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Abstract
Automatically transforming programs is hard, yet critical
for automated program refactoring, rewriting, and repair.
Multi-language syntax transformation is especially hard due
to heterogeneous representations in syntax, parse trees, and
abstract syntax trees (ASTs). Our insight is that the prob-
lem can be decomposed such that (1) a common grammar
expresses the central context-free language (CFL) proper-
ties shared by many contemporary languages and (2) open
extension points in the grammar allow customizing syntax
(e.g., for balanced delimiters) and hooks in smaller parsers
to handle language-specific syntax (e.g., for comments). Our
key contribution operationalizes this decomposition using
a Parser Parser combinator (PPC), a mechanism that gen-
erates parsers for matching syntactic fragments in source
code by parsing declarative user-supplied templates. This
allows our approach to detach from translating input pro-
grams to any particular abstract syntax tree representation,
and lifts syntax rewriting to a modularly-defined parsing
problem. A notable effect is that we skirt the complexity and
burden of defining additional translation layers between con-
crete user input templates and an underlying abstract syntax
representation. We demonstrate that these ideas admit effi-
cient and declarative rewrite templates across 12 languages,
and validate effectiveness of our approach by producing cor-
rect and desirable lightweight transformations on popular
real-world projects (over 50 syntactic changes produced by
our approach have been merged into 40+). Our declarative
rewrite patterns require an order of magnitude less code
compared to analog implementations in existing, language-
specific tools.
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1 Introduction
Automatically transforming programs is hard, yet critical for
automated program refactoring [1, 2, 45], rewriting [8, 44],
and repair [37, 43, 52, 54]. The complexity of automatically
transforming code has yielded a plethora of approaches
and tools that strike different design points in expressivity,
language-specificity, interfaces, and sophistication [1, 3, 4, 32,
44]. At one end of the spectrum, techniques based on regular
expressions, like sed or codemod [3], perform simple textual
substitutions. On the other, language-specific AST visitor
frameworks, like clang-reformat, manipulate rich program
structures and metadata. Unfortunately, many lightweight
transformations that should apply to multiple languages are
entangled in language-specific tools with complex interfaces,
relying on a program’s AST to work. For example, consider
a simple list slicing “quick fix”: both Python and Go can be
simplified from α[β:len(α)] to α[β:] for a list assigned
to variable α and sliced from initial index β . Visually, the
transformation is lightweight and easy to describe. Unfortu-
nately, actually performing this type of transformation gen-
erally boils down to separate implementations depending on
language-specific ASTs.
We observe that a wide range of lightweight transfor-

mations rely on matching tokens structurally within well-
formed delimiters (essential syntax for context free languages,
and common to virtually all contemporary languages, [2, 4,
6, 10–12]). Our approach exploits this observation to en-
able short (yet nontrivial) rewrite specifications that elide
the need for complex, language-specific implementations,
syntax definitions, or translations from metasyntax to an
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underlying abstract representation. We introduce a modular
grammar that can be modified based on syntactic differences
in languages (e.g., comment syntax), but which preserves
the quintessential property of context-free languages. Our
grammar extends Dyck languages [16], which capture the
CFL constructs of interest in conventional programming
languages. We develop a Dyck-Extended Language (DEL)
grammar that can interpolate tokens (i.e., regular strings) be-
tween and inside balanced delimiters as a base representation
for syntactic manipulation.

The crux of our approach implements a parser generator
for a DEL; the generated parser matches concrete syntax
of interest, enabling rewriting. Importantly, the parser gen-
erator is modular (reflecting the fact that DEL grammars
are modularly defined), which we implement using parser
combinators (we refer to our modular parser generators as
“Parser Parser Combinators”, or PPCs). Thus, the parser gen-
erator contains open extension points where smaller parsers
handle language specific syntax (e.g., custom delimiters and
comment syntax) in the generated match parser it produces.
The first advantage of using PPCs is that our approach

does not rely on any source code translation at all. It in-
stead detaches from representing input programs with any
particular abstract syntax tree representation: the original
source input is our concrete representation, and matching
syntax relies only on how a parser interprets that input. Tra-
ditional approaches rely on first parsing syntax into a tree
representation which is then manipulated. By contrast, our
approach embeds the structural properties of syntax in the
generated parsers alone; the parser records only matching
syntax during parsing. PPCs enable easy multi-language ex-
tension for varying syntax across languages by exposing
hooks for smaller parsers in a skeleton parser. Extending the
parser to language-specific syntax (e.g., for comments) in
the parsing routine is comparatively easy in our architecture
as compared to modifying concrete AST definitions in code.

The second advantage of PPCs is that they interpret user-
specified match templates as parser generators for a DEL.
Small, custom syntactic parsers embed into the PPC to pa-
rameterize both how user-supplied templates are interpreted,
and the parsers that those templates produce. The effect is
that we avoid the complexity of implementing an additional
translation layer from user-supplied metasyntax to an ab-
stract syntax representation; the same custom syntax defi-
nitions embed seamlessly into the parser for user-supplied
templates and the match procedure (a parser) produced from
it. The result is rewrite templates that are syntactically close
to the target patterns with minimal metasyntax. The main
contributions of our work are:

• The Dyck-Extended Language representation, defined
by a modular grammar for accommodating syntac-
tic idiosyncrasies and ambiguity across multiple lan-
guages. We operationalize extensible DEL grammars
using:

• Parser Parser Combinators for performing lightweight
syntactic rewriting. PPCs enable an extensible parser-
generating procedure that operates directly on source
code without the need for an intermediate data struc-
ture. This enables:

• Declarative specification of rewrite templates (syntac-
tically close to the target syntax) that are interpreted
as parser definitions, eliding the need for additional
translation layers converting the user-facing templates
to an underlying representation and vice-versa.

• A large-scale empirical evaluation to demonstrate the
effectiveness of our lightweight approach.

We evaluate our approach on 12 languages comprising 185
million lines of code using 30 transformations. We ran our
transformations on the 100most popular GitHub repositories
for each language. By targeting actively developed projects,
we had the opportunity to submit our changes upstream;
our approach has produced over 50 syntactic changes that
are merged into over 40 of the most popular open source
projects on GitHub. Merged changes reflect an important ad-
ditional validation that our transformation engine produces
correct and desirable syntactic changes. Our evaluation on
popular open-source projects also separately demonstrates
the opportunities for lightweight transformation in practice,
particularly for transformation tooling that may adapt to
accommodate our representation or parsing approach. We
also compare our multi-language approach to nine check-
ers and rewriters for individual languages. We demonstrate
declarative specifications (typically less than 10 lines each)
for existing real world transformations that otherwise re-
quire tens of lines of implemented in different languages in
current real world tools.
We release our tool implementing the above ideas, our

rewrite specifications, and over 100 real-world example trans-
formations produced by our work.1

2 Motivating Example
The staticcheck2 tool for Go detects buggy and redundant
code patterns. Like many language style guides, it provides
a practical description of “do X instead of Y” for code. An
example from the documentation explains:

You can use range on nil slices and maps , the loop
will simply never execute. This makes an additional
nil check around the loop unnecessary.

1https://github.com/squaresLab/pldi-artifact-2019,
https://github.com/comby-tools/comby

2https://staticcheck.io/docs/#overview

https://github.com/squaresLab/pldi-artifact-2019
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Before:� ⊵
if s != nil {
for _, x := range s {

...
}

}� �

After:� ⊵
for _, x := range s {

...
}� �

Match template:� ⊵
if :[var] != nil {
for :[_] := range :[var] {

:[body]
}

}� �

Rewrite template:� ⊵
for :[_] := range :[var] {

:[body]
}� �

Figure 1. Top: A textual description for simplifying a nil check
Go code, taken from the Go staticcheck tool. Bottom: Our match
template and rewrite templates for the nil-check pattern above.

Regular expressions cannot generally recognize patterns
like the nil-check simplification at the top of Fig. 1. The
traditional solution is to write a checker that visits the pro-
gram’s AST to recognize the pattern. Checker mechanics
are hidden in an implementation, diverging from Fig. 1’s
intuitive, syntactic before/after description. This program-
matic implementation disconnects the checker code from
the pattern, making it harder to understand and modify.
In our declarative approach, the user instead specifies a

match-and-rewrite pattern that closely resembles and is as
natural as the syntactic description. The match template for
nil-check pattern is shown at the bottom of Fig. 1. The syn-
tax :[identifier] denote holes with the name identifier. Every
instance where the template matches source code produces
an environment. An environment binds variables to string
values (corresponding to syntax) in the source code. The
identifier _ acts as an ordinary identifier where we don’t par-
ticularly care to name the variable. Multiple occurrences of
a variable in a template (like var) imply that matched values
must be equal for matching to succeed.
The match template is expressive enough to match the

syntactic structure of the general pattern in Fig. 1. Three
core ideas make this possible:

1. The built-in understanding that delimiters {...} in
the match template denote well-balanced (and possi-
bly nested) syntax that must correspond to delimited
syntax in the source.

2. Any syntax besides balanced delimiters and holes in
the template (e.g., non-whistepace tokens like if, !=,
range) correspond to concrete syntax in the source.
Whitespace in the template is interpreted as a reg-
ular expression matching one or more consecutive
whitespace characters.

3. Match rules govern whether the match succeeds. Rules
act as additional constraints on values in the environ-
ment (e.g., we check that matches of :[var] are equal).

Section 4 explains the matching approach in detail. After
the matching phase, we can use a rewrite template to perform

a change to the program. A rewrite template takes as input
an environment, and substitutes variables for values. Our
rewrite template for nil-check is also declarative (cf. Fig. 1).
The match and rewrite templates are the only inputs

needed to detect and rewrite instances of nil-check. Fig. 2a
is a real-world example where we applied our nil-check

rewrite specification, producing the simplified code as-is in
Fig. 2b.3 The rewrite is nontrivial: one match is contained in-
side another. Importantly, each instance matched by the tem-
plate (which may be nested or occur in sequence) produces
an environment to be instantiated using the rewrite tem-
plate at that location. In this sense, our match-and-rewrite
approach mimics traditional recursive, visitor-like tree tra-
versals without a need for an actual AST visitor.� ⊵
func (c *SymbolCollector) addContainer (...) {

if fields.List != nil {
for _, field := range fields.List {

if field.Names != nil {
for _, fieldName := range field.Names {

c.addSymbol(field , fieldName.Name)
}

}
}

}
...

}� �
(a) Highlighted lines 2 and 4 contain redundant nil checks in Go
code: iterating over a container in a for loop implies it is non-nil.� ⊵
func (c *SymbolCollector) addContainer (...) {

for _, field := range fields.List {
for _, fieldName := range field.Names {

c.addSymbol(field , fieldName.Name)
}

}
...

}� �
(b) Rewrite output simplifying the Go code above.

Figure 2. Redundant code pattern and simplification.

Indeed, presently, despite the fact that nothing about this
approach is Go-specific, implementing the nil-check spec-
ification invariably requires creating or interfacing with a
Go-specific tool operating on a parsed AST. One approach
to multi-language support is an intermediate representation
(e.g., srcML [44]), but this requires a translation layer and
remains a programmatic approach. In language-specific ap-
proaches, tool design is dictated by the language’s AST. This
precludes, for example, the use of a general visitor framework
for both Python and Go. This may be unavoidable due to

3This code was merged into a popular Go repository: https://github.com/
sourcegraph/go-langserver/pull/324. We did reindent the code using gofmt so that
it conforms to stylistic conventions. Reformatting is not always necessary.

https://github.com/sourcegraph/go-langserver/pull/324
https://github.com/sourcegraph/go-langserver/pull/324
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language-specific features and tool application. However, for
general syntactic transformations like Fig. 1, our approach
avoids repeated implementation effort across different lan-
guages. Moreover, interfacing with the AST is programmatic
in language-specific AST visitor frameworks. Similarly, lan-
guage workbenches supporting transformation for multiple
languages (e.g., [17, 38]) generally define an AST representa-
tion per language with particular sensitivity for matching
program terms. In this design, making transformation declar-
atively accessible requires an additional translation layer
from a surface syntax mapping to terms (e.g., [55]). In gen-
eral, the specificity of terms in AST definitions determines
the granularity at which such terms can be matched using
generic tree matching procedures. This specificity (which
can result in definitions spanning hundreds of lines)4 can
increase the complexity of the surface syntax for complex
transformations (e.g., when disambiguating syntax [36]). By
contrast, we propose a particularly coarse representation
for lightweight transformations that is loose with respect
to matching and rewriting specific terms. Our declarative
transformation approach notably skirts the issue of defin-
ing a concrete representation for manipulating code (like
ASTs) or defining additional translation layers (e.g., [55]) by
creating on-demand parsers that match syntax of interest.
The foundation of this idea lies in first identifying a suit-
able grammar for expressing syntax of multiple languages,
discussed next.

3 Dyck-Extended Languages
We use the Dyck language as an initial building block to
form a general and extensible representation for syntactic
rewriting. The Dyck language is simply an abstraction of
well-nested expressions over a single pair of symbols that
form an open and closing delimiter pair. I.e., taking the sym-
bols “(” and “)” as delimiters, ()() and (()) are valid ex-
pressions in the Dyck language. A generalization of the Dyck
language maintains a well-nested structure over n pairs of
delimiting symbols, denoted Dn . Like other literature, we
refer to Dn as “Dyck Languages”. The definition of Dn is:

S → ϵ | SS | x1 S x1 | x2 S x2 | · · · | xn S xn

where ϵ represents the empty string, S is the only non-
terminal symbol, and terminal symbols (xi ,x i ) for each i ∈ n
delimiter pairs. We denote the terminal alphabet for this
grammar as T = X ∪ X where X = {x1, . . . ,xn} and X =
{x1, . . . ,xn} are disjoint sets over opening and closing sym-
bols, respectively.
Our key addition to the grammar allows interpolating

strings between and inside balanced delimiters in Dn . We
add the rule S → c , for terminal c , where c ∈ Σ for a fi-
nite alphabet Σ disjoint from X ∪ X . We call this a general

4See, e.g., https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/
library/lang/java/syntax/Java18.rsc

� ⊵
grammar ::= term EOF
term ::= '(' term ')' | '{' term '}' | '[' term ']'

| term term | token
token ::= whitespace | string_literal

| comment | any_token
------------------------------------------------------
whitespace ::= [ \n\t\r]+
string_literal ::= "<escaped string >"
comment ::= <single or multiline comment >
any_token ::= [...]*� �

Figure 3. A base grammar for parsing multi-language syntax. Pro-
ductions above the dashed line are common to many contemporary
languages. Below the dashed line, token structure may vary in
minor ways (e.g., different string literal or comment syntax).

Dyck-Extended Language (DEL) grammar. To be practically
useful for parsing conventional programs, we specialize this
grammar and impose:

1. a finite set of matching delimiters, e.g., (,), {, }, [, ]
as found in common languages.

2. a refinement that strings produced from the finite set
Σ is regular, where strings correspond to tokens.

A DEL for multi-language transformation. In this pa-
per, we use the DEL definition shown in Fig. 3 as a basis
for conventional languages, which extends the grammar
above. The extension defines concrete delimiters and parti-
tions three kinds of tokens: whitespace, string literals, and
comments. String literals can contain any character (with
appropriate escaping, as usual). All other consecutive char-
acters not already defined (i.e., ... indicates any character
excluding whitespace characters, string delimiters and com-
ments) form an any_token. In practice, the finite character set
of the language is that of typical source code (i.e., ascii or uni-
code character sets). The distinction between string literals
and comments is significant because these are the primary
categories that, if ignored, break the ability to recognize well-
balanced delimiters in code. String literals and comments are
simultaneously a source of syntactic variability and ambi-
guity across languages. Handling these categories explicitly
across languages allows our approach to correctly identify
nested terms within those languages.
There are two notable properties of the representation.

First, a parser for this language preserves all syntax (includ-
ing whitespace) and partitions all characters coarsely into
one of a few lexical constructs. This means that many sep-
arate lexical constructs in typical grammars are treated as
one lexical construct under any_token (i.e., we don’t distin-
guish keywords from variables). Second, hierarchical tree
structure is determined solely by balanced delimiter syntax.
Importantly, the representation preserves a well-formedness
property of nested terms with respect to these delimiters
when we rewrite code. Our intuition is that this representa-
tion models the essential concrete syntax for rewriting many
conventional languages like C, Python, OCaml, etc., with ex-
pressivity to describe nested structures. At a high-level, our

https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/syntax/Java18.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/syntax/Java18.rsc
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representation can be seen as imposing a kind of s-expression
representation on contemporary language syntax, extending
similar flexibility of lisp-like macro systems [14, 15, 25, 57]
to many contemporary languages by accounting for vary-
ing syntactic idiosyncrasies (e.g., different sorts of balanced
delimiter, comment, and string literal syntax) in a modular
grammar.
In Fig. 3, the delimited terms and token structure above

the dashed line denote commonly shared (though coarse)
productions for many contemporary languages. Below the
dashed line, token syntax may differ across languages in
minor ways (e.g., quotes used for string literals, raw string
literals, or differing comment syntax). The crux of our repre-
sentation is that it allows a modular and extensible parsing
strategy. Using parser combinators [35], we design a modu-
lar skeleton parser for the shared constructs (above the line
Fig. 3) that is “open”: parsers for token groups (below the
line) plug into the skeleton parser. Our parser combinator ar-
chitecture thus allows easy modification to handle syntactic
idiosyncrasies at the token level, while preserving the essen-
tial CFL properties denoted by balanced delimiter syntax. In
our experience, rewrite support for multiple languages with
this architecture boiled down to tiny modifications in token
parsers (typically one line of code) for handling individual
language comment or string literal syntax. We now explain
how the DEL representation, and the parse strategy for it,
ties into matching and rewriting syntax.

4 The Rewrite Process
The rewrite process has two phases: (1) matching source
code using a user-specified match template and (2) rewriting
source code based on a user-specified rewrite template. We
explain the intuition of our matching approach in Section 4.1.
We introduce our key innovation in Section 4.2 that lifts the
intuition of tree matching to a parser generator problem for
modular grammars (as introduced in Section 3). We explain
the rewrite phase in Section 4.4.

4.1 Declarative Matching: The Intuition
Suppose we have a DEL grammar parser for Go that produces
DEL trees for Go code (i.e., the parser handles Go comments
and string literals). The idea behind declarative match tem-
plates is that they translate directly to an underlying DEL
parse tree to be matched against a DEL parse tree produced
by source code. Match templates additionally contain holes
that unify with syntax in the source parse tree. Successful
matches produce environments binding variables to syntax,
which are substituted into the rewrite template in the rewrite
phase (Section 4.4)
Fig. 4 visualizes a match of template to source for our

motivating example. On the top is a parse tree of the source
code; on the bottom, a parse tree for the template. Dashed

lines indicate matched tokens. Concrete tokens match syn-
tactically in template and source. Balanced delimiters (e.g.,
{} braces) form nodes corresponding to terms that contain
nested child terms; when encountered in the template, bal-
anced delimiters must match correspondingly in the source.

Holesmatch to syntax based on (a) prefix and suffixmatches
of surrounding terms and (b) their level in the tree. As shown,
the :[_] hole can only bind to sequences of terms inside
the brace-delimited if-body. The matching semantics of
:[identifier] is to match lazily up to its suffix. In practice,
we do not need an explicit token class for the category of
any_token in Fig. 3: we simply treat these as individual char-
acters (i.e., each character can be considered its own term).
Thus, holes can bind to any sequence of characters (akin to
regular string matching), restricted within its current level in
the tree. A hole’s suffix is terminated by (a) another hole or
(b) the end of the sequence of characters (preserving proper
nesting) on its level. For example, the hole :[_] matches
“_, x” up to its suffix “ := range”, after which another hole
occurs at the same level in the template. A hole immediately
followed by another hole (e.g,. :[1]:[2]) implies that the first
hole matches up to the empty string (i.e., :[1] will always
be empty). We have found it useful to define additional hole
syntax which binds only to alphanumeric characters, written
:[[identifier]].

We do not define additional metasyntactic operators (e.g.,
regex operators); all other syntax in the template relates to
concrete matching.5 The concrete specification of templates
is separated from their interpretation which must be imple-
mented in the matching procedure. For example, delimiter
syntax implies matching must descend into the tree. For con-
venience, we also interpret a single space in the template as
matching repetitions of whitespace in the source by default.6
This matching behavior can be modified to expect exact
whitespace matching in the tool configuration, if desired.

Implementing the match procedure as described raises
two intertwined but separate concerns: (1) producing parse
trees frommatch templates and source and (2) matching tem-
plates to source code by traversing the trees. These present
two design challenges: defining a concrete data structure
to represent DELs (i.e., a tree, the output of parsing), and
implementing a configurable tree traversal strategy to enable
configurable and flexible match interpretations.
Our insight is that both challenges are solved simultane-

ously by lifting tree construction and matching to a modular
parsing problem. Doing so enables structural matching relat-
ing template and source (a) without any concrete represen-
tation at all and (b) with configurable matching represented
directly by parsers, allowing for syntactic differences across

5Nothing stops us from complicating templates with more metasyntax; in practice we
find doing so eventually limits declarative specification.
6This is desirable in our running example when we don’t particularly care about the
indentation size or other additional whitespace.
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if f != nil { for... }

{ }

{body}frange:=x,_
for

nil!=fif

if :[var] != nil { for :[_]... }

{ }

{:[body]}:[var]range:=:[_]for

nil!=:[var]if

Figure 4. Visualization of matching for the nil-check pattern
(Fig. 1) using the DEL representation. On the top is a parse tree
of source code; on the bottom a parse tree for the match template.
Dashed lines represent matched terms. Thick lines indicate assign-
ment of terms to variables.

languages, and the ability to match character sequences (e.g.,
like regular string matching).

4.2 Parser Parser Combinators for Matching
The key innovation behind our approach is an extensible
procedure for structural matching that relates match tem-
plates and source code without a concrete data structure via
parser combinators [35]. The core idea of parser combinators
is to model parsers as functions that can be composed using
higher-order functions (combinators) to implement grammar
constructions. Higher-order functions make the parsing pro-
cess separable. Thus, composable parser combinators enable
a modular parsing procedure for the modular grammar we
developed in Section 3. Wemight, for example, use a modular
parsing strategy to produce DEL parse trees for matching.
However, this still leaves open the problems of (a) mapping
parse results to a tree definition, then (b) defining a config-
urable match traversal strategy over this representation, and
(c) creating an accessible declarative language to mapping
user-specified templates to terms in the tree definition (as
in [55]).

Instead, we use parser combinators in a new way. We first
recognize that parser combinators can be composed to parse
DEL languages. Such a DEL parser, when running on source
code, performs the analogous role of matching valid parses
of concrete syntax (to generate, in this case, a parse tree).
Interestingly, a declarative match specification is nothing
other than a description of particular concrete syntax (inter-
preted by a DEL parser), combined with holes, that is to be

matched. Thus, a match specification can be interpreted as
description of a parser for matching, rather than a concrete
tree to unify against a parse tree of source code. In particular,
it describes a valid parse for a DEL language fragment.
This insight leads to a solution where our approach gen-

erates on-demand parsers for DEL language fragments from
match templates. We develop what we call a Parser Parser
Combinator (PPC): a parser-generating parser using parser
combinators. The approach works by implementing a parser
for match templates whose output is a parser (constructed
from parser combinators at runtime) that matches syntactic
patterns according to the template. The match template PPC
behaves as follows:
• When parsing a DEL token in the template (e.g., a string

like if), generate a parser for that token.
• When parsing whitepsace, generate a parser to consume

whitespace.
• When parsing nested syntax (indicated by delimiters),

generate a parser for nested syntax between those same
delimiters.

• When parsing holes (:[ ]), generate a parser that binds
syntax to the identifier and continues lazily up to the suf-
fix in the template (i.e., generate a parser implementing
the match semantics described in Section 4.1 and store
the result in the parser state).

The PPC automatically chains generated parsers in these
categories as it parses the template at runtime. The resultant
generated parser is lazy (i.e., it is a partial function) which
encodes exactly the behavior for matching syntax of inter-
est. The appeal of this approach is that we can now simply
run the resultant parser directly on source code. The result
of the generated parser is only the environment binding
variables to syntax for successful matches. No intermediate
data structure is needed to perform any matching. The PPC
approach also offers key advantages for configuring match-
ing. First, the interpretation of match template syntax (e.g.,
match semantics of holes, or whether to treat whitespace
significantly) is easily modified by augmenting the parser
generating behavior of the PPC when it encounters any par-
ticular kind of syntax in the template. Second, our approach
allows matching sequences of characters familiar in regu-
lar expression-based code changes (e.g., [3]) as opposed to
restricting matching to complete tokens or terms. In prac-
tice, match template content for non-whitespace characters
maps to a matching parser character-for-character (analo-
gous to lexing, but without classifying specific tokens). Im-
portantly, well-formedness of nested delimiters is preserved
when matching character sequences—a character cannot
match, for example, an unbalanced parenthesis character
unless it occurs inside a string literal or comment. Third, the
PPC is extensible: it is a module exposing hooks in the parser-
generation routine (which is modular, like the DEL gram-
mar) so that parsing language-specific syntax (e.g., strings,
comments) is expressed in the generated parser. The PPC
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is extended using small definitions that express language-
specific syntax properties. For example, the three definitions
below form a module defining the syntax of the base DEL
parser:� ⊵

let user_defined_delimiters =
[ "(", ")"; "{", "}"; "[", "]"]

let string_literals = []
let comment_parser = []� �
The C parser extends the base parser It includes the base

delimiter syntax, and adds the syntax for string literal and
comment syntax using the prescribed definition names:� ⊵

include Base.Syntax
let string_literals = ["\""; "'"]
let comment_parser =

[Multiline ("/*", "*/"); Until_newline "//"]� �
Constructors like Multiline denote, e.g., that C-style

block comment syntax should be used to parse multiline com-
ments.7 Parsers are created from these syntax definitions and
embed into the PPC to parameterize both the significance
of custom syntax in user-supplied match templates and the
significance of the same custom syntax when the resulting
matcher runs on source code. For example, the C definitions
above reflect in the user-specified template (the parser now
understands that holes inside string delimiters should match
within string delimiters) and ensures that parentheses inside
strings in the target source code (like "(") do not affect the
parsing of balanced parentheses.
We implement our PPC using a left-to-right, top-down

parsing strategy. Any ambiguity in the grammar is resolved
by the ordered choice combinator (as in, e.g., [28, 41]), where
terms are parsed similarly to the order of Figure 3.8 The
PPC implementation is roughly 500 lines of OCaml code. In
practice, applying our PPC to 12 languages requires fewer
than 12 lines of code to account for the syntactic differences
in comments and string literals. Command-line flags activate
parsers for a particular language.
Match contexts. Fig. 4 illustrates matching one instance
of a template to an exact match of source code. Similarly,
PPC’s produce a parser that match one instance specified by
the template. In practice, we typically want to find multiple
matching instances in source code. We call each matching
instance a match context. A match context describes (1) the
range of characters in the source code matching the template
in its entirety and (2) the unique environment binding holes
to values for that instance.

For practical reasons, our objective is not to find all match-
ing contexts, but rather non-overlapping matches over se-
quences. For example, using the match template a b a and
7For brevity we elide other optional definitions that can further refine the PPC, e.g.,
raw string literals that have different escaping criterion.
8We overlooking the possibility of left-recursion in this grammar, which we gave to
simplify presentation.

a source a b a b a produces only the match a b a b a and
not a b a b a. Disallowing sequentially overlapping match
contexts allows an unambiguous rewrite result. We produce
match contexts by shifting over the source code left-to-right
and attempting to parse at each point. If the PPC-generated
parser succeeds at any point, we record the match context
(i.e, the match range and environment). We then shift to
the end of the match range and continue trying to parse at
each point until the end of source is reached. Our tool allows
the same procedure to be applied successively on content in
match environments, thereby recursively rewriting nested
matches.9

4.3 Match Rules
Match rules apply additional constraints on matching. Match
rules are high level predicates on environments in match
contexts. Our motivating example demonstrates the utility
of predicates on matching. For example, we can check that
the variable ranged over is the same as the variable com-
pared to nil. As in Fig. 1, using the same variable identifier
for multiple holes adds the implicit constraint that values
matched by these holes should be equal. This constraint is
really syntactic sugar for a larger feature set of constraints
that can be specified explicitly and declaratively in a small
DSL-like notation.
A match rule may accompany a match template and has

the form where <...> and a list of comma-separated expres-
sions and evaluates to a boolean value. Commas are inter-
preted as logical conjunction over the expression list. If the
value is true, a match succeeds. The default match rule is
where true. The grammar is:� ⊵

grammar ::= "where" <expression > <"," expression >*
expression ::= "true" | "false"

| <atom > "==" <atom > | <atom > "!=" <atom >
| "match" <atom > "{" <branch > <"|" branch >* "}"

atom :: = ":[" variable "]" | "<string literal >"
branch ::= atom "->" expression� �
Figure 5. A simple constraint grammar for match rules.

Operators == and != check for syntactic equality (resp. in-
equality) on atoms. There are only two atoms: one for vari-
ables (expressed in hole syntax) and string literals. The match
expression applies (disjunct) conditional constraints on val-
ues bound to holes. It is sometimes useful to treat values
as templates in match expressions, rather than string val-
ues. When string literals contain hole syntax, they are inter-
preted as match templates. In this case, we may write match
templates for the antecedent in match cases which produce
match contexts when evaluating the branch expression. For
example,� ⊵

match :[expr] { ":[1] < :[2]" -> :[1] == :[2] }� �
9Alternatively, the pass may be rerun to a fixpoint on the entire file.
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evaluates :[1] == :[2] if the value bound to :[expr] pro-
duces a match context for the match template :[1] < :[2].
The branch expression must evaluate to true for all match
contexts produced by the template.

4.4 The Rewrite Phase
The rewrite phase takes all match contexts produced by
the match phase and substitutes the environment variables
for values in a user-specified rewrite template. The rewrite
template can be seen as a partial function. We say that a
rewrite template is instantiated by an environment when all
variables in the rewrite template are substituted for values.
After a rewrite template is instantiated, it replaces, in-situ,
the entirety of matched content for a given match context.
Thus, there are two substitution passes: (1) substitution to
instantiate rewrite templates and (2) contextual substitution
of instantiated templates in the source. The rewrite proce-
dure applies recursively for nested matching contexts, and
are substituted bottom-up as in the motivating example.

Well-balanced output. During the match phase, only well-
balanced terms can bematched by holes. By extension, rewrite
output is well-balanced if and only if the rewrite template is
well-balanced. Thus, rewrites preserve key syntactic proper-
ties of well-balanced delimiters found in most languages.

Rewriting comments. Associating comments across pro-
gram manipulation is a known and long-standing problem,
and not specific to our approach [46]. Holes do capture com-
ments and can be recovered during rewriting. However, com-
ments are ignored when interpreting match templates (oth-
erwise, templates would require the user to anticipate com-
ment location and content to match other significant syntax).
Matched syntax is replaced according to the rewrite template
as usual, and when matching on comments is not significant,
those comments may be erased by the rewrite if they are not
captured by holes.

The underlying problem is that we cannot anticipate how
comments may be associated with syntax for arbitrary lan-
guages. In lieu of better language design (which appears
inapplicable to contemporary languages) we note that infer-
ence techniques or explicit comment support (e.g., adding
an extra dimension of comment contexts) could provide so-
lutions for manipulating comments. We leave these areas
open to future work.

5 Evaluation
We evaluate Comby, an implementation of our rewrite pro-
cess (Section 4) for DELs (Section 3) using Parser Parser
Combinators (Section 4.2). Section 5.1 evaluates Comby on
12 languages comprising 185 million lines of code using 30
transformations. We demonstrate that our approach is fast;
enables simple, declarative specifications for nontrivial trans-
formations; and that it is effective in real (not just realistic)

Table 1. We ran 1–3 rewrite patterns (Pattern) per language
(Lang) on the top 100 most-starred GitHub projects for that lan-
guage. K Files andMLOC is the aggregate thousands of files and
millions of lines of code, respectively. Proj is the number of projects
where patterns match; #M the number of matches; Time, the ag-
gregate time to match/rewrite over all files.

Lang K Files MLOC Pattern Proj #M Time

Go 131.4 48.8 nil-check 40 372 7m56s
str-contains 16 29 3m02s

Dart 28.2 4.9 slow-length 6 35 24s
where-type 10 165 35s

Julia 5.2 0.9
simple-map 5 8 23s
tweaks (3) 12 38 45s
redun-bool 1 1 24s

JS 66.1 9.2 redun-bool (2) 3 89 7m14s

Rust 22.0 3.8 short-field 42 305 21s
redun-pat (4) 2 12 1m15s

Scala 41.9 5.2
parens-guard 10 43 30s
forall 2 5 23s
count 13 46 23s

Elm 4.8 0.9 dot-access 2 3 13s
pipe-left 4 10 13s

OCaml 25.6 6.3 include-mod 11 77 2m01s
include-func 4 5 2m04s

C/C++ 166.6 85.5 no-continue 2 5 5m58s

Clojure 5.1 0.7 simpl-check (4) 34 330 21s

Erlang 13.2 4.3 infix-append 25 187 25s

Python 34.5 15.2 dup-if-elif† 4 10 6m59s

settings, to date producing over 50 changes merged into 40+
of the most popular open source projects across 10 languages.
In Section 5.2 we compare our approach to nine existing

language-specific checker and rewrite tools. We show that
our multi-language approach produces accurate syntactic
checking and transformation for many syntactic properties
covered by current tools, while requiring far less implemen-
tation effort. Our results indicate that Comby meets the de-
mands of real-time development [24, 47]: transformation
response time is in the 100-400ms response time per file.
Section 5.3 provides further discussion and limitations.

5.1 Real, Large Scale Multi-Language Rewriting
Experimental setup.We cloned the top 100 most popular
repositories on GitHub (ranked by stars) for each of 12 lan-
guages. We balanced imperative and functional languages
(some mature, others more recent) to demonstrate broad ap-
plicability. The 1,200 repositories comprise over 185 million
lines of code. We wrote 1–3 rewrite patterns per language
(we elaborate below). We ran each rewrite pattern in parallel
by file across 20 cores (Xeon E-2699 CPU, Ubuntu 16.04 LTS
server, limiting experiments to 1GB of RAM). Matching was
set to timeout after 2 seconds per file. Roughly 2% of Python
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files timed out (large, autogenerated code), while timeout for
files across other languages accounted for less than 0.5%.
Choosing rewrite patterns. We chose patterns from ex-
isting linters, checkers, rewrite tools, and style guides that
were likely to improve code readability or performance. Since
we submitted many of our transformations to active code
bases, we avoided stylistic patterns that were a matter of
taste. The selected patterns either (1) remove clearly redun-
dant code; (2) simplify readability; (3) replace functions with
more performant versions; or (4) identify clearly buggy du-
plicate checks. We include nontrivial patterns that match on
balanced delimiters for every language.
This part of our evaluation prioritizes (a) breadth of lan-

guage application and (b) improving active real code. We
therefore applied 1–3 choice patterns per language rather
than a comprehensive catalogue of patterns for any particu-
lar one.
Results overview. Table 1 shows the results of running
multiple rewrite patterns across 12 languages. The rewrite
patterns are shown in theMatch Template and Rewrite Tem-
plate columns of Fig. 6. As written, these are the actual inputs
to Comby (no extra metasyntax or programming required).10
We applied 30 unique patterns to our data set. Some patterns,
like “tweaks” and “redun-bool” check for similar patterns
with syntactic variations (we show a representative trans-
formation for these in the table). The number of variations
is indicated in parentheses in the Pattern column, and the
running time is an aggregate over variations. In aggregate,
running all patterns takes about 42 minutes and parses 282
million lines of code (by common word count including new-
lines and comments).

Rewriting is fast: 13 out of 21 patterns terminate in under a
minute for all 100 projects of that language, while the longest
runtime for a pattern takes roughly 8 minutes (nil-check for
Go code). Generally, longer runtimes correspond to larger
codebases of popular languages (e.g., Go, Javascript, Python,
and C). Match templates and source code content also affect
runtime: The Go nil-check pattern takes more than twice as
long compared to the str-contains pattern due to increased
cases of matching the if :[1]... pattern.

The number of projects for which a rewrite pattern applies
range from 1 to 42 (Proj) and the number of matches from
1 to 372 (#M). To demonstrate our multi-language rewrite
approach in a real setting, we submitted a subset of these
changes for merging into upstream repositories via GitHub
pull requests (PR). This demonstrates both the opportunities
for syntactic transformation in large, highly popular reposi-
tories and the ability of our approach to produce actionable,
correct, and automatic syntactic changes in this setting. Sub-
mitting all changes was not appropriate because changes
may touch code dependencies not part of the main project,
or code that explicitly tests for bad patterns (e.g., linter tests).
10Modulo newline stripping, for presentation.

Unless stated otherwise, we used the following criteria to
submit pull requests: (1) the project must be active (code has
been committed in the last 30 days); (2) the changes should
not affect files under a test or vendor directory; (3) we pre-
fer projects where we can validate syntactic changes via a
continuous integration build.

The results of our PR campaign are shown in Table 2. We
submitted PRs to 50 projects. The Merged column shows the
number of syntactic changes submitted and the outcome:

✓: 43 projects accepted more than 50 individual changes.
�: 3 projects have a PR in progress, or unresponded to.
–: 4 projects rejected changes unrelated to change content.
✗: Only two changes were outright wrong.

The number of PR changes in the Merged column are either
fewer or equal to the number of Matches, since we filtered
out matches in test or vendor directories. Across all projects,
the maximum time for a project is 19 seconds (for Kubernetes,
the largest project), while the median time per project is
0.55 seconds. We elaborate on patterns and results for each
language below.
Go. The nil-check pattern identifies redundant nil checks,
as in our motivating example. The str-contains rewrite uses
a clearer string.Contains(...) call compared to checking
string indices for substring containment (cf. Fig 6). Changes
from all of our PRs are accepted except for one still in progress.
Our PR to the Go compiler highlights an interesting case in
that it is the only case where a syntactic change was outright
wrong. The problem is that removing the check on :[1] in the
pattern is only allowed on maps and slices, but not pointer
types. In the go PR, two cases compare to pointers. In the
remaining PRs, these comparisons were done against appro-
priate types, and safe to remove. We make two observations.
First, purely syntactic transformations are vulnerable to lan-
guage design where equivalent syntactic changes have differ-
ent semantic implications. Thus, while our approach suffers
from syntactic ambiguity, we note that that this ambiguity
is a shortcoming that should be, in principle, avoided during
language design for purposes of program manipulation [46].
Second, type information aids legal and complex syntactic
changes (e.g., in refactorings [51]) and complements our ap-
proach. We note that recent uptake in the Language Server
Protocol (LSP)11 presents an elegant method for incorporat-
ing type information into our approach. With LSP, we can
use external language servers (e.g., the go-langserver) to
lookup types without having to parse, maintain, or persist
type information for rewriting.
Dart. The slow-length pattern improves performance when
checking the length of iterable containers (e.g., lists). The
where-type pattern improves readability and removes redun-
dant runtime checks. Both patterns are in the Effective Dart
usage guide [11]. Because the sdk project does not have a CI

11https://microsoft.github.io/language-server-protocol

https://microsoft.github.io/language-server-protocol
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Lang Pattern Match Template Rewrite Template

Go nil-check if :[1] != nil { for :[2] := range :[3] {:[4]} } for :[2] := range :[3] {:[4]}
str-contains if strings.Index(:[1], :[2]) != -1 {:[3]} if strings.Contains(:[1], :[2]) {:[3]}

Dart slow-length if (:[1]s.length != 0) if (:[1]s.isNotEmpty)
where-type .where((:[1]) => :[1] is :[[type]]) .whereType<:[type]>()

Julia
simple-map map(:[1]->:[[x]](:[1]), :[y]) map(:[x], :[y])
tweaks (3) ceil(:[1]/:[2]) cld(:[1],:[2])
redun-bool (:[1] || :[1]) (:[1]) # redundant expr

JS redun-bool (2) (:[1] && :[1]) (:[1]) // redundant expr

Rust short-field { :[[field]]: :[[field]] } { :[field] }
redun-pat (4) if let Ok(_) = Ok:::[t](:[v]) if Ok:::[t](:[v]).is_ok()

Scala
parens-guard for {:[body]if (:[1]) } for {:[body]if :[1] }
forall .foldLeft(true)(:[1] && :[1]) .forall(identity)
count .filter(:[1]).size .count(:[1])

Elm dot-access List.map (\:[[x]] -> :[[x]].:[[f]]) :[[vs]] List.map .:[f] :[vs]
pipe-left |> List.map :[[fn1]] |> List.map :[[fn2]] |> List.map (:[fn1] >> :[fn2])

OCaml include-mod module :[m] = struct include :[[x]] end module :[m] = :[x]
include-func module :[m] = struct include :[[x]](:[b]) end module :[m] = :[x](:[b])

C/C++ no-continue for (:[1]) { continue; } for (:[1]) {}

Clojure simpl-check (4) (= :[1] nil) (nil? :[1])

Erlang infix-append lists:append(:[1], :[2]) :[1] ++ :[2]

Python dup-if-elif† if :[1]::[_] elif :[1]: if :[1]::[_] # duplicate check

Figure 6. The match-rewrite templates for the patterns in our large-scale evaluation. We performed additional preprocessing for the
dup-if-elif Python pattern (†).

build on GitHub, we validated a subset of syntactic changes
locally. The slow-length pattern is susceptible to syntactic
ambiguity: if the object is a string, there is no correspond-
ing isNotEmpty method. As a heuristic, we changed the pat-
tern to match variables ending in ‘s’ as a likely indication
that an Iterable object was checked (e.g., matches included
‘columns’, or ‘argNames’). This presents an interesting case
where matching at the character granularity can be desirable.
The changes using this heuristic were all successfully vali-
dated by CI builds or local compilation. Projects withmatches
for where-typewere all inactive or deprecated, except for the
Dart sdk. Not all objects implement the whereType method,
so the rewrite may fail to compile (none of the changes we
validated failed to compile). In both cases, additional type or
interface information complements our approach.

Julia and Javascript. The simple-map pattern removes re-
dundant code produced by anonymous function syntax. The
tweaks patterns can improve performance for floating point
operations in tight loops. Both of these patterns are taken
from Julia’s style guide and performance tips. We discov-
ered 38 cases where tweaks could potentially improve perfor-
mance (Table 1), but this required benchmarking individual
project performance before and after the change. Due to the
extra burden of validating performance effects, we skipped
PRs for this pattern.
We also checked Julia and Javascript code for redundant

boolean expressions. On the one hand, this check is desir-
able because the pattern clearly indicates redundant or (more
often) wrong code. On the other, it can be hard to predict

a correct rewrite output when the code is wrong. By de-
fault, our rewrite output produces a semantically equivalent
change with a comment to note the problem. Overall, this
pattern demonstrates fast matching capability with optional
rewriting. The one issue in Julia code and three issues in
Javascript needed manual fixing;12 in the case of angular,
the expression was redundant and corresponds to the rewrite
template :[1].

Rust. The short-field pattern removes redundant single
named fields for data structures (note we use :[[..]] match
notation to limitmatching to single identifiers). The redun-pat
eliminates redundant let... patternmatching for option and
result types. Both checks are implemented in an existing rust
linter. Our largest pull request updates 68 instances where
the Rust compiler now uses shorthand notation for single
field structures (additional matches exist inside test directo-
ries). The PR for clap was closed because the code is being
removed. We did not find real cases of redun-pat.

Scala. All three Scala patterns improve readability, and are
implemented in existing tools (scalafmt and scapegoat). The
PR for shapeless was rejected because the original syntax
explicitly tested foldLeft behavior. This was one of our ini-
tial submissions, and influenced our decision to ignore files
in test directories. Three eligible changes for no-guard-paren
broke whitespace indentation and required reformatting; we
skipped these and submitted a single PR where indentation

12e.g., (isnan(a[i]) || isnan(a[i])) became (isnan(a[i]) || isnan(b[i]))
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Table 2. Pull Request Results. Merged shows the number of
changes submitted, and outcome: ✓means changes were merged;
� means a PR is in progress; – means changes were rejected for
reasons unrelated to their content; ✗ indicates incorrect changes. †:
the redun-bool and dup-if-elif required manual fixes.

Lang Pattern Project #KLOC #M Merged

Go nil-check

go-langserver 247.5 2 ✓ 2
helm 50.2 1 ✓ 1
prometheus 902.4 2 ✓ 1
rclone 596.9 10 ✓ 1
go 1,703.2 3 ✗ 2 ✓ 1
cli 10.4 1 ✓ 1
rancher 2,695.2 14 ✓ 1
kubernetes 4,236.6 22 �10

str-contains
gorm 14.6 2 ✓ 2
vault 1,553.1 1 ✓ 1
vitess 297.7 2 ✓ 2

Dart slow-length
sdk 2,361.3 18 ✓ 3
sqflite 6.9 1 ✓ 1
over_react 23.3 1 ✓ 1

Julia simple-map
Dagger.jl 3.7 1 ✓ 1
JLD.jl 4.5 1 ✓ 1
IJulia.jl 2.7 1 ✓ 1

redun-bool† DataFramesMeta.jl 1.5 1 ✓ 1

JS redun-bool† Rocket.Chat 149.2 3 ✓ 3
angular 297.8 1 ✓ 1

Rust short-field

rust 1,004.8 133 ✓68
clap 33.6 6 – 6
conrod 34.1 5 � 5
coreutils 45.5 1 ✓ 1
exa 9.7 1 ✓ 1
fd 3.9 1 ✓ 1
gluon 66.4 6 ✓ 6
hematite 3.9 2 ✓ 2

Scala
forall scala-js 190.6 1 ✓ 1

shapeless 47.1 4 – 4

parens-guard Ammonite 22.5 1 ✓ 1

count FiloDB 44.9 7 ✓ 7

Elm pipe-left elm-graphql 36.4 1 ✓ 1
node-test-runner 40.1 2 – 1

OCaml

include-func
bap 100.7 1 ✓ 1
pyre-check 79.4 1 ✓ 1
hhvm 213.5 1 ✓ 1

include-mod

base 43.1 1 ✓ 1
opium 1.6 1 ✓ 1
flow 147.8 2 ✓ 2
owl 131.0 12 ✓12

C/C++ no-continue radare2 745.3 4 ✓ 4
php-src 1,428.4 1 ✓ 1

Clojure simple-check pedestal 18.7 12 ✓ 1

Erlang infix-append
zotonic 102.2 5 ✓ 5
lasp 15.7 4 ✓ 4
kazoo 345.8 1 � 1

Python dup-if-elif†
matplotlib 229.3 1 ✓ 1
zulip 140.5 1 – 1
powerline 30.0 1 ✓ 1

was preserved. We discuss reformatting more generally in
Section 5.3.
Elm. The Elm patterns simplify syntax by removing redun-
dant anonymous functions (dot-access) and composing se-
quential map operations over list elements (pipe-left). We

focused on List patterns, being a common data structure.
Variants for these patterns can substitute List for Array or
Set, but these are less common in practice. The dot-access

pattern only rewrote code for two inactive projects (Table 1),
so we did not submit pull requests for these. One pipe-left

change was accepted, while the other was rejected because
it touched files part of external dependencies.
OCaml. The include-mod and include-func removes redun-
dant module include syntax for modules and functors re-
spectively. The majority of include-mod matches are in com-
piler tests, which we did not submit in PRs. In some cases,
the include-func pattern required reindentation because the
module body (:[b]) captures syntax that may span multiple
lines. All of these PRs were merged.
C/C++. The no-continue pattern removes redundant con-
tinue statements inside for loops. The pattern is based on a
check in clang-tidy. A number of variants are possible (e.g.,
replacing for with while or do-while syntax). We found two
real cases of redundant continues in the C/C++ dataset. Both
of these PRs have been accepted.
Clojure. The simpl-check pattern for clojure simplifies con-
ditional checks. Syntactic variants include testing boolean
values with true? and false? checks. All of the matches in
the Clojure data set (Table 1) occurred in inactive projects,
except for one. That PR was successfully merged.
Erlang. The infix-append pattern is part of the Erlang syn-
tax tools suite. It replaces a lists:append function call with
a terse ++ infix operator. Two PRs were accepted, while one
remains open.
Python. The dup-if-elif pattern detects identical condi-
tional checks on both branches of an if-elif. Matching on
possibly nested and indentation-sensitive if statements is
challenging compared to concrete syntax (e.g., braces) be-
cause whitespace is typically treated insensitively in many
languages. We can implement an additional parser combina-
tor hook to support layout-sensitive parsing in the PPC, but
currently Comby treats indentation insensitively. However,
our rewrite approach presents a convenient and interest-
ing alternative via syntax preprocessing. We used Python’s
pindent13 utility to annotate the end of indentation-sensitive
blocks with comments. We then ran a rewrite rule to con-
vert block annotations to braces compatible with existing
delimiter parsers. The preprocess step took approximately
6 minutes and performed 600K rewrites on the Python data
set.14 We discovered three legitimate dup-if-elif matches.
Like the redun-bool pattern, the pattern identifies clearly
buggy code and required manual fixes for the two merged
PRs. In the remaining PR, we were asked to perform a larger
refactoring that removes references to the buggy function
so that it can be removed entirely.

13https://github.com/python/cpython/blob/master/Tools/scripts/pindent.py
14The pindent preprocess step is also invertible.

https://github.com/python/cpython/blob/master/Tools/scripts/pindent.py


PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Rijnard van Tonder and Claire Le Goues

Figure 7. Parallelism yield running the nil-check pattern
on Kubernetes (4.2 MLOC) up to 32 cores. Parallelism scales
linearly up to 12 cores.

Parallel performance and memory use. To quantify
memory use and parallelism performance for large projects,
we benchmarked our approach on Kubernetes (4.2 MLOC,
the largest project in our PR campaign) with the nil-check

pattern. We ran a precise memory profile of our implemen-
tation using OCaml Spacetime,15 on a single core. Maximum
memory use was only 44 MB while the median was approx-
imately 10 MB. Low memory use is attributed to the PPC
generating a lazy parser that persists only matching syntax
per file.
We evaluated speedup of our implementation up to 32

cores. Fig. 7 summarizes our result. Performance scales lin-
early up to 12 cores before tapering off. Performance deviates
slightly for higher numbers of cores due to heuristic parti-
tioning of work (i.e., files) per core.

5.2 Comparison with Existing Tools
Experimental setup.We compare Comby to nine language-
specific checker and rewriting tools in terms of (1) syntax
checking and rewrite accuracy, (2) implementation burden,
and (3) runtime. The tools provide a variety of functions
including refactoring, code simplification, and linter checks.
Four tools only check syntax, and do not rewrite.We targeted
real world projects where possible; otherwise, we applied
patterns on the tool’s test suite. We opted to use tests when
isolating transformation behavior in tools was difficult. For
example, some tools implement multiple syntactic checks
under a single command line flag. Individual tool configura-
tion also hinders a direct speed comparison. We provide the
wall-clock times for running each pattern to indicate that
our running time is competitive, but do not generally claim
to be faster.
Experiments were run on a single core (2.2 GHz Core

i7) with 1GB RAM. The hardware is comparable to a mod-
ern single-user developer machine, and supports our claim
that our approach meets demands of real-time development
response times.

We prioritized demonstrating breadth of application across
languages, and include only a selection of patterns for eightn
of the nine languages (many more patterns are possible). For

15https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html

one functional language (Clojure) we implemented multiple
patterns to evaluate how comprehensively our approach can
express syntactic transformations compared to a production
rewrite tool.
Tool comparison. Table 3 shows results: Comby produces
identical or similar functionality for detecting and rewriting
the investigated patterns. The 2to3 tool (part of cpython)
assists in refactoring Python 2 code to Python 3. Comby’s
output is identical to 2to3’s. Comby also produces the same
output for two patterns implemented by Scalafmt, a Scala
formatter rewrite support tool. Comby’s output is identi-
cal to erl-tidy, an Erlang refactoring tool, except for one
match case of the map pattern. The output differs because
erl-tidy creates unneeded fresh named variables in the out-
put. Comby detects the same syntax issues found by a subset
of linter checks implemented for Go, Dart, Elm, and Rust
across respective projects and linter tests.
Implementation effort/size. We manually reviewed code
in existing tools to determine the implementation size
(Impl.), a proxy for implementation effort. Checks were gen-
erally implemented at the function level, or within a larger
function. We manually isolated check functionality within
these functions, stripped newlines, and counted the lines of
code. Generally, the implementation burden is far lower with
our declarative match and rewrite templates.
Speed.All Comby transformations complete in under 400ms
per file (Python’s next and range patterns run on multiple
files); thus, syntactic transformation is responsive enough
to integrate with real-time development.
Parsing robustness. Because existing tools require ASTs,
some do not work if the target file cannot be correctly parsed.
For example, clang-tidy may require header files to parse
C++ files. We found that clang-tidy fails to parse C++ files
in GCC-compiled projects (e.g., PHP) where the required
header files contain GCC extensions like asm goto. elm-lint
may also fail to parse files due to irregular comments. In
contrast, our approach was robust to syntactic irregularities.
Clojure. To evaluate expressiveness more deeply, we im-
plemented multiple patterns based on a dedicated syntax
rewriter for Clojure. Kibit replaces Clojure code patterns
with more idiomatic or terse versions (cf. simpl-check in Ta-
ble 1). Kibit is an apt tool for comparison because it uses
logic programming to specify rewrite patterns that are syn-
tactically close to Clojure syntax. For this reason, we were
able to easily translate Kibit rewrite patterns into our match
and rewrite template format (some are identical, modulo
hole syntax). We implemented 81 templates for simplifying
arithmetic, equality, collection, and control flow syntax for
Clojure. Comby’s output is identical to Kibit’s on Kibit’s
tests for all of these patterns. We were unable to implement
one pattern that Kibit supports, which relies on detecting
class names for static methods versus object methods. Kibit’s
logic programming pattern representation is comparatively

https://caml.inria.fr/pub/docs/manual-ocaml/spacetime.html
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Table 3. Tool Comparison. We compare against 9 existing checker and rewrite tools for multiple Patterns. (R) in the Tool column means
that the tool offers rewrite capabilities; remaining tools only emit warnings. Target Kind describes the transformation target: either a
selection of code extracted from a popular open source project, or tests that are part of the tool. In general, the implementation burden
for rewriting in our approach (Us, Impl.) is less compared to that of language-specific implementations for the set of syntactic properties
considered. The exception is kibit, which offers comparable terseness due to a logic programming representation for rewrite rules.

Lang Tool Pattern LOC Matches Time (ms) Impl. (LOC) Target
Tool Us Tool Us Kind

Python 2to3 (R) next 6,908 11 911 486 76 4 osf.iorange 13,057 14 1,309 895 53 8

Erlang erl-tidy (R) append 4,891 2 1,426 277 8 2 ejabberdmap 11,389 16 1,633 389 20 2

Elm elm-lint map 64 1 1,712 124 67 8 graphql
dot-access 153 2 2,727 130 51 2 take-home

Go gosimple nil-check 236 1 1,315 130 39 5 helm
str-contains 467 1 2,409 132 65 2 gitea

Dart linter where-type 43 3 1,718 122 74 9 tests
slow-length 518 1 1,808 134 89 2 sqflite

Rust clippy redun-pat 71 4 115 137 74 11 testsshort-field 74 5 148 141 38 5

Scala Scalafmt (R) curly-fors 32 2 1,312 154 80 6 testsparens-guard 41 2 1,451 270 32 2

C++ clang-tidy (R) no-continue 2,143 1 325 155 15 2 radare2

Clojure kibit (R) various (81) 182 97 6,840 164 215 240 tests

short and closely matches our declarative syntax (many spec-
ifications fit on one line, which accounts for a lower number
of LOC in Table 3).

5.3 Discussion
Known limitations. Our approach enables lightweight,
purely syntactic rewrite patterns. We emphasize simple and
declarative specification, and have shown that patterns are
particularly effective at, e.g., removing redundant code. How-
ever, we do not currently incorporate type information, which
limits our ability to implement richer rewrite patterns found
in tools like clang-tidy. This is problematic for languages
with syntactic ambiguity with respect to program manipula-
tion [46], as we noted for the Go nil-check pattern. However,
this problem is not unique to our approach: linters can suffer
false positives for the same reason. Further, redundant syn-
tax, like redundantly parenthesized expressions, may require
additional match templates (or rules) to account for syntactic
variation.

For transformations that change nesting levels or white-
space, code may need reindentation. We treat whitespace lib-
erally by default; enabling finer-grained control over white-
space complicates matching on non-whitespace syntax. We
found that patterns sometimes do preserve desired white-
space, but in general a post-process formatting tool is effec-
tive for (re)applying whitespace style.

In our experience, declarative templates are well suited
to patterns that describe a syntactic change that does one
thing well. More complex transformations may be difficult
to express in a single rewrite pattern, and could require
running transformations in succession (consistent with work
using rewrite stages for transformation [49, 50, 53]). There
may otherwise be syntactic transformations that are overly
difficult or impossible to specify declaratively. Such patterns
are hard for us to qualify generally; we mitigate by having
shown real world value using existing patterns.

We have not yet implemented support for layout-sensitive
or context-sensitive language properties, but parser combi-
nators are sufficiently powerful to do so. We thus believe our
approach generalizes.

Experience compared to existing tools. We noticed the
following undesirable behavior in existing tools: (1) failure to
handle files due to parsing errors or inadequate parsing sup-
port (2) false negatives where tools miss rewriting opportuni-
ties (3) hanging on certain files. From a usability perspective,
we found Comby to be more robust: we never encountered
runtime parsing errors, were able to transform code that
other tools could not parse, and performed transformations
that other tools missed.

6 Related Work
Parsing expression grammars (PEGs) [28] were developed
to address shortcomings in regex matching, and can match



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Rijnard van Tonder and Claire Le Goues

non-regular constructs (e.g., balanced parentheses). PEGs
describe a top-down parser for a language using the ordered
choice operator. Existing tools implement PEGs to enable
non-regular matching (Rosie [9], instaparse [5]) and mod-
ular syntax extension (Rats! [30]). Match specifications for
these tool resemble grammar definitions and include, e.g.,
explicit metasyntax for parsing with ordered choice. Our
match approach can be seen as automatically generating
PEG-like parsers from declarative match templates, where
templates lack metasyntax besides holes, and abstract from
the underlying grammar interpretation. TXL [23] is a multi-
language transformation tool where users specify both a
grammar specification and transformation rules in the TXL
language. Learning the TXL language (where, e.g., the gram-
mar nonterminals are typically referenced or defined in the
rewrite specification) is expensive compared to our approach.
Similarly, language workbench tools [26] like Rascal [38]
expose metaprogramming languages with grammar meta-
syntax to enable transformation. The srcML [21, 22, 44] plat-
form features multi-language transformation, but uses an
intermediate XML representation requiring programming
to manipulate syntax, rather than declarative specification.
Cobra [32, 33] is a lightweight approach for implementing
syntactic checks (and optional transformation) primarily
through programming and a query language.

Compared generally to these approaches, our design disen-
tangles match and rewrite specification from grammar defi-
nition through a predefined (but configurable) DEL grammar
operationalized as a parser generator. Template specification
is declarative as opposed to programmatic. Matching is a
function of parser generation that acts directly on syntax,
without intermediate tree representations. This notably re-
moves the complexity of translating a declarative concrete
syntax to an underlying abstract syntax.

Cubix is a multi-language transformation tool using com-
positional data types and is a heavyweight solution intended
for complex rewrites (like lifting variable declarations) with
strong, type-based guarantees [39]. We prioritize lightweight
transformation (templates take seconds or minutes to write),
whereas Cubix is not intended for lay programmers.

Coccinelle [40] is notable for using a declarative approach
with similar specifications to ours to transform syntax, al-
though it introduces additional metasyntax and uses a fixed
grammar that only parses C code. Refaster [56] introduces a
template-based approach restricted to Java, but can addition-
ally draw on type information. D-expressions derive from
Lisp macros [25] and use a skeleton syntax tree to support a
simple core grammar definition for the Dylan language [14],
later adapted for Java [15]. In our work, an extensible skele-
ton parser encodes handling syntactic variations to enable
macro-like functionality for many languages.

Parser combinators [34] are central for enabling our mod-
ular transformation approach for flexibly handling multiple
language syntax. In this sense, we relate to multi-language

static checking using parser combinators [18]. Our focus,
however, is on transformation. The relation between struc-
tural tree matching and parsing is observed by [31]; in this
sense, our approach operationalizes configurable tree-like
matching as a function of modular, configurable parser com-
binator generation via declarative specification. Okasaki ob-
serves the phenomenon of parsers-producing-parsers [48]
and notes how a “prelude” parser can define another parser
for parsing the remainder of a program. Templates in our
approach correspond to a kind of extensible “prelude” parser;
the resulting parser runs on the complete program and
records only syntactic fragments of interest for rewriting.
Our approach extends Dyck languages (being simple yet

fundamental to CFL properties [27, 29]) as a foundation for
representing contemporary language syntax and structure.
Visibly pushdown languages [13] also build on the essential
CFL properties of Dyck languages toward term rewriting [19]
and program analysis [20].

Refal [7, 53] is a pattern matching language and tool for su-
percompilation. Refal’s operation and application emphasize
our own: matching and rewriting patterns is valuable for re-
moving redundancy and improving performance. Our tools
presents further potential for large-scale cleanup and code
changes, such as those performed by Google’s Rosie [42].

7 Conclusion
Wepresented a lightweight approach to syntactic transforma-
tion for multiple languages. In general, defining a universal
AST for transformation is problematic: concrete definitions
must be referred to, modified, or extended to support mul-
tiple languages. Our approach skirts this issue by focusing
on universal CFL properties of languages (i.e., nested con-
structs) rather than defining a concrete representation. We
lift the matching problem to declaratively generate parsers
that detect syntax of interest directly. We use PPCs to modu-
larize the behavior of parser generation to (a) preserve es-
sential CFL properties while (b) allowing hooks to customize
the parsing of language-specific syntax. Matched syntax is
recorded during parsing and transformed contextually and
hierarchically based on rewrite templates.

We evaluated our approach by implementing and applying
30 rewrite patterns to the 100 most popular GitHub projects
for 12 languages totaling 185 million lines of code. Over 50
changes have been merged into upstream repositories. We
also showed that our declarative approach requires signif-
icantly less effort to specify rewrite patterns compared to
language-specific tools used in practice.
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