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Objectives: Sepsis is a major public health concern with signifi-
cant morbidity, mortality, and healthcare expenses. Early detection
and antibiotic treatment of sepsis improve outcomes. However,
although professional critical care societies have proposed new
clinical criteria that aid sepsis recognition, the fundamental need
for early detection and treatment remains unmet. In response,
researchers have proposed algorithms for early sepsis detection,
but directly comparing such methods has not been possible be-
cause of different patient cohorts, clinical variables and sepsis cri-
teria, prediction tasks, evaluation metrics, and other differences.
To address these issues, the PhysioNet/Computing in Cardi-
ology Challenge 2019 facilitated the development of automated,
open-source algorithms for the early detection of sepsis from clin-
ical data.

Design: Participants submitted containerized algorithms to a cloud-
based testing environment, where we graded entries for their bi-
nary classification performance using a novel clinical utility-based
evaluation metric. We designed this scoring function specifically
for the Challenge to reward algorithms for early predictions and
penalize them for late or missed predictions and for false alarms.
Setting: ICUs in three separate hospital systems. We shared data
from two systems publicly and sequestered data from all three
systems for scoring.

Patients: We sourced over 60,000 ICU patients with up to 40
clinical variables for each hour of a patient’s ICU stay. We applied
Sepsis-3 clinical criteria for sepsis onset.

Interventions: None.

Measurements and Main Results: A total of 104 groups from ac-
ademia and industry participated, contributing 853 submissions.
Furthermore, 90 abstracts based on Challenge entries were ac-
cepted for presentation at Computing in Cardiology.
Conclusions: Diverse computational approaches predict the onset
of sepsis several hours before clinical recognition, but generaliza-
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bility to different hospital systems remains a challenge. (Crit Care
Med 2020; 48:210-217)

Key Words: competition; early detection and treatment; evaluation
metrics; generalizability; open-source algorithms; PhysioNet;
sepsis; sequential prediction tasks

body’s response to infection causes tissue damage, organ

failure, or death (1-3). In the United States, nearly 1.7
million people develop sepsis and 270,000 people die of sepsis
each year; over one third of people who die in U.S. hospitals
have sepsis (4). Globally, an estimated 30 million people de-
velop sepsis and 6 million people die of sepsis each year (5).
Costs for managing sepsis in U.S. hospitals exceed those for
any other health condition at $24 billion annually (13% of
U.S. healthcare expenses); a majority of these costs are for
patients who develop sepsis during their hospital stay (6). The
developing world faces additional expenses from sepsis man-
agement and higher risks of adverse outcomes. Altogether,
sepsis is a major public health issue responsible for significant
morbidity, mortality, and healthcare expenses (7-10).

The reliable and early identification of sepsis is often com-
plicated by its syndromic nature, which can contribute to
delays in treatment. The importance of early identification and
treatment of sepsis is highlighted in two recent studies that
suggest an increase in the adjusted mortality of septic patients
who experienced delays in antibiotic therapy (11, 12). This
effect is even more profound in patients suffering from septic
shock, where hourly delays were associated with an 3.6-9.9%
increase in mortality per hour (13). Professional critical care
societies have proposed clinical criteria for recognizing and
treating sepsis (1-3); however, the fundamental need for early
and reliable identification of sepsis remains unmet (14).

The PhysioNet/Computing in Cardiology Challenge is an
international competition focused on open-source solutions
for complex physiologic signal processing and medical classi-
fication problems (15). In 2019, the Challenge’s 20th year, we
asked participants to develop automated techniques for the
early detection of sepsis from clinical data.

Computational approaches promise to improve the early
detection of sepsis. Such approaches typically apply machine
learning techniques to clinical data (e.g., see Refs. [16-18]),
with the goal of making real-time predictions up to a day before
clinical recognition of sepsis. However, the relative strengths
and weaknesses of algorithmic approaches are unclear for a
variety of reasons. The PhysioNet/Computing in Cardiology
Challenge 2019 provided an opportunity to explore the limits
of computational approaches for detecting sepsis.

First, algorithms for the early detection of sepsis frequently
address subtly different problems, and they tend to have been
developed and tested in different patient cohorts with differ-
ent clinical variables and labels arising from different clinical
criteria for sepsis. For the Challenge, we provided a common
problem statement using the same clinical variables and sepsis

S epsis is a life-threatening condition that occurs when the
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criteria. We shared data from two separate hospital systems and
sequestered data from a third hospital system. Algorithms that
overfit on the shared databases typically underperformed on
the hidden database, particularly if they encoded data collec-
tion behaviors specific to a given hospital system. Furthermore,
we ran algorithms only once on the full hidden dataset to pre-
vent sequential training on the hidden data, and we compared
algorithms to identify teams that attempted to circumvent the
rules and have more “bites of cherry” than other teams.

Second, different studies often employ different evaluation
metrics, and such metrics do not necessarily reflect the clin-
ical utility of sepsis detection and treatment. Traditional scor-
ing metrics, such as area under the curve (AUC) metrics, do
not explicitly reward early detection or penalize false alarms
or overtreatment. For the Challenge, we devised a novel evalu-
ation metric that addresses these issues and could be generally
applicable to predicting infrequent events in time series data.

Third, the complexity of such algorithms is nearly im-
possible to adequately describe in a research article. For the
Challenge, we encouraged and facilitated the open sourcing
of algorithms to ensure that subtle implementation details are
provided and reproducible.

METHODS

Challenge Objective

The goal of this Challenge was the development of algorithms
for the early prediction of sepsis using routinely available clin-
ical data. Early predictions of sepsis are potentially lifesaving,
whereas late or missed predictions are potentially life threat-
ening, and false alarms consume hospital resources and erode
trust in the algorithms themselves (19).

For this Challenge, we asked participants to design and
implement working, open-source algorithms that can, based
only on the provided clinical data, automatically identify a
patient’s risk of sepsis and make a positive or negative predic-
tion of sepsis for every hourly time window in the patient’s
clinical record. In particular, we asked participants to pre-
dict sepsis at least 6 hours (but not more than 12hr) before
the onset time of sepsis according to Sepsis-3 clinical criteria
(1-3). To evaluate each algorithm, we designed a new clin-
ical utility-based scoring metric that rewards algorithms for
early sepsis predictions and penalizes them for late and missed
sepsis predictions as well as for false alarms. The winners of
this Challenge were the team whose algorithm gave predic-
tions with the highest clinical utility score for patients in a
hidden test set across three hospital systems.

We awarded prizes to teams with winning algorithms.
Although we allowed both noncommercial and commercial
entities to enter, only open-source entries were eligible for prizes.
All code was required to be submitted to ensure that methods
were replicable and because no teams had access to the hidden
data. This allowed for the comparison of winning teams with
commercial entities and increased the competitive landscape.
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TABLE 1. Feature Summary

Row Measurement Description Row Measurement Description

1 HR Heart rate (beats/min)
2 0O,Sat Pulse oximetry (%)
3 Temp Temperature (°C)
4 SBP Systolic BP (mm Hg)
5 MAP Mean arterial pressure (mm Hg)
6 DBP Diastolic BP (mm Hg)
7  Resp Respiration rate (breaths/min)
8 Etco, End tidal carbon dioxide (mm Hg)
9 BaseExcess  Excess bicarbonate (mmol/L)
10 Heo, Bicarbonate (mmol/L)
11 Fo, Fraction of inspired oxygen (%)
12 pH pH
13 Paco, Partial pressure of carbon dioxide from
arterial blood (mm Hg)
14 Sao, Oxygen saturation from arterial blood (%)
15 AST Aspartate transaminase (IU/L)
16 BUN Blood urea nitrogen (mg/dL)
17 Alkalinephos  Alkaline phosphatase (IU/L)
18  Calcium Calcium (mg/dL)
19  Chloride Chloride (mmol/L)
20 Creatinine Creatinine (mg/dL)
21  Bilirubin direct Direct bilirubin (mg/dL)
22  Glucose Serum glucose (mg/dL)
23 Lactate Lactic acid (mg/dL)
24 Magnesium Magnesium (mmol/dL)
25  Phosphate Phosphate (mg/dL)
26  Potassium Potassium (mmol/L)
27  Bilirubin total  Total bilirubin (mg/dL)
28  Troponinl Troponin | (ng/mL)
29  Hct Hematocrit (%)
30 Hgb Hemoglobin (g/dL)
31 PTT Partial thromboplastin time (s)
32 WBC Leukocyte count (count/L)
33  Fibrinogen Fibrinogen concentration (mg/dL)
34  Platelets Platelet count (count/mL)
35 Age Age (yr)
36 Gender Female (O) or male (1)
37  Unit 1 Administrative identifier for ICU unit
(medical ICU); false (0) or true (1)
(Continued)
212 www.ccmjournal.org

TABLE 1. (Continued). Feature Summary

38 Unit2 Administrative identifier for ICU unit

(surgical ICU); false (0) or true (1)

39 HospAdmTime Time between hospital and ICU admis-
sion (hours since ICU admission)

40 ICULOS ICU length of stay (hours since ICU

admission)

41 SepsisLabel  For septic patients, SepsisLabel is 1 if

t>t ~6and0ift<t__ —6.
For nonseptic patients, SepsisLabel
is 0.

Clinical time series data provided for the Challenge: vital signs (rows 1-8),
laboratory values (rows 9-34), demographics (rows 35-40), and outcome
(row 41; only provided for the shared datasets).

Challenge Data

We obtained the data for the Challenge from three geograph-
ically distinct U.S. hospital systems with three different Elec-
tronic Medical Record (EMR) systems: Beth Israel Deaconess
Medical Center (hospital system A), Emory University Hospital
(hospital system B), and a third, unidentified hospital system
(hospital system C). These data were collected over the past
decade with approval from the appropriate institutional review
boards. We deidentified and labeled the data using Sepsis-3
clinical criteria (1-3). Data and labels for 40,336 patients from
hospital systems A and B were posted publicly for download,
and data and labels for 24,819 patients from hospital systems
A, B, and C were sequestered as hidden test sets.

The Challenge data consisted of a combination of hourly
vital sign summaries, laboratory values, and static patient
descriptions. In particular, the data contained 40 clinical vari-
ables: eight vital sign variables, 26 laboratory variables, and
six demographic variables; Table 1 describes these variables.
Altogether, these data included over 2.5 million hourly time
windows and 15 million data points.

Data extracted from the EMR underwent a series of pre-
processing steps prior to formal analysis and model develop-
ment. All patient features were condensed into hourly bins
simplifying model development and testing; for example, mul-
tiple heart rate measurements in an hourly time window were
summarized as the median heart rate measurement. Multiple
Logical Observation Identifiers Names and Codes codes
describing the same clinical parameter were condensed into
a single variable; for example, serum hemoglobin and arterial
hemoglobin became hemoglobin.

We labeled patient data in accordance with Sepsis-3 clinical
criteria (1-3). For each septic patient, we specified the follow-
ing three time points to define the onset time i of sepsis:

® L iion Clinical suspicion of infection identified as the
earlier timestamp of IV antibiotics and blood cultures
within a given time interval. If IV antibiotics were given
first, then the cultures must have been obtained within 24
hours. If cultures were obtained first, then IV antibiotic

must have been ordered within 72 hours. In either case,
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IV antibiotics must have been administered for at least 72
consecutive hours.

ot Occurrence of organ failure as identified by a two-
point increase in the Sequential Organ Failure Assess-
ment (SOFA) score within a 24-hour period.

e . :Onset of sepsis identified as the earlier of ¢ and

sepsis suspicion

toors a8 long as t, . occurred no more than 24 hours be-

fore or 12 hours after £ .. .

Missing and erroneous data were intentionally preserved
as part of the Challenge. However, patients with less than 8
hourly time windows of data in the ICU were not included,
and patients with s less than 4 hours after ICU admission
were not included. Patient records were truncated after ICU
discharge, and patients with more than 2 weeks of hourly time
windows were truncated to 2 weeks.

Supplemental Table 1 (Supplemental Digital Content 1,
http://links.lww.com/CCM/F206) summarizes the datasets for
the two shared hospital databases. Figure 1 shows the densi-
ties of entries (i.e., the fraction of non-empty hourly measure-
ments) for each vital sign and laboratory value in each patient
record; most vital signs were updated on an hourly basis in
most patient records, and most laboratory values were updated
on a daily basis. Supplemental Figure 1 (Supplemental Digital
Content 2, http://links.Iww.com/CCM/F207) shows the distri-
butions of these entries across patient records. Supplemental
Figure 2 (Supplemental Digital Content 3, http://links.Iww.
com/CCM/F208) quantifies the difference between the vital
sign and laboratory value distributions between hospital sys-
tems using Jensen-Shannon divergence. Note that most clinical
variables have similar distributions across hospital systems.

Challenge Scoring
We scored each algorithm’s predictions using a novel evalua-
tion metric that we created for the Challenge. To better capture
the clinical utility of sepsis detection and treatment, this metric
rewarded algorithms for early sepsis predictions in septic patients,
and it penalized algorithms for late or missed sepsis predictions
in septic patients and for sepsis predictions in nonseptic patients.

Each algorithm made a binary sepsis prediction for each
hourly time window in each patient record. To evaluate each
algorithm, we first defined a score for each prediction and then
aggregated these scores over all hourly time windows and all
patient records.

Given an algorithm’s prediction for an hourly time window
tin a patient record s, we define a score

U(s, t)

U, (s, 1), positive prediction at time ¢ for a septic patient s,

U, (s, t), positive prediction at time ¢ for a non-septic patient s,
- (1]

U, (s, ), negative prediction at time ¢ for a septic patient s,

U (s 1), negative prediction at time t for a non-septic patient s,
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where U, (s, 1), U, (s, 1), U, (s, 1), and U, (s, t) are illustrated
in Figure 2A for an example septic patient and in Figure 2B
for an example nonseptic patient. These scores were chosen to
reflect the broad clinical realities of sepsis detection and treat-
ment, and the actual utility values and time points in [1] and
Figure 2 can be chosen to capture the specific preferences or
trade-offs of any particular hospital system.

For patients who become septic during their ICU stay, early
sepsis detection tends to be beneficial. Therefore, sepsis predic-
tions in septic patients who were at least 12 hours before and at
most 3 hours after the onset time b s of sepsis were rewarded
with a maximum reward at 6 hours before b psis? and sepsis pre-
dictions that are more than 12 hours before ¢ . were slightly
penalized. Similarly, for patients who become septic during
their ICU stay, very early predictions may be implausible or
unhelpful, and late or missed septic predictions are generally
harmful. Therefore, sepsis predictions in septic patients who
were more than 12 hours before 7, were slightly penalized,
and nonsepsis predictions that were less than 6 hours before
I psis WeT€ increasingly penalized.

For patients who do not become septic during their ICU
stay, sepsis predictions contribute to alarm fatigue and lower
confidence in algorithms, antibiotic overuse, and overall poor
allocation of hospital attention and resources. Therefore,
sepsis predictions in nonseptic patients were slightly penalized.
Similarly, nonsepsis predictions in nonseptic patients were nei-
ther rewarded nor penalized.

Given an algorithm’s predictions for all hourly time win-
dows T (s) in each patient record s, we define the total score for
an algorithm as the sum

U ol :z z U(s, t) (2]

seS tel'(s)

over all predictions. For easier interpretability, we normalize
[2] so that the optimal algorithm with the highest possible
score receives a normalized score of 1 and a completely inac-
tive algorithm that only makes nonsepsis predictions receives a
normalized score of 0, that is,

U

total
U o=
normalized
U

-U -
no predictions . [3]
-U

optimal no predictions

Each algorithm received a score from [3], and the algorithm
with the highest value of [3] on the full sequestered dataset
from hospital systems A, B, and C won the Challenge.

Challenge Submissions

Challenge participants submitted their algorithms for eval-
uation on the sequestered data. This strategy encouraged re-
producibility and gave participants the ability to validate their
algorithms on real-world datasets.

Each team was allowed a total of five scored entries during an
unofficial phase of the Challenge from February 8, 2019, to April
14,2019. This phase allowed for beta testing and socialization of the
submission system, rules, and scoring mechanism, and teams were
required to submit at least one entry during the unofficial phase for
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function, and launched this

r W

Entry density for
hospital system A

pipeline on Google Cloud.
This system allowed us to score
multiple entries in parallel.
During the unofficial and of-
ficial phases of the Challenge,
we processed over a thousand
submissions in Julia (https://
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tual machine with two central
processing units and 12 GB of
random access memory, and
each entry was allowed 24 hours
of run time on each hidden test
set. The submission system or-
chestrator, Cromwell (The Eli

HR A

Clinical variables

and Edythe L. Broad Institute of
MIT and Harvard, Cambridge,
MA), typically requested a
n2-highmem-2 machine type
on Google Cloud.

Fibrinogen e -
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Implementations of

Figure 1. Densities of vital sign (rows 7-8) and laboratory value (rows 9-34) entries (fraction of non-empty
entries) in the shared and hidden datasets for hospital systems A, B, and C.

Challenge eligibility. Subsequently, each eligible team was allowed a
total of 10 scored entries during the official phase of the Challenge
from April 25, 2019, to August 25, 2019. This phase allowed teams
to submit their models for evaluation on test data from hospital
system A; scoring on the full hidden test data occurred only after the
official phase at the end of the Challenge. This limit also improved
the tractability of the Challenge. Because we did not heavily restrict
the languages and libraries that teams could use, many teams re-
quired technical support for their submissions.

The submission system relied on containers that were
orchestrated, as pipelines, on the Google Cloud Platform;
Supplemental Figure 3 (Supplemental Digital Content 4,
http://links.lww.com/CCM/F209) illustrates this system. A
container is a standard unit of software that packages code
and its dependencies so that the application runs readily
and reliably in different computing environments. For the
Challenge, we used the Docker containerization environ-
ment. Participants packaged their entries and uploaded them
to a GitHub repository (Microsoft, San Francisco, CA), which
was shared privately with the Challenge organizers. For each
submission, the submission system cloned the repository,
created a pipeline that consisted of the entry and our scoring
214
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Evaluation Metric and
Baseline Model

To provide a baseline model,
we trained a Weibull-Cox regression model and provided
open-source implementations of this model in Julia, MATLAB,
Python, and R. These implementations also served as examples
of how to devise a working prediction algorithm in each lan-
guage that we accepted for the Challenge. We also provided
open-source implementations of our clinical utility-based
scoring function. The code is available online at https://github.
com/physionetchallenges.

Analysis of Entry Independence, Collusion, and
Plagiarism

After the conclusion of each Challenge, we frequently build a meta-
algorithm from the final entries that are weighted by their indepen-
dence; agreement between highly similar algorithms can suggest
a false consensus of predictions. To increase the independence of
algorithms, we therefore prohibited teams from collaboration at
any point of the Challenge. Specifically, we note the following:

e  Multiple teams from a single entity (such as a company,
university, or department) were permitted as long as the
teams were truly independent and did not share team
members, code, or ideas at any point. Multiple teams

February 2020  Volume 48 « Number 2
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Figure 2. Diagrams of utility of positive and negative predictions for sepsis and non-septic patients; the time

t

sepsis

= 48 of sepsis onset is given as an example.

from the same research group or unit within a company
were not allowed because we did not believe that true in-
dependence between teams could be maintained when
team members may frequently interact.

New team members could join as long as they had not
previously been involved with another team or had com-
municated with a team member from another team con-
cerning this year’s Challenge.

Teams could use public code if it had been posted before
the competition. Members of teams were not allowed to
publicly post code during the competition or use another
competitor’s code that was posted during the competi-
tion whether or not it was intentionally made public.
Members of teams were not allowed to publicly post in-
formation describing their methods or give a talk outside
of their own research group at any point during the com-
petition that revealed the methods they have employed or
planned to employ in the Challenge. Members of teams
were allowed to present or publish on methods on other
data as long as they did not indicate that they planned to
apply it to Challenge data until after the competition.

Critical Care Medicine

Supplemental Figure 4
(Supplemental Digital
Content 5, http://links.lww.
com/CCM/F210) illustrates associations among email addresses,
team names, and GitHub users from Challenge submissions,
where each team was expected to have only one email address,
team name, and GitHub user. Some associations with multiple
email addresses, team names, and/or GitHub users indicated
prohibited collaborations and resulted in disqualifications.

Results
A total of 104 teams from academia and industry submitted a
total of 853 entries during the official phase of the Challenge;
of these, 88 distinct teams with a total of 430 entries were able
to be scored. Recall that each team received training data and
labels for hospital systems A and B but not for hospital system
C. Each successful entry received scores on the test data for
hospital system A during the unofficial and official phases of
the Challenge, and each team nominated its favorite success-
ful entry for evaluation on the full test data containing patient
records from hospital systems A, B, and C. Table 2 summarizes
the teams with the highest-scoring entries.

By curating clinical data from multiple hospital systems and
sharing different amounts of data and information from these

215
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systems, we demonstrated that algorithms generally performed
much better in two hospital systems for which we provided
training data than a third hospital system for which we pro-
vided no training data.

Although algorithms that performed well by one evaluation
metric might be expected to perform well by another metric,
we saw that this was generally not the case for traditional eval-
uation metrics and the clinical utility score that we devised
for the Challenge. Figure 3A compares each algorithm’s area
under the receiver operating characteristic curve (AUROC)
with its utility score on the test sets from each of the hospital
systems. AUROC and utility scores are positively correlated
on test sets A and B (Spearman rank correlation coefficients
p =0.791 and p = 0.839, respectively). These scores are poorly
correlated on test set C (Spearman rank correlation coefficient
p =0.054), which corresponds to the hospital system for which
participants did not receive training data. Furthermore, even
on test sets A and B, algorithms with high utility scores did
not necessarily have high AUROC scores, demonstrating that
traditional evaluation metrics do not necessarily capture the
clinical utility of predictions.

Furthermore, the choice of evaluation metric influenced how
transferable algorithms appeared to be across hospital systems.
Figure 3, B-D compares each algorithm’s AUROC or utility score
on test sets from different hospital systems. Although AUROC
scores are strongly correlated for each pair of hospital systems
(Spearman rank correlation coefficients p = 0.973 for hospital
systems A and B, p = 0.938 for hospital systems A and C, and
p =0.947 for hospital systems B and C), this is not true for utility
scores. Utility scores are strongly correlated between the two
hospital systems for which we provided training data (Spearman
rank correlation coefficient p = 0.949 for test sets A and B), but
they are poorly correlated with the third hospital system for
which we did not provide training data (Spearman rank cor-
relation coefficients p = —0.033 and p = 0.013 for hospital sys-
tems A and B, respectively, with hospital system C). Figure 3E
further shows that the methods with the highest scores on data
from hospital systems with shared training databases were not

TABLE 2. Top Clinical Utility Scores

necessarily the methods with the highest scores on the hidden
database from a separate hospital system.

Our use of clinical data from multiple hospital systems and
our application of a clinical utility-based evaluation metric
provided a more nuanced view of predictive generalizability
than results on one system with traditional evaluation metrics
would present.

DISCUSSION

The PhysioNet/Computing in Cardiology Challenge 2019
asked participants to develop automated, open-source algo-
rithms for the early detection of sepsis from clinical data. We
assembled over 60,000 patient records from three hospital sys-
tems, with two shared publicly and one remaining hidden. By
posting two databases publicly, we provided participants the
opportunity to create training methodologies that do not over-
fit to one medical center. The third hidden database provided
a strong indication of how well participants had accomplished
this critical task.

We also proposed and used a novel evaluation metric that
captures the clinical utility of early sepsis detection, weighted
by the relative “earliness” or “lateness” of each prediction.

We suggest that this metric should be considered for wider
adoption in clinical care because it does not suffer from many
of the problems of F-measures (and related metrics such as ac-
curacy, sensitivity, and positive predictive value) or standard
AUC metrics (such as AUROC and area under the precision
recall curve), which either assume a one-shot decision or no
decision threshold, respectively. In particular, this novel eval-
uation metric shows that algorithms that perform well in one
hospital system may perform poorly in another.

A third novelty in this Challenge is the development of
graphical and analytical approaches to measure the similarity
between entries between supposedly independent Challenge
teams. We identified and disqualified teams that appeared to
be highly related to each other and did not provide satisfactory
explanations of these relationships.

Rank Team Final Score Score A Score B Score C

1 James Morrill, Andrey Kormilitzin, Alejo Nevado-Holgado, 0.360 0.433 0.434 -0.123
Sumanth Swaminathan, Sam Howison, Terry Lyons

2 John Anda Du, Nadi Sadr, Philip de Chazal 0.345 0.409 0.396 -0.042

8 Morteza Zabihi, Serkan Kiranyaz, Moncef Gabbou; 0.339 0.422 0.395 -0.146

4 Xiang Li, Yanni Kang, Xiaoyu Jia, Junmei Wang, Guotong Xie ~ 0.337 0.420 0.401 -0.156

B Janmajay Singh, Kentaro Oshiro, Raghava Krishnan, 0.337 0.401 0.407 -0.094
Masahiro Sato, Tomoko Ohkuma, Noriji Kato

2 Meicheng Yang, Hongxiang Gao, Xingyao Wang, Yuwen 0.364 0.430 0.422 -0.048

Li, Jianging Li, Chengyu Liu

“The highest-scoring unofficial entry.

Clinical utility scores for the teams with the five highest scores on the full test set from hospital systems A, B, and C (final score) as well as their scores on the
separate test sets from hospital systems A, B, and C (score A, score B, and score C, respectively).
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Figure 3. Comparison of each algorithm’s AUROC and utility scores on test data from hospital systems A, B, and C, where we shared training data

for hospital systems A and B but not for hospital system C. A, Comparison of each algorithm’s area under the receiver operating characteristic curve
(AURQC) and utility scores on test sets A, B, and C. B, Comparison of each algorithm’'s AUROC and utility scores on test sets A and B. €, Comparison of
each algorithm’s AUROC and utility scores on test sets A and C. D, Comparison of each algorithm’s AUROC and utility scores on test sets B and C.

E, Ranked performance of the final algorithms on test sets A, B, and C. Red indicates a high overall ranking across all three databases, and blue indicates
a low overall ranking. Lines from top to bottom indicate how the individual algorithm ranking changed when considering the performance on each
database. Algorithms that performed well on test sets A and B generally performed relatively poorly on test set C.

We received 853 entries from 104 participants in academia
and industry, providing a diverse view of algorithmic approaches
to early sepsis detection. Combined, these efforts provide a more
complete picture of how algorithms can provide early sepsis pre-
dictions. A subsequent analysis of the best performing and most
interesting algorithms submitted to the Challenge will combine
the strengths of different approaches to push the boundaries of
automated approaches to early sepsis prediction.
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