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ABSTRACT: The Atlantic surfclam Spisula solidissima supports one of the largest fisheries on the
US northeast coast. Using ~30 yr of data from surfclam stock surveys, variance-to-mean ratios
(VtiMRs) were calculated both temporally and spatially for a range of surfclam size classes to
determine the degree of patchiness. The VtMR declined from the 1980s to present in all regions
(offshore Delmarva, New Jersey, Long Island, Southern New England, Georges Bank); however,
VtMR rose with increasing clam size. Taylor's power law (TPL) analysis corroborated the VtMR;
the surfclam is highly patchy across its range. The surfclam's proclivity for a patchy distribution
varied regionally. Regions supporting the bulk of the stock were characterized by significantly
higher degrees of patchiness and exhibited a higher exponent for the TPL. A species distribution
function model corroborated findings of declining patchiness over time, supporting the hypothesis
that warming of Mid-Atlantic continental shelf bottom waters is both driving the surfclam into
new habitat and extirpating it from nearshore and southern areas. Size-dependent and temporal
trends in VtMRs and temporal relative stability in TPL suggest that range expansion is conduced
by regional settlement of larvae, followed by biased mortality in suboptimal habitats. This biased
mortality ultimately re-establishes the increased patchiness characteristic of larger animals but
also predisposes the species to a rapid range shift. Declining VtMRs over time may be a symptom
of range expansion along the leading range boundary that has increased the proportion of newly
occupied habitat without mature patch characteristics while, at the same time, range recession has
removed the older mature patches along the range'’s trailing edge.
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1. INTRODUCTION

Ecological impacts of climate change have been
observed in many species across an array of biomes
(e.g. Beaugrand et al. 2002, Walther et al. 2002, Bran-
der 2010, Chen et al. 2011). An indicative response to
climate change is a distributional shift that can be
reflected by a change in the center of the distribution
or in a contraction or expansion of a species' range

*Corresponding author: jeremy.timbs@dmr.ms.gov

(Nye et al. 2009). These responses have been re-
ported for terrestrial species (Parmesan et al. 1999,
Davis & Shaw 2001, Kelly & Goulden 2008, Seker-
cioglu et al. 2008, Chen et al. 2011), freshwater spe-
cies (Woodward et al. 2010, Bond et al. 2011, Wenger
et al. 2011), and marine species (Perry et al. 2005,
Harley et al. 2006, Johnson et al. 2011), including
some in the Mid-Atlantic Bight (Hare & Able 2007,
Nye et al. 2009, Friedland et al. 2018). Increases in
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bottom-water temperatures typically shift species to
higher latitudes or deeper depths (e.g. Pershing et al.
2015, Friedland et al. 2018, Powell et al. 2019a).
Sagarin et al. (1999), for example, observed a change
in benthic invertebrate communities caused by in-
creasing bottom-water temperatures, with southern
species increasing in abundance while northern spe-
cies decreased in abundance. Species with a narrow
thermal tolerance, such as the Atlantic surfclam
Spisula solidissima, can be expected to shift into
higher latitudes and increased depths as water tem-
peratures rise; evidence of an ongoing range shift for
the surfclam as anticipated is well described (Hof-
mann et al. 2018).

In marine ecosystems, many species with commer-
cial importance have patchily distributed populations
(Bascompte et al. 2002). The term ‘patchiness’ is used
to describe spatial distributions over a wide range of
spatial scales, from small-scale within-habitat to geo-
graphic. The majority of sessile and sedentary mar-
ine invertebrates are distributed patchily at a local or
within-habitat scale (e.g. Flowers 1973, Jumars et al.
1977, Munroe & Noda 2009, Kristensen et al. 2013,
Beninger & Boldina 2014) while frequently also being
patchy at a larger geographic scale by being distrib-
uted in more or less isolated populations within the
metapopulation (e.g. Maurer & Taper 2002, Hummel
2003, Borregaard & Rahbek 2010, Pinsky et al. 2012).
These various scales of patchiness often grade into
one another (e.g. Munguia 2004, Harte et al. 2005,
Kristensen et al. 2013). The present study addresses
the subject of patchiness of the Atlantic surfclam on
the continental shelf at a geographic scale that en-
compasses the distribution of the species across the
continental shelf and latitudinally across its habitable
range.

Typically, connectivity over the metapopulation is
maintained by dispersal of planktonic larvae (Schel-
tema 1986, Condie et al. 2005, Lépez-Duarte et al.
2012, Munroe et al. 2012, Zhang et al. 2015). The
physical environment, including hydrodynamics, tem-
perature, salinity, and gradients thereof, and behav-
ior of the larvae exert a strong influence on larval
survival and transport from one habitable location to
another (Gaylord & Gaines 2000, Ma et al. 2006,
Narvéez et al. 2012, Zhang et al. 2016). Disagree-
ment exists as to the determinant of spatial and tem-
poral variations seen in patchily distributed species
both within and between habitats. One school of
thought contends that patchiness arises from varia-
tions in larval dispersal and recruitment of larvae
(Gaines et al. 1985, Jackson 1986, Underwood & Fair-
weather 1989, David et al. 1997, Ayata et al. 2009).

The other school of thought invokes post-settlement
mortality in which larvae settle relatively ubiqui-
tously over the bottom and succumb to differential
spatial gradients in predation or poor edaphic or en-
vironmental choice (Keough & Downes 1982, Lucken-
bach 1984, Olafsson et al. 1994, Gosselin & Qian
1997, Tezuka et al. 2012). Patchiness often arises in
bivalve mollusks post-settlement for these reasons
(Dresler & Cory 1980, Stokesbury 2002, Brand 2006).
At the largest of spatial scales, range boundaries may
be established in either of these 2 ways, i.e. by disper-
sal dynamics or post-settlement survival (Hutchins
1947, Sexton et al. 2009, Woodin et al. 2013).

The Atlantic surfclam has a patchy distribution
across its range at various spatial scales (compare
Powell et al. 2017a to the present analysis). The de-
terminant of regional patchiness in this species is not
well understood, although both recruitment (Chin-
tala & Grassle 2001, Ma et al. 2006, Zhang et al. 2016)
and post-settlement (Weinberg 1999, Narvéez et al.
2015) processes seem to be involved. The geographic
distribution of this species is changing, however, as
increasing bottom-water temperatures push its range
farther north and offshore (NEFSC 2013, Munroe et
al. 2016, Hofmann et al. 2018). Clear evidence was
provided by a warm period off Delmarval between
1999 and 2002 that resulted in thermal stress com-
bined with poor physiological condition causing mor-
tality and a shift of the surfclam into deeper water
(compare Merrill & Ropes 1969, Weinberg 2005; see
also Kim & Powell 2004). Higher summer water tem-
peratures resulted in relatively low growth rates and
meat weights (Weinberg et al. 2002, Marzec et al.
2010, Narvéez et al. 2015). Simulations indicated that
an increase in average bottom-water temperature as
observed off Delmarva circa 2000 will significantly
reduce surfclam assimilation rate, leading to starva-
tion mortality and a reduction in the surfclam popula-
tion (Narvéez et al. 2015), supporting observational
inferences made by Kim & Powell (2004).

Arguably, the distribution of a species within the
metapopulation as measured by metrics of patchi-
ness may remain unchanged even as the geographic

1For convenience, in the following presentation, reference
will be made to subsections of the surveyed stock's range as
historically used in assessment reports (e.g. NEFSC 2003,
2007) (Fig. 1). These regions are termed Delmarva, a region
extending from the Chesapeake Bay mouth to the Delaware
Bay mouth; New Jersey, ranging from the mouth of Delaware
Bay to Hudson Canyon; Long Island, encompassing the re-
gion from Hudson Canyon to Rhode Island; Southern New
England, effectively the continental shelf south of Massachu-
setts; and Georges Bank.
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footprint of the species shifts. Alternatively, a conse-
quence may be a change in patchiness on a geo-
graphic scale with implications for the population
dynamics of the species throughout its new range.
How range shifts generating differential patterns
in recruitment and survival may affect local and
regional species patchiness has been considered
(Holt et al. 2005, Hughes et al. 2007, Berestycki et al.
2009, Woodin et al. 2013) but remains poorly under-
stood because geographically expansive and lengthy
time series are rare. The availability of a geographi-
cally expansive and lengthy dataset for the Atlantic
surfclam creates an opportunity to examine the rela-
tionship between changes in the species' spatial
distribution and the degree of patchiness in the
metapopulation.

The objective of this study was to examine the dy-
namics of patchiness of the Atlantic surfclam, includ-
ing differences among size classes, over an expan-
sive geographic scale and to determine if the degree
of patchiness has been stable over time, with the goal
of identifying any effects of a well-documented shift
in range on these population characteristics. The area
of interest for the current study is the Mid-Atlantic
Bight and Georges Bank. This region encompasses
nearly the entirety of the Atlantic surfclam's range
(Hofmann et al. 2018). Specific analyses of the spatial
distribution of the Atlantic surfclam that follow are
designed to (1) determine the degree of patchiness of

the surfclam population in each of 5 regional subdivi-
sions historically used to assess the status of the
stock, (2) identify any change in patchiness of the
population over the 30+ yr history of surveys of the
surfclam stock, (3) establish the geographic extent of
a shift in the center of distribution throughout the 5
study regions and over what time frame that shift has
occurred, and (4) evaluate the influence of a shift in
range on the distribution of the species as measured
by a series of metrics describing the degree of patch-
iness in the metapopulation.

2. METHODS

The data used in the current study were collected
by the National Marine Fisheries Service (NMFS)
Northeast Fisheries Science Center (NEFSC) stock
assessment surveys that were conducted every 2-3 yr
beginning in 1982 and continuing to 2011. Data after
2011 were excluded from this analysis because a new
dredge was employed for the survey after 2011, and
gear calibration between the 2 dredges, though fea-
sible (Hennen et al. 2012, NEFSC 2017%), would intro-
duce challenges of interpretation for the analyses
contemplated herein. Fig. 1 shows the location of
each tow across the entirety of the surfclam-surveyed
range from 1982 to 2011. With the exception of surf-
clam populations in state waters and a sliver of range
off Nantucket up the Great South
Channel into the Gulf of Maine, this
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dataset covers the entirety of the
surfclam's range. For the current study,
the survey data were divided by re-
gion (Delmarva, New Jersey, Long Is-
land, Southern New England, Georges
Bank; Fig. 1) and size class (64-79,
80-92, 93-103, 104-119, and 2120 mm
shell length, SL), referred to hereafter
by the lower size boundary (i.e. 64, 80,
93, 104, and 120). Surfclam populations
are considered a single stock in the US
exclusive economic zone from Georges
Bank to southern Virginia (NEFSC
2017). The historical allocation by re-
gion arises from regional differences in
environment that influence biological
properties (e.g. growth rate, Munroe et
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Fig. 1. Tow locations (dots) for the Atlantic surfclam stock assessment sur-
veys from 1982 to 2011. Solid lines delineate the regions of interest (DMV:
Delmarva; NJ: New Jersey; LI: Long Island; SNE: Southern New England;

GBK: Georges Bank). Depths in m

o 72.5° 70.0° 67.5°

65..0° al. 2013, 2016; mortality, Weinberg
1999, 2005). The aforementioned size
classes were chosen based on Kuyk-
endall et al. (2017), who showed that a
64 mm SL surfclam, averaged across
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the Delmarva and New Jersey regions, requires
about 4 yr to reach market size, with each larger size
class decrementing 1 yr of time to do so. These sizes,
therefore, approximate the sizes that will recruit to
the fishery (2120 mm clams) in 4, 3, 2, and 1 yr.

The NEFSC survey data used were the number of
surfclams caught per tow adjusted for nominal tow
distance and selectivity by size class (NEFSC 2013).
Biomass was obtained by applying a generalized lin-
ear mixed model using lengths and weights derived
from selected measurements of individuals taken
during the survey that covered the range of sizes in
the catch. Details are provided in NEFSC (2013).
Temporal changes in patchiness and spatial distribu-
tion were evaluated by decade (1982-1989, 1992
1999, 2002-2011, hereafter referred to as the 1980s,
1990s, and 2000s, respectively). The decadal divisions
were chosen based on 2 criteria. The separation of the
1980s and 1990s represents a distinctive boundary
between relatively low and relatively high survey
biomass indices (NEFSC 2013) and coincides with a
change in the rate of warming in the Mid-Atlantic re-
gion (Cook et al. 1998, Nixon et al. 2004, Oviatt 2004).
The division at 2000 coincides with an increase in
surfclam mortality rates off Delmarva contemporane-
ous with a regime shift in the North Atlantic, possibly
due to a negative to positive excursion of the Atlantic
Multidecadal Oscillation (Lucey & Nye 2010).

Only positive tows, i.e. tows catching at least 1 surf-
clam, were used. The NEFSC survey is a stratified
random survey with strata based on depth and latitude
rather than surfclam spatial distribution (Jacobsen &
Hennen 2019). As such, in any year, an unknown
proportion of tows within a stratum may have been
sited in locations uninhabitable for the surfclam.
Such tows would change the mean and variance in
the stratum arbitrarily. Accordingly, all tows that
caught 0 surfclams were removed from the analysis
to eliminate the need to allocate, often arbitrarily,
such tows to tows within and outside of viable surf-
clam habitat based on little or no information support-
ing the delineation.

Patchiness was assessed using the variance-to-
mean ratio (VtMR) of the density. The VtMR has
been widely used for this purpose (e.g. Powell et al.
1987a, Maurer & Taper 2002, Harte et al. 2005). As
the organism's distribution becomes patchier, the
variance increases relative to a given mean. A VtIMR
significantly above 1 indicates a patchy distribution;
a VtMR significantly below 1 indicates a uniform dis-
tribution. Elliott (1977) provided statistical tests to
identify cases where the ratio differs significantly
from 1.

The NEFSC stock survey is a stratified random sur-
vey (NEFSC 2017). Each stratum in each survey year
was considered a spatial unit for analysis. Strata con-
taining only 1 tow were excluded, as a variance cal-
culation was not possible. Most of these strata were
narrow strata abutting the 3 mile (~5 km) state statu-
tory limit. NEFSC (1999, 2002) provided examples of
the distribution of tows among strata. Further details
are given in NEFSC (2017). The mean and variance
of the number of surfclams caught per tow were cal-
culated for each size class over the 3 decades for each
of the remaining survey strata. This provided 1 VtMR
for each stratum, for each year, for each size class.
The individual strata VtMRs for each survey year
were allocated to each of 3 decades (1980, 1990,
2000) and each of 5 regions, with averages computed
by decadal period or region as appropriate. A 2-way
ANOVA was conducted by region to examine the
effect of decade and size class on the VtIMR. A 2-way
ANOVA was also used to evaluate differences in the
VtMR between regions by decade. Interaction terms
were always included in the ANOVA. Post hoc pair-
wise contrasts were obtained using least square
means tests for multiple comparisons. All aspatial
statistics used the ‘car' and ‘lsmeans' packages in R
(R Core Team, www.r-project.org).

The VtMR determines the degree of dispersion
among a set of samples, typically obtained from a
defined circumscribed area, in this case the survey
stratum. An independent method for estimating the
degree of patchiness within a metapopulation uses
Taylor's power law (TPL). TPL relates the relation-
ship of the mean and variance of a series of sample
sets obtained from a series of population or metapop-
ulation units (Taylor 1961). Accordingly, TPL pro-
vides a scale of comparison distinctly larger in geo-
graphic scale than individual VtMRs as computed
herein and also provides a relational comparison
across a range of VtMRs rather than conflating them
into higher-order means.

TPL is expressed as:

o=oxpb (1)

where ¢ is the variance of a sample set, o is a scaling
factor, 1 is the mean of the sample set, and B is an
index of dispersion (patchiness) that ranges from
0 for a regular distribution to infinity for a highly
patchy distribution (Taylor 1961, Elliott 1977, Green
1989, Kristensen et al. 2013). In practice, the parame-
ters are derived after log transformation; thus log(o)
is the intercept, and B is the slope of the linear model.
Each stratum in each survey year provided 1 VtMR.
Parameters of the power law were obtained for each
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size class across years and regions using the appro-
priate suite of VtiMRs. An ANCOVA using the log-
mean as the covariate and the log-variance as the
dependent variable was used to assess if B differed
by region, changed over time, or differed between
size classes.

TPL has been studied extensively in the context of
its explanatory power in describing the geographic
characteristics of a species’' distribution (Maurer
& Taper 2002, Kristensen et al. 2013, Pertoldi & Fau-
rby 2013). Because the power law considers the re-
lationship of the mean and variance over a range of
means and variances, the average VtMR can vary
without changing the power law. This might hap-
pen, for example, if sites yielding the highest mean
and variance disappeared without influencing the
relationship of the variance to the mean over the
remainder of the metrics' ranges. The average
VtMR would then decline, but the power law would
remain unchanged. As a consequence, the VMR
and TPL provide fundamentally different evalua-
tions of patchiness.

Patchiness can be evaluated aspatially and spa-
tially (e.g. Powell et al. 1987a,b). For comparison to
aspatial methods based on the relationship between
the variance and the mean, an alternative spatial
analysis was used to investigate shifts in surfclam
distribution and changes in patchiness using a spe-
cies distribution function (SDF) model developed by
Thorson et al. (2016). The SDF model estimates ex-
pected densities within a spatial domain for a given
location using model parameters estimated from
catch data; spatial autocorrelation is then employed
over time to predict shifts in distribution and areal
coverage (Thorson et al. 2016, Timbs et al. 2018). For
the current study, the center of distribution for the
surfclam was derived from the 2-dimensional density
maps produced by the SDF model. When calculated
sequentially by survey year, changes in the location
of the center of distribution can be identified. Simi-
larly, the differential in spatial distribution between
size classes can be compared. The distribution center
is specified in terms of location latitudinally (nor-
things) and longitudinally (eastings). Northings are
defined in terms of distance (km) from the equator.
Eastings are based on the Universal Transverse Mer-
cator (UTM) coordinate system. All regions except
Georges Bank used UTM 18 as the 0 point. Georges
Bank used UTM 19. Timbs et al. (2018) provided an
example of the application of this model to surfclam
distributional patterns in investigating reasons for
the absence of a broodstock-recruitment relation-
ship in the Atlantic surfclam.

3. RESULTS
3.1. Aspatial analysis

The VtMR declined for each size class from the
decade of the 1980s to the decade of the 2000s within
all regions except for Long Island, which showed a
decline in all size classes except market size
(2120 mm), and Southern New England, in which the
VIMR for the 104 mm size class increased slightly
(Fig. 2). Frequently, the decline in VtMR was monot-
onic over the decades, although for a subset, the
ViIMR rose in the 1990s before declining below the
1980s value in the 2000s. For all regions, market-size
clams had a higher VtIMR within each decade than
other size classes, and the VtMR generally declined
with decreasing size, except for in the 1980s in Del-
marva, in which the smaller size classes had a larger
ViIMR (Fig. 2, Table 1), and the 1980s-1990s period in
New Jersey, where the largest submarket size class
(104 mm) had a larger VtMR than market-size clams.

The VtMR was significantly higher in the 1980s,
and the VtMR in the Delmarva region was significantly
higher than in any of the other regions (Table 2). The
VIMR for the Delmarva region was significantly
higher during the 1980s than in the 1990s and 2000s
(Table 2). For the Long Island region, the VtMR for
market-size clams was significantly higher than for
any of the other size classes (Table 2). In the Southern
New England region and Georges Bank, the VtMR of
the market-size clams was significantly higher than
that of the other size classes (Table 2). In the New Jer-
sey region, the VtMR for the 2000s was significantly
lower than for the other 2 decades, and the VtMRs of
104 mm size and market-size clams were significantly
higher than those of the smaller size classes (Table 2).
A comparison across regions within decade shows
that the VtMR for the Delmarva region was signifi-
cantly higher than for the other regions in the 1980s
(Table 3). After the 1980s, the difference in VtMR be-
tween regions was no longer significant.

The mean number of individuals per tow ranged
from 0.5 to 1500, while 6 ranged from 3.0 x 107 to 3.4
x 10°. Fig. 3 shows the TPL relationships for the Del-
marva sector as an example.  ranged from 2 to 4 for
most size classes and decades within each region
(Table 4). Although the VtMR frequently varied sig-
nificantly (Table 2), f did not change over time for
any of the regions (Fig. 4, Table 5), indicating that the
relationship between the differential in the VtMR
occurred when both the ¢ and p varied concordantly
along the power curve. The same was true for the
size classes for 3 of the 5 regions. For New Jersey and
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Fig. 2. Variance-to-mean ratios for each surfclam size class (columns; size classes as defined in Section 2) by decade for the
Delmarva, New Jersey, Long Island, and Southern New England regions, and for Georges Bank. A ratio >1 indicates a patchy
distribution. Values are provided in Table 1. Note the different y-axis scales

Southern New England, however, B changed signifi-
cantly (Tables 4 & 5). In New Jersey, B for 64 mm
clams was significantly higher than for the 104 mm
and market-size clams (Tables 4 & 5). For the South-
ern New England region, B was significantly lower
for the 80 mm than the 93 mm clams (Tables 4 & 35).
B varied significantly between regions for the larger
size classes (104 and market size), but not for the
smaller size classes (Table 6). Differences generally
were significant between the southern regions
(Delmarva and New Jersey) and the northern regions
(Long Island and Southern New England), with
Georges Bank similar to Delmarva and often different

from intervening regions. Overall, values of 3 were
higher for Delmarva, New Jersey, and Georges Bank,
indicating that the larger size classes were more
patchy as mean abundance increased in these regions
than in the intervening regions of lower abundance
off Long Island and Southern New England.

3.2. Spatial analysis
The SDF model provided results consistent with

the VtMR analysis. For example, the density (kg of
surfclam km~2) maps produced by the model show a
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Table 1. Variance-to-mean ratios for each decade by surfclam size class for the Delmarva, New Jersey, Long Island, and

Southern New England regions, and for Georges Bank. A ratio >1 indicates a patchy distribution. SD: standard deviation

around the variance used to calculate the ratios. The number of tows per region and stratum is provided in NEFSC (2017, see

their Table 10). Size classes (shell length in mm) are defined as 64: 64-79; 80: 80-92, 93: 93-103; 104: 104-119, and 120: 2120
(market size)

Region 64 mm 80 mm — 93 mm——- —104 mm——- —120 mm——

Decade Ratio SD Ratio SD Ratio SD Ratio SD Ratio SD
Delmarva

1980 3201.99 382.64 6207.03 734.03 1488.18 327.21 708.02  253.56 420.17  169.95

1990 32.36 18.62 75.66 33.84 65.37 34.46 507.36  170.33 248.36  143.47

2000 23.93 14.96 25.72 17.57 20.09 15.36 36.83 23.14 65.30 42.16
New Jersey

1980 31.12 13.99 32.70 17.80 120.30  41.95 562.80 142.57 258.59  141.02

1990 72.06 25.65 29.96 17.05 39.02 19.97 280.21  85.25 255.38  169.33

2000 8.03 5.76 8.18 6.19 4.53 4.36 8.85 7.07 55.65 44.18
Georges Bank

1980 248.15  58.79 272.28  63.58 139.71  39.94 169.57  55.58 564.85 210.81

1990 16.43 10.93 82.15 39.50 15490 64.61 204.50 100.03 360.98 185.48

2000 4.12 3.20 1.73 2.25 2.59 3.06 29.64 20.04 14496  105.12
Long Island

1980 12.35 6.71 5.62 3.60 5.05 4.28 10.80 6.60 34.54 26.46

1990 9.94 5.44 3.93 3.24 3.70 3.75 15.63 12.76 57.01 41.98

2000 3.64 3.32 2.42 2.78 1.57 2.07 5.04 4.86 82.80 62.64
S. New England

1980 1.19 1.62 2.65 2.54 4.13 3.23 4.58 3.92 77.60 60.58

1990 4.46 3.65 3.99 3.42 3.44 3.00 2.88 3.61 69.30 55.00

2000 0.26 0.59 1.58 1.68 1.15 1.22 7.83 5.74 22.28 21.44

reduction in patchiness in the Delmarva market-size
clams and also a shift northward and offshore from
the decade of the 1980s to the decade of the 2000s
(Fig. 5). Fig. 6 provides evidence of a shift in the cen-
ter of distribution of market-size clams off Delmarva
northward and offshore over 3 decades, but little
change was seen in the 64 mm size class over the
same time. The range shift for market-size clams was
on the order of 20 km east and 40 km north. The mar-
ket-size clams off New Jersey also shifted northward
and offshore, about 20 km east and 30 km north,
while again the center of distribution for the smaller
clams remained relatively unchanged. These analy-
ses are consistent with Weinberg et al. (2005) and
NEFSC (2017). The center of distribution for the
smaller surfclams, however, is distinctly further off-
shore than for the market-size clams (Fig. 7).

Fig. 8 compares the distributional pattern of the 5
size classes off New Jersey, demonstrating the signif-
icantly higher degree of aggregation in the market-
size clams and the consistent reduction in regional
patchiness across the smaller size classes. Increased
dispersion for the 64 mm size class explains the off-
shore trend in the range center relative to the market-
size clams, as the smaller clams are much more uni-
formly distributed across the continental shelf. The
center of distribution for the 64 mm size class on

Georges Bank remained constant while the market-
size clams shifted slightly east and south (Fig. 9). The
density plot (kg km™2) for Georges Bank illustrates
the significantly higher aggregation in the market-
size clams compared to the other size classes and also
shows the increased aggregation along the south-
eastern margin of the Bank that underpins the shift of
the range center for these large clams in the southeast-
erly direction (Fig. 10). The centers of distribution for
Long Island and Southern New England surfclams
fluctuated over time but do not reveal any substantial
directional movements (Figs. 11 & 12). The modest
southerly shift of the range center off Long Island
observed in 2011, however, foretells additional evi-
dence for an offshore range expansion in that region
observed in the most recent surveys (NEFSC 2017).

4. DISCUSSION
4.1. Aspatial analysis

The objective of the current study was to examine
the dynamics of patchiness of the Atlantic surfclam
among size classes over expansive geographic scales
and to determine if the degree of patchiness has been
stable over time, with the goal of identifying any
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Table 2. (a) ANOVA and (b) post hoc analyses for the variance-to-mean ratios by surfclam size class (as defined in Section 2)

and decade for the Delmarva, New Jersey, Long Island, and Southern New England regions, and for Georges Bank. Pairwise

comparisons represent least square means analyses demonstrating differences between size classes or decades within each
region. NA: not assessed (due to limited data for the smaller size classes for Long Island). *p < 0.05

(a) ANOVA
Region Factor df P
Delmarva Decade 2 0.011*
Class 4 0.956
Decade x Class 8 0.938
New Jersey Decade 2 0.004*
Class 4 <0.001*
Decade x Class 8 0.104
Long Island Decade 2 0.441
Class 4 0.015*
Decade x Class 8 0.645
S. New England Decade 2 0.701
Class 4 0.002*
Decade x Class 8 0.741
Georges Bank Decade 2 0.082
Class 4 <0.001*
Decade x Class 8 0.829

effects of a well-documented shift in range on these
population characteristics. The surfclam population
was patchy in each of the 5 geographic regions.
Patchiness is not unexpected, as it is a rarity if marine
species are other than significantly aggregated in
their distributions across their range (Guo et al. 2005,
Borregaard & Rahbek 2010). Much more surprising is
that patchiness has declined since the 1980s, and this
decline is universal over the entire US stock from the
Delmarva continental shelf to Georges Bank (Table 1).
However, the exponent of TPL (B) did not change sig-
nificantly over time; thus, the decline in the VtMR did
not foretell a change in the inherent relationship
between the variance and the mean over a range of
population densities as expressed by their variances
and means. Thus, the decline in VtMR indicates that
fewer strata were characterized by high means and
variances in the 2000s compared to the 1980s,
whereas the conservatism of the TPL indicates that a
change in the aggregative propensity of the Atlantic
surfclam did not simultaneously occur. Rather, both
the variance and the mean translated along one basic
descriptive power curve describing the propensity of
this species to become decreasingly patchy at ever
lower densities.

Significant differences in the VtMR and f were
identified in certain size classes and regional com-
parisons, however. Surfclams in the Delmarva region
were routinely more patchy than in the other regions
(Table 2). VtMRs were generally higher in contrast to
the populations off Long Island and Southern New

(b) Pairwise comparison

Region Contrast df p

Delmarva 1980 vs. 1990 177 0.019*
1980 vs. 2000 177 0.006*
1990 vs. 2000 177 0.673

New Jersey 1980 vs. 1990 347 0.355
1980 vs. 2000 347 0.017*
1990 vs. 2000 347 0.001*
64 vs. 80 mm 347 0.978
64 vs. 93 mm 347 0.773
64 vs. 104 mm 347 0.009*
64 vs. 120 mm 347 0.0001*

80 vs. 93 mm 347 0.752

80 vs. 104 mm 347 0.009*
80 vs. 120 mm 347 0.0001*
93 vs. 104 mm 347 0.024*
93 vs. 120 mm 347 0.0001*

104 vs. 120 mm 347 0.052

Long Island 64 vs. 80 mm NA NA
64 vs. 93 mm 73 0.968
64 vs. 104 mm 73 0.898
64 vs. 120 mm 73 0.023*
80 vs. 93 mm NA NA
80 vs. 104 mm NA NA
80 vs. 120 mm NA NA
93 vs. 104 mm 73 0.864
93 vs. 120 mm 73 0.018*
104 vs. 120 mm 73 0.029*
S. New England 64 vs. 80 mm 61 0.973
64 vs. 93 mm 61 0.934
64 vs. 104 mm 61 0.952
64 vs. 120 mm 61 0.005*
80 vs. 93 mm 61 0.907
80 vs. 104 mm 61 0.926
80 vs. 120 mm 61 0.005*
93 vs. 104 mm 61 0.984
93 vs. 120 mm 61 0.008*
104 vs. 120 mm 61 0.010*
Georges Bank 64 vs. 80 mm 230 0.598
64 vs. 93 mm 230 0.578

64 vs. 104 mm 230 0.108
64 vs. 120 mm 230 0.0001*
80 vs. 93 mm 230 0.951
80 vs. 104 mm 230 0.281
80 vs. 120 mm 230 0.0002*
93 vs. 104 mm 230 0.338
93 vs. 120 mm 230 0.0004*
104 vs. 120 mm 230 0.007*

England, with the New Jersey and Georges Bank
populations falling in between (Table 2). Variances
routinely scale with the mean, and the fact that the
surfclam population densities are higher in the Del-
marva, New Jersey, and Georges Bank regions
would inherently augur for a higher VtMR. An alter-
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Table 3. (a) ANOVA and (b) post hoc analyses for the variance-to-mean ratios by region and decade for all regions combined
(DMV: Delmarva; NJ: New Jersey; LI: Long Island; SNE: Southern New England; GBK: Georges Bank). ANOVA results indicate
a significant effect across decades and for regions including a significant interaction effect. Pairwise comparisons represent

Author copy

least square means analyses demonstrating differences between decades or regions. *p < 0.05
(a) ANOVA (b) Pairwise comparison
Region Factor df P Region Contrast df P
All regions Region 4 0.0002* All regions 1980 vs. 1990 954 0.078
Decade 2 0.0005* 1980 vs. 2000 954 0.020*
Region x Decade 8 <0.001* 1990 vs.2000 954 0.400
DMV vs. LI 954 0.003*
DMV vs. SNE 954 0.004*
native is to examine f. In this case, although variable, DMV vs. GBK 954 0.001*
most values of B fell between 2.2 and 3.0. Nonethe- DMV vs. NJ 954 0.0003*
1 TPL ied siomifi tlv b . £ th LIvs. SNE 954 0.931
ess, s varied signi 1can' y by region for the LIvs. GBK 954 0.449
larger, but not the smaller, size classes. Thus, over LIvs. NJ 954 0.406
the stock, the patchy behavior of the clam varied. SNE vs. GBK 954 0.512
Patchiness tended to be higher off Delmarva and New SNE vs. NJ 954 0.469
Jersey and on Georges Bank than elsewhere. Inter- GBK vs. NJ 954 0958
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Fig. 3. Examples of Taylor's power law relationship between log variance and log mean for Delmarva. Each column represents
a decade while each row represents a surfclam size class (as defined in Section 2)
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Table 4. Exponents () of Taylor's power law listed by

decade and surfclam size class (as defined in Section 2) for

the Delmarva, New Jersey, Long Island, and Southern New

England regions, and for Georges Bank. 8 > 1 indicates a

patchy distribution. NA: not assessed due to limited data for
certain size classes and decades

Region 64mm 80mm 93mm 104 mm 120 mm
Decade
Delmarva
1980 3.04 2.66 2.61 2.43 2.82
1990 3.24 2.71 3.38 2.90 2.26
2000 2.84 2.72 2.65 3.07 1.99
New Jersey
1980 2.92 3.38 2.98 2.87 2.19
1990 2.75 2.78 2.92 2.76 2.20
2000 5.20 3.45 2.81 2.60 2.60
Georges Bank
1980 2.57 2.54 3.08 2.53 3.56
1990 2.86 2.61 3.00 2.44 2.38
2000 4.33 2.47 1.55 2.18 2.35
Long Island
1980 NA NA NA NA 2.16
1990 6.33 2.93 2.13 1.81 1.19
2000 2.81 3.38 5.19 2.31 2.37
S. New England
1980 3.27 2.41 3.32 1.65 2.00
1990 3.45 2.41 4.63 NA 1.45
2000 NA NA NA NA 1.73

estingly, these 3 regions support the bulk of the surf-
clam resource, suggesting that the patchy proclivities
of the surfclam vary with the regional optimality of
the habitat.

B varies little among the size classes. Nonetheless,
the routine significant differences in VtMRs between
the size classes, with the ratio tending to increase
with increasing size, indicates differential mortality
between areas occupied and uninhabited by the
larger clams. The strong suggestion is that many
juveniles recruited at relatively low abundance into
regions not supporting growth to adulthood —the
lower variance in these areas being consistent with
the lower mean — condensation of the stock through
mortality then occurred with the result of a higher
VtMR without a change in TPL. Timbs et al. (2018)
provided corroborative evidence for this size-depen-
dent contraction in cross-shelf distribution over the
entirety of the surveyed (latitudinal) range.

A consideration of patchiness in the surfclam stock
as revealed through aspatial analyses suggests that
recruitment occurs over a wide area, much of which
results in low abundance of small clams that fail to
grow to market size, so that patchiness increases
with clam size. Timbs et al. (2018) provided analyses
that show the expanded geographic footprint of the
smaller size classes in each of the 5 assessment regions

Table 5. (a) ANCOVA and (b) post hoc analyses for cases
with significant interaction terms comparing log-variance to
log-mean by surfclam size class (as defined in Section 2) and
decade for the Delmarva, New Jersey, Long Island, and
Southern New England regions, and for Georges Bank.
Significant interaction terms indicate a change in the slope of
Taylor's power law and therefore the exponent 3 of the power

law. *p < 0.05
(a) ANCOVA
Region Factor df p
Delmarva LogMean 1 <0.001*
Class 4 0.516
LogMean x Class 4 0.375
LogMean 1 <0.001*
Decade 2 0.351
LogMean x Decade 2 0.136
New Jersey LogMean 1 <0.001*
Class 4 0.041*
LogMean x Class 4 0.001*
LogMean 1 <0.001*
Decade 2 0.06
LogMean x Decade 2 0.063
Long Island LogMean 1 0.009*
Class 4 0.069
LogMean x Class 4 0.066
LogMean 1 <0.001*
Decade 2 0.186
LogMean x Decade 2 0.082
S. New England LogMean 1 <0.001*
Class 4 0.025*
LogMean x Class 4 0.023*
LogMean 1 <0.001*
Decade 2 0.545
LogMean x Decade 2 0.957
Georges Bank LogMean 1 <0.001*
Class 4 0.147
LogMean x Class 4 0.12
LogMean 1 <0.001*
Decade 2 0.781
LogMean x Decade 2 0.825
(b) Pairwise comparison
Region Contrast df p
New Jersey 64 vs. 80 mm 352 0.160
64 vs. 93 mm 352 0.120
64 vs. 104 mm 352 0.041*
64 vs. 120 mm 352 0.025*
80 vs. 93 mm 352 0.878
80 vs. 104 mm 352 0.545
80 vs. 120 mm 352 0.248
93 vs. 104 mm 352 0.657
93 vs. 120 mm 352 0.299
104 vs. 120 mm 352 0.458
S. New England 64 vs. 80 mm 66 0.079
64 vs. 93 mm 66 0.919
64 vs. 104 mm 66 0.260
64 vs. 120 mm 66 0.694
80 vs. 93 mm 66 0.041*
80 vs. 104 mm 66 0.417
80 vs. 120 mm 66 0.075
93 vs. 104 mm 66 0.172
93 vs. 120 mm 66 0.568
104 vs. 120 mm 66 0.326
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Fig. 4. Beta values for Taylor's power law for each surfclam size class (columns; size classes as defined in Section 2) by decade
in the Delmarva, New Jersey, Long Island, and Southern New England regions, and for Georges Bank. B > 1 indicates a patchy
distribution. Values are provided in Table 4

relative to the market-size portion of the stock, con-
firming inferences from this study that the geo-
graphic scale of recruitment is substantively larger
than the geographic footprint of the surviving mar-
ket-size individuals. Patchiness has declined over
time either because abundance in high-abundance
areas declined or areas of low abundance increased
in importance over time. The tendency towards
patchiness, however, has not changed over time, nor
does it change with growth to market size, as docu-
mented by the fact that  rarely changed significantly
even though average VtMR declined over decadal
time periods. What does vary is the relationship of
patchiness and clam abundance regionally. Here, re-
gions supporting the majority of the stock, arguably
then supporting the majority of optimal habitat,
demonstrate a significantly greater tendency towards

aggregation. The average VtMRs are higher, and the
B values show that the degree of aggregation in-
creases disproportionately with the mean in compar-
ison to the remainder of the range of the stock.

4.2. Changes in the dynamics of the range

The movement of surfclams offshore with warming
of the Mid-Atlantic bottom waters has been known
for some time (Kim & Powell 2004, Weinberg 2005,
NEFSC 2013). The ubiquity of this trend is shown by
the SDF model, which documents offshore transla-
tions of the range core off Delmarva and New Jersey,
northward translations in the Delmarva and New
Jersey regions, and a southern extension into deeper
water on Georges Bank. The current study shows a
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Table 6. (a) ANCOVA and (b) post hoc analyses for cases with significant interaction terms comparing log-variance to log-

mean by surfclam size class (as defined in Section 2) for the Delmarva (DMV), New Jersey (NJ), Long Island (LI), and Southern

New England (SNE) regions, and for Georges Bank (GBK). Significant interaction terms indicate a change in the slope of
Taylor's power law and therefore the exponent fof the power law. *p < 0.05

(a) ANCOVA
Size class (mm) Factor df P
64 LogMean 1 <0.001*
Region 4 0.969
LogMean x Region 4 0.518
80 LogMean 1 <0.001*
Region 4 0.031
LogMean x Region 4 0.313
93 LogMean 1 <0.001*
Region 4 0.025*
LogMean x Region 4 0.184
104 LogMean 1 <0.001*
Region 4 0.273
LogMean x Region 4 0.024*
120 LogMean 1 <0.001*
Region 4 0.184
LogMean x Region 4 0.014*

contemporaneous reduction in the VtMR over time in
each region. The information available does not per-
mit an unequivocal answer to the question of the ori-
gin of the observed simultaneity of the decline in
VIMR and the shift in the range cores. However, one
possible hypothesis can be proposed based on the
tendency for the smaller size classes to be distributed
more broadly at lower abundances.

We propose the hypothesis that patchiness de-
velops in the core of the distribution over time, and a
range shift, caused by increasing bottom-water

(b) Pairwise comparisons
Size class (mm) Contrast df P
104 DMV vs. GBK 176 0.960
DMV vs. LI 176 0.003*
DMV vs. NJ 176 0.238
DMV vs. SNE 176 0.025*
GBK vs. LI 176 0.002*
GBK vs. NJ 176 0.186
GBK vs. SNE 176 0.020*
LIvs. NJ 176 0.016*
LIvs. SNE 176 0.900
NJ vs. SNE 176 0.091
120 DMV vs. GBK 202 0.648
DMV vs. LI 202 0.001*
DMV vs. NJ 202 0.908
DMV vs. SNE 202 0.104
GBK vs. LI 202 0.002*
GBK vs. NJ 202 0.488
GBK vs. SNE 202 0.192
LIvs. NJ 202 0.0001*
LIvs. SNE 202 0.094
NJ vs. SNE 202 0.045*

temperature, generates mortality biased against the
long-established high-density patches nearer the
southern and inshore range boundary. Kim & Powell
(2004) and Weinberg (2005) provide a well-docu-
mented example. The newly occupied areas tend to
have surfclams more spread out because the smaller
clams tend to be less patchy. As an example, the
64 mm size class in New Jersey is more broadly

distributed offshore than the larger

38°

12 classes, even though the core of the
I distribution of market-size clams has
10 moved offshore slowly over the course
of the survey (Fig. 4; see also Timbs et
al. 2018). That is, recruitment offshore
New Jersey predisposes the surfclam
to an offshore range expansion. Zhang
et al. (2015, 2016) found that surfclam
recruitment was likely biased inshore
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% . . . ALy . . . ) the observed offshore bias in the
76°W 75° 74°  76°W 75° 74°

Fig. 5. Density of market-size surfclams in Delmarva for survey years (A) 1986

and (B) 2008. The density is lower in 2008 than in 1986 over nearly the entire

Delmarva region. Note the movement of the surfclam stock offshore, as mani-

fested by the dramatic reduction in surfclam density over the inner portion of
the continental shelf. See Fig. 6 for temporal trends

range of smaller clams should not be
taken as indicative of a bias in settle-
ment; rather this is likely a result of
post-settlement mortality heavily bi-
ased along the inshore range bound-
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ary compounded possibly by slower growth along
the leading edge of the range (e.g. Marzec et al.
2010, Timbs et al. 2018, Powell et al. 2019Db).

The differential distributions of the size classes
observed in all 3 decades off New Jersey and during
the 1900s and 2000s off Delmarva are similar in sug-
gesting that smaller surfclams are capable of recruit-
ing offshore of the market-size range core and, in
these areas, are less patchy (Figs. 5-8, Table 1). In

both regions, the core of the range of market-size
clams has shifted offshore, while the established
areas containing the older patches of market-size
clams are disappearing. The observed shift off Del-
marva and New Jersey likely is an additive effect of
warming bottom waters preventing new recruits
from establishing themselves nearshore (for further
information on climate change, see Orr et al. 2005,
Hansen et al. 2010, Poloczanska et al. 2013) and the
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predisposition for an offshore shift provided by
recruitment offshore of the present range core of the
market-size clams (Timbs et al. 2018). Most models
examining the characteristics of range shifts do not
address the dynamics imposed by the intersection of
changing environmental gradients with the dispersal
gradients of the recruits (e.g. Holt et al. 2005, Hughes
et al. 2007, Mclnerny et al. 2009, Sexton et al. 2009).
Whether such dynamic interactions, in this case driven
by warming bottom waters and cross-shelf dispersion
dynamics, are typical for range shifts on the conti-
nental shelf is unknown; however, the evidence does
not support patchy recruitment dynamics at the off-
shore range edge. Rather, the evidence supports more
dispersed recruitment dynamics that sets up the
opportunity for a translation of the range core and the
subsequent maturing of the population into a more
patchy state.

Patchiness in benthic species may arise from differ-
entials in recruitment or post-settlement mortality.
References cited earlier demonstrate the impressive
degree of attention given to this dichotomy and the
continuing uncertainty as to the dominance of 1 of
the 2 alternatives. For the Atlantic surfclam, settle-
ment likely varies spatially and between years over
the geographic range of the stock, as variations in the
hydrodynamics continuously modulate source and
sink dynamics (Zhang et al. 2015, 2016). Nonethe-
less, settlement routinely occurs within the range
core of the adults, but also inshore and offshore of the
range core in what normally are marginal habitats,
and this settlement is relatively non-patchy, as indi-

cated by consistently low VtMRs. Differential sur-
vival establishes the core of the range and the degree
of patchiness of the species, not differential settle-
ment. The difference is important because the surf-
clam continuously positions itself for a rapid shift in
range by ‘wasting’ larvae in marginal habitats in
most years. Powell et al. (2019b) documented a
revealing case history of a range shift that occurred
on a subdecadal time scale in response to warming
temperatures off Nantucket. This is likely an evolu-
tionary adaptation to continuously changing, but un-
predictable, environmental conditions, as surfclams
over the Holocene have migrated across the conti-
nental shelf, potentially many times, as they are doing
today (Powell et al. 2017b, 2019a)

4.3. Influence of fishing

The surfclam fishery targets patches, reducing the
numbers of the larger individuals (Weinberg et al.
2005, NEFSC 2013, Powell et al. 2015, 2016) and thus
might be an alternative explanation for the observed
variations in VtMR. The fact that the fishery targets
patches is unlikely to be the cause of the observed
shift in the surfclam distribution or the large reduc-
tion in population patchiness, however. First, fishing
mortality is low across the stock. The fishing mortal-
ity rate has varied between 0.01 and 0.06 yr™! over
the study period (NEFSC 2013). Weinberg (2005)
estimated that the natural mortality rate (=0.22 yr™!)
for surfclams in the Delmarva region between 1999
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and 2002 had a much greater impact on the bio-
mass than the commercial fishery (fishing mortality
<0.04 yr'). Declining maximum size of surfclams
over the last 3 decades, well documented by Munroe
et al. (2016), is also a phenomenon often associated
with fishing (Rice 2000, Planque et al. 2010, Brown et
al. 2012). However, Munroe et al. (2016) demon-
strated that in this case, declining maximum size is
likely the result of environmental shifts and not size-
frequency truncation by fishing of the largest size
classes. Second and importantly, Georges Bank was
closed to fishing between 1989 and 2010 due to the
presence of paralytic shellfish poisoning (NEFSC
2013). Fishing on Georges Bank began in earnest in
2012 (NEFSC 2017). Nonetheless, a reduction in
VMR (Table 1), and therefore patchiness, occurred
over the study period on Georges Bank and much the
same trends in TPL occurred there as in the southern
regions off Delmarva and New Jersey. This similarity
indicates that the increasing bottom-water tempera-
tures in the Mid-Atlantic Bight, and not the fishery,
play the impactful role in determining the distribu-
tional dynamics of this species and the characteristics
of the range shift offshore.

4.4. Influence on the fishery

Landings per unit effort (LPUE) have declined
across all fished regions since the year 2000 (NEFSC
2013). On the local scale, the fishery targets the
largest patches, fishing them down and decreasing
patchiness, which in turn lowers LPUE locally (Pow-
ell et al. 2015, 2016). Increased natural mortality
caused by warming bottom-water temperatures
(Weinberg 2005) affects LPUE on a larger scale by
decreasing abundance along the inshore and south-
ern portion of the range. Based on the results of the
SDF model and the VtMR analyses, the range shift
coupled with natural mortality may be having a more
dramatic effect on LPUE than the fishery, except at
the most local level, and certainly exacerbates the
decline of LPUE in areas such as Delmarva and New
Jersey where more fishing effort occurs. Thus, low
LPUE may be a symptom of an ongoing range shift,
robbing the population of high-abundance patches
in the trailing edge portion of the range core while
adding to the population a more dispersed and
lower-density portion of the stock at the leading edge
boundary. The possibility exists that, as new patches
are established in new habitat, these patches will
grow over time and produce surfclams at a high den-
sity, thereby returning LPUE to historic levels.

The Atlantic surfclam was historically closer to
shore off Delmarva before the NEFSC surveys began
in the 1980s (e.g. Loesch & Ropes 1977, Ropes 1982,
see also Hofmann et al. 2018). The observation of sur-
fclams historically closer to shore points towards a
migration northward and offshore in the Delmarva
region that began well before the start of the survey
dataset analyzed in the current study which then has
progressed over time. Future climate predictions point
towards an increase in bottom-water temperatures
that should continue the movement offshore (Saba et
al. 2016). The impact of climate change on fisheries is
becoming well-documented (Perry et al. 2005, Bran-
der 2010, Hare et al. 2016). Changes in climate could
result in the Atlantic surfclam disappearing from the
southern portion of its range (i.e. Delmarva and New
Jersey). Indeed, most recent surveys identify the ini-
tiation of an offshore stock expansion off Long Island
and eastward of Nantucket to the Great South Chan-
nel (NEFSC 2017, Powell et al. 2019b).

An unchanging survey design may foreshadow an
increasing decline in survey accuracy as changes in
population distributions continue to shift relative to
stratum boundaries and sample allocations (NEFSC
2013, Jacobsen & Hennen 2019). On the other hand,
declining VtMR may improve survey accuracy at a
specified level of sample allocation (Powell & Mann
2016, Powell et al. 2017a), because survey bias tends
to increase with increasing patchiness (Bros & Cow-
ell 1987). Changes in station allocation amongst
strata, accordingly, may be necessary to take advan-
tage of declining patchiness in certain regions of the
stock while limiting the added uncertainty posed by
a shift in range.

As the surfclam continues to progress further north
and offshore, a need will arise for relocation of ves-
sels and processing plants to counteract costs associ-
ated with travel time to fishing grounds and harvest
time as LPUE declines (Narvéez et al. 2015). Gener-
ally, fisheries in the northeastern USA have shifted
north in response to northward-shifting populations,
but at a much slower rate, with regulatory and eco-
nomic factors preventing them from keeping pace
with their target species (Pinsky & Fogarty 2012).
This trend is well known for the surfclam fishery
(McCay et al. 2011, Powell et al. 2016, Hofmann et al.
2018).

A major uncertainty is the unknown time required
to reestablish dense patches of market-size clams in
newly occupied areas. This study represents the first
in-depth examination of the impact of climate change
and a shifting range on the spatial dynamics of surf-
clams. Is it even possible for the patches to return to
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historic levels with the continual warming of Mid-
Atlantic bottom waters driving the surfclam further
northward and offshore? No clear answer arises from
this analysis. What is clear is that the dynamics of
recruitment demonstrate that continued progression
of the range is not prohibited; rather, the distribution
of juveniles may presage the directional movement
of the market-size stock (Timbs et al. 2018). The
degree of aggregation appears to be in part a func-
tion of the stage in relocation of the range core and in
part the optimality of habitat where the stock resides,
and this also can be expected to change as warming
continues. As a consequence, the future of the fish-
ery, dependent on the accessibility of large patches,
may well depend on the rate of range shifting rela-
tive to the rate of maturing of the patchiness structure
of the new core of the range.
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