

1 submitted to *GCA*

Experimentally determined Si isotope fractionation between zircon and quartz

Dustin Trail¹, Paul S. Savage² and Frédéric Moynier^{3,4}

12
13 ¹Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627,
14 USA.

15 ²School of Earth and Environmental Sciences, University of St Andrews, Irvine Building,
16 Scotland, UK, KY16 9AL

17 ³Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France

18 ⁴Institut Universitaire de France, Paris, France

20 Corresponding author: Dustin Trail (dtrail@ur.rochester.edu)

21

Submitted Feb 9th 2019

23 *Revised June 20th, 2019*

Accepted June 21st, 2019

25

26

27

28 Keywords Si isotopes; fractionation; igneous; zircon; quartz; three-isotope

29 **Abstract.** The silicon isotope composition of detrital quartz and zircon have the potential to inform
30 us about secular changes to the silica cycle and weathering reactions on Earth. However, inferring
31 source melt Si isotope composition from out-of-context minerals is hampered by the fact that, to-
32 date, there is limited Si isotope equilibrium fractionation data for minerals. Here, we report
33 experimental data to constrain Si isotope equilibrium fractionation between zircon and quartz,
34 using two fundamentally different strategies, but with the same experimental design. First, zircon
35 and quartz were hydrothermally synthesized from $Zr(OH)_4$ and SiO_2 at 1.5 GPa and temperatures
36 of 725, 800, and 900 °C. The second experimental strategy utilized the three-isotope method; the
37 starting materials consisted of natural zircon and isotopically-labelled SiO_2 . Three sets of
38 hydrothermal time-series experiments were conducted at the same pressure and temperatures as
39 the direct synthesis experiments. For all experiments, quartz and zircon were separated and
40 $^{30}Si/^{28}Si$ and $^{29}Si/^{28}Si$ ratios were measured by solution multi-collector inductively coupled plasma
41 mass spectrometry. The three-isotope method, which provides the best indicator of equilibrium
42 fractionations, yields the following relationship:

43

$$44 \Delta^{30}Si(qtz-zrc) = (0.53 \pm 0.14) \times 10^6 / T^2$$

45 where $\Delta^{30}Si(qtz-zrc)$ is the relative difference in $^{30}Si/^{28}Si$ between quartz and zircon in permil, T
46 is temperature in K, and the error is 2 s.e. This relationship can be used to calculate the fractionation
47 between zircon and other phases, and to estimate the Si isotope composition of the melt from which
48 a zircon crystallized. The results may be used to assess equilibrium-disequilibrium isotope
49 fractionations between quartz and zircon and co-existing phases in igneous rocks. These data can
50 also be applied to out-of-context zircon (and quartz) to estimate the isotope composition of the
51 host rock. Zircons crystallizing from a melt derived from purely igneous sources – i.e., without
52 the involvement of “weathered” material – are expected to display a $\delta^{30}Si_{NBS-28}$ (permil deviation
53 of the $^{30}Si/^{28}Si$ from the NBS-28 standard) range from -0.7 to -0.35‰. Deviations from this range
54 indicate assimilation of non-igneous (i.e., sedimentary) material in the melt source.

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75 **1. Introduction**

76
77 The processes of silicate weathering and assimilation of sedimentary material into crustal
78 melts have been explored in detail through measurements of oxygen isotope ratios in whole rock
79 for over 50 years (Taylor, 1968; Taylor and Sheppard, 1986). This is because oxygen isotope ratios
80 of supracrustal and aqueously-altered rocks are fractionated away from the canonical mantle value
81 (O’Neil and Chappell, 1977; Harmon and Hoefs, 1995). Anatexis of such altered material during
82 the formation of melt thus yields different bulk-rock $^{18}\text{O}/^{16}\text{O}$ ratios when compared to primitive
83 mantle-derived magmas. In most cases, supracrustal contamination yields igneous rocks enriched
84 in ^{18}O compared to the upper mantle, because weathering results in relatively large enrichment in
85 the heavy isotopes of the weathered rocks (Savin and Epstein, 1970). Trends to $^{18}\text{O}/^{16}\text{O}$ values
86 lower than mantle may occur by assimilation of high-temperature, hydrothermally-altered material
87 caused by a change in the fractionation direction vs. temperature during chemical weathering (e.g.
88 Wenner and Taylor, 1973; Chacko et al., 2001), or by assimilation of material altered by meteoric
89 water (e.g., Bindeman et al., 2007).

90 Using oxygen isotopes as a proxy for supracrustal contamination in igneous systems at the
91 mineral-scale requires knowledge of the direction and magnitude of O isotope fractionation among
92 phases. Experimentally-, empirically, and theoretically-derived mineral-mineral oxygen isotope
93 fractionations (Keiffer, 1982; Mathews et al., 1983; Chiba et al., 1989; Chacko et al., 2001; Trail
94 et al., 2009) have resulted in a clearer understanding of the relationship between crustal
95 weathering, recycling, and the isotopic composition recorded in individual igneous phases. One
96 phase that has offered many important insights is zircon, which is generally unaffected by chemical
97 weathering (e.g., Valley et al., 1994; 2003; Grimes et al., 2013; Loewen and Bindeman, 2015,
98 2016) and can be dated by U-Pb geochronology (Harrison et al., 2017). For instance, some zircons
99 older than 4.0 Ga have oxygen isotope compositions that are enriched in ^{18}O relative to mantle
100 zircon (Valley et al., 1998; Cavosie et al., 2009), providing evidence for low-temperature fluid
101 alteration of their protoliths and suggesting that significant volumes of liquid water were
102 interacting with the crust as early as 4.2 to 4.3 Ga (Mojzsis et al., 2001; Cavosie et al., 2005).

103 Other isotope tracers, such as $^{7}\text{Li}/^{6}\text{Li}$ and $^{26}\text{Mg}/^{24}\text{Mg}$, have been used with success to study
104 silicate weathering (e.g. Teng et al., 2010, Wimpenny et al., 2011) though perhaps no other isotope
105 system is more important than Si due its pervasive abundance in the lithosphere and weathered
106 products. Silicon isotopes, like oxygen isotopes, fractionate away from igneous compositions
107 during weathering in many low-temperature water-rock interactions, particularly during
108 desilicification and neoformation of clay minerals (Opfergelt et al., 2012; Savage et al., 2013).
109 There is also evidence that a supracrustal Si isotope signature can be transferred to a melt;
110 depletions in the light isotopes of Si were detected in several peraluminous leucogranites
111 (Poitrasson and Zambardi, 2015). Savage et al. (2012) also identified measurable differences in
112 the Si isotopic composition of igneous rocks from the Lachlan Fold Belt, Australia, which revealed
113 new information about the source materials of these (S)edimentary- and (I)gneous- type granitoids.
114 Specifically, Ordovician sediments near these granitoids are often interpreted to represent the
115 supracrustal end-member for the S-type rocks (e.g., Keay et al., 1997), yet Si isotope compositions
116 strongly suggest that these sediments were not the only source of material (Savage et al., 2012);
117 pre-Ordovician metasedimentary crust may have also contributed to the isotopic character of the
118 LFB granitoids (Chappell et al., 1988).

119 Studies have also coupled Si and O isotope ratios to infer that Si from marine hydrothermal
120 origin and a minor fraction from continental weathering contributed to the chemistry of banded

121 iron formations, as early as 3.8 Ga (Heck et al., 2011). More recently, new insights into the
122 terrestrial silica cycle and weathering reactions prior to 3.8 Ga have been gleaned from coupled Si
123 and O isotope measurements of Archean and Hadean detrital zircons (Trail et al., 2018). These
124 data provide evidence for the presence (and subsequent melting) of fluid-altered, crustal
125 assemblages such as serpentinites and possibly authigenic silica on the Hadean Earth.

126 As with O isotopes, the direction and magnitude of Si isotope high temperature
127 fractionations among co-existing igneous phases needs to be well constrained so that the bulk-rock
128 Si isotope composition can be confidently inferred, particularly when *ex-situ* mineral phases are
129 analyzed. This will allow for any signature of supracrustal material in the melt source to be better
130 elucidated via this isotope system. The importance of this is amplified because Si isotope
131 fractionations produced during weathering or low temperature hydrothermal processes are
132 typically smaller in magnitude than O isotopes. The Si isotope composition of clays, for example,
133 are typically confined to -0.5 to -3 ‰ (relative difference when compared to the mantle frame of
134 reference; Opfergelt et al., 2012), though Bayon et al. (2018) showed that a small fraction of clays
135 can be isotopically unfractionated relative to average (unweathered) felsic crustal composition.
136 In comparison, clay mineral $^{18}\text{O}/^{16}\text{O}$ ratios with differences of +10 ‰ compared to the mantle
137 frame of reference are common (Savin and Epstein, 1970; Chacko et al., 2001).

138 Variations in $\delta^{30}\text{Si}$ between natural igneous mineral assemblages have been measured in
139 previous studies (Savage et al. 2011, 2012), where $\delta^{30}\text{Si}$ is defined as the permil difference of the
140 $^{30}\text{Si}/^{28}\text{Si}$ ratio of the sample relative to the same ratio in NBS-28 silica sand, as follows:

$$142 \quad \delta^{30}\text{Si} = \left[\frac{^{30}\text{Si}/^{28}\text{Si}_{\text{sample}}}{^{30}\text{Si}/^{28}\text{Si}_{\text{NBS-28}}} - 1 \right] \times 1000 \quad (1).$$

143 Silicon isotope mineral-mineral fractionations at igneous temperatures are typically range from
144 0.05 – 0.50 ‰ (Savage et al., 2012; and Trail et al., 2018), though density functional theory (DFT)
145 calculations predict quartz-clinopyroxene (i.e., diopside and clinoenstatite) fractionations that
146 approach or exceed 0.5 ‰ (1000 K; Méheut et al., 2009; Qin et al., 2016). The direction and
147 magnitude of fractionation is thought to be controlled by the relative degree of polymerization of
148 the minerals. Restated, phases with higher proportions of Si-O-Si bonds tend to prefer the heavier
149 Si isotopes (e.g., Méheut et al., 2009; Savage et al., 2011); i.e., orthosilicates (e.g., olivine) are
150 almost always isotopically lighter than tectosilicates (e.g., feldspar).

151 Due to the orthosilicate structure of zircon, it is predicted that zircon should be isotopically
152 light, particularly if crystallizing from a high silica melt where most liquidus phases are
153 tectosilicates (Qin et al., 2016). Quartz, on the other hand, should be enriched in the heavy isotopes
154 of Si. This was confirmed by Trail et al. (2018), who measured zircon-quartz fractionation values
155 for an aliquot of zircon and quartz from the I-type Jindabyne tonalite, from the Lachlan Fold Belt
156 (LFB), Australia (Trail et al., 2017). A fractionation of $\delta^{30}\text{Si}(\text{qtz}) - \delta^{30}\text{Si}(\text{zrc}) = \Delta^{30}\text{Si}(\text{qtz-zrc}) =$
157 0.47 ± 0.06 ‰ ($T_{\text{cryst}} \sim 750$ °C) was measured via multi-collector inductively-coupled-plasma mass-
158 spectrometry (MC-ICP-MS). These measurements also agree with DFT calculations for analogous
159 mineral pairs. That is, quartz-pyrope fractionations (pyrope being an orthosilicate) are equal to
160 0.48 ‰ at 750 °C (Méheut and Schäuble, 2014).

161 However, there are some important caveats for the above generalizations. Firstly, implicit
162 in constraining a fractionation from natural samples is the assumption that zircon and quartz
163 crystallized contemporaneously and in equilibrium, which may or may not be the case. Secondly,
164 it is not clear to what extent the predicted polymerization-related fractionation rule holds when
165 other network-modifying cations, such as Al, OH⁻, B are present in high abundances in the melt

167 and crystallizing phases. The control of relative polymerization on Si isotope fractionation is
168 clearly not a consistent phenomenon, as both empirical measurements and first principle DFT
169 calculations imply that olivine is isotopically heavier than coexisting clinoenstatite, despite having
170 more “non-bridging” oxygens (Méheut et al., 2009; Savage et al., 2011). Moreover, measured
171 fractionations between quartz and biotite/phlogopite (Ding et al. 1996; Georg, 2006) are lighter
172 than would be expected by applying the simple polymerization rule for the three corner-sharing
173 structure of trioctahedral phyllosilicates (Méheut and Schauble, 2014). Zircon also exhibits unique
174 properties among the silicate minerals whose fractionations were calculated by DTF (Qin et al.,
175 2016). That is, its calculated $^{30}\text{Si}/^{28}\text{Si}$ reduced partition function ratio vs. Si-O polyhedron volume
176 is well outside the trend identified for other silicates, which is due to a large distortion in the zircon
177 silica tetrahedron (Qin et al., 2016). Thirdly, even I-type granitoids are known to contain inherited
178 zircons (e.g., Kemp et al., 2005), which means that the natural quartz-zircon fractionation noted
179 above could be affected by a mixture of multiple zircon populations. Finally, stable isotope
180 fractionation is a temperature-dependent process. Constraining the sensitivity of $\Delta^{30}\text{Si}(\text{qtz-zrc})$ to
181 crystallization temperature is critical to accurately infer whole-rock/melt compositions from out-
182 of-context minerals.

183 Thus, there is a need to approach the topic of igneous Si isotope fractionation between
184 zircon and whole-rock/coexisting minerals in a systematic and controlled fashion. While several
185 studies have conducted calculations to constrain Si isotope fractionations among coexisting
186 minerals and fluids (Méheut et al., 2007, 2009; Méheut and Schauble, 2014; Huang et al., 2014;
187 Qin et al., 2016), we are aware of no experimental Si isotope fractionation data for igneous minerals.
188 We present high temperature Si isotope fractionation experiments between zircon and quartz by
189 direct synthesis, and through application of the three-isotope method (e.g. Matsuhisa et al., 1978;
190 Shahar et al., 2008; Macris et al., 2013), to place inferences made from zircon Si isotope
191 measurements in a more complete context. We show that the direction of experimentally
192 determined Si isotope quartz-zircon fractionations agrees with natural and theoretical data (Qin et
193 al., 2016; Trail et al., 2018), though some differences in the magnitude are observed. When
194 experimentally determined quartz-zircon fractionations are combined with measurements
195 collected on natural samples, we also show that the Si isotopic difference between zircon and
196 whole rock can be confidently estimated in simplified scenarios.

197
198

199 **2. Methods**

200
201

202 **2.1 Experimental strategy and design**

203
204
205

High temperature Si isotope fractionations – in this case quartz and zircon – are typically
described by the following relationship:

$$206 \quad \delta^{30}\text{Si}(\text{qtz}) - \delta^{30}\text{Si}(\text{zrc}) = \Delta^{30}\text{Si}(\text{qtz} - \text{zrc}) \cong 10^3 \times \ln(\alpha_{\text{qtz-zrc}}) = \frac{A \times 10^6}{T^2} \quad (2)$$

207
208
209
210
211
212

where T is in K, and $\alpha_{\text{qtz-zrc}}$ is the fractionation factor defined by the $^{30}\text{Si}/^{28}\text{Si}$ value in quartz divided
by the equivalent ratio in zircon, and A is a constant parameter. This relationship is typically
assumed to be a valid description of high temperature (≥ 500 °C) isotope fractionations (Bottinga
and Javoy, 1973). While polynomial expressions such as $10^3 \ln(\alpha_{\text{mineral1-mineral2}}) = Ax - Bx^2 + Cx^3 -$
where $x = 10^6/T^2$ – are frequently used for theoretical calibrations (e.g., Qin et al., 2016), such

functions are rarely used for high temperature experimental or naturally-calibrated fractionation studies because the obtained fractionations are typically not precise enough to resolve the B - and C -values. For the data presented here, we utilize equation (2) which implies an assumed linearity for $\Delta^{30}\text{Si}(\text{qtz-zrc})$ vs. $1/T^2$, that $\alpha_{\text{qtz-zrc}}$ is close to 1, and that A can be solved for by knowing T and the Si isotope compositions of quartz and zircon. We conducted a series of fluid-saturated experiments in a piston cylinder device to characterize the A -value using two different experimental designs.

2.1.1 Direct synthesis experiments

We performed direct synthesis experiments of zircon and quartz with starting materials consisting of $\text{Zr}(\text{OH})_4$, SiO_2 , and a 10 mM CaCl_2 solution. The SiO_2 consisted of 325 mesh fused ~amorphous powder from Alfa Aesar with a stated purity of 99.8%. The $\text{Zr}(\text{OH})_4$ was made by first dissolving 99.9% pure ZrCl_4 from Sigma Aldrich in distilled water under a fume hood; a $\text{Zr}(\text{OH})_4$ gel was precipitated by adding NH_4OH to this solution (Montel et al., 1989; Trail et al., 2011). The gel was carefully rinsed, left to sit at room temperature until dry, and then ground. A 10 mM CaCl_2 solution was made by dissolving $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$ (99% purity, Alfa Aesar) and trace DyCl_3 (99.99% purity; Sigma Aldrich) in distilled water.

The SiO_2 and $\text{Zr}(\text{OH})_4$ were weighed out for each individual experiment in 2:1 abundances by mole, for a total mass of ~70 mg. This material was coarsely mixed by hand in the weighing paper with a spatula before loading it into a 4.8 mm diameter capsule machined from an Ag rod with an outer diameter of 7.3 mm. Approximately 60 μL of 10 mM CaCl_2 solution was added with a micro-syringe. The capsule was then surrounded by components of the solid media pressure cell (**Figure 1**), loaded into a pressure vessel with a $\frac{3}{4}$ " tungsten-carbide core, and then end-loaded. The Ag capsule was pressure-sealed to a 2 mm thick Ag lid by applying pressure to the sample piston with a hand pump.

Experiments were heated to 900, 800, or 725 °C with a ramp rate of ~300° per minute. Specifically, they were ramped at 300 °C per minute to 25° below the set point, and then at 100° per minute for the final 25°. The temperature was monitored using calibrated 25%WRe–3%WRe thermocouple wire. The temperature choices result in approximately equivalent spacings when T (in K) is expressed as $10^6/T^2$. The pressure was kept fixed at 1.5 GPa using a 20 cm Heise gauge and experiment durations were 48, ~94, or 140 h for 900, 800, and 725 °C experiments, respectively. Experiments were quenched by cutting power to the transformer. Prior to opening the capsules, they were gently cleaned with a file and a lathe to remove Mg-oxide pressure media and a small amount of the exterior wall the Ag capsule. All capsules exhibited evidence for fluid-under-pressure, and expelled liquid once the water-tight seal was breached. In preparation for MC-ICP-MS measurements, quartz crystals (50 – 300 μm) were extracted from the capsules with tweezers, sonicated in ethanol, and then inspected for inclusions by reflected light, transmitted light, and backscattered electron imaging. Zircon crystal picking was prohibitive due to size ($\sim 5 \mu\text{m}$), so aliquots were treated in dilute HF acid overnight to remove residual silica quench or quartz. Hydrofluoric acid cleaning of non-metamict zircon effectively separates zircon from other silicate material (e.g., Watson et al. 2006; Trail et al. 2009) and zircon crystal surfaces are not altered by acid treatment (Cherniak and Watson, 2010).

To prevent entry of foreign material, HF treatment was carried out in a teflon container that was loosely-capped, but the cap was not tightened based on the expectation that volatile SiF_4 , formed by reaction of the acid with quartz+quench, would be preferentially lost. After treatment,

259 the HF was carefully poured out of the container and discarded, with the last drop wicked away
260 with a kimwipe®. The remaining material was rinsed several times in ethanol and dried. A small
261 amount of pre- and post-treated “zircon fraction” was cast into epoxy, polished with an automated
262 polisher with a slurry of 1 μm $\text{Al}_2\text{O}_3 + \text{H}_2\text{O}$, and then finished with colloidal silica.
263 Cathodoluminescence (CL) and secondary electron (SE) images were collected for the samples.
264

265 2.1.2 Three-isotope exchange method

266
267 Our second set of experiments implemented the three-isotope exchange method (e.g.
268 Matsuhisa et al., 1978; Shahar et al., 2008), though were otherwise identical to the design presented
269 in Figure 1. The method involves doping one of the equilibrating phases – quartz in this case – in
270 the denominator isotope (^{28}Si). Quartz will thus plot below the terrestrial mass isotope
271 fractionation line (TMFL). The bulk composition of the quartz and undoped zircon mixture will
272 define a secondary mass fractionation line (SMFL; **Figure 2**). As these two phases are brought to
273 equilibrium by recrystallization at high temperature, each will progressively approach the SMFL.
274 The loci of the SMFL in isotope space is therefore constrained by the slope of the SMFL and the
275 isotopic composition of the system (i.e., quartz+zircon). Here we assume a slope (γ) of 0.5178 for
276 the SMFL based on equilibrium isotope fractionation theory:
277

$$278 \quad \gamma = \frac{\frac{1}{m_{29}} - \frac{1}{m_{28}}}{\frac{1}{m_{30}} - \frac{1}{m_{28}}} \quad (3)$$

279
280 where m_{28} is the mass of ^{28}Si , etcetera (Young et al., 2002). A series of isothermal experiments
281 conducted for progressively longer durations should produce an array of points for each phase that
282 trends toward the equilibrium fractionation value, defined by the intercept with the SMFL.

283 We prepared SiO_2 for our experiments by mixing reagent-grade SiO_2 with ^{28}Si -enriched
284 SiO_2 from Isoflex USA ®, with a stated purity of 99.4% $^{28}\text{SiO}_2$. First, an initial mixture containing
285 about 1.1 wt% of isotopically-labeled SiO_2 was mixed with the same Alfa Aesar material as the
286 previous section. This was ground in a ceramic Al_2O_3 -based mortar and pestle (Diamonite ®) for
287 approximately 1 hour. A small chip of the Diamonite® mortar was removed, mounted in epoxy,
288 polished, and analyzed by energy dispersive spectroscopy confirming that it is Al_2O_3 -based, with
289 a binding agent containing Ca, Mg, Si, and Cr.

290 The ^{28}Si -enriched mixture yielded $\delta^{29}\text{Si}_{\text{NBS-28}}$ and $\delta^{30}\text{Si}_{\text{NBS-28}}$ values of $\sim -10.7\text{‰}$. In these
291 experiments, it is important not to “overspike” with $^{28}\text{SiO}_2$, so that the amount of extrapolation to
292 the SMFL is reasonable (Shahar et al., 2017). “Underspiking” may result in changes to the
293 equilibrating phases during the experiment that are too small to detect with the MC-ICP-MS
294 precision. Early attempts to conduct experiments with the above spiked mixture were unsuccessful
295 because the extrapolation to the SMFL was too large. Thus, we produced a second SiO_2 mixture
296 in which the $\delta^{30}\text{Si} \sim -10.7\text{‰}$ material was diluted further by adding additional Alfa Aesar SiO_2
297 (TMFL) material. This resulted in a mixture consisting of about 0.29 wt% of isotopically-labelled
298 $^{28}\text{SiO}_2$. Approximately 2 grams of SiO_2 was thoroughly mixed in a Diamonite ® mortar and pestle
299 for approximately 1 hour.

300 The zircon starting material was a ~ 5 gram crystal from the Mud Tank carbonatite (Currie
301 et al., 1992). The crystal was inspected optically and was found to be free of visible inclusions,
302 though it did contain infrequent and small (1-5 μm) secondary opaques, likely Fe-oxides, along
303 fractures in the crystal. It was crushed and ground under ethanol for approximately 1 hour. The

304 resulting material was sieved to a size fraction smaller than 70 μm , and then ground again. As later
305 verified by SEM, this produced angular fragments of zircon which were expected to have relatively
306 high reactivity during the experiments. That is, the surfaces of crystal shards are likely to have
307 lower activation energy barriers causing them to more rapidly undergo dissolution – and thus
308 recrystallization – than primary crystal facets.

309 Silver capsules, of the same design described above, were loaded with equimolar amounts
310 of Si for each phase, resulting in a total weight of approximately 130 mg for each experiment. For
311 experiments performed at 900 and 800 $^{\circ}\text{C}$, we added 4 wt. % of the same 10 mM CaCl_2 fluid to
312 the capsule, which also contained trace DyCl_3 . Like the direct synthesis experiments, the CaCl_2
313 was added because it has been shown to enhance re/crystallization of zircon (e.g., Geisler et al.
314 2001). Based on the expectation that higher fluid contents would result in faster equilibration, we
315 added additional fluid (8 wt. % total) to our lowest temperature series (725 $^{\circ}\text{C}$). Dysprosium was
316 included because it is a known cathodoluminescence emitter in zircon and was thus used to
317 evaluate the extent of recrystallization in trace element poor Mud Tank zircon in the experimental
318 products. Time series experiments ranged from 20 to 150 h for 900 $^{\circ}\text{C}$, from 20 to 500 h for 800
319 $^{\circ}\text{C}$, and from 20 to 1099 h for 725 $^{\circ}\text{C}$. At least 15 mg and 45 mg of cleaned quartz and zircon,
320 respectively, were recovered from each experiment and processed as for the direct synthesis
321 experiments for MC-ICP-MS measurements.

322 2.2 MC-ICP-MS measurement

323 Starting materials, experimental products, and external standards were processed through
324 the same HF-free dissolution and purification procedure before Si isotope analysis. This method
325 is based closely on that described in detail in Georg et al. (2006) with specific modifications and
326 further details noted in Savage and Moynier (2013). The use of HF for sample dissolution is
327 avoided with use of an alkali flux digestion method. Each sample was weighed into a silver
328 crucible (made of 99.99% pure Ag sheet) along with enough NaOH flux (semiconductor grade,
329 99.99% pure, Sigma Aldrich) such that the mass ratio of sample to flux was ~1:20. The crucible
330 was then placed in a muffle furnace, heated to 720 $^{\circ}\text{C}$, for approximately 15 minutes. The crucible
331 was removed from the furnace, left to cool for 30 seconds, and submerged in ~20ml of Milli-Q $\text{^{\circ}}$
332 water (18.2 $\text{M}\Omega\cdot\text{cm}$) in a PTFE container. The resultant fusion cake is water-soluble and is readily
333 removable from the crucible: this was performed by submitting the crucible-containing PTFE
334 container to ultrasonication and gentle heating, then pipetting the dissolved cake into a pre-cleaned
335 polypropylene bottle. The transferred fusion material is diluted further with Milli-Q $\text{^{\circ}}$ water and
336 then acidified to 1% HNO_3 v/v with thermally distilled nitric acid (~15.7 M) – the amount of HNO_3
337 added is calculated based on the mass of NaOH used in each fusion. The degree of dilution (i.e.,
338 how much water is added to the final solution) is estimated, based on the initial amount of sample
339 dissolved, to allow for a final solution concentration of between 10 and 20 ppm Si. The Si
340 concentration in each solution is determined photometrically using the “Heteropoly-Blue” method
341 (with Hach-Lange $\text{^{\circ}}$ Ultra-low range Si reagents) and fusion yield estimated based on the weighed
342 amount of sample and the measured ppm of Si. The calculated fusion yields were all between 95
343 and 99% Si recovery.

344 The Si from the samples and standards were purified using a one-step column procedure
345 utilizing 1.8ml of BioRad AG50 X-12 (200-400 mesh) cation exchange resin loaded into BioRad
346 “Poly-Prep” columns, again following methods detailed in Georg et al. (2006) and Savage and
347 Moynier (2013). Silicon in neutral to acidic media does not adhere to the resin, and elutes straight

350 through, whereas other cations are held on to the resin and are quantitatively removed from the
351 matrix. All other anions, if present, are at too low concentrations relative to Si to affect isotopic
352 measurement (c.f. Georg et al 2006). Total procedural blanks are on the order of 0.1 μg Si, which
353 typically represents $\sim 0.35\%$ of total Si and are therefore negligible.

354 Over the course of this study, Si isotope measurements were made on two Neptune Plus
355 Multi-Collector Inductively Coupled Plasma Mass spectrometers (MC-ICP-MS); one at the
356 Institut de Physique du Globe de Paris (IPGP), the second in the St Andrews Isotope Geochemistry
357 (STAiG) laboratories. Running conditions for both instruments are as described in Trail et al.
358 (2018) and more general details are provided in Savage and Moynier (2013). Both instruments
359 were operated in ‘medium’ resolution mode to avoid polyatomic interferences (in particular the
360 large $^{14}\text{N}^{16}\text{O}^+$ interference that would otherwise overwhelm the $^{30}\text{Si}^+$ signal). Samples were
361 introduced to the instrument using a 75 $\mu\text{l min}^{-1}$ ESI PFA microflow nebulizer via the Thermo
362 Scientific “SIS” spray chamber.

363 Samples were analyzed at a concentration of 2 ppm Si, which gave $\sim 16\text{V}$ on the ^{28}Si beam
364 (using a $10^{11} \Omega$ resistor) in medium resolution mode. Ratios were measured in static mode, and
365 each measurement consisted of 25 cycles of ~ 3 s integrations with a 3 s idle time. Sample $\delta^{29}\text{Si}$
366 (i.e., $[(^{29}\text{Si} / ^{28}\text{Si}_{\text{sample}}) / (^{29}\text{Si} / ^{28}\text{Si}_{\text{NBS-28}}) - 1] \times 1000$) and $\delta^{30}\text{Si}$ values were calculated using the
367 standard-sample bracketing method (relative to NIST RM 8546 silica sand, historically called
368 NBS-28). Aliquots of the USGS geostandard BHVO-2 and the Si standard ‘Diatomite’ were
369 routinely ran alongside the unknown samples to monitor accuracy. These analyses are given in
370 Table 1. Our analyses match the ‘accepted’ reference values for these standards exactly (Reynolds
371 et al., 2007; Savage et al., 2014). Standards ‘BHVO-2 STAiG old’ and ‘Diatomite STAiG’ are
372 aliquots taken from the same sample dissolution as those for the relevant IPGP measurements;
373 comparison of these data show that there is no systematic instrumental offset between the two
374 measurement locations. Additionally, ‘BHVO-2 STAiG new’ is a repeat dissolution of BHVO-2
375 performed at St Andrews; the lack of offset between this datum and previous BHVO-2
376 measurements shows that Si isotope analysis at St Andrews produces accurate data with
377 comparable precision.

3 Results

3.1 Images and description of experimental products

383 Electron microscopy shows that the zircon crystals produced by direct synthesis are
384 relatively euhedral and approximately 1 to 5 μm (**Figure 3a**). Quartz crystals from the same
385 experiments (not shown) were approximately 50 to 300 μm . With respect to the three-isotope
386 exchange method, the crushed Mud Tank zircon shards used in experiments show clear evidence
387 for recrystallization, analogous to observations made by Ayers et al. (2018) for their zircon-fluid
388 partitioning experiments. An example secondary electron image of the starting material reveals
389 numerous angular fragments (Fig. 3b) that exhibit evidence for dissolution as the experiment
390 duration is increased (Fig. 3c,d).

391 “Zircon fractions”, extracted directly from the capsule after hand cleaning, showed
392 occasional quartz (Fig. 3c). After treatment of this material in cold HF acid, no evidence for quartz
393 remained. In post-treated zircon fractions, we did not see evidence for quenched SiO_2 in epoxy
394 grain mount either. If HF treatment removes the quartz, it is reasonable to expect that the quench
395 material, with smaller size ($< 50 \mu\text{m}$) and larger surface area to volume ratios, are also likely

396 removed. These results, including the observations made after the HF cleaning procedure, agree
397 with past studies (Trail et al., 2009). Quartz crystals are mostly free of inclusions, though they do
398 contain rare occurrences of sub- to micron-sized zircons (Fig. 3e). We estimate that all mineral
399 aliquots separated for isotope analyses were >95% pure.

400 Evidence for zircon recrystallization is also present through inspection of CL images.
401 While the starting material shows only modest luminescence (Fig. 3f), the experimental products
402 show evidence of recrystallization near the rims of the crystals (Fig. 3g-i). This is caused by
403 substitution of CL-active Dy, added as a trace impurity in the starting fluid, into the zircon lattice.
404

405 3.2 Silicon isotope data

406
407 Silicon isotope ratios ($^{30}\text{Si}/^{28}\text{Si}$ and $^{29}\text{Si}/^{28}\text{Si}$) are reported relative to NBS-28 quartz sand.
408 Table 1 provides external standard data, and Tables 2 and 3 contains the analyses of the direct
409 synthesis and 3-isotope experimental run products, respectively. Analytical errors for individual
410 phases represent the 2 standard deviations (2 s.d.) of 4 to 5 analyses of a purified sample aliquot
411 (Tables 2 and 3).

412 The long-term external reproducibility of the MC-ICP-MS measurements can be assessed
413 using external standard data; each Si isotope analytical session includes measurement of an aliquot
414 of BHVO-2 (and often Diatomite) which was processed through chemistry at the same time as the
415 other samples being analyzed. The long-term reproducibility can be therefore quantified by
416 calculating the $2 \times$ standard deviation of the $\delta^{30}\text{Si}_{\text{NBS-28}}$ and $\delta^{29}\text{Si}_{\text{NBS-28}}$ BHVO-2 (and Diatomite)
417 values generated in each measurement session. As each standard measurement also represents a
418 separate chemical separation procedure, this reproducibility also takes into account the variations
419 in the Si isotope separation method. For the IPGP instrument, over a period of 5 months, the
420 external precision on BHVO-2 was $\delta^{30}\text{Si}_{\text{NBS-28}} \pm 0.04\text{\textperthousand}$ and $\delta^{29}\text{Si}_{\text{NBS-28}} \pm 0.03\text{\textperthousand}$ (2 s.d.). For the
421 St Andrews instrument, over a period of 9 months, the external precision on both BHVO-2 and
422 Diatomite was $\delta^{30}\text{Si}_{\text{NBS-28}} \pm 0.03\text{\textperthousand}$ and $\delta^{29}\text{Si}_{\text{NBS-28}} \pm 0.03\text{\textperthousand}$ (2 s.d.).

423 These long term external reproducibilities are comparable to, and are mostly lower than,
424 the 2 s.d. values calculated for each individual sample measurement, based on the 4 or 5 analyses
425 of the same purified sample aliquot (Tables 2 and 3). For simplicity, we could choose to apply the
426 external precision to all data. However, this does not tell the whole story, as instrumental running
427 conditions can be variable, and will differ between each measurement session, meaning that “short-
428 term” precision on sample measurements will also differ. Because samples are often measured
429 only once, and all samples presented in this study were not measured during the same session, we
430 prefer to utilize the individual analytical errors (as 2 s.d.) in the subsequent discussion and error
431 propagation.

432 3.2.1 Direct synthesis

433 Direct synthesis experiments yield $\Delta^{30}\text{Si}(\text{qtz-zrc})$ values of 0.27 ± 0.07 , 0.29 ± 0.09 and
434 $0.21 \pm 0.08\text{\textperthousand}$ for respective temperatures of 725, 800, and 900 °C (Table 2). The $\Delta^{30}\text{Si}(\text{qtz-zrc})$
435 errors are calculated via $(\sqrt{[(\text{err}_{\text{qtz}})^2 + (\text{err}_{\text{zrc}})^2]})$, using 2 s.d. errors for quartz and zircon. The
436 measured $\delta^{30}\text{Si}_{\text{NBS-28}}$ value of the starting material is $-0.14 \pm 0.05\text{\textperthousand}$. In all three cases, this is less
437 than 0.1 % from calculated mass balance values of the experiments. Considering the average error
438 associated with this estimate ($\pm 0.08\text{\textperthousand}$), the average Si isotopic composition for quartz and zircon
439 supports Si isotope mass balance for the direct synthesis experiments.

442 3.2.2 Three-isotope method.

443
444 The $\delta^{29}\text{Si}$ and $\delta^{30}\text{Si}$ values for starting materials and experimental products are reported in
445 Table 3. The starting material for 900 and 800 °C experiments consisted of quartz pre-synthesized
446 in a piston cylinder device, whereas the starting material for the 725 °C experiments used
447 mechanically mixed SiO_2 powder without pre-synthesis. The $\delta^{30}\text{Si}(\text{ave})$ column is calculated by
448 taking the average $\delta^{30}\text{Si}(\text{qtz})$ and $\delta^{30}\text{Si}(\text{zrc})$ for each experiment, and assuming a 1:1 quartz to
449 zircon ratio, by mole. This reveals that the experimental charges exhibit very good agreement with
450 the average isotopic composition of the starting material, which indicates the experiments
451 approximate a closed system with respect to Si (**Figure 4**). When compared to the starting
452 materials, Si isotopic compositions of quartz and zircon show progressive exchange for longer
453 experiment durations. A simple percent exchanged calculation, which compares the amount of
454 isotope exchange between the initial and the experimental product with the difference between the
455 initial composition and intercept, ranges between 15 and 36%.

456 After Figure 2, the starting compositions and the measured phases for each isotope
457 exchange experiment were plotted on a $\delta^{29}\text{Si}$ vs. $\delta^{30}\text{Si}$ plot. A line was fitted to the data using a
458 York regression in the Origin 2016 ® software package. This line was extrapolated to intercept
459 the SMFL. In all cases, our three sets of experiments show quartz and zircon approaching the
460 SMFL. Intercepts and the errors were solved for each zircon and quartz pair. These intercepts
461 constrain the $\Delta^{30}\text{Si}(\text{qtz-zrc})$ at each of the three experiment temperatures.

462 These intercepts are also constrained by mass balance of the system (Figure 4). To take
463 this into consideration, our final calculated fractionations involved a Monte Carlo simulation of
464 possible $\Delta^{30}\text{Si}(\text{qtz-zrc})$ equilibrium values constrained by the SMFL intercept, the 95% confidence
465 intervals associated with the SMFL intercept, and the mass balance of the system. Inputs for
466 $\delta^{30}\text{Si}(\text{qtz})$ and $\delta^{30}\text{Si}(\text{zrc})$ were randomly generated by assuming the probability of distribution was
467 defined by the 95% confidence intervals of the intersection to the SMFL. The next criterion
468 requires that selected $\delta^{30}\text{Si}(\text{qtz})$ and $\delta^{30}\text{Si}(\text{zrc})$ values satisfy mass balance of the system, where
469 tolerances for this criterion are provided on Figure 4. We randomly selected 10,000 $\delta^{30}\text{Si}(\text{qtz})$ and
470 $\delta^{30}\text{Si}(\text{zrc})$ SMFL intercept values that satisfy mass balance, and the average of these results was
471 used to predict the fractionation. In general, the errors associated with the York fits for zircon
472 were smaller and quartz. While the error on the fit may be larger if quartz is considered
473 independently, the error becomes smaller when the mass balance constraint is utilized. The
474 standard deviation of the successful Monte Carlo sampling was used to calculate the error (see the
475 Electronic Annex for additional details). Our calculated $\Delta^{30}\text{Si}(\text{qtz-zrc})$ fractionations for 900, 800,
476 and 725 °C are 0.40 ± 0.46 , 0.51 ± 0.18 , and 0.50 ± 0.29 ‰ (2 s.d.), respectively (**Figure 5**).

477
478 **4 Discussion**

479
480 **4.1 Si isotope quartz-zircon fractionation calibration**

481
482 For each experiment, the orthosilicate zircon preferentially incorporates the lighter isotopes
483 of Si relative to quartz, as predicted by first principles equilibrium isotope theory and previous –
484 but limited – natural sample measurements (Méheut et al., 2009; Savage et al., 2012; Qin et al.,
485 2016; Trail et al., 2018). However, there is systematic shift between the fractionation factors
486 determined via the direct synthesis and three-isotope exchange methods. The average difference
487 between the larger $\Delta^{30}\text{Si}(\text{qtz-zrc})$ fractionations calculated for the three-isotope exchange method,

488 compared to the direct synthesis experiments for the three temperatures, is 0.18 ‰. This difference
489 is smaller than the average $\Delta^{30}\text{Si}(\text{qtz-zrc})$ three-isotope method errors ($\pm 0.31 \text{ ‰}$, 2 s.d.). The error
490 calculated for the direct synthesis is 0.08 ‰ (2 s.d.), which only takes into consideration the
491 reproducibility of the measurements. The larger errors associated with the three-isotope method
492 are because they represent the uncertainty of the measurements *and* the extrapolation of phases –
493 that exchanged at most ~40% of their Si during the experiment – to the SMFL. Although the direct
494 synthesis and three-isotope methods yield $\Delta^{30}\text{Si}(\text{qtz-zrc})$ values that are similar when error is
495 considered, this sort of magnitude in Si isotope space is on the same order as the isotopic difference
496 between basaltic and rhyolitic magmas (Savage et al., 2011), and is therefore worth commenting
497 upon. Here we explore potential reasons that may be affecting the resultant isotope fractionations
498 predicted using both methods.

499 First, there are limited experimental studies in which Si isotope fractionations between
500 phases have been characterized by different techniques for comparison. There are, however,
501 experimental data for Si isotope fractionations between molten silicate and metal, which used
502 methods similar to the direct synthesis and three-isotope methods employed here (Shahar et al.
503 2009; 2011; Hin et al. 2014). While silicate-metal systems are not directly analogous to our
504 experiments, they are of interest here because the different techniques utilized in these studies
505 yielded different $\Delta^{30}\text{Si}(\text{silicate-metal})$ vs. $1/T^2$ calibrations. For experiments conducted using the
506 three-isotope scheme, the silicate material was doped with ^{28}Si to trace the exchange of Si between
507 the metal and silicate. Experiments were performed at 1 GPa or 7 GPa, and from 1800 to 2200 °C
508 (Shahar et al., 2009; 2011). On the other hand, Hin et al. (2014) experimentally calibrated the Si
509 isotope fractionation between metal and silicate liquids using undoped materials, though with other
510 deviations from the general design of Shahar et al. (2009; 2011). For instance, Hin et al. (2014)
511 used modest to moderately different starting compositions. The main differences were that they
512 added a combined total of ~2.5 wt% Na_2O and K_2O to their silicate mixture, and used a Fe-Si
513 metal which contained ~1 wt% Mo and 10 wt% Sn for most of the experiments. That said, the
514 absence of Sn from two of their experiments did not lead to an appreciable change in their
515 $\Delta^{30}\text{Si}(\text{silicate-metal})$ vs. $1/T^2$ relationship. Hin et al. (2014) also used a centrifuging piston
516 cylinder for most of their experiments, though for a single experiment conducted in a standard
517 piston cylinder, the $\Delta^{30}\text{Si}(\text{silicate-metal})$ vs. $1/T^2$ relationship was not appreciably different. With
518 these differences and comparisons noted, Hin et al. (2014) reported smaller $\Delta^{30}\text{Si}(\text{silicate-metal})$
519 fractionations than those of Shahar et al. (2011), once temperature is considered. As a specific
520 example, Hin et al. (2014) predicts $\Delta^{30}\text{Si}(\text{silicate-metal}) = -1.08 \pm 0.01 \text{ ‰}$ at 1750 °C, whereas the
521 three-isotope calibration of Shahar et al. (2011) yields $\Delta^{30}\text{Si}(\text{silicate-metal}) = -1.82 \pm 0.10 \text{ ‰}$ at the
522 same temperature. The explanation for this difference suggested by Hin et al. (2014) is that some
523 Si was lost to the capsule thus compromising the simple application of the three-isotope method
524 presented in Figure 2. In our experiments, we can rule out loss of Si to the capsule wall as Si-
525 oxide is insoluble in Ag. The fluid medium does result in dissolved silica during the experiment,
526 which leads to a loss of silica from the SiO_2 -zircon system. This effect appears to be negligible as
527 it pertains to the isotopic composition of the system, an inference based on the attainment of
528 isotope mass balance for each experiment (i.e. Figure 4). Hence, this is unlikely to be the
529 explanation for the systematic offsets.

530 A second possibility is that, in the isotope exchange setup implemented here, the degree of
531 reaction of one of the starting materials with the fluid component could have been larger than for
532 the other phase. The direct synthesis method does not require dissolution of pre-existing zircon
533 which can be temporally prohibitive due to the refractory nature and slow dissolution kinetics of

534 zircon. This would essentially mean that calculation of the SMFL based on an equimolar mixture
535 is incorrect. However, this effect does not seem to be pronounced in our experiments because the
536 average composition of the experimental products agree with the starting composition, and the
537 calculated percent exchanged for zircon and quartz pairs in individual experiments are in broad
538 agreement (**Figure 6**).

539 A third possibility – fractionation of isotopes by diffusion – is not considered a viable
540 explanation for the differences observed either. While such effects may be possible in experiments
541 in which metal is a phase of interest (Lazar et al., 2012), the diffusion of cations in most mineral
542 oxides are not fast enough in most scenarios. The images presented in Figure 3 show that
543 recrystallization during the experiments occurs at the micron-scale for zircon. The scale is perhaps
544 tens of microns for quartz if the zircon inclusions identified within the quartz crystals are used as
545 a marker (Figure 3e). These distances are significantly longer than length scales for self-diffusion
546 of Si in quartz and zircon. The characteristic diffusive length scale ($[4D \cdot t]^{1/2}$, D = diffusivity and t
547 = time) for Si in quartz is only ~ 1 nm for a temperature of 900 °C and a duration of 10^4 years using
548 the Arrhenius relationship of Béjina and Jaoul (1996). The same temperature and time yield a
549 similar length scale for self-diffusion of Si in zircon (Cherniak, 2008). While these calculations
550 were conducted by extrapolating diffusivities collected from ~ 1600 to 1300 °C down to 900 °C,
551 the resulting characteristic diffusive length scales strongly suggest kinetic effects related to self-
552 diffusion of Si are not important, when compared to recrystallization. The slow diffusivities of Si
553 in quartz and zircon also mean that time series experiments are not likely to fully remove any
554 kinetic-based isotope fractionations due to crystal growth.

555 A fourth possibility to consider is the crystallization of the phases of interest during heating
556 of the direct synthesis experiments. Non-equilibrium fractionations were invoked by Clayton et
557 al. (1972) to explain the discrepancy between quartz-fluid oxygen isotope fractionation synthesis
558 and exchange experiments whose heating times range between 20 and 40 minutes for temperatures
559 of 250 to 500 °C. No evidence for disequilibrium was reported for experiments conducted at 750
560 °C for experiments of a similar design (Clayton et al., 1972). Our experiments were heated at a
561 rate of $\sim 300^\circ/\text{min}$, to lessen the severity of this effect, however we return to the issue of early phase
562 nucleation in light of the differences in isotope fractionations measured between the two
563 techniques. To supplement our understanding of the heating step, we conducted a ‘zero time’
564 experiment. This was heated at 300°/min to 900 °C and then immediately quenched. All other
565 aspects of the experiment were identical to the direct synthesis procedure presented in section
566 2.1.1. The heat-treated product was extracted from the capsule, and an X-ray diffraction (XRD)
567 pattern was collected with no other sample preparation. For comparison, an XRD pattern was also
568 collected for the starting material. This revealed a starting material that is almost exclusively
569 amorphous – with a minor fraction of tridymite detected – whereas the heat-treated product
570 contains evidence for abundant quartz and zircon (Electronic Annex). Element transport of O
571 during the heating process is unlikely to be restricted, that of Si is likely is highly restricted, with
572 crystallization occurring without full chemical communication of the entire capsule. While
573 speculative, this scenario may result in an underestimate of Si isotope fractionation factor, with
574 both phases having compositions closer to the bulk experimental composition.

575 The presence of nucleated zircon and quartz during heating, coupled with the low expected
576 transport of silica, is reason to consider the direct synthesis fractionations with caution. We
577 therefore consider the fractionations derived from the three-isotope method experiments to be
578 the best reflection of equilibrium fractionations. These $\Delta^{30}\text{Si}(\text{qtz-zrc})$ data are plotted against $1/T^2$
579 (in K) and fitted by regressing through the origin. This latter constraint is common among stable

580 isotope fractionation studies, whether used for theoretical results, experimental data, or empirical
581 studies (e.g. Qin et al., 2016; Shahar et al. 2009; Valley et al., 2003), which significantly reduces
582 the error on the slope in almost all cases. We assume that this constraint is applicable here for our
583 data, and in doing so, an *A*-value of 0.53 ± 0.14 is obtained using only the three-isotope
584 fractionations (equation 2).

585

586 **4.2 Comparison of Si isotope quartz-zircon fractionations**

587

588 While we view this *A*-value estimation as capturing the pertinent features of our data, this
589 it is not as robust as *A*-values reported for other isotope systems (e.g., Shahar et al., 2008), due to
590 the slower approach to equilibrium of silicate phases. We use this section to provide a simple
591 comparison of other available constraints and predicted $\Delta^{30}\text{Si}(\text{qtz-zrc})$ fractionations. The latter
592 are provided at 700 °C, a typical temperature for zircon crystallization in terrestrial magmas (e.g.,
593 Watson and Harrison, 1983; Watson et al., 2006; Boehnke et al., 2013). Using an *A*-value of 0.53
594 presented in the previous section yields a $\delta^{30}\text{Si}(\text{qtz})$ value 0.56 ‰ higher than co-existing zircon
595 at 700 °C. If only data from the direct synthesis experiments are used, this would yield $\Delta^{30}\text{Si}(\text{qtz-}\text{zrc})$
596 = 0.32 ‰. Trail et al. (2018) reported Si isotope measurements for an aliquot of zircon (~10³
597 grains) and quartz from the Lachlan Fold Belt Jindabyne tonalite. The zircons from this tonalite
598 have an average crystallization temperature of 755 °C (Trail et al., 2017). Assuming this
599 temperature represents crystallization T of the mineral pair, and that $\Delta^{30}\text{Si}(\text{qtz-zrc})$ tends toward
600 zero when temperature tends toward infinity, an *A*-value of 0.50 can be calculated (and a $\Delta^{30}\text{Si}(\text{qtz-}\text{zrc})$
601 = 0.53 ‰ at 700 °C). While the direction of the predicted fraction is the same for both
602 experimental methods, these natural data are in best agreement with the *A*-value calculated with
603 three-isotope method experiments. Finally, Qin et al. (2016) reported calculations, based on
604 density functional theory, to quantify the fractionation factors for a wide range of silicates. This
605 study predicts a $\Delta^{30}\text{Si}(\text{qtz-zrc})$ fractionation of 0.39 ‰ at 700 °C, which is in closest agreement
606 with the direct synthesis only work presented here. A summary of these fractionations is provided
607 in **Figure 8** and Table 4.

608

609 **4.3 Inferring whole rock Si isotope composition from out-of-context zircon and quartz**

610

611 A goal of this work is to better constrain the Si isotope composition of an igneous rock via
612 analysis of zircon or quartz, as both minerals are common in the detrital record. Here, we provide
613 a relatively robust parametrization to allow for this, albeit within a simplified model. The first
614 requirement is to explore how the $\delta^{30}\text{Si}(\text{qtz})$ and $\delta^{30}\text{Si}(\text{zrc})$ values relate to the whole rock (WR).
615 In general, the present observations of natural samples show that the quartz Si isotope composition
616 is a broad proxy for WR $\delta^{30}\text{Si}$. Felsic WR and mineral separate data reported by Savage et al.
617 (2012) show that quartz is generally isotopically heavier than whole rock, but with only a small
618 (+0.05 ‰) enrichment in the heavier Si isotopes. This is perhaps not surprising, especially in
619 granites, where quartz has high modal abundances. For example, for a $\delta^{30}\text{Si}_{\text{NBS-28}}(\text{zrc})$ = -0.55 ‰,
620 we predict a $\delta^{30}\text{Si}_{\text{NBS-28}}(\text{qtz})$ of -0.05 ‰, for a crystallization temperature of ~700 °C. This would
621 give an approximate $\delta^{30}\text{Si}_{\text{NBS-28}}(\text{WR})$ of -0.10 ‰.

622

623 However, the nature of the $\Delta^{30}\text{Si}(\text{WR-zrc})$ relationship is less predictable as host-rock
624 composition (and mineralogy) change. In other words, there is no simple isotope relationship
625 between the WR and mineral because this relationship is a function of WR mineralogy and
composition. Nevertheless, broad predictions can be made within our current framework of

understanding. As mentioned, it appears that the relative polymerization degrees of the various mineral and melt phases exert a strong control on the relative Si isotope fractionation between these phases. High-SiO₂ melts are both highly polymerized and typically precipitate framework silicates such as quartz, feldspars, and feldspathoids which tend to prefer the heavier isotopes of Si. Zircon (an orthosilicate) crystallizing in this system should therefore strongly favor the lighter isotopes of Si. The largest $\Delta^{30}\text{Si}(\text{WR-zrc})$ should therefore be associated with zircons formed from high-SiO₂ melts, because these systems also crystallize at the lowest temperatures. It is also likely that in evolved but silica-undersaturated systems, where feldspathoids dominate, the difference in polymerization degree between these minerals and zircon – if saturated – should still mean that our $\Delta^{30}\text{Si}(\text{qtz-zrc})$ calibration will provide a broad estimate of whole-rock Si isotope composition.

It is less clear how $\Delta^{30}\text{Si}(\text{WR-zrc})$ will scale with significantly lower bulk SiO₂ concentration, but we predict that this magnitude will be smaller for zircons crystallizing from more primitive melts. This could be particularly important for kimberlitic zircons; although their petrogenesis is debated, they are often found intergrown with mafic phases such as Fe-rich olivine, Cr-rich diopsides, and Fe-Ti oxides (Spetsius et al., 2002; Page et al., 2007). The difference in polymerization degree between these phases is minimal, and hence this factor should not exert such a strong control on the Si isotope composition of zircons in this system.

In fact, (limited) measurements and calculations do imply that $\Delta^{30}\text{Si}(\text{WR-zrc})$ positively correlates with the SiO₂ content of the WR (Qin et al. 2016; Trail et al., 2018). For instance, Trail et al. (2018) reported a $\Delta^{30}\text{Si}(\text{WR-zircon})$ value of 0.37 ‰ for a tonalite (~65 wt% SiO₂), which broadly agrees with calculations by Qin et al. (2016) who estimated a $\Delta^{30}\text{Si}(\text{WR-zrc})$ fractionation for an intermediate felsic rock of ~0.3 ‰ at 750 °C. Moreover, the Duluth Gabbro “mantle” zircons analyzed by Trail et al. (2018) have $\delta^{30}\text{Si}_{\text{NBS-28}} \approx -0.36\text{‰}$, which is only subtly lighter than the current estimate for bulk silicate Earth (-0.29 ± 0.07‰, Savage et al., 2014). The effect that decreasing the SiO₂ content of the system is predicted to have on $\Delta^{30}\text{Si}(\text{WR-zrc})$ is illustrated in **Figure 9**, where the “mafic” value for A (see equation 2) is estimated from the offset of Duluth Gabbro zircons from Si isotope composition of the mantle ($\delta^{30}\text{Si}(\text{BSE}) = -0.29\text{‰}$; Savage et al., 2014) and a formation temperature of 800 °C. It is shown schematically that $\Delta^{30}\text{Si}(\text{WR-zrc})$ should decrease as SiO₂ of the system decreases; however it should not be assumed that $\Delta^{30}\text{Si}(\text{WR-zrc})$ and SiO₂ content will vary linearly. This schematic predicts that, when estimating $\delta^{30}\text{Si}(\text{WR})$ from an out-of-context zircon, one might over- or underestimate the whole rock composition by around 0.25 ‰, which is on the order of the precision of a typical ion microprobe Si isotope measurement.

Constraining the sensitivity of $\Delta^{30}\text{Si}(\text{WR-zrc})$ to whole-rock SiO₂ is potentially important for better bulk-rock Si isotope composition from Archean-age and older zircons, where the bulk composition of the continental crust is a subject of debate (e.g. Harrison et al., 2017; Greber et al. 2017; Caro et al., 2017; Cawood and Hawkesworth, 2019; Deng et al., 2019). Nevertheless, zircons crystallizing from a melt derived from purely igneous sources – i.e., without the involvement of “weathered” material – are expected to display a $\delta^{30}\text{Si}_{\text{NBS-28}}$ range from -0.70 to -0.35‰ (if we base the higher bound on the Duluth Gabbro sample). This inference applies to rocks with ~50-78 wt.%, SiO₂. Deviations from this $\delta^{30}\text{Si}_{\text{NBS-28}}(\text{zircon})$ range should indicate the presence of “non-igneous” material in the melt source.

4.4 $\Delta^{30}\text{Si}(\text{qtz-zrc})$ and $\Delta^{18}\text{O}(\text{qtz-zrc})$ as geothermometers?

Our experiments and natural measurements predict resolvable Si isotope inter-mineral fractionations between zircon and quartz in igneous systems, larger than most other mineral-

672 mineral pairs (Savage et al., 2011, 2012; Trail et al., 2018). This opens the possibility that
673 $\Delta^{30}\text{Si}(\text{qtz-zrc})$ values could be used as a geothermometer in rocks where quartz and zircon are in
674 equilibrium. In this regard, a key source of comparison is the widely used Ti-in-zircon
675 geothermometer and the Ti-in-quartz geothermobarometer (Watson and Harrison, 2005; Ferry and
676 Watson, 2007; Thomas et al., 2010). This method requires measurement of the Ti content in the
677 phase-of-interest, which is a simple measurement by *in-situ* techniques. The calibrations are
678 precise ($\sim\pm20$ °C) though there may be uncertainties in the titania activity during zircon and quartz
679 saturation, which could propagate additional uncertainties into the final calculated temperature.
680 Watson and Harrison (2005) estimate a *ca.* 50° increase in the calculated zircon crystallization
681 temperature for titania activities that change from 1 to 0.5. The titania activity term does not
682 simply cancel out if both phases are considered together because the Ti concentration in quartz is
683 pressure-dependent too (Thomas et al., 2010).

684 However, $\Delta^{30}\text{Si}(\text{qtz-zrc})$ or $\Delta^{18}\text{O}(\text{qtz-zrc})$ fractionations can only provide crude inferences
685 about the crystallization temperature, if reasonably pure aliquots of zircon and quartz are
686 obtainable. Such a measurement is also significantly more complex analytically. A measured
687 $\Delta^{30}\text{Si}(\text{qtz-zrc})$ of 0.56 ‰ with a precision of 0.06 ‰ would result in a temperature estimate of
688 $\sim700\pm150$ °C (2 s.d.). A similar calculation for $\Delta^{18}\text{O}(\text{qtz-zrc}) = 2.46$ ‰ with a precision of 0.2 ‰
689 yields $\sim700\pm130$ °C when the O isotope $A_{\text{qtz-zrc}}$ of 2.33 ± 0.24 is applied (Trail et al., 2009). Thus,
690 the current calibrations do not make useful geothermometers, given that errors are so large as to
691 make any such T-based calculation to be of limited value. Considering the isotope systems
692 together, however, may help evaluate whether the two phases crystallized in equilibrium (**Figure**
693 **10**). The slope of $\Delta^{18}\text{O}(\text{qtz-zrc})$ vs. $\Delta^{30}\text{Si}(\text{qtz-zrc})$ fractionation vs. T is 4.4, reflecting the ratio of
694 the *A*-values. Coupled measurements of Si and O isotopes in zircon and quartz that are well
695 resolved from a slope of 4.4 ± 1.5 (2 s.d) are likely to have crystallized out of equilibrium.

696 While these igneous T estimates are very crude by most modern techniques, there are
697 systems where such strategies could be of value. Recently, Ackerson et al. (2018) measured Ti
698 contents in quartz from the Tuolumne Intrusive Suite, located in the central Sierra Nevada,
699 California. Coupled with independent pressure estimates, the low Ti contents were interpreted to
700 reflect crystallization temperatures from ~475 to 560 °C. This was not predicted to be an isolated
701 occurrence; for instance, perhaps 75% of the quartz in this suite could have crystallized 100 to 200
702 °C below the wet granite solidus (Ackerson et al., 2018). The use of coupled $\Delta^{18}\text{O}(\text{qtz-zrc})$ and
703 $\Delta^{30}\text{Si}(\text{qtz-zrc})$ to probe temperature is potentially appealing because the low predicted
704 temperatures will result in larger fractionations. In the case of the former, if the same precisions
705 for $\Delta^{18}\text{O}(\text{qtz-zrc})$ and $\Delta^{30}\text{Si}(\text{qtz-zrc})$ specified above are applied, the error on both temperature
706 estimates is ~100 °C (2 s.d.) at 500 °C, which may be sufficient to explore the low temperature
707 histories of granites or metamorphic systems in certain situations. At low temperatures, such
708 isotope fractionations may be advantageous over the well-established Ti-in-zircon thermometry
709 because the predicted Ti concentration in the presence of rutile and quartz is only ~0.2 ppm Ti at
710 500 °C, which makes this a more challenging measurement than typical igneous zircons.

711 712 5. Outlook

713 Since Si and O are abundant in the lithosphere and exhibit isotope fractionations at low
714 temperatures, it is logical to consider both systems when probing the nature of water rock
715 interactions and crustal weathering. This advantage, for example, was used to explore weathering
716 and precipitation processes in Archean greenstone belts. Abraham et al. (2011) measured bulk rock
717

718 $\delta^{30}\text{Si}$ and $\delta^{18}\text{O}$ values of silicified basalts and bedded cherts from the Barberton Greenstone belt.
719 This belt exhibits variable degrees of silica alteration, which is evidence for active silica cycle,
720 including mobilization and precipitation on the Archean Earth. Authigenic, seawater-derived silica
721 tends to have positive $\delta^{30}\text{Si}$ relative to igneous rocks because of the enrichment of heavier isotopes
722 in riverine silica, which is the major Si flux to the oceans (Frings et al., 2016). This study
723 discovered enrichments in ^{18}O and ^{30}Si correlated with increasing silicification, implying that
724 seawater was the dominant source of this silica.

725 Coupled Si-O isotope investigations have also been performed on the mineral scale, with
726 *in-situ* ion microprobe measurement of authigenic silica such as chert. In cases where chert or
727 quartz forms via hydrothermal precipitation, either in a marine or continental setting, the O and Si
728 isotope signatures in silica can reflect the degree of fractionation from hydrothermal fluids. The
729 trajectory and magnitude of $\delta^{18}\text{O}$ and $\delta^{30}\text{Si}$ in these silica precipitates is a strong function of the
730 hydrothermal environment and the fluid to rock ratio (Kleine et al., 2018), in addition to Si isotope
731 equilibrium fractionations (Pollington et al., 2016). Deviations in silica $\delta^{30}\text{Si}$ from mantle values
732 in Archean banded iron formations were interpreted to be the product of marine hydrothermal
733 activity, with a minor fraction of input from continental weathering (Heck et al., 2011). Other
734 possibilities include input from continent-derived freshwaters (~10 %) and very minor (<0.1 %)
735 high-T hydrothermal activity (Delvigne et al., 2012).

736 While the geologic record is not always permissive of direct interrogation of sedimentary
737 material to trace low temperature surficial processes, burial and assimilation of this material into
738 crustal melts means that such chemical information may be inherited in igneous rocks. Whole rock
739 (WR) measurements are obvious targets, though in some cases, mineral-scale measurements are
740 the only possibility. With the goal of extracting useful and interpretable isotope information from
741 single minerals in igneous systems, high temperature (igneous) isotope fractionations must be
742 characterized. Our report of $\Delta^{30}\text{Si}(\text{qtz-zrc})$, to our knowledge, is the first experimental study to
743 characterize Si isotope fractionation between igneous silicate minerals. In this case, the pertinent
744 question bears not just on the isotopic composition of the mineral in question, but whether this
745 information can be used to provide clues about the composition of the melt from which the mineral
746 crystallized, and furthermore, about the material involved in the formation of the melt (Trail et al.,
747 2018). Our results enable, to first order, separation of contamination by low temperature
748 weathering products into magmas, and the subsequent high-temperature fractionation that exists
749 between silicate phases. These experimental data help establish Si isotopes as an emerging
750 geochemical tool that could be used in combination with O isotopes to address key issues about
751 the character and evolution of crust-atmosphere-hydrosphere interactions that span the breadth of
752 Earth history. Detrital quartz and zircon are two clear cases where mineral-scale observations –
753 and corresponding predictions about the composition of the host rock – will be of value. The most
754 obvious application to target is zircon because it can be dated by U-Pb geochronology, though by
755 sediment volume, quartz makes up a vastly larger fraction of sedimentary material and thus may
756 be a valuable source of information.

757

758

759 Acknowledgements

760 We thank C.A. Macris for a particularly insightful review, and two anonymous reviewers for their
761 detailed comments and suggestions which improved the content of this manuscript. We also thank
762 the handling editor Edwin Schable for useful comments and suggestions. This work was
763 supported by NSF grants EAR-1447404 and EAR-1650033, and NERC grant NE/R002134/1. DT

764 thanks Jacob Buettner, Yanling Yang, Wriju Chowdhury, and Chis Pratt for assistance. We thank
765 the support of the analytical staff at IPGP (Julien Moureau, Pascale Louvat, Delphine Limmois),
766 where much of the measurement for this work were made, as well as Eva Stueeken and Finlay
767 Morrison for use of their furnace facilities at St Andrews. PS would also like to cite the support of
768 a Carnegie Trust Research Incentive Grant, which helped the setup of various isotope techniques
769 in the St Andrews Isotope Geochemistry (STAiG) laboratories. FM thanks the ERC under the
770 European Community's H2020 framework program/ERC grant agreement # 637503 (Pristine) and
771 for the UnivEarthS Labex program (no. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). Parts
772 of this work were supported by IPGP multidisciplinary program PARI, and by Region île-de-
773 France SESAME Grant (no. 12015908).

774

775 References

776

777 Abraham, K., Hofmann, A., Foley, S.F., Cardinal, D., Harris, C., Barth, M.G. and André, L. (2011)
778 Coupled silicon–oxygen isotope fractionation traces Archaean silicification. *Earth and*
779 *Planetary Science Letters* 301, 222-230.

780 Ackerson, M.R., Mysen, B.O., Tailby, N.D. and Watson, E.B. (2018) Low-temperature
781 crystallization of granites and the implications for crustal magmatism. *Nature* 559, 94-97.

782 Ayers, J.C., Brenan, J.M., Watson, E.B., Wark, D.A. and Minarik, W.G. (1992) A new capsule
783 technique for hydrothermal experiments using the piston-cylinder apparatus. *American*
784 *Mineralogist* 77, 1080-1086.

785 Ayers, J.C. and Peters, T.J. (2018) Zircon/fluid trace element partition coefficients measured by
786 recrystallization of Mud Tank zircon at 1.5 Pa and 800-1000oC. *Geochemica et*
787 *Cosmochimica acta* 223, 60-74.

788 Ayers, J.C. and Watson, E.B. (1991) Solubility of Apatite, Monazite, Zircon, and Rutile in
789 Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry.
790 *Philosophical Transactions of the Royal Society A: Mathematical, Physical and*
791 *Engineering Sciences* 335, 365-375.

792 Ayers, J.C. and Watson, E.B. (1993a) Apatite/fluid partitioning of rare-earth elements and
793 strontium: Experimental results at 1.0 GPa and 1000°C and application to models of fluid-
794 rock interaction. *Chemical Geology* 110, 299-314.

795 Ayers, J.C. and Watson, E.B. (1993b) Rutile solubility and mobility in supercritical aqueous fluids.
796 *Contrib Mineral Petrol* 114, 321-330.

797 Béjina, F. and Jaoul, O. (1996) Silicon self-diffusion in quartz and diopside measured by nuclear
798 micro-analysis methods *Physics of the Earth and Planetary Interiors* 97, 145-162

799 Bindeman, I.N., Watts, K.E., Schmitt, A.K., Morgan, L.A. and Shanks, P.W.C. (2007) Voluminous
800 low $\delta^{18}\text{O}$ magmas in the late Miocene Heise volcanic field, Idaho: Implications for the
801 fate of Yellowstone hotspot calderas. *Geology* 35, 1019-1022.

802 Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K. (2013) Zircon saturation
803 re-revisited. *Chemical Geology* 351, 324-334.

804 Caro, G., Morino, P., Mojzsis, S.J., Cates, N.L. and Bleeker, W. (2017) Sluggish Hadean
805 geodynamics: Evidence from coupled 146,147 Sm– 142,143 Nd systematics in Eoarchean
806 supracrustal rocks of the Inukjuak domain (Québec). *Earth and Planetary Science Letters*
807 457, 23-37.

808 Cavosie, A.J., Kita, N.T. and Valley, J.W. (2009) Primitive oxygen-isotope ratio recorded in
809 magmatic zircon from the Mid-Atlantic Ridge. *American Mineralogist* 94, 926-934.

810 Cavosie, A.J., Valley, J.W., Wilde, S.A. and E.I.M.F (2005) Magmatic $\delta^{18}\text{O}$ in 4400–3900 Ma
811 detrital zircons: A record of the alteration and recycling of crust in the Early Archean. *Earth*
812 and *Planetary Science Letters* 235, 663-681.

813 Cawood, P.A. and Hawkesworth, C. (2019) Continental crustal volume, thickness and area, and
814 their geodynamic implications. *Gondwana Research* 66, 116–125.

815 Chacko, T., Cole, D.R. and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope
816 fractionation factors applicable to geologic systems. *Reviews in mineralogy and*
817 *geochemistry* 43, 1-81.

818 Chappell, B.W., White, A.J.R. and Hine, R. (1988) Granite provinces and basement terranes in the
819 Lachlan Fold Belt, southeastern Australia. *Australian Journal of Earth Sciences* 35, 505-
820 521.

821 Cherniak, D.J. (2008) Si diffusion in zircon. *Physics and Chemistry of Minerals* 35, 179-187.

822 Chiba, H., Chacko, T., Clayton, R.N. and Goldsmith, J.R. (1989) Oxygen isotope fractionations
823 involving diopside, forsterite, magnetite, and calcite: Application to geothermometry.
824 *Geochimica et Cosmochimica Acta* 53, 2985-2995.

825 Currie, K.L., Knutson, J. and Tembly, P.A. (1992) The Mud Tank carbonatite complex, central
826 Australia- an example of metasomatism at mid-crustal levels. *Contr. Mineral. and Petrol.*
827 109, 326-339.

828 Deng, Z., Chaussidon, M., Savage, P.S., Robert, F., Pik, R. and Moynier, F. (2019) Titanium
829 isotopes as a tracer for the plume or island arc affinity of felsic rocks. *Proc Natl Acad Sci*
830 116, 1132–1135

831 Ding, T. et al. (1996) *Silicon Isotope Geochemistry*, Geological Publishing, Beijing.

832 Ferry, J.M. and Watson, E.B. (2007) New thermodynamic models and revised calibrations for the
833 Ti-in-zircon and Zr-in-rutile thermometers. *Contributions to Mineralogy and Petrology*
834 154, 429-437.

835 Frings, P., Clymans, W., Fontorbe, G., De La Rocha, C.L. and Conley, D.J. (2016) The continental
836 Si cycle and its impact on the ocean Si isotope budget. *Chemical Geology* 425, 12-36.

837 Georg, B. (2006) Geochemistry of stable silicon isotopes measured by high-resolution multi-
838 collector inductively coupled plasma mass spectrometry (HR-MC-ICPMS). Ph.D. thesis,
839 Swiss Federal Institute of Technology, Zurich.

840 Georg, R.B., Reynolds, B.C., Frank, M. and Halliday, A.N. (2006) New sample preparation
841 techniques for the determination of Si isotopic compositions using MC-ICPMS. *Chemical*
842 *Geology* 235, 95-104.

843 Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T. and van Bronswijk, W. (2001) Leaching
844 and differential recrystallization of metamict zircon under experimental hydrothermal
845 conditions. *Contributions to Mineralogy and Petrology* 141, 53-65.

846 Grimes, C.B., Ushikubo, T., Kozdon, R. and Valley, J.W. (2013) Perspectives on the origin of
847 plagiogranite in ophiolites from oxygen isotopes in zircon. *Lithos* 179, 48-66.

848 Harmon, R.S. and Hoefs, J. (1995) Oxygen isotope heterogeneity of the mantle deduced from
849 global ^{18}O systematics of basalts from different geotectonic settings. *Contrib Mineral*
850 *Petrol* 120, 95-114

851 Harrison, T.M., Bell, E.A. and Boehnke, P. (2017) Hadean Zircon Petrochronology. *Reviews in*
852 *Mineralogy and Geochemistry* 83, 329–363.

853 Heck, P.R., Huberty, J.M., Kita, N.T., Ushikubo, T., Kozdon, R. and Valley, J.W. (2011) SIMS
854 analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic
855 banded iron formations. *Geochimica et Cosmochimica Acta* 75, 5879-5891.

856 Keay, S., Collins, W.J., McCulloch, M.T (1997) A three-component Sr-Nd isotopic mixing model
857 for granitoid genesis, Lachlan fold belt, eastern Australia. *Geology* 25, 307–310.

858 Kemp, A.I.S., Whitehouse, M.J., Hawkesworth, C.J. and Alarcon, M.K. (2005) A zircon U-Pb
859 study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia:
860 implications for the high/low temperature classification and magma differentiation
861 processes. *Contributions to Mineralogy and Petrology* 150, 230-249.

862 Kieffer S. W. (1982) Thermodynamics and lattice vibrations of minerals: 5. applications to phase
863 equilibria, isotopic fractionation, and high-pressure thermodynamic properties. *Rev.
864 Geophys. Space Phys.*, 20, 827-849.

865 Kleine, B.I., Stefánsson, A., Halldórsson, S.A., Whitehouse, M.J. and Jónasson, K. (2018) Silicon
866 and oxygen isotopes unravel quartz formation processes in the Icelandic crust.
867 *Geochemical Perspectives Letters*, 5-11.

868 Lackey, J.S., Valley, J.W., Chen, J.H. and Stockli, D.F. (2008) Dynamic Magma Systems, Crustal
869 Recycling, and Alteration in the Central Sierra Nevada Batholith: the Oxygen Isotope
870 Record. *Journal of Petrology* 49, 1397-1426.

871 Lazar, C., Young, E.D. and Manning, C.E. (2012) Experimental determination of equilibrium
872 nickel isotope fractionation between metal and silicate from 500°C to 950°C. *Geochimica
873 et Cosmochimica Acta* 86, 276-295.

874 Loewen, M.W. and Bindeman, I.N. (2015) Oxygen isotope and trace element evidence for three-
875 stage petrogenesis of the youngest episode (260–79 ka) of Yellowstone rhyolitic
876 volcanism. *Contributions to Mineralogy and Petrology* 170.

877 Loewen, M.W. and Bindeman, I.N. (2016) Oxygen isotope thermometry reveals high magmatic
878 temperatures and short residence times in Yellowstone and other hot-dry rhyolites
879 compared to cold-wet systems. *American Mineralogist* 101, 1222-1227.

880 Macris, C.A., Young, E.D. and Manning, C.E. (2013) Experimental determination of equilibrium
881 magnesium isotope fractionation between spinel, forsterite, and magnesite from 600 to 800
882 °C. *Geochimica et Cosmochimica Acta* 118, 18-32.

883 Mathews, A., Goldsmith, J.R., Clayton, R.N. (1983) Oxygen isotope fractionations involving
884 pyroxenes: the calibration of mineral-pair geothermometers *Geochim. Cosmochim. Acta*
885 47, 631-644.

886 Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1978) Mechanisms of hydrothermal
887 crystallization of quartz at 250 C and 15 kbar. *Geochimica et Cosmochimica Acta* 42, 173-
888 182.

889 Méheut, M., Lazzeri, M., Balan, E. and Mauri, F. (2009) Structural control over equilibrium silicon
890 and oxygen isotopic fractionation: A first-principles density-functional theory study.
891 *Chemical Geology* 258, 28-37.

892 Méheut, M. and Schauble, E.A. (2014) Silicon isotope fractionation in silicate minerals: Insights
893 from first-principles models of phyllosilicates, albite and pyrope. *Geochimica et
894 Cosmochimica Acta* 134, 137-154.

895 Mojzsis, S.J., Harrison, T.M. and Pidgeon, R.T. (2001) Oxygen-isotope evidence from ancient
896 zircons for liquid water at the Earth's surface 4,300 Myr ago. *Nature* 409, 178-181.

897 Montel, J.M. (1989) Monazite end members and solid solutions: synthesis, unit-cell
898 characteristics, and utilization as microprobe standards. *Mineralogical Magazine*, 52, 120-
899 123.

900 O'Neil, J.R., and Chappell, B.W. (1977) Oxygen and hydrogen isotope relations in the
901 Berridale batholith. *J. Geol. Soc. Lond.* 133, 559-571.

902 Opfergelt, S. and Delmelle, P. (2012) Silicon isotopes and continental weathering processes:
903 Assessing controls on Si transfer to the ocean. *Comptes Rendus Geoscience* 344, 723-738.

904 Page, F.Z., Fu, B., Kita, N.T., Fournelle, J., Spicuzza, M.J., Schulze, D.J., Viljoen, F., Basei,
905 M.A.S. and Valley, J.W. (2007) Zircons from kimberlite: New insights from oxygen
906 isotopes, trace elements, and Ti in zircon thermometry. *Geochimica et Cosmochimica Acta*
907 71, 3887-3903.

908 Pollington, A.D., Kozdon, R., Anovitz, L.M., Georg, R.B., Spicuzza, M.J. and Valley, J.W. (2016)
909 Experimental calibration of silicon and oxygen isotope fractionations between quartz and
910 water at 250°C by in situ microanalysis of experimental products and application to zoned
911 low $\delta^{29}\text{Si}$ quartz overgrowths. *Chemical Geology* 421, 127-142.

912 Qin, T., Wu, F., Wu, Z. and Huang, F. (2016) First-principles calculations of equilibrium
913 fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. *Contributions to
914 Mineralogy and Petrology* 171.

915 Reynolds, B.C., Aggarwal, J., Andre, L., Baxter, D., Beucher, C., Brzezinski, M.A., Engstrom, E.,
916 Georg, R.B., Land, M., Leng, M.J., Opfergelt, S., Rodushkin, I., Sloane, H.J., van den
917 Boorn, S.H.J.M., Vroon, P.Z. and Cardinal, D. (2007) An inter-laboratory comparison of
918 Si isotope reference materials. *Journal of Analytical Atomic Spectrometry* 22, 561-568.

919 Reynolds, J.H., Verhoogen, J. Natural variations in the isotopic constitution of silicon. *Geochimica
920 et Cosmochimica Acta* 1952.

921 Savage, P.S., Armytage, R.M.G., Georg, R.B. and Halliday, A.N. (2014) High temperature silicon
922 isotope geochemistry. *Lithos* 190-191, 500-519.

923 Savage, P.S., Georg, R.B., Williams, H.M., Burton, K.W. and Halliday, A.N. (2011) Silicon
924 isotope fractionation during magmatic differentiation. *Geochimica et Cosmochimica Acta*
925 75, 6124-6139.

926 Savage, P.S., Georg, R.B., Williams, H.M. and Halliday, A.N. (2013a) The silicon isotope
927 composition of the upper continental crust. *Geochimica et Cosmochimica Acta* 109, 384-
928 399.

929 Savage, P.S., Georg, R.B., Williams, H.M. and Halliday, A.N. (2013b) Silicon isotopes in granulite
930 xenoliths: insights into isotopic fractionation during igneous processes and the composition
931 of the deep continental crust. *Earth and Planetary Science Letters* 365, 221-231.

932 Savage, P.S., Georg, R.B., Williams, H.M., Turner, S., Halliday, A.N. and Chappell, B.W. (2012)
933 The silicon isotope composition of granites. *Geochimica et Cosmochimica Acta* 92, 184-
934 202.

935 Savage, P.S. and Moynier, F. (2013) Silicon isotopic variation in enstatite meteorites: Clues to
936 their origin and Earth-forming material. *Earth and Planetary Science Letters* 361, 487-496.

937 Shahar, A., Ziegler, K., Young, E.D., Ricolleau, A., Schauble, E.A. and Fei, Y. (2009)
938 Experimentally determined Si isotope fractionation between silicate and Fe metal and
939 implications for Earth's core formation. *Earth and Planetary Science Letters* 288, 228-234.

940 Spetsius, Z.V., Belousova, E.A., Griffin, W., O'Reilly, S.Y. and Pearson, N.J. (2002) Archean
941 sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia:
942 implications for the dating of diamonds *Earth and Planetary Science Letters* 199, 111-126.

943 Taylor, H.P. (1968) The oxygen isotope geochemistry of igneous rocks. *Contrib. Mineral. Petrol.*
944 19, 1-71.

945 Taylor, H.P. and Sheppard, S.M.F. (1986) Igneous Rocks: I. Processes of isotopic fractionation
946 and isotope systematics. *Reviews in Mineralogy* 16, 227-271.

947 Teng, F.-Z., Li, W.-Y., Rudnick, R.L. and Gardner, L.R. (2010) Contrasting lithium and
948 magnesium isotope fractionation during continental weathering. *Earth and Planetary
949 Science Letters* 300, 63-71.

950 Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K. and Lanzirotti, A. (2010)
951 *TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in
952 quartz. Contributions to Mineralogy and Petrology* 160, 743-759.

953 Trail, D., Bindeman, I.N., Watson, E.B. and Schmitt, A.K. (2009) Experimental calibration of
954 oxygen isotope fractionation between quartz and zircon. *Geochimica et Cosmochimica
955 Acta* 73, 7110-7126.

956 Trail, D., Boehnke, P., Savage, P.S., Liu, M.C., Miller, M.L. and Bindeman, I. (2018) Origin and
957 significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean
958 zircon. *Proc Natl Acad Sci U S A* 115, 10287-10292.

959 Trail, D., Tailby, N.D., Wang, Y., Harrison, T.M. and Boehnke, P. (2017) Aluminum in zircon as
960 evidence for peraluminous and metaluminous melts from the Hadean to present.
961 *Geochemistry, Geophysics, Geosystems* 10.1002/2016GC006794 1-14.

962 Trail, D., Thomas, J.B. and Watson, E.B. (2011) The incorporation of hydroxyl into zircon.
963 *American Mineralogist* 96, 60-67.

964 Valley, J.W., Bindeman, I.N. and Peck, W.H. (2003) Empirical calibration of oxygen isotope
965 fractionation in zircon. *Geochimica et Cosmochimica Acta* 67, 3257-3266.

966 Valley, J.W., Chiarenzelli, J.R. and McLelland, J.M. (1994) Oxygen isotope geochemistry of
967 zircon. *Earth and Planetary Science Letters* 126, 187-206.

968 Valley, J.W., Kinny, P.D., Schulze, D.J., Spicuzza, M.J. (1998) Zircon megacrysts from
969 kimberlite: oxygen isotope variability among mantle melts. *Contrib Mineral Petrol* 133, 1-
970 11.

971 Watson, E. and Cherniak, D. (1997) Oxygen diffusion in zircon. *Earth and Planetary Science
972 Letters* 148, 527-544.

973 Watson, E. and Harrison, T. (2005) Zircon thermometer reveals minimum melting conditions on
974 earliest Earth. *Science* 308, 841-844.

975 Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition
976 effects in a variety of crustal magma types. *Earth and Planetary Science Letters* 64, 295-
977 304.

978 Young, E.D., Galy, A. and Nagahara, H. (2002) Kinetic and equilibrium mass-dependent isotope
979 fractionation laws in nature and their geochemical and cosmochemical significance.
980 *Geochimica et Cosmochimica Acta* 66, 1095-1104.

981
982
983
984
985
986
987
988
989
990
991
992

993 **Figure Captions**

994 **Figure 1** Schematic of the experimental configuration, formed of NaCl cells surrounding
995 borosilicate glass and a graphite furnace, which was used for all experiments. Silver capsules were
996 machined with an outer diameter of 7.3 mm and inner diameter of 4.8 mm. Capsules were 8 mm
997 in length with a 2 mm lid. During cold pressurization, the Ag lid seals the capsule shut without
998 requiring heating of the metal by welding (Trail et al., 2009; Thomas et al., 2010). This also results
999 in a systematic and well-defined geometry for each experiment. The pressure media – i.e., MgO –
1000 is embedded in the exterior of the capsule during the dwell time at temperature, which means that
1001 comparing weight of capsules before and after the experiment cannot be used to assess weight loss.
1002 Additional details related to creation of a water-tight seal using the pressure-sealing technique is
1003 located elsewhere (e.g., Ayers and Watson, 1991; Ayers et al., 1992; Ayers and Watson 1993a,b).
1004
1005

1006 **Figure 2.** Schematic diagram for the three-isotope exchange method used for some experiments
1007 conducted in this study. The SiO_2 was doped off the terrestrial mass fractionation line to target
1008 $\delta^{29}\text{Si}$ and $\delta^{30}\text{Si}$ values of $\sim 3\text{ ‰}$ (all $\delta^x\text{Si}$ relative to NBS-28), whereas terrestrial mantle zircon
1009 was used for the starting material ($\delta^{29}\text{Si} = -0.17\text{ ‰}$, $\delta^{30}\text{Si} = -0.34\text{ ‰}$; Trail et al. 2018). Longer
1010 experiment durations led to increased isotopic exchange between the two reservoirs. The
1011 intersection of the experimental data with the secondary mass fractionation line (SMFL) is used to
1012 calculate the equilibrium fractionation. Note that in our experiments the SMFL intercept is also
1013 constrained by the mass balance.
1014

1015 **Figure 3.** Representative SEM and CL images of the starting materials and experimental products.
1016 **(a)** SE image of zircon from a direct synthesis experiment (725 °C) showing $\sim 3\text{ }\mu\text{m}$ zircons. **(b)**
1017 Secondary electron (SE) image of crushed and ground Mud Tank zircon used as the starting
1018 material for the three-isotope method experiments. This material is representative of the size and
1019 appearance of zircons fragments added to experiments. **(c)** SE image of quartz and zircon from the
1020 “zircon fraction” for the 800 °C , 500 h experiment before HF treatment. Note the lack of angular
1021 grain fragments which is evidence that the zircon starting material underwent micron-scale
1022 recrystallization during the experiment. **(d)** SE image of zircons from an 800 °C experiment held
1023 for 500 hours, after HF treatment overnight. **(e)** Backscattered electron image of quartz grains
1024 (900 °C , 150 h) showing small micron-sized zircon inclusions circled in the image. **(f)**
1025 Cathodoluminescence image of untreated Mud Tank zircon. **(g-i)** CL image showing the changes
1026 in zircon luminescent characteristics after 20 , 150 , and 500 h (respectively) at 800 °C . The CL
1027 features near the rims of heat-treated zircons are interpreted to represent incorporation of Dy due
1028 to recrystallization of zircon.
1029
1030

1031 **Figure 4** Average Si isotope compositions of three-isotope method experiments plotted against
1032 experiment duration. The initial composition (open symbol) is plotted at $t = 0$. The $\delta^{30}\text{Si}$ averages
1033 and 2 s.d. values for each temperature series are included. These average values, which are used
1034 to constrain the isotopic composition of the system and to calculate the fractionation values, agree
1035 well with the initial composition.
1036

1037
1038
1039
1040
1041
1042

Figure 5. Three-isotope plots for the three different temperatures explored in this study (isotope ratios are reported relative to NBS-28). Si isotope fractionation between zircon and quartz are calculated by extrapolation to the secondary mass fractionation line (SMFL) and constrained by mass balance. The dashed lines represent 95% confidence intervals.

1043
1044
1045
1046
1047
1048

Figure 6. The % exchanged of zircon plotted against % exchanged quartz for individual experiments for three-isotope exchange experiments. The % exchanged is calculated by subtracting isotope composition of the starting material from the experimental product and then dividing by the total length of the isotope line whose endpoints are defined by the starting material and the extrapolated intersection of the data with the SMFL.

1049
1050
1051
1052
1053

Figure 7. Results of experiments showing Si isotope fractionation between quartz and zircon for the three different temperatures for both experimental methods (error bars are 2 s.d.). The fit to the three-isotope data yields an *A*-value of 0.53 ± 0.14 (2 s.e.). Direct synthesis experiments are not included in the fit (see text for details).

1054
1055
1056
1057
1058
1059

Figure 8. A comparison of quartz-zircon Si isotope fractionations lines using the different *A*-values in Table 3. The experiment lines are derived independently from three-isotope the direct synthesis methods. The direct synthesis method is in closest agreement with the calculations of Qin et al. (2016), whereas the natural data presented in Trail et al. (2018) yield the best agreement with the three-isotope method.

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

Figure 9. Schematic showing the predicted relationship between $\Delta^{30}\text{Si}(\text{WR-zrc})$ as the SiO_2 composition of the system decreases, because of the reduction in polymerization between crystallizing zircon and other phases. The red curve represents $\Delta^{30}\text{Si}(\text{qtz-zrc})$ calibration defined by this work (*A* = 0.53). The $\Delta^{30}\text{Si}(\text{WR-zrc})$ value, with $\text{SiO}_2 \approx 65$ wt. %, is calculated from $\delta^{30}\text{Si}(\text{zrc})$ and $\delta^{30}\text{Si}(\text{WR})$ values reported in Trail et al. (2018) for a tonalite. The mafic, or “ $\text{SiO}_2 \approx 50$ wt.%”, curve is estimated from the offset of Duluth Gabbro zircons from Si isotope composition of the mantle ($\delta^{30}\text{Si}(\text{BSE}) = -0.29\text{‰}$; Savage et al., 2014) and an estimated formation temperature of ~ 800 °C, assuming $\Delta^{30}\text{Si}(\text{WR-zrc}) \rightarrow 0$ as $T \rightarrow \infty$. Note that the two WR examples, while illustrative of the overall qualitative trend we wish to highlight, do not capture the complexities of fractional crystallization and zircon saturation in intermediate and mafic systems (Watson and Harrison, 1983; Boehnke et al., 2013).

1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 10. Silicon-oxygen isotope fractionation concordia diagram for the zircon-quartz system. An *A*-value of 0.53 ± 0.14 is used to describe Si isotope fractionation and 2.33 ± 0.24 is used for O isotopes (Trail et al. 2009), the latter of which is in broad agreement with the empirical calibration reported by Valley et al. (2003). The dashed lines propagate *A*-value errors. The slope of the line is 4.4 ± 1.5 .