Towards s/engineer/bot:

Principles for Program

Repair Bots

Rijnard van Tonder, Claire Le Goues
Carnegie Mellon University
rvt@cs.cmu.edu, clegoues@cs.cmu.edu

Abstract—Of the hundreds of billions of dollars spent on
developer wages, up to 25% accounts for fixing bugs. Companies
like Google save significant human effort and engineering costs
with automatic bug detection tools, yet automatically fixing
them is still a nascent endeavour. Very recent work (including
our own) demonstrates the feasibility of automatic program
repair in practice. As automated repair technology matures, it
presents great appeal for integration into developer workflows.
We believe software bots are a promising vehicle for realizing
this integration, as they bridge the gap between human software
development and automated processes. We envision repair bots
orchestrating automated refactoring and bug fixing. To this
end, we explore what building a repair bot entails. We draw
on our understanding of patch generation, validation, and real
world software development interactions to identify six principles
that bear on engineering repair bots and discuss related design
challenges for integrating human workflows. Ultimately, this
work aims to foster critical focus and interest for making repair
bots a reality.

Index Terms—bots, program transformation, automation, soft-
ware quality, refactoring, automatic program repair

I. INTRODUCTION

Companies like Google develop and integrate automatic bug
detection tools because it saves significant human effort and
development costs [1]. A survey by Chen et al. [2] reports that
of the hundreds of billions of dollars spent on developer wages,
up to 25% accounts for fixing bugs [2]. Automation thus holds
huge potential to further reduce human effort by automatically
fixing bugs. Although adoption is nascent, very recent work
demonstrates the feasibility of automatic program repair in
practice [3]], [4]. As automated repair technology matures,
it presents ever more appeal for integration into developer
workflows.

We believe software bots are a promising vehicle for realizing
this integration, as they bridge the gap between human software
development and automated processes. We envision repair
bots that orchestrate automatic patch generation, application,
and validation for performing automated refactoring and bug
fixing. To this end, we ask: what does building a repair bot
entail? A first paper on the topic by Urli et al. [4] reveal
insightful challenges and recommendations while engineering
the repair bot Repairnator, which fixes CI build errors.
They focus particularly on a blueprint design stemming from
Repairnator and offer a notably concrete example in the
design space of repair bot possibilities. The intent of our paper,
by contrast, is to elaborate on a higher level view of this design

space, abstracting discussion away from a particular language
or repair approach.

We identify six principles that bear on engineering repair
bots and discuss design elements to address related challenges.
Our position draws on our own research broadly concerned with
automated program transformation toward software quality [5]—
[8l. Our work demonstrates that automated refactoring [8]] and
program repair [S]] can be a reality for mainstream adoption,
and our techniques have resulted in over 50 patches merged into
highly popular open source projects for over 12 languages. We
draw on our understanding of patch generation, validation, and
pull request reviews to suggest considerations when engineering
repair bots.

The core of automating bug fixes and refactoring seeks
confidence in desirable program transformations while mini-
mizing human effort. The scope and complexity of desirable
program transformations will naturally depend on project and
developer needs, and in turn bear on the level of validation
necessary to argue that a change meets the desired objectives
(e.g., improving readability, performance, or correctly fixing
a bug). Applying program changes and validating their effect
distinguishes repair from auto-formatting tools and linter bots.
In our previous work, whether automating simple refactorings
or semantic-driven fixes, syntactic manipulation and change
validation constituted significant effort (and importance) when
submitting patches to upstream repositories. The process
consisted of these general phases once we identified a project
to repair:

1) Generate a syntactically well-formed patch using one of
our techniques.

2) Perform additional patch validation (e.g., type check or
run test suites against the patch).

3) Perform auto-format postprocessing.

4) Issue a Pull Request on GitHub.

5) Address reviewer feedback if needed.

Syntax manipulation (1) and change validation (2), are core
to automated reasoning and pose unique challenges to repair
bot designs. We thus place special emphasis on these concerns
in Section [lI| and [[1I| respectively. Auto-formatting (3) and pull
requests (4) are predominantly mechanical actions that are not
necessarily unique to repair bots. They play the role of (a)
ensuring code conforms to existing styles and (b) providing
an endpoint for maintainers to review and merge code. We
discuss these, and other aspects of human developer workflows,

in Section [[V] For brevity, this paper consciously elides the
inner workings of various repair techniques. Instead, we focus
on how general aspects of automated transformation bear on
designing and engineering repair bots, giving special attention
to challenges for generalizing to multiple languages.

II. DEALING WITH SYNTAX

Many desirable program transformations can be achieved by
solely reasoning about and transforming syntax. For example,
popular linter tools (e.g., ESLint [9]) include a —-£ix option
to automatically fix lint errors. Although syntax transformation
can be visually straightforward, two deeper considerations for
automation are at play. The first is language generalization: to
what extent is syntactic manipulation supported across multiple
languages (§I-A)? The second is validating syntax changes:
how do criteria for syntactic well-formedness influence automa-

tion (§II-B)?
A. Syntax Generality

Syntax transformation tools can be either language-specific
or handle multiple languages. Language-specific tools typically
parse programs into concrete syntax trees then output modified
syntax (e.g., Clang [|10]), while multi-language tools manipulate
syntax using a general grammar or abstract representation [[11]],
[12]. Due to syntactic ambiguity and variation in contemporary
languages [13|, using multi-language tools are less common
than language-specific counterparts in mainstream projects.

Principle #1. Syntactic idiosyncracies and ambiguities intro-
duce complexity for automating general (i.e., multi-language)
syntax transformation.

Approaches. A repair technique may support multi-language
transformation through (1) heterogeneous, language-specific
toolchains or (2) multi-language frameworks, or (3) a combi-
nation of these. A repair bot must invariably integrate one or
more of these approaches, and each imposes constraints on bot
generality and maintainability. The first allows unambiguous
and accurate syntax transformation, but reduces generality and
maintainability for automation: multiple language and compiler
toolchains will have to integrate with a repair bot and couple
tightly to project languages and versions. A multi-language
framework (e.g., [[14], [8]) promises improved engineering
efficiency and hence bot maintainability, but must be sufficiently
expressive to perform sophisticated syntax transformations and
powerful enough to resolve syntactic ambiguities for supported
languages. As an extreme example, sed can manipulate any
program text (i.e., it is multi-language), but its regular engine
is not expressive enough transform context-free or context-
sensitive languages. A combination of approach (1) and (2)
may offer a balance in maintainability and expressivity, but is
not currently explored in practice.

B. Syntax Validation

Automated checkers (e.g., linters) typically have the luxury
of operating on well-formed syntax. Program transformation
by definition goes beyond this “read-only” restriction, and
desirable transformations must be, at minimum, syntactically

well-formed to imply correctness. A repair bot that incorporates
and communicates syntactic well-formedness of automated
changes increases human confidence in correctness.

Principle #2. Syntactic changes should be validated against a
well-formedness criterion.

Approaches. Compilers validate syntax early in the com-
pilation pipeline, and offer a straightforward approach for
ensuring well-formed syntax for a single language. Multiple
compiler toolchains are required in a multi-language approach,
and imposes a maintainence cost (as in §lI-A). Moreover,
compiler configuration may require substantial human effort,
and compilation may be computationally expensive for large
projects; these problems may induce excessive computational
cost to validate a simple syntactic change. It would be
convenient if a compiler only parsed target source code (to
ensure syntactic well-formedness), but compiler pipelines may
tightly couple parsing with other phases (i.e., type checking,
optimization). An alternative possibility is to relax the well-
formedness criterion on syntax and specify it over multiple
languages (analogously to adopting an abstract representation
for multi-language transformation frameworks) For example,
our work on automated refactorings [8|] ensures that delimiters
(e.g., parentheses, braces, etc.) are balanced in syntax output.
This criterion is sufficient for the transformations considered,
and holds for multiple languages. Using a relaxed definition
of syntactic well-formedness can (a) generalize more easily
to multiple languages (improving bot maintainability) and (b)
execute early (improving bot efficiency), though the guarantees
may be weaker than those of compiler checks. This approach
suggests a staged validation process where cheaper syntactic
checks take place before potentially more expensive semantics-
based ones.

III. PERFORMING SEMANTIC VALIDATION

Understanding how a change affects program behavior
presents greater opportunity to automate deep and complex
program fixes. Semantic checks thus provide stronger validation
than syntactic ones, particularly because validation can be
directed at specific program properties, such as a particular
bug kind or fault location. This may require reasoning across
procedure boundaries and multiple files, or validating a change
against a test suite. Existing work shows that integrating seman-
tic information with automated reasoning is crucial for more
sophisticated program fixes [4]], [S], [[15]; intuitively, automated
reasoning benefits from the same semantic information used by
engineers to understand and fix bugs (type information, tests,
program traces, etc.).

The landscape for incorporating semantic techniques into
program transformation is rich. We can broadly classify such
validation strategies and properties by whether the program
needs to be run (dynamic) or not (static). We identify a subset
of uses in this space that we have found compelling in our
own work.

A. Build Validation

Any syntactic change should still produce a compilable
program. Successful compilation is thus a necessary (but not
necessarily sufficient) criterion for ensuring a correct program
transformation. A successful build means that a set of basic
semantic properties are satisfied (e.g., no variable use-before-
defines). Because compilation does not require running the
program, it may be more efficient than dynamic techniques.

Principle #3. Automated transformations should be validated
with a successful build of the program.

Approaches. Building software artifacts can be computation-
ally expensive and time consuming to configure. This burden is
especially high for external contributors, who may need to set
up a local copy, install dependencies, and then build a project
from scratch to validate a change. Continuous Integration (CI)
services, like Travis CI alleviate build reproduction with new
changes. CI builds are typically triggered by a pull request
made to a project’s code host. A passing CI build is essential
for communicating good changes during review. However,
typical repair approaches need to test for a passing build before
issuing a pull request. One approach (also noted in [4]]) is to
replicate the CI environment and build pipeline on separate
infrastructure. Forking a repository offers a way to attempt to
replicate the build pipeline. Unfortunately, we have found that
forking CI builds is unreliable: builds may fail for a number
of unrelated reasons (e.g., the fork build cannot authenticate to
external endpoints). Replicating the original build for testing
changes (but without issuing a pull request) offers an ideal
conceptual solution, but one that is not readily available to
our knowledge. An alternative approach is to use (1) personal
infrastructure, (2) follow the build instructions for the project,
and (3) integrate these steps into a validation script. We have
opted for this approach in most of our work because it is
reliable—unfortunately, step (2) poses a significant barrier to
easy automation. A third possibility is to use CI build scripts
and attempt to synthesize local build or validation scripts.

The variety of available languages, their compilers, and a
plethora of build systems exacerbate the challenges above. CI
builds provide a critical abstraction for reducing the complexity
of configuring and interfacing a repair bot with this fragmented
space. The promise of CI support for external services to easily
and reliably validate isolated builds is pivotal to maintainable
and efficient repair bots.

B. Testing

A change that passes all tests for a program is another
necessary (but not necessarily sufficient) criterion for a correct
program transformation. Tests are inherently dynamic and can
incur greater computational cost, but provide greater assurance
of a change’s correctness with respect to particular program
functionality. They may even detect, for example, performance
regressions.

Principle #4. Automated transformations should be validated
by running changes against available test suites.

Uhttps://travis-ci.org

Approaches. CI pipelines typically also run test suites against
changes, and offer an attractive approach for the same reasons
as build validation. The attractiveness of using CI is similarly
dampened by the difficulty of easily replicating builds. Local
testing may have additional dependencies or rely on external
services, and adds additional maintenance concerns for au-
tomation. Since running tests can be expensive, incremental
testing and caching factors into validation efficiency and bot
responsiveness for code changes.

Note that any compiled or tested change implies well-
formed syntax (i.e., adopting approaches for Principles 3 and
4 subsumes 2). However, Principle 2 holds independently for
simple syntactic or linter fixes that do not require additional
semantic validation granted by 3 and 4.

C. Type Information

Type information enables complex automated fixes and
refactorings [5]], [L6]. On the one hand, types can restrict the set
allowable program candidate changes; on the other, they serve
as meta-information for querying whether a particular change
is legal (e.g., for disambiguiting syntax [13]]). Incremental type
checking may be sufficient validation for simple changes in
lieu of a full program build. Type information can be computed
efficiently, and is therefore an attractive validation mechanism.

Principle #5. Computing and exposing type information
enables a fast static validation mechanism for automated
transformations.

Approaches. Most existing repair tools directly access type
information through a program’s abstract syntax tree (AST).
This approach is straightforward. However, it creates a tight
coupling between repair tools and compilers where (a) each
repair tool independently computes and uses the same type
information as other potential repair tools and (b) each such
interface must be maintained independently. This presents
a significant challenge for scaling automation to multiple
languages. The language server protocol (LSPf] presents a
new approach for incorporating type information. LSP was
developed to provide editor information as a service (including
type information lookup). The LSP standardization makes
it possible query type information for a project hosted in
a central location (where compilation and type information
is cached). Such queries are thus efficient and generalize to
multiple languages. We see LSP as a promising move towards
decoupling static semantics from program syntax and locally
managed compilation. These aspects make LSP interfaces a
natural consideration for building repair bots.

D. Static Analysis

Our work uses static analysis to provide another layer of
validation to automated changes [5]]. Since static analyses
can detect specific property violations (i.e., bugs), they can
also validate whether a program change satisfies a desirable
property (e.g., removes a bug). Once again, such validation
may be a necessary but not sufficient condition; however, static

Zhttps://langserver.org

https://travis-ci.org

analyses are special in that they may validate that a particular
bug was removed (with more particular guarantee than, e.g.,
tests). Static analyses are generally fast, finishing in the order
of minutes. These features make analyses another significant
interface consideration for repair bots.

Principle #6. Static analyses can validate complex changes
with respect to desirable program properties and thus enable
sophisticated fixes; such validation should accompany auto-
mated transformations where applicable.

Approaches. Static analyses complement automated repair.
The choice of static analysis will invariably depend on the
target language and bug kinds being detected, which is difficult
to generalize to program repair bots. Broadly speaking, static
analyses impose additional (and likely ad-hoc) integration with
a bot architecture, and may impose significant maintenance
effort due to varied tools and configurability. We see the biggest
opportunity lying in the standardization of static analysis tools
across languages, such that capabilities and validation guaran-
tees are made explicit. I.e., does the analysis cover the program
change explicitly in its model (or could it be missed because
the analysis is imprecise)? How correct is the abstraction; could
it be unsound? Standardization of bug kinds, and coverage of
the analysis, strengthen the automation pipeline for accessible
inspection and debugging. Sari is a recent effort proposing a
standardized format for static analysis output offering promise
in this direction. We believe analysis capabilities, assumptions,
and results should accompany validation in a standardized way.
This will enable repair bots to appropriately orchestrate repairs
and report validation guarantees to human interfaces.

IV. INTEGRATION WITH HUMAN WORKFLOWS

Automated processes are not necessarily fully autonomous:
humans still regularly configure, deploy, and monitor automa-
tion. Repair bots are no exception, and their effectiveness
depends on successful integration with human processes
of software development. We outline general considerations
behind this integration toward the goal of minimizing human
effort and enabling a push-button approach to approving
automated changes.

Configuration. Developer needs differ across projects, and
exposing the right bot configuration options impacts effective-
ness. One key challenge we have faced is determining which
files are valid targets for refactoring or repair. In some cases,
this is easy. For example, the vendor folder for Go projects
contains dependencies that should generally be ignored. In
others projects, external dependencies are included without
any special indication. A further difficulty lies in ignoring
files that explicitly test for buggy functionality. Blacklisting
targets is one option that must be communicated to repair bots.
Other options include timeouts, and filtering files with specific
extensions.

Postprocessing. Projects adopt their own styles and conven-
tions. Auto-formatting tools ensure consistent styles (e.g., inden-
tation, line length, and comments). Using syntax-manipulating

3http://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html

tools (both our own and others) can break these stylistic
conventions, which are typically outside the scope of the tool
to correct. We have found it effective to apply postprocessing
using existing auto-formatters after syntax changes. To mini-
mize human effort we advocate auto-formatting postprocessing
in repair bots to maintain readability.

Code Host Integration and Deployment. Code hosts like
GitHub and GitLab are natural platforms for software bots
because they (a) store the source of truth for a software
project and (b) expose API endpoints for performing actions
automatically. The choice of code host thus deeply affects
how bots are engineered, configured, and deployed. Code
host features are constantly changing and improving, and
we do not attempt to give a full breakdown of relevant
features here. Nevertheless, we have found appealing ones
to include: (a) push-button approval for suggested changes and
pull requests [17]], (b) a GUI indicating progress and completion
of checks for bots [18]], and (c) a well-designed and documented
API for interacting with code host (e.g., issuing pull requests,
adding tags to pull requests, or adding reviewers).

Review. Humans are the gatekeepers of program changes, even
automated ones. The review process for a project therefore
factors into building and deploying a repair bot. An interesting
consideration for automated changes is quantifying the size
of the change and potential review burden. Large refactors
resulting from a conceptually simple change may appear
intimidating for review. Conversely, extensive change validation
(e.g., passing builds and tests) can encourage quick review
of changes. Changes, and their validation, should thus be
automatically tagged with attributes to streamline review
efficiency.

V. DI1SCUSSION AND CONCLUSION

Various project-specific needs will impose different re-
quirements and constraints on automated changes, whether
lightweight syntactic changes (Section [Il)), or semantic-driven
fixes (Section [[I). At a high level, the principles behind
syntactic transformation, change validation, and capitalizing
on external tools (e.g., LSP type provision and static analyses)
encourage decoupling concerns to achieve maintainable and
reusable architectures for building repair bots based on need.
Whatever the flavor of automated change, the expectation of
repair bots is that they integrate successfully and efficiently
with human workflows; configurability, code hosts, project style,
and review processes bear on their deployment (Section [[V).
Repair bots lie in the unique intersection of the principles
and challenges outlined above; we look forward to their
development for realizing end-to-end program repair in the
future.

ACKNOWLEDGMENTS

This work is partially supported under NSF grant number
CCF-750116. All statements are those of the authors, and do
not necessarily reflect the views of the funding agency.

http://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html

[1]

[2]

[3

[trt

[4

=

[5]

[6

=

[7]

[8

—

REFERENCES

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Commun. ACM,
vol. 61, no. 4, pp. 58-66, 2018.

S. Chen, W. K. Fuchs, and J. Chung, “Reversible debugging using
program instrumentation,” IEEE Trans. Software Eng., vol. 27, no. 8, pp.
715-727, 2001.

“Getafix: How Facebook tools learn to fix bugs automatically,”
https://code.tb.com/developer-tools/getafix-how-facebook-tools-learn-

to-fix-bugs-automatically/,

S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a program
repair bot?: insights from the repairnator project,” in International
Conference on Software Engineering: Software Engineering in Practice,
2018, pp. 95-104.

R. van Tonder and C. Le Goues, “Static automated program repair for
heap properties,” in International Conference on Software Engineering,
ser. ICSE ’18, May 2018, pp. 151-162.

R. van Tonder, J. Kotheimer, and C. Le Goues, “Semantic crash bucketing,”
in International Conference on Automated Software Engineering, ser.
ASE 18, 2018.

R. van Tonder and C. Le Goues, “Defending against the attack of the
micro-clones,” in International Conference on Program Comprehension,
ser. ICPC Short *16. IEEE Computer Society, May 2016, pp. 1-4.

R. van Tonder and C. Le Goues, “Lightweight parser-driven syntax
transformation,” in Conference on Programming language Design and
Implementation, ser. PLDI 19, to appear.

“ESLint,” https://eslint.org, 2018, online; accessed 31 January 2019.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

“Clang’s refactoring engine,” https://clang.llvm.org/docs/RefactoringEng
ine.html, 2018, online; accessed 11 October 2018.

P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A domain specific
language for source code analysis and manipulation,” in International
Working Conference on Source Code Analysis and Manipulation, ser.
SCAM ’09, 2009, pp. 168-177.

J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190-210, 2006.

E. A. T. Merks, J. M. Dyck, and R. D. Cameron, “Language design for
program manipulation,” IEEE Trans. Software Eng., vol. 18, no. 1, pp.
19-32, 1992.

J. Koppel, V. Premtoon, and A. Solar-Lezama, “One tool, many languages:
language-parametric transformation with incremental parametric syntax,”
PACMPL, vol. 2, no. OOPSLA, pp. 122:1-122:28, 2018.

X.-B. D. Le, D. H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: Syntax-
and semantic-guided repair synthesis via programming by examples,” in
Joint Meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
’17. ACM, Sep. 2017, pp. 593-604.

K. Sagonas and T. Avgerinos, “Automatic refactoring of erlang programs,”
in International Conference on Principles and Practice of Declarative
Programming, ser. PPDP 09, 2009, pp. 13-24.

“GitHub suggested changes,” |https://help.github.com/articles/incorporati
ng-feedback-in-your-pull-request/#applying-a-suggested-change, 2018,
online; accessed 11 October 2018.

“GitHub status checks,” https://help.github.com/articles/about-required-st
atus-checks/, 2018, online; accessed 11 October 2018.

https://code.fb.com/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://code.fb.com/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://eslint.org
https://clang.llvm.org/docs/RefactoringEngine.html
https://clang.llvm.org/docs/RefactoringEngine.html
 https://help.github.com/articles/incorporating-feedback-in-your-pull-request/#applying-a-suggested-change
 https://help.github.com/articles/incorporating-feedback-in-your-pull-request/#applying-a-suggested-change
https://help.github.com/articles/about-required-status-checks/
https://help.github.com/articles/about-required-status-checks/

	Introduction
	Dealing with Syntax
	Syntax Generality
	Syntax Validation

	Performing Semantic Validation
	Build Validation
	Testing
	Type Information
	Static Analysis

	Integration with Human Workflows
	Discussion and Conclusion
	References

