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Abstract— This paper reports a system for monitoring pulse
transit time (PTT). Using an Android smartphone and a
customized sensing circuit, the system collects seismo-cardiogram
(SCG), gyro-cardiogram (GCG), and photoplethysmogram (PPG)
recordings. There is no need for any other external stand-alone
systems. The SCG and GCG signals are recorded with the inertial
sensors of the smartphone, while the PPG signal is recorded using
a sensing circuit connected to the audio jack of the phone. The
sensing circuit is battery-less, powered by the audio output of the
smartphone using an energy harvester that converts audio tones
into DC power. PPG waveforms are sampled via the microphone
channel. A signal processing framework is developed and the
system is experimentally verified on twenty healthy subjects at
rest. The PTT is measured as the time difference between the
aortic valve (AO) opening points in SCG or GCG and the fiducial
points in PPG. The root-mean-square errors between the results
from a stand-alone sensor system and the proposed system report
3.9 ms from SCG-based results and 3.4 ms from GCG-based
results. The detection rates report more than 97.92% from both
SCG and GCG results. This performance is comparable with
stand-alone sensor nodes at a much lower cost.

Index  Terms—  gyro-cardiography (GCG), photo-
plethysmography (PPG), pulse transit time (PTT), seismo-
cardiography (SCG), signal processing, smartphone, wearable
Sensors.

I. INTRODUCTION

ARDIOVASCULAR health is a significant public

concern. According to the American Heart Association,
approximately 11.5% of American adults have been diagnosed
with some form of cardiovascular disease (CVD), and this
number is expected to reach 45.1% by the year 2035 [1]. The
economic cost of CVD is also expected to rise. In 2013, the
annual cost of CVD in the United States was estimated as
$329.7 billion. This cost is expected to be increased to $749
billion by 2035. Among all CVDs, hypertension has the highest
occurrence among all demographic groups [1]. Providing an
out-of-clinic, low-cost monitor can substantially increase the
awareness ratio and reduce the associated costs of hypertension
[2]. This will be hugely beneficial to a large population around
the globe, especially in under-developed areas [3].
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Current non-invasive blood pressure (BP) monitoring
methods are majorly cuff-based. However, most of these BP
monitors cannot provide measurements in a continuous manner,
i.e., they cannot effectively track immediate BP variations [4].
Immediate BP wvariations could potentially reveal the
effectiveness of medication or treatment for hypertension.
Medical doctors can cross-check the detected immediate BP
variations and the activities of the subject to optimize the
treatment [4], [5]. Automated alarm systems could also be
developed by analyzing BP variations [6]. Moreover, they are
inconvenient for long-term monitoring.

The arterial pulse transit time (PTT) is the time elapse of the
blood pressure pulse when traveling from a proximal arterial
site to a distal arterial location [4]. The velocity of this traveling
pulse, named as the pulse wave velocity, is correlated with
blood pressure [4], [7]. The variation of the pressure pulse can
be recorded in a beat-to-beat manner. Therefore, PTT
monitoring has been considered as a promising method for cuft-
less, continuous estimation of arterial BP [7].

Pulse arrival time (PAT) is commonly used as a surrogate of
PTT in the literature [4]. PAT can be non-invasively measured
as the traveling time of the pulse from the R-indices of the
electrocardiogram (ECQG) signal to the fiducial points of a
photoplethysmogram (PPG) recording at a distal location [7].
However, the usefulness of employing PAT for BP monitoring
has been interrogated as PAT contains the pre-ejection period
(PEP), which might confound the results [4], [8].

Cardio-mechanical sensing, i.e., non-invasive sensing
modalities that can be measured by inertial sensors, have been
enthusiastically studied in recent years [9]-[11]. The seismo-
cardiogram (SCQ) is the vibrational signal recorded by placing
accelerometers on the sternum of subjects, and the gyro-
cardiogram (GCG) is measured by placing gyroscopes at the
same location as SCG measurements. Certain fiducial points on
the SCG and GCG signals represent the aortic valve opening
(AO) event [11], and can, therefore, provide proximal timing
information for PTT estimation without the interference of PEP.
In several recent works, a wearable sensor node has been used
to record cardio-mechanical signals and PPG waveforms. They
have shown that arterial PTT can be successfully extracted [12]-
[14].

In most wearable monitoring literature, a stand-alone device
collects the data and communicates with a smartphone or
computer [12]-[15]. However, such a setup has several
disadvantages. Firstly, the cost of a stand-alone device is high



as it is embedded with microprocessors and communication
modules. Secondly, the battery life is generally restricted,
limiting their capability for long-term monitoring. On the other
hand, a smartphone-only solution could have a lower cost. The
cost of the external hardware is lower, and there is no need for
a stand-alone processor and communication module. The
peripheral hardware will also have a better capability for long-
term monitoring. The stand-alone device needs to stream the
data continuously via wireless communication, which is power-
consuming. In comparison, the peripheral hardware can send
data via cable with lower power consumption. On the other
hand, there are tradeoffs when using a smartphone-only system.
For instance, wearing a smartphone is less comfortable than
wearing a small sensor node. The signal quality of the internal
sensors of the smartphone might also be lower than that from a
stand-alone system. It is to be noted that our goal is not to
replace stand-alone designs by developing a smartphone-only
solution. We are motivated to provide a low-cost alternative
solution so that the financially-challenged population could also
benefit from continuous and home-based monitoring of BP.

Smartphones have shown satisfactory performances in
providing SCG and GCG signals using embedded inertial
measurement units (IMU) [16]-[19]. In our preliminary works
in [18] and [19], we investigated the feasibility of acquiring
PTT signals with a smartphone for the first time. Specifically,
the feasibility of extracting SCG and GCG waveforms from
embedded IMUs were validated in [18]. However, the PPG
signal was collected from a stand-alone device in [16] to
evaluate the PTT accuracy. To evaluate a smartphone-only
solution, a prototype circuit powered by the USB on-the-go
(OTG) port of the smartphone was developed in [19]. A
prototype PPG circuit built with off-the-shelf modules was
implemented, and the PPG signal was sent via the audio jack of
the phone. However, this prototype has several drawbacks.
Firstly, the USB-OTG function is only supported in higher-end
or newer models of smartphones [20], which influences the
compatibility with a broader range of smartphone models.
Furthermore, the signal acquisition circuit is power-consuming.
Lastly, the signal quality is not satisfactory due to impedance
and frequency matching challenges.

In this paper, we push our work forward by implementing a
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Fig. 1. The presented smartphone-only BP monitoring solution with
the customized circuit powered and connected via the audio jack
(modified from Fig.1 in [17]).

battery-less PPG circuit that harvests power from the audio
output and sends the PPG signal through the microphone input
of the smartphone. Most smartphone devices are equipped with
an audio jack, which improves the compatibility of our system
with various models of smartphones. A low-power sampling
circuit is also developed that addresses the impedance and
frequency matching challenges during the transmission of the
PPG signal. Finally, the system is tested with an extended
number of subjects.

Fig. 1 introduces the structure of the smartphone-only system
in this work and the prospective application diagram. As
illustrated in this figure, no external devices are needed. The
smartphone can notify the user and when needed, communicate
with care providers (e.g., clinics and hospitals) as a mobile
communication device.

It is also worth mentioning that there are a few PPG-equipped
smartphones which are capable of medical applications [15],
[21], [22]. However, in these designs, the PPG sensor is
embedded in the smartphone and needs to be firmly pressed to
record the signal. This affects the mechanical coupling when
the cell phone is placed on the chest wall. Therefore, the IMU
will not be able to accurately record the cardio-mechanical
signals and a simultaneous recording of cardio-mechanical and
PPG signals will not be possible. Hence, an external PPG circuit
is still necessary for smartphone-only PTT measurements.

The layout of the paper is as follows. In Section II, the
methodology is introduced from hardware and software aspects.
Section III summarizes the experimental setup and results, and
Section IV provides discussions of the results. Section V
introduces the conclusion and outlines future work.

II. METHODS

A. The Design of the Hardware System

The diagram of the hardware setup is illustrated in Fig. 2. In
this setup, we compare the smartphone-only system with a
stand-alone off-the-shelf reference device. The smartphone-
only system consists of the smartphone hardware and the
customized sensing circuit. The details are introduced in
Section II.A.1 and Section II.A.2 respectively, followed by the
reference device in Section I11.A.3.
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Fig. 2. The flowchart of the DSP infrastructure (left side) and a photo
of the proposed hardware setup (right side).
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Fig. 3. (a) Block diagram of the hardware. (b) Design and physical layout of the PCB for the hardware.

1) Design of the Smartphone-only System

As illustrated in the right side of Fig. 2, a smartphone (Moto
XT 1058) is attached to the subject based on the standard
location of SCG/GCG sensing in [9], [11]. The smartphone is
attached with a sport smartphone carrying strap, which is
removed in Fig. 2 to show the overlay of the smartphone and
the stand-alone sensor node device. The axis system is shown
in Fig. 2. The backplate of the smartphone faces towards the
chest wall so that the pitch and roll axes of the smartphone
gyroscope match with the x- and y-axes respectively. In
addition, the z-axis recordings of the smartphone accelerometer
contain the vibration along the dorso-ventral axis of the subject.
A customized PCB is connected to the audio jack, which
handles the signal sampling of the PPG sensor located at the
middle of the index finger. The detailed design of the PPG
circuit for the smartphone is explained in the next sub-section.
2) The PPG Circuit Hardware Design

Fig. 3 (a) shows the diagram of the customized circuit. The
circuit consists of three main parts: the audio jack interface, the
energy harvester, and the PPG sampling circuit. The audio jack
can output square or sine signals for AC power delivery via the
audio channel. The energy harvester has a charge pump as the
first stage, followed by a DC-DC boost converter. The charge
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pump converts the AC output of one audio channel into an
unregulated DC voltage, and the boost converter levels up the
DC voltage to generate a regulated voltage of 3.3 V. The PPG
sampling circuit and the PPG sensor are then powered by the
DC voltage.

Firstly, a tip-ring-ring-sleeve (TRRS) 3.5-mm connector is
used as the interface between the printed circuit board (PCB)
and the smartphone. The pinout follows the CTIA standard [23].
As shown in Fig. 3, the tip (1) and the first ring (2) represent
the left and right audio output channels from the smartphone.
The second ring (3) represents the common ground. The sleeve
(4) is the audio input to the smartphone, which is usually
connected to a microphone. It is to be noted that in some
smartphone models, the pin assignments of the ground and
microphone are swapped [23]. We address this problem by
implementing a hardware jumper cable to select pin allocations.

Secondly, an energy harvester is realized with the
TPS610981 chip from Texas Instruments and a charge pump
[24]. Fig. 4 shows the schematic of the energy harvester circuit.
The charge pump receives the AC signal from the Left channel
of the TRRS audio jack and converts it into an unregulated DC
voltage. A bank of capacitors (C3-C5) hold the charge from the
audio jack. An NMOS FET controlled by a low-power
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Fig. 4. Schematic of the energy harvester circuit (red square in Fig. 3 (b)).



comparator (LMV7271 from Texas Instruments), is
implemented to mimic the function of a conventional diode.
Before the input voltage of the boost converter rises, current
will directly flow from the microphone input (Mic Drive in
Fig. 4) to V.. through a Schottky diode (D2 in Fig. 4). V.. will
be charged to 1.8 V to start the comparator and the boost
converter. The current path will be blocked when the converter
enters regular operation, and V.. outputs 3.3 V. The mode of the
boost converter is set to low. The minimum startup voltage of
the boost converter is 0.7 V. After the startup phase is finished,
the input voltage can be as low as 0.4 V. The quiescent current
of the boost converter is 300 nA under no-load condition, which
is a suitable choice for such a low-power application.

Lastly, the PPG sensor (Shimmer sensing [25]) will be
powered by the 3.3 V DC voltage. The maximum amplitude of
the PPG signal is 2.8 V when powered with 3.3 V, which needs
to be adjusted to match the input voltage of the audio jack of
the smartphone. In addition, to ensure an effective signal
transmission, the analog signal should be tuned to the audio
range so that the ADC of the smartphone could adequately
receive it. Therefore, we applied an analog switch (TS5A3166)
controlled by a relaxation oscillator [26]. Fig. 5 presents the
design of the relaxation oscillator with a comparator
(LMV7271) and the analog switch. The RC values of the
oscillator (R6 and C9 in Fig. 5 (a)) are tuned to generate a
switching frequency of 1.424 kHz. The O out signal in Fig. 5
(a) controls the analog switch (U4 in Fig. 5 (b)). Therefore, the
PPG signal is modulated, creating a composite signal within the
audio passband. The signal that passes through the switch is
then sampled and converted to proper impedance and voltage
levels with a passive RC circuit. As shown in Fig. 5 (b), the
signal from the PPG sensor is sent through a large resistor first
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Fig. 5. (a) Structure of the relaxation oscillator and (b) structure of
the analog switch and RC circuit.

(R_F). This resistor needs to be large enough for converting the
voltage level. In this case, it is 140 KQ. Another 1-K€Q resistor
is connected to ground so that the smartphone can detect the
circuit as a microphone. C_F2 is included to isolate the DC bias
and C_F1 is used to reject high-frequency noise [23].

In addition to the three main parts, a button is added as a
trigger for the synchronization as shown in Fig. 5 (b). The
button is connected to the microphone channel with a standard
impedance of 0 Ohm to ground to mimic the behavior of
Function A in the Android development standard [23].

3) The Stand-alone System Setup

A wearable sensor node (Shimmer 3 from Shimmer Sensing
[25], pointed by the blue arrow in Fig. 2) is placed on top of the
smartphone with an elastic strap. The capability of measuring
valid PTT values with the Shimmer sensor node setup has been
verified in [12].

The SCG signal is measured by a three-axis accelerometer,
and a three-axis gyroscope records the GCG. Moreover, a PPG
sensor is connected to the tip of the same finger used in the
smartphone-only setup. It is to be noted that although the
attachment methods of the two PPG sensors are different, their
characteristics and performances are identical as the same
model of the optical sensing circuit is used in both designs [25].
This ensures a fair comparison of the PPG waveforms. The
accelerometer is limited to +2 g, while the gyroscope is limited
to £250 degrees-per-second (DPS). The sampling rate is 256 Hz
for all the sensors.

B. The Software System

Besides the hardware system, a smartphone application and
a DSP framework are developed based on the software
developed in [19]. The smartphone application is introduced in
Section II.B.1, followed by the DSP program.

1) Design of the Smartphone Application

There are three major activities in this Android program,
which handles three main tasks. The first task is the data-
logging of SCG and GCG signals based on the SensorEvent
with SensorEventListener. The nominal sampling frequency
used in the study is set to 180 Hz [19]. We extract the gyro_roll
data as the GCG signal which corresponds to the y-axis. The
acceleration data from z-axis is used as the SCG signal.

Secondly, an audio-recording activity based on the standard
Android MediaRecorder is applied to record the PPG signal.
The configuration of this activity is introduced in [19]. Based
on the method used in [12], we compensate for the delay of the
audio recordings due to the audio front-end of the smartphone.
The sampling frequency of the audio ADC is 44,100 Hz for the
smartphone used in this work. This value might be different in
other models of smartphones.

Finally, a third activity plays a tone of a 5-kHz sine wave and
generates the output via the left audio output. The button trigger
in Function A calls the management of the synchronization
between the three activities [23].

2) Structure of the DSP Framework
Fig. 2 shows the framework of the digital signal processing



TABLE I AVERAGE PTT MEASUREMENT RESULTS IN MILLI-SECONDS

PTT from PTT from [PTT,- |PTT,- PTT from PTT from |PTT; - [PTT,-
Subject smartphone reference device PTTs|/ | PTTy/ Subject smartphone reference device | PTTs|/ | PTTy/
PTT, PTT, PTT; PTT, PTT; PTT, PTT, PTT, PTT; PTT, PTT; PTT,
(SCG) | (GCG) | (SCG) | (GCG) (%) (%) (SCG) | (GCG) | (SCG) | (GCG) (%) (%)
1 164.2 163.9 167.6 166.7 2.03% 1.68% 11 208.8 198.2 204.1 202.7 2.30% 2.22%
2 178.5 178.2 174.2 174.1 2.47% 2.35% 12 163.5 160.7 164.8 165.1 0.79% 2.67%
3 148.3 153.7 153.9 151.8 3.64% 1.25% 13 179.2 181.8 177.6 177.4 0.90% 2.48%
4 177.1 177.1 179.2 178.3 1.17% 0.67% 14 137.1 142.5 140.2 141.1 221% 0.99%
5 169.2 165.3 163.7 162.8 3.36% 1.54% 15 201.2 206.3 207.3 207.8 2.94% 0.72%
6 168.4 169.4 165.3 166 1.88% 2.05% 16 181.7 188.9 183.5 182.5 0.98% 3.51%
7 164.3 169.6 168.1 167.2 2.26% 1.44% 17 178.6 180.1 182.2 182.7 1.98% 1.42%
8 161.2 151.8 155.2 155.7 3.87% 2.50% 18 168.8 169.2 166.3 167.4 1.50% 1.08%
9 180.1 186.1 185.4 184.7 2.86% 0.76% 19 177.5 175.4 173.9 172.5 2.07% 1.68%
10 194.7 197.5 193.2 194.6 0.78% 1.49% 20 157.7 160.3 154.8 155.2 1.87% 3.29%

program. Single-axis SCG from the z-axis is used from the
smartphone system and the reference system [9]. The GCG
signals are selected from the y-axis of the stand-alone sensor
and the gyro roll axis of the smartphone. The GCG from y-axis
is reported to have a high signal quality [10], [11].

The recordings from the smartphone are resampled to 128 Hz.
The PPG recordings are uniformly resampled while the SCG
and GCG recordings are non-uniformly resampled via a spline
interpolation to improve the signal quality. More details of the
resampling could be found in [18].

All signals are then pre-filtered with a zero-phase infinite
impulse response (IIR) bandpass filter. The seismo-cardiogram
(SCQ) and gyro-cardiogram (GCG) signals are filtered from 0.8
Hz to 25 Hz to focus on the infrasonic band. The PPG signals
are filtered from 0.8 Hz to 60 Hz. Afterwards, all the recordings
are synchronized. The synchronization between smartphone
IMU and PPG recordings is based on the compensation of the
timestamp differences, while the synchronization between
devices is based on a tapping method as explained in detail in
[19]. Following the synchronization step is the fiducial points
extraction. The systolic maximum point is referred as the distal
time indicator from PPG [11]. The indices of the PPG distal
points are denoted as Trps(i). The proximal pulse time in SCG
and GCG are then located with the following equations.

IMge6 (1) = minimum; 2264 Y (sCG) (1)
AOs6 (i) = maximumX (200 (SCG) )
A0 (i) = maximumy P26 D (GCG) 3)

In these equations, i represents the peak indices. The
maximum and minimum are functions that find the indices of
the maximum or minimum values in a certain range. In (1), IM(7)
is the index of the minimum point between two consecutive
PPG peaks. This fiducial point biophysically represents the
isovolumic moment (IM) of the heart activity. Then the indices
of the first maxima within the time range of 200 ms after each
IM point in the SCG signal are located. These peaks are referred
to as the aortic valve opening (AO) points, which is shown in
(2). (3) explains the detection of AO from GCG which is
explained in detail in [9].

Four different PTT values, defined as PTTi4, are then
calculated. PTT1.; are calculated from AOscc to Trpg and AOgce
to Trpgrespectively from smartphone recordings. P773.4 are the
same calculations based on the stand-alone device from A4 Oscc
and AOgcg to the Tppg, successively. Consistent with our
previous study [19], a valid PTT is defined as a measurement in
which the error range is within 50% of the reference value. An
invalid PTT is considered as a failure in detection, which will
be used for evaluating the detection rate of PTT cycles. In
addition to this comparison, we also consider the standard error
range of 10% according to the American National Standards
[28].

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup and Protocol

First, characterization experiments were conducted in a
climate-controlled lab environment. The power consumption of
each component was measured by manually disabling the
surrounding circuits and measuring the voltage and current
values.

Human experiments were conducted on twenty healthy adult
subjects. The experimental protocol was approved by the
Committee for the Protection of Human Subjects at Stevens
Institute of Technology (protocol number 2017-008AR1). The
subjects were asked to stay in a supine position on a bed for 5
minutes. The subjects were asked to breathe naturally. The
average age, height, and weight are 24.6 years old, 67.4 inches
and 138.2 Ibs.

B. Experimental Results
1) Power Consumption Results

The power consumption is measured with a multimeter (HP
34401A, Keysight Technologies). Both the standby and
working currents are measured as an average of current in 5
minutes. The standby current is 88 pA when the output voltage
is 3.28 V, which translates to 289 uW of power consumption.
The peak working power reports 3.426 mW (1.04 mA @ 3.29
V). The breakdown of power consumption is shown in Fig. 6.
It is seen that the sampling circuit takes 47% of the power with



1.608 mW. The PPG sensor consumes 1.527 mW (0.46 mA @
3.29 V), which represents 45% of the power. The energy
harvester and other components of the circuit occupy 8% of the
power consumption. It is seen that the sampling circuit
consumes the most significant portion of the total power. The
PPG circuit consumes slightly less power, i.e., 45% as
compared to 47% from the sampling circuit. This distribution
suggests that disabling both the sampling circuit and the PPG
sensor are critical if a low standby power consumption is
desired.

In comparison, the previous prototype in [19] takes more
than 10 mW from the USB-OTG port with the same PPG
sensor. This result indicates that the proposed design is
significantly improved in power consumption, which could lead
to a longer monitoring capability.

Compared to other PPG systems, the benchtop system of
PPG100C with TSD 124 from BIOPAC consumes 30 mW [29].
The PPG circuit from a state-of-the-art wristband wearable
sensor consumes 172 uW and the whole system consumes 1.66
mW [30]. The PPG ASIC in another study consumes 2.6 pW
[31]. Our results are better than benchtop systems but much
lower than the state-of-the-art PPG circuits.

2) PTT Estimation Errors

Table I shows the PTT error results from all subjects. PTT;
and PTT3 are based on SCG fiducial points from smartphone
and stand-alone reference devices, respectively. P77, and P17,
are based on GCG fiducial points.

From the PTT measurements based on SCG, the maximum
percentage error between P77, and PTT3 is 3.87% (subject 8).
The average percentage error from the SCG-based method is
2.09%, with an RMSE of 3.9 ms.

On the other hand, the largest percentage error between
GCG-based PTT: and PTT,is 3.51% (Subject 16). On average,
the percentage error between PT7> and PTTy is 1.79%. The
RMSE reports 3.4 ms.

Statistical results suggest that the GCG-based method
outperforms the SCG-based method in both the average
percentage error (1.79% vs. 2.09%) and RMSE (3.4 ms vs. 3.9
ms). Furthermore, the correlation coefficient between SCG- and
GCG-based values reports 0.994 (p < 0.005), which suggests
high agreement between the two results.

Power Consumption Breakdown
0.291
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45%

Energy Harvester PPG = Sampling Circuit

Fig. 6. Power consumption breakdown of the PPG circuit.

In conclusion, GCG-based PTT results outperform SCG-
based results, which is consistent with our previous work [19].
The Bland-Altman plot between P77, and PTTy is shown in
Fig. 7. The PTT values are based on GCG waveforms from one
representative measurement. It indicates that the PTT results
from the smartphone track the corresponding results from the
reference sensor with a high agreement level.

3) PIT Detection Rates

In summary, 2697 PTT cycles are collected from 20 subjects.
The detection rate is calculated by dividing the number of valid
PTT cycles defined in Section I1.B.2 by the total number of PTT
cycles [19]. Based on the 50% standard, the detection rates of
PTT from all subjects are 97.92% (2641/2697) from SCG and
98.55% (2658/2697) from GCG. Based on the 10% standard,
the detection rates of PTT are 95.96% (2588/2697) from SCG
and 96.89% (2613/2697) from GCG. It is seen that the results
from GCG are slightly superior to the results from SCG.

IV. DISCUSSION

A. Comparison between the Proposed Work and Previous
Results

Table II summarizes the statistical results from this work and
other designs. The first three rows show the comparison
between this work and the work in [19]. It is observed that both
the RMSE and absolute error are smaller in this work compared
to the results from [19]. The RMSE from SCG is improved from
4.77 ms to 3.89 ms. Furthermore, the RMSE from GCG drops
from 3.93 ms to 3.37 ms. Particularly, the RMSE from SCG in
this work is now comparable with the RMSE of GCG from the
previous work. Similar observations could also be found in the
absolute error trends. The results suggest that the accuracy of
PTT extraction has been improved due to the improved quality
of the PPG signal.

Also, the detection rate of a valid PTT has been increased
significantly from 92.75% to 97.92% based on SCG results and
from 93.63% to 98.55% based on GCG results. The
improvement in detection rates reveals the benefit of increased
PPG signal quality and robustness.
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Fig. 7. Bland-Altman plot between the PTT from smartphone-only
system and the PTT from the stand-alone device. The recordings are
from one representative recording of GCG waveforms (black
horizontal lines represent the 95% agreement limit borders).



TABLE II COMPARISON BETWEEN THE THIS WORK AND THE PREVIOUS

WORK
(ERROR VALUES ARE IN AVERAGE IN MILLI-SECONDS)
RMSE Absolute Detection Rate
Error
SCG | GCG | SCG GCG SCG GCG
This work 3.89 3.37 3.59 3.07 97.92% | 98.55%
Results in [19] | 4.77 3.93 4.01 3.24 92.75% | 93.63%

B. Comparison with Other Self-Powered Designs

There are several other designs in the literature that focus on
harvesting energy from the audio jack of smartphones for
sensor circuits [32]-[35]. The specs from these papers are
summarized in Table III. In [32], the AC signal from one audio
channel was converted with a transformer to power a
microprocessor. The microphone channel was used as a digital
channel to send data back to the smartphone. The energy
harvester delivers 7.4 mW of power with an operating voltage
of 2.8 V. In [33], the microphone bias voltage was used as the
power source. The energy harvester is based on linear voltage
regulars and provides energy for an electrocardiogram (ECQG)
circuit, which consumes 216 pW at 1.8 V. The maximum power
delivery is 322 uW via an iPhone. In [34] and [35], both the left
and right audio channels were used to generate frequency shift
keying (FSK) modulation signals. A transformer design similar
to [32] was implemented in [34] to convert the FSK signal to
DC power, which delivers a maximum power of 31.7 mW at
1.8V. In [35], an array of Schottky diodes was used to convert
the FSK waveforms, which can provide 36.3 mW of power at
1.91 V. A microprocessor is included in the design of both [32]
and [34]. It is seen that the designs with digital communications
implement transformers and diode arrays for higher power
capacity [32], [34], [35]. They can deliver more power than the
solution that relies on the bias circuit [33].

In this work, the peak power of our design is 3.426 mW at
3.3 V. We need higher power capability than the bias-only
design in [33], but less power than the designs which implement
digital communications and microprocessors. Therefore, the
audio signal is selected as the main power source via a charge
pump while the bias voltage is used as the step-up supportive
voltage source. Since there is no need for transformers or an
array of diodes, the form factor of our design has a better
miniaturization potential. For example, the effective energy
harvester size in [32] is about 225 mm?. In comparison, the
effective circuit size in our design is approximately 200 mm?.
Our solution achieves a balance between form factor and power
capability, which is suitable for applications that require higher
than pW power levels as well as direct analog readings.

C. Cost Breakdown and Comparison

Table IV summarizes the cost of the major parts of the
hardware circuit. The design uses analog chips and passive
components that are active in production. As a result, the
estimated cost is $4.38. Similar to the cost breakdown in [33],
this cost analysis includes everything except for the PPG
sensor. In comparison, the designs in [33] cost $5 for 10 k units

TABLE III COMPARISON BETWEEN THE PRESENTED WORK AND OTHER

DESIGNS
Self-powered Design Comparison
Power Voltage Method
This work 3.426 mW 33V

[32] 7.4 mW 28V Transformer
[33] 216 pW 18V Mic Bias
[34] 31.7 mW 1.8V Transformer
[35] 36.3 mW 191V Diode Array

(sensor excluded), slightly higher than the cost of our system.

Considering the average price of a typical PPG sensor at
about $5 [36], the total price of our hardware will be less than
$10. This suggests a very low-cost solution.

V. CONCLUSIONS

This paper presents a novel PTT monitoring solution using
the embedded sensors of a smartphone and a customized circuit.
The smartphone-only design shows comparable performance to
a commercial stand-alone device [11]. Both the detection
accuracy and detection stability are higher than the results of
previous studies [19]. The power consumption of the circuit is
also reduced due to the low-power design.

One limitation of the proposed design is that the power
delivery is not dynamic based on the load change. In future
studies, we will investigate a feedback-controlled power
delivery by changing the frequency and amplitude of the toned
sine wave which is sent to the energy harvester [37].
Additionally, power distribution results indicate that the PPG
sensor and the sampling circuit should be disabled to achieve a
low standby power. In the future, a power management circuit
will be implemented to control the active load configurations.
Furthermore, the quality of SCG and GCG waveforms could
potentially be improved using multi-axis sensor fusion [38].
The sampling rate of the smartphone IMU also limits the
performance of the system. Wearing a smartphone is less
comfortable than wearing a small sensor node, which might
result in some tradeoffs in convenience. Other fiducial points
from the PPG waveform could be used for PTT calculation to
improve the stability of the system under more application
scenarios. Finally, alternative PPG locations that can provide a
more comfortable setup such as the earlobe will be evaluated.

Our future work also includes the evaluation of the system

TABLE IV COST BREAKDOWN OF THE HARDWARE (VALUES ARE BASED ON

10K UNITS)
Part Manufacturer Model Cost
Charge Pump TI LM7271 0.47
Boost Converter TI TPS61082 0.66
Sampling Comparator TI LM7271 0.47
Analog Switch TI TS5A3166 0.16
TRRS connector Tensility 54-00035 1.77
PCB NOA Labs N/A 0.40
Passives N/A N/A 0.45
Total — — 4.38




capability in providing beat-to-beat BP estimates. Continuous
monitoring of blood pressure could improve the detection and
management of hypertension by showing real-time analysis to
the users [4], [22]. This work shows promising potential in
monitoring PTT and BP at home or in low-resource areas with
a low cost.
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