone accelerometer 
contain the vibration along the dorso-ventral axis of the subject. 
A customized PCB is connected to the audio jack, which 
handles the signal sampling of the PPG sensor located at the 
middle of the index finger. The detailed design of the PPG 
circuit for the smartphone is explained in the next sub-section. 
2) The PPG Circuit Hardware Design 

Fig. 3 (a) shows the diagram of the customized circuit. The 
circuit consists of three main parts: the audio jack interface, the 
energy harvester, and the PPG sampling circuit. The audio jack 
can output square or sine signals for AC power delivery via the 
audio channel. The energy harvester has a charge pump as the 
first stage, followed by a DC-DC boost converter. The charge 

pump converts the AC output of one audio channel into an 
unregulated DC voltage, and the boost converter levels up the 
DC voltage to generate a regulated voltage of 3.3 V. The PPG 
sampling circuit and the PPG sensor are then powered by the 
DC voltage. 

Firstly, a tip-ring-ring-sleeve (TRRS) 3.5-mm connector is 
used as the interface between the printed circuit board (PCB) 
and the smartphone. The pinout follows the CTIA standard [23]. 
As shown in Fig. 3, the tip (1) and the first ring (2) represent 
the left and right audio output channels from the smartphone. 
The second ring (3) represents the common ground. The sleeve 
(4) is the audio input to the smartphone, which is usually 
connected to a microphone. It is to be noted that in some 
smartphone models, the pin assignments of the ground and 
microphone are swapped [23]. We address this problem by 
implementing a hardware jumper cable to select pin allocations. 

Secondly, an energy harvester is realized with the 
TPS610981 chip from Texas Instruments and a charge pump 
[24]. Fig. 4 shows the schematic of the energy harvester circuit. 
The charge pump receives the AC signal from the Left channel 
of the TRRS audio jack and converts it into an unregulated DC 
voltage. A bank of capacitors (C3-C5) hold the charge from the 
audio jack. An NMOS FET controlled by a low-power 

 
Fig. 4. Schematic of the energy harvester circuit (red square in Fig. 3 (b)).  

 
Fig. 3. (a) Block diagram of the hardware. (b) Design and physical layout of the PCB for the hardware. 
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comparator (LMV7271 from Texas Instruments), is 
implemented to mimic the function of a conventional diode. 
Before the input voltage of the boost converter rises, current 
will directly flow from the microphone input (Mic_Drive in  
Fig. 4) to Vcc through a Schottky diode (D2 in  Fig. 4). Vcc will 
be charged to 1.8 V to start the comparator and the boost 
converter. The current path will be blocked when the converter 
enters regular operation, and Vcc outputs 3.3 V. The mode of the 
boost converter is set to low. The minimum startup voltage of 
the boost converter is 0.7 V. After the startup phase is finished, 
the input voltage can be as low as 0.4 V. The quiescent current 
of the boost converter is 300 nA under no-load condition, which 
is a suitable choice for such a low-power application. 

Lastly, the PPG sensor (Shimmer sensing [25]) will be 
powered by the 3.3 V DC voltage. The maximum amplitude of 
the PPG signal is 2.8 V when powered with 3.3 V, which needs 
to be adjusted to match the input voltage of the audio jack of 
the smartphone. In addition, to ensure an effective signal 
transmission, the analog signal should be tuned to the audio 
range so that the ADC of the smartphone could adequately 
receive it. Therefore, we applied an analog switch (TS5A3166) 
controlled by a relaxation oscillator [26]. Fig. 5 presents the 
design of the relaxation oscillator with a comparator 
(LMV7271) and the analog switch. The RC values of the 
oscillator (R6 and C9 in Fig. 5 (a)) are tuned to generate a 
switching frequency of 1.424 kHz. The O_out signal in Fig. 5 
(a) controls the analog switch (U4 in Fig. 5 (b)). Therefore, the 
PPG signal is modulated, creating a composite signal within the 
audio passband. The signal that passes through the switch is 
then sampled and converted to proper impedance and voltage 
levels with a passive RC circuit. As shown in Fig. 5 (b), the 
signal from the PPG sensor is sent through a large resistor first 

(R_F). This resistor needs to be large enough for converting the 
voltage level. In this case, it is 140 KΩ. Another 1-KΩ resistor 
is connected to ground so that the smartphone can detect the 
circuit as a microphone. C_F2 is included to isolate the DC bias 
and C_F1 is used to reject high-frequency noise [23].   

In addition to the three main parts, a button is added as a 
trigger for the synchronization as shown in Fig. 5 (b). The 
button is connected to the microphone channel with a standard 
impedance of 0 Ohm to ground to mimic the behavior of 
Function A in the Android development standard [23].  
3) The Stand-alone System Setup 

A wearable sensor node (Shimmer 3 from Shimmer Sensing 
[25], pointed by the blue arrow in Fig. 2) is placed on top of the 
smartphone with an elastic strap. The capability of measuring 
valid PTT values with the Shimmer sensor node setup has been 
verified in [12]. 

The SCG signal is measured by a three-axis accelerometer, 
and a three-axis gyroscope records the GCG. Moreover, a PPG 
sensor is connected to the tip of the same finger used in the 
smartphone-only setup. It is to be noted that although the 
attachment methods of the two PPG sensors are different, their 
characteristics and performances are identical as the same 
model of the optical sensing circuit is used in both designs [25]. 
This ensures a fair comparison of the PPG waveforms. The 
accelerometer is limited to ±2 g, while the gyroscope is limited 
to ±250 degrees-per-second (DPS). The sampling rate is 256 Hz 
for all the sensors.  

B. The Software System 
Besides the hardware system, a smartphone application and 

a DSP framework are developed based on the software 
developed in [19]. The smartphone application is introduced in 
Section II.B.1, followed by the DSP program. 
1) Design of the Smartphone Application 

There are three major activities in this Android program, 
which handles three main tasks. The first task is the data-
logging of SCG and GCG signals based on the SensorEvent 
with SensorEventListener. The nominal sampling frequency 
used in the study is set to 180 Hz [19]. We extract the gyro_roll 
data as the GCG signal which corresponds to the y-axis. The 
acceleration data from z-axis is used as the SCG signal.  

Secondly, an audio-recording activity based on the standard 
Android MediaRecorder is applied to record the PPG signal. 
The configuration of this activity is introduced in [19].  Based 
on the method used in [12], we compensate for the delay of the 
audio recordings due to the audio front-end of the smartphone. 
The sampling frequency of the audio ADC is 44,100 Hz for the 
smartphone used in this work. This value might be different in 
other models of smartphones. 

Finally, a third activity plays a tone of a 5-kHz sine wave and 
generates the output via the left audio output. The button trigger 
in Function A calls the management of the synchronization 
between the three activities [23]. 
2) Structure of the DSP Framework 

Fig. 2 shows the framework of the digital signal processing  
Fig. 5. (a) Structure of the relaxation oscillator and (b) structure of 
the analog switch and RC circuit.  

(a)

(b)
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program. Single-axis SCG from the z-axis is used from the 
smartphone system and the reference system [9]. The GCG 
signals are selected from the y-axis of the stand-alone sensor 
and the gyro_roll axis of the smartphone. The GCG from y-axis 
is reported to have a high signal quality [10], [11]. 

The recordings from the smartphone are resampled to 128 Hz. 
The PPG recordings are uniformly resampled while the SCG 
and GCG recordings are non-uniformly resampled via a spline 
interpolation to improve the signal quality. More details of the 
resampling could be found in [18].  

All signals are then pre-filtered with a zero-phase infinite 
impulse response (IIR) bandpass filter. The seismo-cardiogram 
(SCG) and gyro-cardiogram (GCG) signals are filtered from 0.8 
Hz to 25 Hz to focus on the infrasonic band. The PPG signals 
are filtered from 0.8 Hz to 60 Hz. Afterwards, all the recordings 
are synchronized. The synchronization between smartphone 
IMU and PPG recordings is based on the compensation of the 
timestamp differences, while the synchronization between 
devices is based on a tapping method as explained in detail in 
[19]. Following the synchronization step is the fiducial points 
extraction. The systolic maximum point is referred as the distal 
time indicator from PPG [11]. The indices of the PPG distal 
points are denoted as TPPG(i). The proximal pulse time in SCG 
and GCG are then located with the following equations. 

𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) = minimum𝑡𝑡=𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖+1)(𝑆𝑆𝑆𝑆𝑆𝑆)                     (1) 

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) = maximum𝑡𝑡=𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)
𝐼𝐼𝐼𝐼(𝑖𝑖)+200𝑚𝑚𝑚𝑚(𝑆𝑆𝑆𝑆𝑆𝑆)                (2) 

𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖) = maximum𝑡𝑡=𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖+1)(𝐺𝐺𝐺𝐺𝐺𝐺)                    (3) 

In these equations, i represents the peak indices. The 
maximum and minimum are functions that find the indices of 
the maximum or minimum values in a certain range. In (1), IM(i) 
is the index of the minimum point between two consecutive 
PPG peaks. This fiducial point biophysically represents the 
isovolumic moment (IM) of the heart activity. Then the indices 
of the first maxima within the time range of 200 ms after each 
IM point in the SCG signal are located. These peaks are referred 
to as the aortic valve opening (AO) points, which is shown in 
(2). (3) explains the detection of AO from GCG which is 
explained in detail in [9]. 

Four different PTT values, defined as PTT1-4, are then 
calculated. PTT1-2 are calculated from AOSCG to TPPG and AOGCG 
to TPPG respectively from smartphone recordings. PTT3-4 are the 
same calculations based on the stand-alone device from AOSCG 
and AOGCG to the TPPG, successively. Consistent with our 
previous study [19], a valid PTT is defined as a measurement in 
which the error range is within 50% of the reference value. An 
invalid PTT is considered as a failure in detection, which will 
be used for evaluating the detection rate of PTT cycles. In 
addition to this comparison, we also consider the standard error 
range of 10% according to the American National Standards 
[28]. 

III.  EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup and Protocol 
First, characterization experiments were conducted in a 

climate-controlled lab environment. The power consumption of 
each component was measured by manually disabling the 
surrounding circuits and measuring the voltage and current 
values. 

Human experiments were conducted on twenty healthy adult 
subjects. The experimental protocol was approved by the 
Committee for the Protection of Human Subjects at Stevens 
Institute of Technology (protocol number 2017-008AR1). The 
subjects were asked to stay in a supine position on a bed for 5 
minutes. The subjects were asked to breathe naturally. The 
average age, height, and weight are 24.6 years old, 67.4 inches 
and 138.2 lbs. 

B. Experimental Results 
1) Power Consumption Results 

The power consumption is measured with a multimeter (HP 
34401A, Keysight Technologies). Both the standby and 
working currents are measured as an average of current in 5 
minutes. The standby current is 88 μA when the output voltage 
is 3.28 V, which translates to 289 μW of power consumption. 
The peak working power reports 3.426 mW (1.04 mA @ 3.29 
V). The breakdown of power consumption is shown in Fig. 6. 
It is seen that the sampling circuit takes 47% of the power with 

TABLE I  AVERAGE PTT MEASUREMENT RESULTS IN MILLI-SECONDS  

Subject 

PTT from 
smartphone 

PTT from 
reference device 

|PTT1 - 
PTT3| / 
PTT3 
(%) 

|PTT2 - 
PTT4| / 
PTT4 
(%) 

Subject 

PTT from 
smartphone 

PTT from 
reference device 

|PTT1 - 
PTT3| / 
PTT3 
(%) 

|PTT2 - 
PTT4| / 
PTT4 
(%) 

PTT1 
(SCG) 

PTT2 
(GCG) 

PTT3 
(SCG) 

PTT4 
(GCG) 

PTT1 
(SCG) 

PTT2 
(GCG) 

PTT3 
(SCG) 

PTT4 
(GCG) 

1 164.2 163.9 167.6 166.7 2.03% 1.68% 11 208.8 198.2 204.1 202.7 2.30% 2.22% 

2 178.5 178.2 174.2 174.1 2.47% 2.35% 12 163.5 160.7 164.8 165.1 0.79% 2.67% 

3 148.3 153.7 153.9 151.8 3.64% 1.25% 13 179.2 181.8 177.6 177.4 0.90% 2.48% 

4 177.1 177.1 179.2 178.3 1.17% 0.67% 14 137.1 142.5 140.2 141.1 2.21% 0.99% 

5 169.2 165.3 163.7 162.8 3.36% 1.54% 15 201.2 206.3 207.3 207.8 2.94% 0.72% 

6 168.4 169.4 165.3 166 1.88% 2.05% 16 181.7 188.9 183.5 182.5 0.98% 3.51% 

7 164.3 169.6 168.1 167.2 2.26% 1.44% 17 178.6 180.1 182.2 182.7 1.98% 1.42% 

8 161.2 151.8 155.2 155.7 3.87% 2.50% 18 168.8 169.2 166.3 167.4 1.50% 1.08% 

9 180.1 186.1 185.4 184.7 2.86% 0.76% 19 177.5 175.4 173.9 172.5 2.07% 1.68% 

10 194.7 197.5 193.2 194.6 0.78% 1.49% 20 157.7 160.3 154.8 155.2 1.87% 3.29% 
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1.608 mW. The PPG sensor consumes 1.527 mW (0.46 mA @ 
3.29 V), which represents 45% of the power. The energy 
harvester and other components of the circuit occupy 8% of the 
power consumption. It is seen that the sampling circuit 
consumes the most significant portion of the total power. The 
PPG circuit consumes slightly less power, i.e., 45% as 
compared to 47% from the sampling circuit. This distribution 
suggests that disabling both the sampling circuit and the PPG 
sensor are critical if a low standby power consumption is 
desired. 

In comparison, the previous prototype in [19] takes more 
than 10 mW from the USB-OTG port with the same PPG 
sensor. This result indicates that the proposed design is 
significantly improved in power consumption, which could lead 
to a longer monitoring capability. 

Compared to other PPG systems, the benchtop system of 
PPG100C with TSD 124 from BIOPAC consumes 30 mW [29]. 
The PPG circuit from a state-of-the-art wristband wearable 
sensor consumes 172 μW and the whole system consumes 1.66 
mW [30].  The PPG ASIC in another study consumes 2.6 μW 
[31]. Our results are better than benchtop systems but much 
lower than the state-of-the-art PPG circuits. 
2) PTT Estimation Errors 

Table I shows the PTT error results from all subjects. PTT1 

and PTT3 are based on SCG fiducial points from smartphone 
and stand-alone reference devices, respectively. PTT2 and PTT4 
are based on GCG fiducial points. 

From the PTT measurements based on SCG, the maximum 
percentage error between PTT1 and PTT3 is 3.87% (subject 8). 
The average percentage error from the SCG-based method is 
2.09%, with an RMSE of 3.9 ms. 

On the other hand, the largest percentage error between 
GCG-based PTT2 and PTT4 is 3.51% (Subject 16). On average, 
the percentage error between PTT2 and PTT4 is 1.79%. The 
RMSE reports 3.4 ms.  

Statistical results suggest that the GCG-based method 
outperforms the SCG-based method in both the average 
percentage error (1.79% vs. 2.09%) and RMSE (3.4 ms vs. 3.9 
ms). Furthermore, the correlation coefficient between SCG- and 
GCG-based values reports 0.994 (p < 0.005), which suggests 
high agreement between the two results.  

In conclusion, GCG-based PTT results outperform SCG-
based results, which is consistent with our previous work [19]. 
The Bland-Altman plot between PTT2 and PTT4 is shown in 
Fig. 7. The PTT values are based on GCG waveforms from one 
representative measurement. It indicates that the PTT results 
from the smartphone track the corresponding results from the 
reference sensor with a high agreement level. 
3) PTT Detection Rates  

In summary, 2697 PTT cycles are collected from 20 subjects. 
The detection rate is calculated by dividing the number of valid 
PTT cycles defined in Section II.B.2 by the total number of PTT 
cycles [19]. Based on the 50% standard, the detection rates of 
PTT from all subjects are 97.92% (2641/2697) from SCG and 
98.55% (2658/2697) from GCG. Based on the 10% standard, 
the detection rates of PTT are 95.96% (2588/2697) from SCG 
and 96.89% (2613/2697) from GCG. It is seen that the results 
from GCG are slightly superior to the results from SCG. 

IV. DISCUSSION  

A. Comparison between the Proposed Work and Previous 
Results 

Table II summarizes the statistical results from this work and 
other designs. The first three rows show the comparison 
between this work and the work in [19]. It is observed that both 
the RMSE and absolute error are smaller in this work compared 
to the results from [19]. The RMSE from SCG is improved from 
4.77 ms to 3.89 ms. Furthermore, the RMSE from GCG drops 
from 3.93 ms to 3.37 ms. Particularly, the RMSE from SCG in 
this work is now comparable with the RMSE of GCG from the 
previous work. Similar observations could also be found in the 
absolute error trends. The results suggest that the accuracy of 
PTT extraction has been improved due to the improved quality 
of the PPG signal. 

Also, the detection rate of a valid PTT has been increased 
significantly from 92.75% to 97.92% based on SCG results and 
from 93.63% to 98.55% based on GCG results. The 
improvement in detection rates reveals the benefit of increased 
PPG signal quality and robustness. 

 
Fig. 6. Power consumption breakdown of the PPG circuit. 

0.291
8%

1.527
45%

1.608
47%

Power Consumption Breakdown

Energy Harvester PPG Sampling Circuit

 
Fig. 7. Bland-Altman plot between the PTT from smartphone-only 
system and the PTT from the stand-alone device. The recordings are 
from one representative recording of GCG waveforms (black 
horizontal lines represent the 95% agreement limit borders).  
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B. Comparison with Other Self-Powered Designs 
There are several other designs in the literature that focus on 

harvesting energy from the audio jack of smartphones for 
sensor circuits [32]-[35]. The specs from these papers are 
summarized in Table III. In [32], the AC signal from one audio 
channel was converted with a transformer to power a 
microprocessor. The microphone channel was used as a digital 
channel to send data back to the smartphone. The energy 
harvester delivers 7.4 mW of power with an operating voltage 
of 2.8 V. In [33], the microphone bias voltage was used as the 
power source. The energy harvester is based on linear voltage 
regulars and provides energy for an electrocardiogram (ECG) 
circuit, which consumes 216 μW at 1.8 V. The maximum power 
delivery is 322 μW via an iPhone. In [34] and [35], both the left 
and right audio channels were used to generate frequency shift 
keying (FSK) modulation signals. A transformer design similar 
to [32] was implemented in [34] to convert the FSK signal to 
DC power, which delivers a maximum power of 31.7 mW at 
1.8V. In [35], an array of Schottky diodes was used to convert 
the FSK waveforms, which can provide 36.3 mW of power at 
1.91 V. A microprocessor is included in the design of both [32] 
and [34]. It is seen that the designs with digital communications 
implement transformers and diode arrays for higher power 
capacity [32], [34], [35]. They can deliver more power than the 
solution that relies on the bias circuit [33]. 

In this work, the peak power of our design is 3.426 mW at 
3.3 V. We need higher power capability than the bias-only 
design in [33], but less power than the designs which implement 
digital communications and microprocessors. Therefore, the 
audio signal is selected as the main power source via a charge 
pump while the bias voltage is used as the step-up supportive 
voltage source. Since there is no need for transformers or an 
array of diodes, the form factor of our design has a better 
miniaturization potential. For example, the effective energy 
harvester size in [32] is about 225 mm2. In comparison, the 
effective circuit size in our design is approximately 200 mm2. 
Our solution achieves a balance between form factor and power 
capability, which is suitable for applications that require higher 
than μW power levels as well as direct analog readings. 

C. Cost Breakdown and Comparison 
Table IV summarizes the cost of the major parts of the 

hardware circuit. The design uses analog chips and passive 
components that are active in production. As a result, the 
estimated cost is $4.38. Similar to the cost breakdown in [33], 
this cost analysis includes everything except for the PPG 
sensor. In comparison, the designs in [33] cost $5 for 10 k units 

(sensor excluded), slightly higher than the cost of our system.  
Considering the average price of a typical PPG sensor at 

about $5 [36], the total price of our hardware will be less than 
$10. This suggests a very low-cost solution. 

V. CONCLUSIONS 
This paper presents a novel PTT monitoring solution using 

the embedded sensors of a smartphone and a customized circuit. 
The smartphone-only design shows comparable performance to 
a commercial stand-alone device [11]. Both the detection 
accuracy and detection stability are higher than the results of 
previous studies [19]. The power consumption of the circuit is 
also reduced due to the low-power design. 

One limitation of the proposed design is that the power 
delivery is not dynamic based on the load change. In future 
studies, we will investigate a feedback-controlled power 
delivery by changing the frequency and amplitude of the toned 
sine wave which is sent to the energy harvester [37]. 
Additionally, power distribution results indicate that the PPG 
sensor and the sampling circuit should be disabled to achieve a 
low standby power. In the future, a power management circuit 
will be implemented to control the active load configurations. 
Furthermore, the quality of SCG and GCG waveforms could 
potentially be improved using multi-axis sensor fusion [38]. 
The sampling rate of the smartphone IMU also limits the 
performance of the system. Wearing a smartphone is less 
comfortable than wearing a small sensor node, which might 
result in some tradeoffs in convenience. Other fiducial points 
from the PPG waveform could be used for PTT calculation to 
improve the stability of the system under more application 
scenarios. Finally, alternative PPG locations that can provide a 
more comfortable setup such as the earlobe will be evaluated.  

Our future work also includes the evaluation of the system 

TABLE IV  COST BREAKDOWN OF THE HARDWARE  (VALUES ARE BASED ON 
10K UNITS)  

Part Manufacturer Model Cost 

Charge Pump TI LM7271 0.47 

Boost Converter TI TPS61082 0.66 

Sampling Comparator TI LM7271 0.47 

Analog Switch TI TS5A3166 0.16 

TRRS connector Tensility  54-00035 1.77 

PCB NOA Labs N/A 0.40 

Passives N/A N/A 0.45 

Total — —   4.38 

 

TABLE III  COMPARISON BETWEEN THE PRESENTED WORK AND OTHER 
DESIGNS  

 Self-powered Design Comparison 

 Power Voltage Method 

This work 3.426 mW 3.3 V  

[32] 7.4 mW 2.8 V Transformer 

[33] 216 μW 1.8 V Mic Bias 

[34] 31.7 mW 1.8 V Transformer 

[35] 36.3 mW 1.91 V Diode Array 

 

TABLE II  COMPARISON BETWEEN THE THIS WORK AND THE PREVIOUS 
WORK  

(ERROR VALUES ARE IN AVERAGE IN MILLI-SECONDS) 

 
RMSE Absolute 

Error Detection Rate 

SCG GCG SCG GCG SCG GCG 

This work 3.89 3.37 3.59 3.07 97.92% 98.55% 

Results in [19] 4.77 3.93 4.01 3.24 92.75% 93.63% 
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capability in providing beat-to-beat BP estimates. Continuous 
monitoring of blood pressure could improve the detection and 
management of hypertension by showing real-time analysis to 
the users [4], [22]. This work shows promising potential in 
monitoring PTT and BP at home or in low-resource areas with 
a low cost.  
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