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Abstract—This work proposes a novel approach for detecting 
fetal heart rate (FHR) using seismo-cardiogram (SCG) and gyro-
cardiogram (GCG) recordings collected from abdominal inertial 
sensors. A proof-of-concept setup with commercially available 
sensor nodes is prepared. The FHR components are extracted 
from the fused cepstrum of recordings of all the sensors. The 
feasibility of the proposed method is evaluated with experiments 
on ten pregnant women under supine, seated, and standing 
positions. The results are compared with simultaneously-collected 
recordings of fetal cardiotocography (fCTG). The best position for 
collecting the signals is deemed to be the supine position, which 
reports best average root mean square error (RMSE) of 9.83 BPM 
and average positive percent agreement (PPA) of 84.44% for the 
SCG signal. The overall results of RMSE are 11.40 BPM from 
SCG and 12.08 BPM from GCG. The overall reliability from SCG 
is 75.02%, which is slightly lower than the value of 75.52% from 
GCG. In summary, the results are comparable between the two 
modalities, suggesting no significant difference between the usage 
of the two methods. Our results indicate that wearable inertial 
sensors could potentially be used to extract FHR outside the clinic 
with accuracy and reliability metrics comparable to other 
modalities such as fCTG. 
 

Index Terms—Fetal Heart Rate, Gyro-cardiogram, Seismo-
cardiogram, Wearable Sensors. 

I. INTRODUCTION 
ecent reports indicate that objective and continuous 
monitoring of fetal heart rate (FHR) and fetal movement 

could identify fetal compromise with high reliabilities and 
decrease stillbirth through time-sensitive management [1]. In 
the United States alone, an average of 26,000 cases of perinatal 
mortality occur per year, and this rate has barely changed over 
the past 15 years [2], [3]. In the UK, 29% of stillbirths occur in 
the absence of complicating factors [4]. This results in an urgent 
desire for a continuous fetal monitoring (CFM) system that can 
keep track of both the fetal heart rate and fetal movement [5], 
[6]. 

Fetal heart rate (FHR) and fetal movement are the only viable 

biologic signs that can be continuously monitored and assessed. 
The fetal heart rate variation (HRV) decreases dramatically 
days before stillbirth until a loss of HR and HRV occurs several 
hours before the actual stillbirth [7], [8]. Baseline and 
acceleration abnormalities have also been reported in the cases 
of fetal cardiovascular and neural system diseases [9], [10]. 

 A wearable system that could provide continuous and 
simultaneous monitoring of fetal heart rate and fetal movement 
outside the clinic could identify the onset of compromise and 
allow intervention before the occurrence of fetal death. Such 
monitoring would be valuable not only in women with high 
risks of stillbirth but also in low-risk pregnancies to prevent 
stillbirths occurring without apparent complicating factors [11]. 

Fetal Cardiotocography (fCTG) and fetal electrocardio-
graphy (fECG) are two wearable technologies which are widely 
employed in current clinical settings for monitoring FHR and 
fetal movements. The fCTG uses external Doppler ultrasound 
sensors to monitor the FHR and the activity of the uterine 
muscle [12], [13]. Despite their extensive use, current 
ultrasound sensors have drawbacks. They may be harmful to the 
fetus if used over extended periods of time due to teratogenic or 
fetotoxic effects from ultrasonic heating of fetal tissues [13]. 
This drawback limits their potential to be used as wearable and 
continuous home-based monitors. FDA has recommended that 
current commercial Doppler ultrasound fetal monitors be 
avoided outside the clinic due to low accuracies as well as 
unpredictable risks due to unguided usage [14]. 

The fECG technology uses multiple electrodes to detect FHR 
and monitors the rotation of the fetus to estimate fetal 
movement [15], [16]. However, the signal quality of abdominal 
fECG highly depends on the position of the electrodes with 
respect to the fetus, and therefore the accuracy is highly variable 
[17]. There are wireless and wearable sensor patches available 
which utilize fECG during labor such as AN24 [18] and Avalon 
(with the wireless transducer) [19]. They are not the most 
convenient solutions for home-based monitoring due to the 
need for professional knowledge and skills to prepare and apply 
the device. Current devices also have notable side-effects such 
as skin irritation [20]. 

A series of emerging technologies which are under 
development can also be used to detect FHR in a wearable 
setup. Particularly, Fetal Photoplethysmography (fPPG) [21], 
[22], and Fetal Phonocardiography (fPCG) sense FHR by 
detecting optical and acoustic signals respectively [23], [24]. 
These two technologies can detect FHR with lower accuracies 
and reliabilities compared to fECG [22], [23]. They also lack 
the capability of monitoring fetal movements [6]. 
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There are two main challenges in implementing current 
technologies as a home-based monitor. The first challenge is 
that simultaneous monitoring of fetal heart rate and fetal 
movement using state-of-the-art technology would result in a 
significant increase in size, complexity, and power 
consumption of the system. For example, the latest Avalon CL 
wireless fetal monitor has a large profile of 5.1 kg and a limited 
battery life of 4 hours [13]. The second challenge is that current 
technologies require professional knowledge or experience to 
be properly applied to the subjects. 

Inertial sensors were first introduced in the area of fetal 
movement monitoring in 1986 [25]. Limited research was 
conducted at the time due to the shortcomings in the resolutions 
of the sensors and signal processing techniques [26]. With the 
progress of the micro-electromechanical system (MEMS) 
technology, interest in using MEMS accelerometers as a tool to 
investigate fetal well-being increased [27]. For instance, a 
system was developed which implements an array of three-axis 
MEMS accelerometers on the pregnant abdomen to monitor 
fetal movement after 34 weeks of gestation [28]. Results 
showed that it is feasible to record and analyze fetal activity 
with the proper placement of the accelerometers on the maternal 
abdomen [28]-[30]. 

On the other hand, MEMS accelerometers are widely 
discussed in the literature for the assessment of adult 
cardiovascular health outside clinical settings. The sternal 
seismo-cardiogram (SCG) signal is defined as the recording of 
the heartbeat-induced micro-vibrations of the chest wall, which 
can be collected using an accelerometer positioned on the 
sternum [31]. This signal reflects the mechanical activities of 
the heart, including the opening and closure of mitral and aortic 
valves and the maximal blood flow acceleration [32]. Recently, 
it has been shown that in addition to the linear components, the 
rotational components of heart-induced chest vibrations also 
provide insights into heart activities [32], [33]. The term gyro-
cardiography (GCG) has been used to refer to the recording of 
these vibrations, generally by placing a high-resolution MEMS 
gyroscope on the chest wall of subjects. The aortic valve 
opening and closure events can be extracted from the fiducial 
points of SCG and GCG [31], [32], which reveals the potential 
of these modalities to provide valuable insights into 
cardiovascular health. 

However, no research has been performed to demonstrate 
the feasibility of using accelerometers or gyroscopes for 
monitoring fetal heart rate. In this paper, we hypothesize that 
fetal heart rate could be monitored using proper attachment and 

processing of seismo- and gyro-cardiogram signals, leading to 
major improvements in continuous and wearable fetal 
monitoring outside the clinic. As a pilot study, we evaluate the 
feasibility of FHR extraction by placing commercially available 
inertial sensors on the abdominal wall of the subjects. We then 
apply ensembled cepstrum analysis to the SCG and GCG 
recordings to extract FHR information. The results are 
compared with an fCTG monitor which concurrently records 
FHR during experiments. To the best of our knowledge, this is 
the first time that the feasibility of FHR extraction is evaluated 
using abdominal inertial sensors.  

Fig. 1 illustrates a 3-circle Venn graph to compare the 
capabilities of the proposed system with competing 
technologies. Only SCG/GCG, fECG, and fCTG can measure 
both fetal heart rate and fetal movement. SCG/GCG and fECG 
have a better long-term and continuous measurement capability 
compared to fCTG due to the risk concerns of prolonged 
exposure to ultrasound. Between SCG/GCG and fECG, inertial 
sensors have a more comfortable setup and do not need any 
electrode attachments for monitoring. Also, no professional 
knowledge is needed for the proper implementation of the 
device. If SCG and GCG can provide reliable fetal HR and 
movement monitoring, they will be the most suitable 
technologies for implementation in a home-based wearable 
monitor.  

The layout of this paper is as follows. Section II presents the 
experimental setup and protocol. The methodology of 
extracting FHR is introduced in Section III. Section IV 
summarizes the experimental results and Section V provides 
discussions of the results. We then conclude the paper and 
outline the future work in Section VI. 

II. EXPERIMENTAL SETUP AND PROTOCOL 

A. Experimental Setup 
Fig. 2 illustrates the experimental setup. The reference fCTG 

is recorded by a FETALGARD Lite system (Version 1.02, 
using US1 channel), which is shown in Fig. 2 (a). Three 
commercial wearable sensor nodes (Shimmer 3 from Shimmer 
Sensing [34]) are attached to the abdominal wall with elastic 
straps. One sensor node is placed at the center of the upper 
abdominal wall (Sensor (1) in Fig. 2 (b)). This sensor is close 
to the reference fCTG ultrasound probe. The remaining two 
sensors (Sensors (2) and (3) in Fig. 2 (b)) are attached on the 
lower part of the abdominal wall at symmetric locations. All 
three sensors are equipped with inertial measurement units 
(IMU), i.e., accelerometers and gyroscopes. The accelerometers 
(Kionix KXRB5-2042, Kionix, Inc.) record the seismo-
cardiogram (SCG) signal, and the gyroscopes (Invensense 
MPU9150, Invensense, Inc.) measure the gyro-cardiogram 
signal (GCG).  

The accelerometer and gyroscope ranges are ±2 g and ±250 
degrees per second (DPS) respectively, and all the sensor 
recordings are sampled at a sampling rate of 512 Hz. Data are 
stored in a memory card on the sensor node and then transmitted 
to a computer for digital signal processing. The reference CTG 
and the sensor recordings are synchronized by cross-checking 

 
Fig. 1.  Venn graph comparing potential technologies. 
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their timestamps. All the data are then imported into 
MATLAB® (R2018) for further processing. 

B. Experimental Protocol 
The experiment is conducted in an fCTG examination room 

with an adjustable bed as shown in Fig. 2 (a). The experiment 
consists of three steps. During the first step, the subjects are 
required to stay in a supine position for five minutes. The 
subjects then change to a seated position, and the monitoring 
continues for another five minutes. Afterwards, the subjects 
stand up and are monitored for an additional five minutes. 
Subjects breathed naturally without controlling their breathing 
depths. 

Ten pregnant women from the Department of Obstetrics and 
Gynecology at New York University (NYU) Medical Center 
participated in this study. The subject group was designed in 
collaboration with Dr. Bruce Young and Dr. Clarel Antoine, 
OB/GYNs at NYU Medical Center. The demographic 
information is summarized in Table I. The patient experimental 
protocol was approved by the Institutional Review Board of 
NYU under study number i18-00564. Dr. Antoine evaluated the 
eligibility of the patients and supervised the experiments in the 
examination room. Subject 5 only completed the first two steps. 
Subject 6 completed three steps for three minutes per step. All 
other subjects finished the experiment with five minutes per 
step. 

III. SIGNAL PROCESSING METHOD 

A. Pre-filtering 
In the axis system of the inertial sensors, the z-axis refers to 

the dorso-ventral direction of the body. The z-axis of the 
seismo-cardiogram (SCG) is the most commonly used heart-
induced vibration component in the literature [31], [32]. 

Therefore, we first evaluate the z-axis SCG as a pilot study 
before fusing the information from multiple axes. For the gyro-
cardiogram (GCG) modality, the y-axis rotation signal is 
selected due to the higher quality for this axis as reported in [32] 
and [33]. 

The SCG and GCG recordings from the corresponding axes 
are first band-pass filtered to focus on the desired frequency 
components. A zero-phase infinite impulse response (IIR) filter 
that passes from 0.8 Hz to 50 Hz is used to prefilter the SCG 
waveforms. Fig. 3 shows a representative filtered SCG signal. 
The amplitude of the signal is quite small, suggesting a weak 
vibration from the abdominal surface. The observation from 
GCG is similar to that from SCG. Therefore, we fuse the 
information from all three sensors to enhance the signal quality 
of SCG and GCG separately. The z-axis SCG from three 
sensors are fused, and the y-axis GCG from the three sensors 
are fused, as described in the following section. 

B. Signal Fusion of Multiple Sensors 

The ensemble of the recordings in time domain is not 
suitable for analysis since the axes of the signals from different 
sensors are misaligned due to the abdominal wall being a 
curved surface. Therefore, the vibration components from 
different sensors do not align in the same direction and hence 
the direct summation of the amplitudes would be misleading. 
We process the signals using time-frequency analysis based on 
continuous wavelet transform (CWT). CWT converts the signal 
into the time-frequency domain, so that the desired frequency 
components can be fused without losing the time-domain 
variations [35], [36]. The pre-processed SCG and GCG signals 
are converted by CWT with a Morse wavelet [37]. 

 
Fig. 2. (a) Experimental setup and environment. (b) Illustration showing the proof-of-concept setup with three sensor nodes (straps/tapes are not shown). 
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Fig. 3.  SCG from the z-axis recording after band-pass filtering.  
 

TABLE I SUMMARY OF DEMOGRAPHIC INFORMATION OF SUBJECTS 
PARTICIPATED IN EXPERIMENTS. 

 Age 
(years) 

Weight 
(kg) 

Height 
(m) 

BMI 
(during 

pregnancy) 

Gestational 
Age 

(Weeks) 

Mean 31.5 86.77 1.646 32.09 40.69 

Standard 
Deviation 5.15 12.55 0.04 4.91 0.39 
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𝛹𝛹𝑃𝑃,𝛾𝛾(𝜔𝜔) = 𝑈𝑈(𝜔𝜔)𝑎𝑎𝑃𝑃,𝛾𝛾𝜔𝜔
𝑃𝑃2
𝛾𝛾 𝑒𝑒−𝜔𝜔𝛾𝛾                    (1). 

where P is the time-bandwidth product and γ is the symmetry 
parameter. In this study, γ is selected as 3 and P is set to 120. 
The dominant frequency band of the FHR signals is located 
based on the power distribution of the CWT coefficients. An 
averaging function then fuses the CWT coefficients from the 
corresponding frequency band of the three sensors. Then a 
frequency-selective inverse CWT is conducted to reconstruct a 
signal that represents FHR. The results from a representative 
SCG segment are shown in Fig. 4. The top plot in each sub-
figure shows the heatmap of the CWT and the bottom plot in 
each sub-figure illustrates the frequency-selective inverse 
CWT. The results from each sensor are illustrated in Fig. 4 (a) 
– (c), followed the results from fused CWT in Fig. 4 (d). It is 
seen that there are differences among the heatmaps, especially 
in the dominant band of the vibration signal (1-5 Hz). For 
instance, the frequency-selective inverse CWT from Sensor (1) 
shows several attenuated peaks compared to the results from the 
fused CWT in Fig. 4 (d). A similar observation is also found 
from the inverse CWT results of Sensor (3) (Fig. 4 (c)). The 

results from Sensor (2) in Fig. 4 (b) are comparable to the fused 
results. In summary, signal stability is improved after fusion. 

C. FHR Extraction 
The spectrums of the fused waveforms are analyzed by the 

cepstrum method. The cepstrum is defined as the inverse 
Fourier transform of the real logarithm of the magnitude of the 
Fourier transform of a time-domain sequence [38]. The method 
could be presented in the equation below:      

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℱ−1{log (|ℱ(𝑥𝑥)|)}).       (2) 
In equation (2), x represents the fused waveform from CWT 

shown in Fig. 4 (d). The cepstrum is close in definition with the 
autocorrelation function, which is indexed also by lag time, 
with the difference that the inverse Fourier transform is taken 
from the squared spectrum (i.e., power spectral density) instead 
of the logarithm of the spectrum. The FHR could then be 
presented as the periodicity in the spectrum, shown as a peak 
value in the cepstrum located at the corresponding lag time 
value 

Based on the sensor fusion framework introduced above, we 
then extract FHR from the recordings. The sliding window for 

 
Fig. 4.  CWT heatmap and the frequency-selective inverse CWT of SCG from (a) Sensor 1, (b) Sensor 2, (c) Sensor 3, (d) fused CWT. The top plot in each sub-
figure shows the heatmap of the CWT and the bottom plot in each sub-figure illustrates the frequency-selective inverse CWT. 

(a) (b)

(d)(c)

Time-frequency plot of SCG from Sensor (3)

Time-frequency plot of SCG from Sensor (2)Time-frequency plot of SCG from Sensor (1)
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CWT is set to 5 seconds to approximate the averaging process 
according to [39]. In this pilot study, the FHR recordings from 
the reference fCTG range between 120 and 180 BPM. 
Therefore, we target the FHR within this range. The highest 
peak that locates in the range from 0.33 to 0.5 seconds (2 Hz to 
3 Hz in repeating frequency) is identified as the FHR period.  

Fig. 5 shows the cepstrum of a representative section from 
seismo-cardiogram (SCG) recordings. We can see that there is 
a detected peak with a lag at 2.25 Hz, highlighted with a black 
square. As a result, the FHR of this interval is 2.25 × 60 = 135 
BPM. 

IV. RESULTS 

A. Evaluation Metrics 
The accuracy and reliability of the proposed signal 

processing method were evaluated. The accuracy of the FHR 
detection was analyzed by the Bland-Altman analysis. The 
errors between fCTG and the proposed method were evaluated 
using the root mean square error (RMSE) and the absolute 
percentage error (APE) metrics. These two metrics are based on 
a time window of 5 seconds. In addition, the average FHR 
during each step of the experiments was evaluated using the 
APE metric. 

We assessed the reliability of the proposed setup by the 
positive percent agreement (PPA), i.e., the percentage of time 
the proposed method generated a valid FHR within 10% of a 
valid simultaneous FHR from the fCTG [39], [40]. The PPA 
metric expresses the ability of the proposed method to generate 
a valid output concurrent with that of the reference device. 

B. Fetal Heart Rate Detection 
1) FHR Accuracy 

We compared the FHR recordings from fCTG to the FHR 
extraction results from the seismo-cardiogram (SCG) signals 
and gyro-cardiogram (GCG) signals. 

Table II summarizes the results of RMSE and APE from 
SCG and GCG of all the subjects in supine, seated, and standing 
positions. It shows that the SCG modality provides an average 
RMSE of 9.83 BPM with a standard deviation of 1.45 BPM in 
the supine position. The best and worst results among subjects 

for each metrics are highlighted in the table with green and red 
shading respectively. For instance, the best performance among 
the ten subjects (the smallest RMSE) is from Subject 6 with a 
value of 8.35 BPM. The worst result among subjects (the largest 
RMSE) is reported from Subject 2 with a value of 13.09 BPM, 
suggesting a variation range of 4.74 BPM among subjects. The 
APE in the supine position gives an average of 6.13% and a 
standard deviation of 1.23% on average. As highlighted in the 
table, the best result is 5.14% from Subject 4, and the worst is 
8.35% from Subject 2, which reports a range of 3.21% among 
subjects.  

When the subjects change from the supine to the seated 
position, and from the seated to the standing position, the 
RMSE and APE metrics based on SCG modality are increased 
(worsened). For instance, the RMSE is 11.52 BPM on average 
with a standard deviation of 2.00 BPM, both revealing higher 
values than the values from the same method in the supine 
positions (9.83 ±1.45 BPM). The APE metric gives 7.42% ± 
1.84% in the seated position in comparison to 6.13% ± 1.23% 
in the supine position. In the standing position, the RMSE 
values are further increased to 13.02 ± 1.91 BPM, and the APE 
metrics step up to 8.29% ± 1.17%. 

Compared to the results from SCG in the supine position, the 
results from GCG suggest slightly higher average RMSE (10.13 
BPM vs. 9.83 BPM) and higher standard deviation (2.89 BPM 
vs. 1.45 BPM). Similarly, GCG shows worse performance in 
average APE and standard deviation than results from SCG, 
with a value of 6.39% ± 1.90% compared to 6.13 % ± 1.23% 
from SCG modality. The ranges of RMSE and APE values from 
GCG are more extensive than those from SCG, reporting 6.08 
BPM (Subject 10) to 14.42 BPM (Subject 4) in RMSE and 
4.18% (Subject 10) to 9.65% (Subject 4) in APE.  In general, 
the SCG modality shows slightly better accuracy when subjects 
are in the supine position. 

The results from GCG modality in other positions generally 
show similar trends to the results from SCG in RMSE metrics 
and average APE. However, there is a marginal difference in 
the trend of the standard deviation of APE values. The RMSE 
results are 12.89 ± 2.04 BPM in the seated position and 13.34 ± 
2.88 BPM in the standing position. Furthermore, the APE 
results report 8.10% on average in the seated position and 7.78 
% in the standing position. 

The RMSE results in the seated position are slightly higher 
than results from SCG in the same positions (12.89 ± 2.04 vs. 
11.52 ± 2.00 BPM). The standard deviation of RMSE in the 
standing position is also worse than the value from SCG (2.88 
vs. 1.91). The average RMSE from GCG is slightly higher than 
that from SCG in standing positions, which gives 13.34 BPM 
in comparison to 13.02 BPM, respectively.  

The APE results suggest higher values on average (8.10% vs. 
7.42%) but lower values in standard deviation (1.10% vs. 
1.84%) than results from SCG in the seated position. In the 
standing position, the results from GCG are lower on average 
APE (7.78% vs. 8.29%) but higher in standard deviation (1.73% 
vs. 1.17%). 

In summary, the overall RMSE regardless of the positions 
from SCG modality reports 11.40 BPM on average with a 

 
Fig. 5.  The cepstrum of the ensembled signals based on SCG. The peak that 
indicates FHR is labeled and highlighted with a black square. 
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standard deviation of 2.17 BPM. In comparison, the results 
from GCG are higher with 12.08 ± 2.91 BPM. Furthermore, the 
overall APE from SCG is also lower than the overall APE in 
both average and standard deviation values, which are 7.25% 
±1.66% from SCG and 7.41% ± 1.73% from GCG. 

The results summarized in Table II suggest that the overall 
performances from both modalities are comparable with 
slightly better results from SCG modality. Regardless of the 
modalities used, the best position for measurements is the 
supine position. 
2) APE of Average FHR 

The APE results of long-term average FHR are shown in Fig. 
6. The APE of average FHR is 3.64% in the supine position and 
rises to 3.61% in the seated position and 6.25% in the standing 
position using the SCG modality. The error bars indicate that 
the standard deviation also has a rising trend, with 2.30%, 
2.88%, and 3.14% in supine, seated, and standing positions 
respectively. On the other hand, the results from GCG give 
4.37% ± 3.41%, 4.61% ± 2.56%, and 4.77% ± 2.44 on average 
and standard deviation APEs in the three positions respectively. 
Results from both modalities reveal a rising trend of APE 
statistics from supine to standing positions. In supine and sitting 
positions, the results from SCG are better than those from GCG. 
However, SCG results are worse in the standing position. The 
overall APE regardless of positions from SCG is 4.50%, which 
is lower than the value of 4.58% from GCG. 

In conclusion, the results of average FHR are more 
satisfactory than short-term sliding averaged FHR. All the 
APEs are lower than the short-term APEs under the 
corresponding positions. The overall results in the supine 
position are the best for both SCG and GCG, showing a similar 
observation to that from Section IV-(2). 

3) Reliability of FHR Extraction 
Table III summarizes the reliability evaluation of the FHR 

extraction. The positive percent agreement (PPA) between 
results from SCG and those from the reference reports 84.44% 
± 3.63% in the supine position with a confidence interval (95%) 
of ± 2.25%, demonstrating the highest reliability among the 
three positions. Particularly, the PPA results in the seated 
position (73.22% ± 12.21%) are 11.22% lower on average and 
8.58% higher in standard deviation. CI in the seated position is 
also larger than that in the supine position, with a value of 
±7.57% compared to 2.25%. The lowest average PPA comes 
from results in the standing position, which shows 66.54% with 
a standard deviation of 10.46% and a confidence interval of 
6.83%. The overall PPA including all three positions reports 
75.02% ± 11.81% with a CI of 4.30%.  

The results from GCG modality also show the highest PPA 
in the supine position with 79.78% on average, 11.74% in 
standard deviation, and 7.28% in CI, all of which are less 
satisfactory than the corresponding values from SCG. In the 
seated position, the PPA from GCG shows slightly worse 
average PPA (71.22% vs. 73.22%), but better standard 

TABLE II   
ACCURACY RESULTS OF THE FHR EXTRACTION. 

Position 
Subject 

Supine Seated Standing Supine Seated Standing 

RMSE APE RMSE  APE RMSE  APE RMSE APE RMSE  APE RMSE  APE 

Modality SCG GCG 

1 8.70 5.14% 8.97 5.81% 10.40 7.30% 12.16 8.53% 13.10 8.07% 16.94 9.24% 

2 13.09 8.34% 12.27 7.07% 13.85 9.09% 8.14 4.17% 13.05 8.00% 11.84 6.29% 

3 9.30 5.30% 11.66 9.26% 13.73 8.67% 8.30 5.37% 13.10 8.26% 11.49 7.83% 

4 9.45 5.50% 12.63 9.89% 15.82 9.80% 14.42 9.65% 14.87 8.32% 13.76 7.07% 

5* 9.76 6.36% 13.53 7.53% N/A N/A 12.74 6.53% 15.87 9.60% N/A N/A 

6 8.35 5.67% 12.02 9.74% 13.24 9.74% 8.57 5.31% 12.17 9.39% 11.32 8.11% 

7 11.49 8.35% 7.57 4.54% 12.71 7.16% 6.08 4.94% 9.19 6.95% 13.03 7.06% 

8 9.17 5.29% 10.40 5.30% 13.14 7.55% 11.59 7.18% 11.15 6.58% 16.86 10.07% 

9 8.84 5.30% 12.18 7.71% 9.74 6.60% 12.57 8.01% 15.11 9.19% 8.61 4.65% 

10 10.17 6.09% 13.98 7.33% 14.57 8.66% 6.75 4.18% 11.31 6.67% 16.24 9.65% 

Mean 9.83 6.13% 11.52 7.42% 13.02 8.29% 10.13 6.39% 12.89 8.10% 13.34 7.78% 
Standard 
Deviation 1.45 1.23% 2.00 1.84% 1.91 1.17% 2.89 1.90% 2.04 1.10% 2.88 1.73% 

RMSE: root mean square error (Unit: BPM); APE: absolute percentage error;  
Red shading: Largest value among subjects; Green shading: Smallest value among subjects. *Subject 5 only completed first two steps. 

 
Fig. 6. APE of average FHR. The error bars represent standard deviations. 
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deviation (9.21% vs. 12.21%) and CI (5.71% vs. 7.57%) 
compared to SCG results. Furthermore, the results in standing 
position show better performance in all three metrics compared 
to those from SCG, presenting higher average PPA (75.56% vs. 
66.54%), smaller standard deviation (8.82% vs. 10.46%), and 
smaller CI (5.76% vs. 6.83%). The overall PPA of the three 
positions is 75.52% ± 10.34% with a CI of 3.76%, which are 
slightly better than the results from SCG. Both modalities show 
comparable overall reliabilities. The results from SCG are 
better than those from GCG in the supine position and seated 
position but worse in the standing position. The position that 
has the highest reliability is the supine position for both 
modalities. 

V. DISCUSSION  
In summary, the position that reports the highest accuracy 

and reliability is the supine position, with the best RMSE of 
9.83 ± 1.45 BPM and PPA of 84.44% ± 3.63%, both from the 
SCG modality. The overall accuracy and reliability among three 
positions are comparable between the two modalities, with 
slightly better performance from SCG than GCG regarding the 
accuracy, and marginal better reliability from GCG than from 
SCG.  

The comparison of FHR accuracy and reliability between our 
work and other studies is presented in Table IV. The 
representative results from this work are shown in the supine 
position and overall conditions and from the SCG signal. Since 
there is no study related to FHR extraction with abdominal 
inertial sensors, we compare the results with abdominal fECG 
and fCTG methods. As shown in Table IV, the RMSE from 
fCTG methods in [39] is higher than the results from methods 
in this work in both average (14.3 vs. 9.83) and standard 
deviation (8.2 vs. 1.45) values. The results from fCTG in [40] 
show a slightly higher average RMSE (10.9 vs. 9.83) and a 
higher standard deviation (5.8 vs. 1.45). However, the RMSE 
results from fECG methods are much lower than those from our 
work, demonstrating a better overall performance.  

On the other hand, the average PPA from this work is slightly 
higher than the fECG result from [40] (84.44% vs. 81.7%), and 
the fECG result from [39] (84.44% vs. 83.4%). Furthermore, 
this result is higher than results based on fCTG from both 
works, reporting 62.4% from [39] and 73.0 from [40]. The PPA 
comparison results suggest that the metrics from this work are 
comparable with those from fECG, which are higher than the 
values from fCTG methods. 

It is worth mentioning that there are two major differences 
between our studies and the experiments in [39] [40]. The first 
difference is that the reference modality used in these two 
studies is the fetal scalp electrode. In this study, we use an fCTG 
monitor as the reference. Secondly, the experimental protocols 
are different. In  [39] and [40], the measurements were collected 
during labor and delivery. In this study, measurements were 
collected a few days prior to labor and delivery. Although the 
comparison is not strictly under the same conditions, it suggests 
the potential of the proposed method to provide FHR 
monitoring with comparable accuracy and reliability to fCTG 
and even abdominal fECG. 

VI. CONCLUSIONS AND FUTURE WORK 
This work proposes a novel approach to detect fetal heart rate 

(FHR) using seismo-cardiogram (SCG) and gyro-cardiogram 
(GCG) recordings collected from abdominal inertial sensors. 
The FHR components are extracted from the ensemble 
cepstrum analysis results. The feasibility of the proposed 
method is evaluated with experiments at three different 
measurement positions. The best position based on the 
experimental results is the supine position, which reports the 
best average RMSE of 10.07 BPM and average PPA of 82.89% 
from SCG methods. The differences of performance between 
positions might be caused by the differences in attachments of 
sensors in different positions. The attachments in seated and 
standing positions are less firm compared to the supine position, 
reducing the coupling force on the sensor nodes. Maternal 
movements in seated and standing positions might also be 
contributing to the degraded performance in these positions. 
The overall results are comparable between the SCG and GCG 
modalities, suggesting no significant difference between the 
feasibility of the two methods. Our results suggest that the 
proposed solution could be used to track FHR. The accuracy 
and reliability metrics are less satisfactory than those from 
fECG but reveal promising potential to be comparable to fCTG 
devices.  

An important challenge for the proposed system is the 
removal of motion artifacts induced by maternal and fetal 
movements. In this pilot study, the tests were conducted at rest. 
In the future, we will evaluate ambulatory scenarios and 
investigate the use of algorithms that enhance the desired 
signals and remove other artifacts based on the patterns of the 
desired signals. 

The attachments of the sensors could also be improved by 

TABLE III   
 RELIABILITY RESULTS OF THE FHR EXTRACTION. 

Metrics 
SCG GCG 

Supine Seated Standing Supine Seated Standing 

PPA 84.44% ± 3.63% 73.22% ± 12.21% 66.54% ± 10.46% 79.78% ± 11.74% 71.22% ± 9.21% 75.56% ± 8.82% 

CI ± 2.25% ± 7.57% ± 6.83% ± 7.28% ± 5.71% ± 5.76% 

overall PPA 75.02% ± 11.81% 75.52% ± 10.34% 

overall CI 4.30% 3.76% 
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using customized stretchable straps with embedded sensors 
inside. This could ensure firm contact between the abdominal 
wall and the sensors, improving the mechanical coupling 
between the skin and the sensor under all positions. A better 
reference such as fECG could also be used to further validate 
the performance metrics.  

It is to be noted that the subjects in this study have gestational 
ages of 40.69 weeks on average. The robustness of the proposed 
system for subjects at earlier gestational weeks is not evaluated. 
In the future, a larger group of subjects with a more extensive 
variety of demographic and gestational conditions will be 
collected. The FHR range studied in this work is from 120 BPM 
to 180 BPM. Normal FHR range is considered to be from 110 
BPM to 160 BPM [8]. The capability of FHR detection with a 
larger BPM range needs to be further validated to ensure the 
detection of abnormal conditions such as fetal compromise and 
heart failure [41]. Furthermore, additional sensors that collect 
maternal signals non-invasively will be integrated into the 
system, so that an adaptive algorithm could improve the signal 
quality, enhancing the accuracy and reliability of FHR 
monitoring. It is also worth mentioning that the maternal heart 
signal does not have a significant influence on the recordings of 
the abdominal inertial sensors. This could be an advantage to 
abdominal fECG, which requires complicated algorithms to 
remove maternal ECG components [7]. With further 
development, the proposed method could show promising 
potential for the continuous examination of fetus wellbeing and 
prevention of stillbirth. 
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