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ABSTRACT

The Domain Name System (DNS) leverages nearly 1K dis-
tributed servers to provide information about the root of
the Internet’s namespace. The large size and broad distri-
bution of the root nameserver infrastructure has a number
of benefits, including providing robustness, low delays to
topologically close root servers and a way to cope with the
immense torrent of queries destined for the root nameservers.
While the root nameserver service operates well, it repre-
sents a large community investment. Due to this large cost,
in this paper we take the position that DNS’ root nameserv-
ers should be eliminated. Instead, recursive resolvers should
use a local copy of the root zone file instead of consulting
root nameservers. This paper considers the pros and cons of
this alternate approach.
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1 INTRODUCTION

Most network transactions begin with one or more queries
of the Domain Name System (DNS) [24]—making DNS a
foundational component of the Internet. All names within
the DNS branch off in a tree-like fashion from a common
root. The task of answering queries for the root of the names-
pace is assigned to 13 named authoritative servers. Each of
these nameservers is replicated—using anycast routing—such
that in total nearly 1K instances of the root nameservers are
currently in operation. This level of replication has several
benefits, including (i) providing a robust service that can eas-
ily cope with individual servers being temporarily offline, (ii)
having a server close to many Internet users and hence pro-
viding for low delays when querying the roots and (iii) being
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able to share and handle the immense torrent of queries that
arrive at the root nameservers. Previous studies of traffic
arriving at the root nameservers show that more than 95% of
the queries are “junk” of some form—ranging from requests
for non-existent record types or top-level domains (TLDs)
to spuriously repeated queries [8, 9, 23, 31]. This basic find-
ing was first reported in 2001 [8], but has held each time
researchers have re-appraised the initial work. In §2.2 we
illustrate that this basic result still holds with current data.
Given that we use a significant and expanding infrastructure
(see §2.1) to support the root namespace and, yet, most of
the effort is spent on bogus requests, a natural question is:

Is a service where more than 95% of the effort is
fruitless correctly architected, or is there a better
structure?

On the one hand, this question is nonsensical. A public ser-
vice like the DNS root nameservers cannot control the kinds
or amount of traffic that arrives. Further, properties such as
robustness, correctness, security, agility and timeliness are
more important goals than designing to limit wasted effort.
Therefore, the “junk” traffic can be viewed as simply one of
the costs we must cope with to operate an effective system.
However, in this paper, we take a contrary position: While
we cannot eliminate the root of the namespace, we can and
should eliminate the root nameservers. Instead, recursive
resolvers should simply use a local copy of the root zone
file rather than querying a root nameserver for the informa-
tion. We argue that the costs of the enormous infrastructure
the community has put in place to ensure the DNS roots
operate as expected are not only quite high, but the benefits
compared to simply distributing the root zone file are low.

2 THE DNS ECOSYSTEM

Before discussing our proposal (§3), we highlight several
facets of the DNS ecosystem to provide background.

2.1 Configuration

We first sketch several mostly static aspects of how the DNS
ecosystem is configured.

Root Hints File: Currently end-user devices generally send
all DNS queries to a recursive resolver which is configured
via DHCP when joining a network. Alternatively, a user
may configure their device to leverage a public recursive re-
solver (e.g., Google’s 8.8.8.8 resolver). The recursive resolver
queries authoritative nameservers—which hold the actual
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name-to-address bindings—on behalf of the client. Recursive
resolvers use the so-called “root hints” file to bootstrap the
process of finding authoritative nameservers. The root hints
file contains a list of all 13 named authoritative root name-
servers, which are denoted a-root-m-root. For each named
root, the file includes the nameserver (NS record), as well
as an IPv4 address (A record) and an IPv6 address (AAAA
record) for the nameserver. Therefore, the root hints file has
39 total entries and is roughly 3KB. With this information,
the recursive resolvers can start the lookup process at the
root and proceed as directed in DNS replies. For instance,
a reply from a root nameserver will direct the resolver to
contact a specified TLD nameserver. Each record in the root
hints file has a TTL of 3.6M seconds—or roughly 42 days.
The file is largely static, but does change in some cases and
a fresh copy should be obtained by the recursive resolvers
upon expiration. However, there is evidence that suggests a
significant number of recursive resolvers do not update their
root hints file in a timely fashion [23].

Root Zone File: Each root nameserver answers queries
based on a copy of the root zone file—which is authorita-
tively provided by ICANN and distributed by Verisign. The
root nameservers do not directly answer queries, but refer
the requester to the nameserver for the TLD of the hostname
in the query. For instance, a request for “www.sigcomm.org”
will cause the root nameserver to refer to the requester to
the authoritative server for “org, which will in turn refer the
requester to the authoritative nameserver for “sigcomm.org”.
We have an archive of one snapshot per day of the root
zone file since April 28, 2009. Figure 1 shows the number
of records in the root zone on the 15" of each month. The
figure shows that after a period of stability the number of
records in the root zone file increased over five-fold between
early 2014 and early 2017. This was caused by an increase
in the number of TLDs—from 317 TLDs on June 15, 2013
to 1,534 TLDs on June 15, 2017. After this period of growth
the size has stabalized to roughly 22K entries. The current
root zone file is roughly 1.1 MB compressed. Currently, the
TTLs of the NS, A and AAAA records in the root zone file
are two days. Therefore, a recursive resolver can cache the
responses from the root nameservers and continue to use
these in answering queries from end-user devices for two
days.

Scope of Root Nameservers: As we note above, there are
13 named authoritative root nameservers. However, each
named root nameserver consists of multiple replicas setup
via anycast routing. On May 15, 2019, root-servers.org re-
ported 985 root nameserver instances. Twelve different orga-
nizations run the root nameservers! and each applies its own
replication strategy. Therefore, the number of replicas per

Verisign operates both a-root and j-root.
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Figure 1: Num. of records in the root zone over time.
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Figure 2: Root nameserver instances over time.

named root varies from at most six instances for b,g,h,m-root
to over 100 instances for d,e,f,j,I-root. Figure 2 shows the
total number of instances on the 15" of each month since
March 2015, as reported by root-servers.org. There are sev-
eral large jumps in the number of instances caused by e-root
and f-root, as follows: (i) between January and February,
2016 e-root added 45 instances, (ii) between April and May,
2017 f-root added 81 instances and (iii) between November
and December, 2017 e-root added 85 instances and f-root
added 43 instances. In addition to these large jumps, the plot
shows the number of root nameserver instances—and their
attendant cost—is increasing steadily over time.

2.2 Root Nameserver Traffic

We now turn from the configuration of the DNS ecosystem to
the operation of the root nameservers. Previous work shows
more than 95% of the queries arriving at the root nameservers
are bogus in some fashion [8, 9, 23, 31]. For instance, [9]
studies eight root nameservers and shows that in 2008 only
1.8% of the queries are valid. Here we aim to both (i) validate
these previous findings still roughly hold and (ii) illustrate
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the magnitude of queries arriving at the root nameservers.
For this we leverage the Day-In-The-Life (DITL) 2018 dataset
provided by j-root and DNS-OARC [13]. We analyze 24 hours
of traffic to 142 instances of j-root on April 11, 2018.2 The
instances are geographically spread across the world. Keep
in mind that our analysis uses data from only one of the
13 root servers. While this means we analyze only a fraction
of the traffic to the root nameservers, previous work shows
that the type of traffic arriving is fairly consistent across
roots [9]. In total, j-root received roughly 5.7B queries in
24 hours—or, about 66K queries/second. The queries were
from 4.1M distinct resolvers (IP addresses). However, 723K of
the resolvers only query for bogus TLDs—meaning at most
only 3.4M resolvers are accomplishing useful work.

As in previous studies, we find that the bulk of the requests
are junk. We find requests with bogus TLDs account for 3.5B
queries—or, 61.0% of the total. In addition, if we assume
ideal caching at the resolvers—so, the resolver should make
a single request for each needed TLD within our 24 hour
dataset—we find an additional 2.2B queries (38.4%) are in-
valid. In this case, the queries for bogus TLDs (61.0%) and the
requests for records that should have been cached (38.4%)
leave just 0.5% of the queries as valid. If we relax the assump-
tion of an ideal cache and instead allow resolvers to make a
valid request for each TLD every 15 minutes—or 96/day—the
number of spurious requests is 2.0B (35.7%). In this case, the
queries for bogus TLDs (61.0%) and requests for records that
should have been cached (35.7%) leaves 3.3% of the queries
as valid—or just 187M of the 5.7B total queries. This means
that each instance of j-root is dealing with roughly 15 valid
queries/second on average. This shows that the high-order
results from previous research still hold: the vast majority
of traffic arriving at root nameservers is junk.

3 PROPOSAL: ELIMINATE ROOT
NAMESERVERS

Our position in this paper is simple: eliminate all authoritative
root nameservers. Instead of recursive resolvers bootstrapping
with a root hints file that facilitates transactions with root
nameservers, the recursive resolvers will directly use their
own local copy of the root zone file to find TLD nameservers.
Below we comment on several practical aspects of enacting
this approach before considering the benefits (§4) and costs
(§5) in subsequent sections.

Cryptographically Sign Root Zone: Since July 2010 the
contents of the root zone have been cryptographically pro-
tected via DNSSEC [3-5]. Therefore, a recursive server ob-
taining a copy of the root zone file for direct use can validate

2 According to root-servers.org, j-root had 160 replicas on April 11, 2018. The
DITL dataset does not indicate why only 142 replicas are included in the
dataset, but there is nothing about the missing set that suggests bias.
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the integrity of the contents. As an optimization the entire
root zone file could be cryptographically signed such that it
can be validated quickly rather than validating each compo-
nent individually.

Root Zone Distribution: A mechanism for providing root
zone files will need to replace the traditional root nameserv-
ers. Given the integrity of the zone file will be cryptographi-
cally secure, the delivery can take many forms and develop
organically. For instance, the root zone could be distributed
via a set of HTTP mirrors as we use for software distribution.
Or, a public recursive server may provide the root zone via
DNS’ own zone transfer mechanism.? Alternatively, the root
zone could be shared via BitTorrent or a similar peer-to-peer
system. Finally, an rsync [2, 30] server or similar system
could be used such that only changes in the root zone file
would need to propagate instead of the entire file.
Implementation: After obtaining and verifying the root
zone file, recursive resolvers must have a way to incorporate
the records into their lookup process. A first option is for the
resolver to simply read all records in the root zone and place
each in the resolver’s local cache, just as if the information
come in a DNS response from a root nameserver. This has
the advantage of not requiring further per-transaction effort.
However, it may pollute the cache with unneeded records.
An alternative is to engineer the recursive resolver to consult
the local root zone file each time it would currently consult
a root nameserver. The needed records could then be cached
by the resolver as usual. This has the benefit of not polluting
the cache with unused records, but it requires ongoing effort
as the recursive encounters TLDs for the first time. Finally,
an operator may simply make the root zone file available to
its resolvers via an authoritative server accessible only by
the internal recursive resolvers, as suggested in RFC 7706
[22].* While the downside of this approach is running an
extra server, some may find it appealing as the recursive
resolvers do not need to change.’

Deployment: A final consideration is deployment. Our ap-
proach allows each recursive resolver to independently aban-
don the root nameservers. Therefore, our approach does not
require a flag day on which all resolvers must switch. This
also means that the root nameserver infrastructure can be
gradually rolled back over some period of time as the number
of resolvers using root nameservers diminishes. Of course,
as the scope of the root nameserver infrastructure shrinks,
performance may suffer. However, this drawback may pro-
vide an incentive for recursive resolvers to start using their
own local copy of the root zone file.

3The root zone is currently available via zone transfer from ICANN [19].
4RFC 7706 suggests running a local instance of a root nameserver as an
optimization. We discuss the relationship to this work in §6.

5 Aside from a configuration change to consult the local root nameserver
instance instead of those found in the standard root hints file.
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4 BENEFITS

We now turn to the benefits of eliminating root nameservers.
Less Infrastructure: One obvious benefit of eliminating
root nameservers is simply to remove the non-trivial infras-
tructure the community now operates and its attendant costs.
As we discuss in §2, we currently operate nearly 1K instances
of the root nameservers to ensure availability and timeliness.
Further, this is not a fixed cost. As Figure 2 shows, the num-
ber of root nameserver instances has more than doubled over
the last four years and this trend shows no signs of abating.
Further, even if the number of root nameserver instances
were to level off, the current cost is still significant in terms
of both number of machines and coordination. Also, since
at least 2001 we know most of the requests processed by
the root nameservers are bogus. These bogus requests are
at least part of what necessitates an increasing number of
root nameserver instances and therefore it is doubtful that
the number of instances will level off. Recursive resolvers
must already bootstrap using a file that lists starting points.
By changing this file from the traditional root hints file to
the root zone file the community can decommission a large
infrastructure.

Performance: Using a local copy of the root zone file in-
stead of querying a root nameserver can save a network
transaction each time a resolver needs to determine the au-
thoritative nameservers for a TLD. This optimization is one
of the motivations for RFC 7706 which discusses running a
local root nameserver [22]. We expect this optimization to be
modest at best since the TTLs for TLDs are two days, making
the records highly cacheable. Therefore, recursive resolvers
should visit root nameservers infrequently—especially for
popular TLDs—which means the performance savings from
eliminating root nameservers is also likely to be overall small.
Cache Capacity: Depending on how a recursive resolver
incorporates the root zone file, having the information lo-
cally may free some in-memory cache space. Consider the
case where a resolver can quickly query a local database
containing the root zone file. In this case there is little reason
to keep the TLD records in the resolver’s in-memory cache
as they can be cheaply retrieved from the database as needed.
This can then free in-memory cache space that is normally
used for TLD records for other records. This benefit depends
on how the resolver incorporates the root zone file and there-
fore this is not a guaranteed benefit of using a local copy of
the root zone file.

Robustness: Eliminating root nameservers makes the sys-
tem more robust since resolvers will no longer rely on the
root nameservers during the resolution process and there-
fore that is one less thing that can go wrong and hamper a
DNS lookup. While a recursive resolver must still retrieve
the root zone file, there is some natural robustness to the
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process given (i) the lengthy TTLs in the root zone and (i)
that retrieving the root zone file will be an out-of-band pro-
cess. For instance, a recursive resolver that obtains the root
zone file at time X could attempt to update its copy at time
X + 42 hours. If the retrieval fails, the resolver has 6 hours
to re-try before its current root zone file expires and there
is an actual impact on DNS lookups. In reality, the robust-
ness benefits to eliminating the roots will be fairly minor
precisely because our investment in a large root nameserver
infrastructure means that resolvers generally can cope with
failure by leveraging a different root nameserver. That said,
even if our approach does not add practical robustness it
achieves robustness at a much lower cost.

Security: While recent proposals call for DNS to run over
TCP+TLS [12, 18, 32] or HTTPS [17], DNS’ operation is still
mostly conducted in cleartext over UDP.® This means DNS is
susceptible content-based attacks—e.g., man-in-the-middle
attacks [10, 27], cache poisoning attacks [16, 21, 27]. There-
fore, by eliminating some DNS transactions from travers-
ing the network we reduce the attack surface. Further, [20]
argues that so-called “root manipulation” is a particularly
nasty form of man-in-the-middle attack. First, it is relatively
easy for a nefarious network operator—e.g., in the name of
censorship—to identify queries to root nameservers since
they will all be destined for one of 13 IP addresses. Therefore,
it is also relatively easy to provide fraudulent responses by
either answering these queries directly as they are observed
or by diverting them to nameservers masquerading as root
nameservers. Second, since all hostnames share the root of
the namespace, hijacking root queries can give an attacker
control of the entire namespace. While [20] finds only small
amounts of root manipulation, the threat remains. Elimi-
nating the root nameservers does not eliminate all threats
posed by cleartext DNS transactions, but it does remove one
significant angle of attack.

Privacy: Similar to security issues, DNS has privacy issues
in its usual operational mode of cleartext transactions over
UDP. This allows monitoring at any point along the path a
transaction travels. Running DNS over TCP+TLS [12, 18, 32]
or HTTPS [17] thwarts such monitoring, but is not yet com-
mon practice. Oblivious DNS [25] is a recent proposal that
introduces indirection to the DNS lookup process as a way
to ensure that no monitoring point can figure out both (i)
the hostname being looked up and (ii) who is asking for
the hostname. Another privacy issue is that queries often
needlessly include an entire hostname which unnecessarily
exposes potentially sensitive information to the authoritative
nameservers. For instance, a query sent to a root nameserver

For example, according to root-servers.org, UDP queries accounted for 96.2%
of the queries on April 11, 2018—the day of the DITL collection we use
above—and 93.4% of queries on April 11, 2019.
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for “www.sensitive-domain.com” reveals a client’s final tar-
get to the root nameserver even though the only part of the
query the root nameserver can act upon is the final “.com”
label. “QNAME minimization” (QMin) [7] has been proposed
as a method to send only the germane part of a hostname
to a given nameserver. QMin’s use has been measured to
be modest [11]—although this is expected since QMin is a
relatively new approach. Rather than limiting or obscuring
names as they transit the network, our approach aids privacy
by eliminating the need for some transactions. As with the
security benefits above, our approach does not solve the DNS
privacy problem, but it does reduce the issue.

Complexity Reduction: Eliminating root nameservers re-
duces the complexity of some aspects of the DNS ecosystem.”
Obviously, eliding nearly 1K servers reduces the complex-
ity of administering critical machines and making sure they
are answering DNS queries with the correct information.
Another example of complexity reduction impacts recur-
sive resolvers. When a recursive resolver needs to contact
a root nameserver it must determine which of the 13 root
nameservers to contact. Resolvers use a process that involves
leveraging multiple roots, measuring the delay in obtaining
a response and retaining a history of these measurements.
This history is then used to guide future queries to the root
nameserver that is likely to provide the quickest answer. Us-
ing our approach the question of which root nameserver to
leverage becomes moot and the attendant complexity used
to answer the question can be removed.

5 COST CONSIDERATION

We now turn to the costs of eliminating root nameservers.

5.1 Size

Eliminating root nameservers means that recursive resolvers
will bootstrap with the root zone file instead of the root
hints file. In some sense, this is not a fundamental change,
but just a change in which file we use to start the lookup
process. However, as we note in §2.1, the root hints file
has 39 entries, while the root zone file has 22K entries—an
increase of over 581x. While this increase seems stark, we
believe it is manageable for several reasons.

e First, we note that 22K records is not an onerous amount
of data for a modern server to manage.

e As we note in §3, a recursive resolver could place all
the records from the root zone file in the cache. We
took a snapshot of ICSI’s® recursive resolver cache at
11am on June 7, 2019 and found roughly 55K RRsets
being cached—including RRsets for about 20% of the

7See §5.4 for a sketch of the complexity our proposal introduces.
81CSI is modest in size—with on the order of 100 active local and remote
users at any given time during the business day.
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TLDs. The root zone file from the same day contains
just under 14K RRsets. Adding the 80% of the RRsets
from the root zone file that are not already in the cache
represents a roughly 20% increase in the cache size.
Additionally, we note that previous work shows that
across time and vantage point 51-86% of DNS lookups
are used only once [1, 15, 28]. The resulting records do
not benefit from caching and, hence, pollute a recursive
resolver’s cache. Therefore, even if a recursive resolver
pulls all TLD records into the cache and this causes
some LFU-like evictions of other names, the cache hit
rate is unlikely to be impacted.

Finally, as we discuss in §3, there is no requirement
that all 22K records in the root zone file be stored
in the recursive resolver’s cache. Rather, the records
could be read as needed from the root zone file. In
this case, the caching requirement of our approach
is the same as when obtaining TLD records from the
root nameservers. Further, as a simple test wrote a
Python script to extract all records related to a given
TLD from the standard compressed root zone file. Over
1,000 trials the script takes an average of 37 msec to
extract all records that pertain to a random TLD. This
is similar to network round-trip times and so even a
rudimentary scheme should not slow DNS lookups.
Finally, there are clearly additional steps that would
make the process faster—e.g., loading the root zone
into a database or creating a single file for each TLD.

Given the above, while eliminating root nameservers will
increase the size of a recursive resolver’s bootstrapping in-
formation, we believe the increase is manageable.

5.2 Distribution Load

By eliminating root nameservers we add a requirement for
recursive resolvers to download the root zone file period-
ically. On June 7, 2019 the compressed root zone file was
approximately 1.1 MB. Each recursive resolver will need to
download the file approximately every two days given the
TTLs within the zone file (see §2.1). This is not a large dis-
tribution requirement for modern networks. As we note in
§3, we can leverage a variety of distribution models—from
mirrors to peer-to-peer systems—to distribute the file.

As a point of comparison, ICSI uses a series of SpamHaus
blacklists [29] as part of our email processing. We run an
rsync to one of SpamHaus’ servers every minute to retrieve
the changes in the blacklists. On May 20, 2019 these down-
loads totaled 3.1 GB. Our operators consider this a not-too-
high cost of running the network. The email blacklist is just
an example. Modern systems and networks download much
configuration information that is at least on the order of the
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size of the root zone file—from routing tables to anti-virus
databases to IDS signatures.

One way to further mitigate the distribution requirement
is to increase the TTLs in the root zone file. Of course, in-
creasing TTLs comes with a cost in terms of flexibility. As an
initial analysis we aim to understand whether increasing the
TTLs would have a practical impact. We analyzed a snapshot
of the root zone file from each day in April, 2019. On the
first of the month the root zone included 1,532 TLDs and one
was deleted during the month. Of the TLDs, all but five have
at least one nameserver (by IP address) that is constant for
the entire month. That is, if a recursive resolver used a root
zone file that was out of date by one month, 99.6% of the
TLDs would remain accessible. The five TLDs that do not
have a constant nameserver for the entire month are run by
NeuStar and use a slowly rotating set of IP addresses for the
TLD nameservers. The overlap ensures that a root zone file
that is no more than 14 days out of date will ensure constant
TLD reachability. Further, comparing the root zone files on
April 1, 2018 and April 1, 2019 we find that all but 50 TLDs
(3-3%) would still retain reachability with a root zone file that
is a year out of date. We do not advocate using out of date
zone files. However, this analysis shows that the contents
of the zone files are highly stable and the TTLs could be
increased (e.g., to 1 week). In turn, this would reduce the
root zone file distribution overhead.

Given the above analyses, we believe the load imposed by
distributing root zone files is not an impediment to eliminat-
ing root nameservers and in fact could be reduced further
with a modest increase in the TTLs.

5.3 TLD Additions

A downside of downloading a copy of the root zone file peri-
odically is that the contents remain static between fetches.
Hence, if a TLD is added to the root zone there will be a lag
before a recursive resolver’s clients can access that TLD. Fur-
ther, the longer we extend the TTL—per §5.2—the longer the
average lag before new TLDs are available. To put this lag in
context we analyze lookups to j-root for the “llc” TLD, which
was the last TLD added before the DITL 2018 data collec-
tion. The “llc” TLD was added on February 23, 2018 and our
dataset is from 47 days later on April 11, 2018. We find that
of the nearly 5.7B requests to j-root only 6.5K (< 0.0002%)
are for the “llc” TLD. Further, of the 4.1M recursive resolvers
sending requests to j-root, only 1,817 (< 0.1%) request the
“llc” TLD. This shows that over six weeks after “llc” was
added the TLD remained unpopular. While only an anecdote,
this suggests that even if TTLs are expanded beyond two
days it seems unlikely that new TLDs present a large issue.
Further, if this is deemed a large issue, we could augment
the root zone file with a small “recent additions” or “diffs”
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file to allow resolvers to cheaply and fairly constantly obtain
information about newly added TLDs.

5.4 Recursive Resolver Complexity

In §4 we sketch how some aspects of the DNS ecosystem get
less complex by eliminating the root nameservers. However,
the reverse is also true. We note two forms of additional
complexity here:

e By requiring recursive resolvers to download a copy of
the root zone file and incorporate the resulting infor-
mation in the lookup process the resolvers get more
complicated. We believe this complexity can be built
into the resolver software and while operators will
need to be aware of it, the task can be automated and
abstracted away from any direct intervention. Further,
this general approach of retrieving and loading new
configurations into an operational system is already
widely used and accepted within the operations com-
munity. Examples of this include downloading new
anti-virus databases, blacklists and IDS signatures.

A distribution mechanism for root zone files must also
be setup. As a community we have much relevant
experience in distributing files—including software,
apps, songs, movies, etc.—in a robust fashion. There-
fore, we expect the distribution of the root zone file to
be straightforward.

While our approach adds complexity to some parts of the
DNS ecosystem, the nature of the complexity is not deep or
novel, but rather requires a set of straightforward changes.

6 RELATED WORK

The closest related work to our position is RFC 7706 [22].
The RFC does not suggest eliminating root nameservers, but
rather sketches why and how to augment the traditional root
nameservers with a local instance as an optimization. That
is, the local instance of the root nameserver is for getting
answers more quickly and reliably than using one of the
standard root nameservers. Our position, on the other hand,
is that root nameservers should be eliminated as their cost far
outweighs their benefits at this point. RFC 7706 nicely illus-
trates the practical ways organizations can operate without
community-provided root nameservers.

Our position is somewhat similar to the “DNS push” pro-
posal [14]. DNS push augments the current DNS by mak-
ing recursive DNS resolvers part of a peer-to-peer system
that is used to replicate the nameserver records found in
the root and TLD zone files. The aim of broadly replicating
nameserver information is to reduce the reliance on a small
number of authoritative servers that can be subject to attack.
Subsequent to the DNS push proposal, the root nameservers
have been broadly replicated via anycast instead of using the
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proposed peer-to-peer system. However, the general strategy
of broad replication has proven to provide for robust service.
Our proposal is simultaneously more and less ambitious than
DNS push. While not based on new peer-to-peer system, our
position calls for even broader replication of the root zone
file than DNS push. However, in trade for replication breadth
we suggest replicating a more narrow set of records—i.e.,
only the root zone file.

Our position can be seen as a subset of sorts of the concepts
from the Grapevine system [6]. Grapevine groups individual
names into “registries” which are akin to DNS zones. These
registries are replicated in the system, but only as whole
units and not as individual names. We are not advocating
replicating all zones, but only the root zone.

There are many DNS measurement studies in the literature.
As we refer to above, the most related to our work are those
that consider the use of the root nameservers [8, 9, 23, 31].
In this paper we provide simple measurements that suggests
these previous—and more detailed—studies still hold.

Finally, we note that we are not the first to suggest re-
moving a piece of the DNS ecosystem. Schomp, et.al. [26]
observes that recursive resolvers and DNS forwarders are
often at fault for privacy and security issues and therefore
suggest removing these components from the lookup process
and instead charging client devices with directly interact-
ing with the authoritative infrastructure to conduct DNS
lookups.

7 CONCLUSION

The general trend in networks is to make them more compli-
cated. We believe that we have demonstrated that the time
is nigh to begin a thinking about the efficacy of continuing
to operate a traditional set of root nameservers. The cost of
this infrastructure is high and increasing. Meanwhile, the
benefits compared to an alternate arrangement where recur-
sive resolvers use a local copy of the information are low.
Our hope is that our analysis of the question will spur a
conversation within the community.
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