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ABSTRACT
The computational modeling of groups requires models that con-
nect micro-level with macro-level processes and outcomes. Recent
research in computational social science has started from simple
models of human behaviour, and attempted to link to social struc-
tures. However, these models make simplifying assumptions about
human understanding of culture that are often not realistic and
may be limiting in their generality. In this paper, we present work
on Bayesian a�ect control theory as a more comprehensive, yet
highly parsimonious model that integrates arti�cial intelligence,
social psychology, and emotions into a single predictive model of
human activities in groups. We illustrate these developments with
examples from an ongoing research project aimed at computational
analysis of virtual software development teams.

CCS CONCEPTS
•Human-centered computing→ Social networks; Social net-
work analysis; • Computing methodologies → Arti�cial in-
telligence; Network science; Multi-agent systems; • Applied
computing → Sociology;
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1 INTRODUCTION
The digital transformation of society has opened up novel opportu-
nities for studying social interaction. People increasingly use digital
tools and social-network platforms to communicate with each other,
producing large amounts of digital data that can be analyzed us-
ing “computational social science” (CSS) methods [23] to answer
psychological or sociological questions. One of the biggest hurdles
facing CSS is a substantial disconnect between disciplines such as
computer science or physics, which produce the methodological
expertise for large-scale data analysis and modeling complex social
systems, and disciplines such as psychology or sociology, which
provide a rich landscape of theories and empirical evidence that
enable thoughtful use of these methods.

The purpose of the present paper is to discuss the promise of a
cross-disciplinary, computational approach to the study of small-
group dynamics, and describe how such an approach might proceed
using our own research as an example. Importantly, we focus on a
theoretically informed way of using computational simulation for
the analysis of large amounts of social media data. We brie�y re-
view work in developing Bayesian a�ect control theory (BayesAct),
which mathematically integrates widely-accepted psychological
and sociological theories of social interaction with decision theo-
retic reasoning, and thus enables the creation of arti�cially intelli-
gent agents that are aware of social scienti�c knowledge [19, 38].
We also show some preliminary results from our ongoing research
project to illustrate the logic and feasibility of small-group research
enhanced by arti�cial intelligence (AI).

Before turning to our own work, however, we provide a brief
review of some developments in AI and computational social sci-
ence that are relevant, in our opinion, for group-dynamics research
in general. We focus on the issue that small groups are complex
systems whose analysis requires more sophisticated mathematical
tools than the general linear models usually taught in the social
and behavioural sciences. We refer the reader to [17] for a more
complete exposition and further details.

2 BACKGROUND
Despite a widespread understanding that dynamic interactions are
fundamental to understanding small-group phenomena [11], much
of classic group research in sociology and psychology has been
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surprisingly una�ected by the computational modeling techniques
developed in other scienti�c disciplines that deal with dynamical
systems. In contrast, arti�cial intelligence has attempted to model
the behaviour of groups computationally for some time. For ex-
ample, multi-agent systems (MAS) research aims to build teams of
robots that can cooperate in working towards common goals, often
by invoking strategic behaviours based on rational utility. This
approach typically results in computationally complex strategic
models that must account for many agents optimizing their utility
functions simultaneously. On the other end of the spectrum, agent-
based modeling (ABM) aims to replicate the emergent behaviour of
groups using simple models of individual human behaviours.

2.1 Multi-Agent Systems
A classic example of multi-agent systems research is the robot soc-
cer “grand challenge” which has aimed (since 1998) to build a robot
soccer team that can compete against the best human soccer teams
(robocup.org). As with much arti�cial intelligence research, most
MAS work aims to build rational agents who are individual utility
maximizers. That is, each agent has a set of preferences encoded
in a utility function, which it uses to optimize its behaviour by
computing expectations with respect to likely future scenarios. In
order to enable group behaviours, such rational agents must model
other agents’ intelligent behaviour, rapidly leading to computa-
tional intractability. However, most empirical and theoretical work
from social science doesn’t support the notion that people put this
much e�ort into social processing.

Rational choice in group behaviour has also been the subject of
much investigation in economics and game theory [21]. However,
rationality leads to inconsistencies when considering simple games
with social interdependence (e.g., social dilemmas). Behavioural
economists have tackled the apparent irrationality of human be-
haviour in social dilemmas with a variety of heuristics, typically
resulting in adjustments to utility functions but remaining within
the rational model [2, 9, 27, 35]. Cooperative behaviour has been
linked to altruism through factors like kinship, direct reciprocity, or
indirect reciprocity via reputation [30]. Nevertheless, the fundamen-
tal problem persists in that an agent needs to optimize its behaviour
by considering all possible strategic behaviours of other agents in
order to compute a rational solution. These models lead to shallow
(in time) and broad (in number of options considered) solutions due
to limited processing power, and fail to provide convincing accounts
of human social behaviour at a large scale. Further, it appears that
fairness or inequity adjustments may not be comprehensive enough
to account for human behaviour across all situations (as games),
and a morality concept that is not based on outcomes provides a
more parsimonious account [5]. In line with this idea, we argue
that by considering identity and group membership as a shared
cultural and a�ective quantity, the forces of the resulting relational
commitments bear heavy weight upon the actions of group mem-
bers [22], and this can be used to account for human behaviour in
social dilemmas [20], and may be the type of social intuitionist [13]
model of moral reasoning that will explain some of these paradoxes.

2.2 Agent-Based Models and Social Simulation
Agent-based models (ABMs) also consist of autonomous compu-
tational agents that interact with each other and thus generate an
emergent, group-level outcome. However, in social science applica-
tions of ABMs, the goal is to understand and explain the complex
behaviours of a social system that are often not trivially reducible
to the properties of individual agents [for reviews, see 8, 40]. Many
ABMs in social simulation have studied processes of attitude for-
mation and di�usion in groups or societies, emphasizing the im-
portance of social in�uence between agents [e.g., 7]. The agents
in these models are usually very simple; e.g., an ABM might rep-
resent an agent’s “opinion” as a number on a single dimension
that changes according to a simple algebraic rule when subject to
“in�uence” from another agent that is either a “neighbour” on a
spatial grid or connected to the agent in a more or less realistic
social network. For example, a homophilous agent may tend to
change its behaviour to be more similar to the agents it interacts
with most often (its “friends” and “co-workers”). The virtue of such
models is that they show how even very simple mechanisms can
produce complex group-level phenomena that are poorly under-
stood. However, most ABMs lack even the most basic ingredients
of intelligence (whether human or arti�cial), namely the ability to
reason, plan, act, and cooperate with other agents.

The psychological simplicity of agents in many social simula-
tions has been the subject of much debate among modelers. It is not
helpful to replace the dubious assumption of the full rationality of
agents encountered in much AI research with the equally dubious
assumption of full stupidity encountered in many ABMs. As the
�eld matures and as computational resources become more ubiq-
uitous, many social simulation researchers have moved to build
more psychologically realistic ABMs [28, 31, 41]. One such model
is GroupSimulator, developed by [16]. In this model, exchanges of
behaviour among a group of computational agents are organized
according to the structure of Bales’ Interaction Process Analysis
(IPA) [4]. The choice of actions across IPA categories at each time
step is computed according to the dynamic principles of a�ect con-
trol theory, which we review in more detail below as a possible
starting point for a fruitful synthesis of AI and more traditional
group-dynamics research.

3 INTEGRATING SOCIAL PSYCHOLOGICAL
THEORY AND AI

The work reviewed in the previous section lies at two modeling
extremes. Multi-agent systems approaches attempt to build highly
complex models of agent behaviour based on strategic analyses
that are theoretically elegant and individually sensible, but fail to
capture both the simplicity and emergent complexity of human
group behaviour. Classic agent-based models, on the other hand,
have primarily been simple descriptive models that are able to ex-
plain aggregate statistics of emergent human behaviour data, but
often fail to account for individual interactions in speci�c settings.
Our recent work bridges the gap between these two extremes, by
proposing a dual-systems approach to arti�cial intelligence that
combines rational reasoning with emotional motivations and at-
tentional mechanisms. In this section, we discuss our work in the
development of psychologically grounded computational agents,
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and show how they can be used to account for human behaviour
in small groups. This work builds on a�ect control theory, an early
attempt at a mathematically formalized general-purpose theory
of social interaction, which is rooted in decade-long theorizing in
psychology and sociology. Our research on a�ectively-motivated
arti�cial intelligence is fundamentally di�erent thanmodels in MAS
or ABM, in that it assumes the agent’s reward is primarily extrinsic,
but that attentional mechanisms based on a�ect control are used to
focus on action choices that are aligned with the prevailing social or-
der. The resulting solutions are therefore narrow (more focused on
socially-aligned solutions) and deep, giving longer-term strategies
of cooperation that are more predictive of human behaviour.

3.1 A�ect Control Theory
A�ect control theory (ACT) links social perception with identity, be-
haviour, and emotion in social interactions [15]. The theory draws
on symbolic interactionism [26] as well as theories of psychological
consistency [14] and cybernetic control [34], proposing that people
rely on linguistic representations with culturally-shared meanings
to e�ciently orient themselves within social interactions and an-
ticipate the behavioural and emotional responses of others. Their
motivation to maintain the cultural meanings associated with their
own identities and the identities of others directly governs their
interpersonal behaviours and emotions.

ACT uses the cultural meanings associated with labels for iden-
tities, behaviour, and emotions to model how humans interpret
and respond to social events. Based on classic work by Osgood
and colleagues [32], three universal semantic dimensions measure
cultural meanings for various concepts: 1) evaluation (good vs. bad),
2) potency (weak vs. strong), and 3) activity (calm vs. excited). Eval-
uation is associated with perceptions of warmth, likeability, and
approachability. Potency is associated with perceptions of compe-
tence, dominance, and submission. Activity is associated with per-
ceptions of social agency and action readiness [37]. Shared cultural
knowledge, expressed on these dimensions (referred to collectively
as EPA), describes and di�erentiates social concepts, with each con-
cept possessing a speci�c pattern of a�ective meanings known as
fundamental sentiments. Fundamental sentiments re�ect how the
members of a given culture view elements of the social world; they
characterize how good, powerful, and active particular identities,
behaviours, or emotions seem in general, outside of the context of
social events. For example, we tend to see heroes as good, powerful,
and active (2.6, 2.3, 2.1), senior citizens as good, powerless, and in-
active (1.2, -0.0, -1.8), and dropouts as bad, powerless, and inactive
(-1.7, -1.8, -1.5)1.

Fundamental sentiments for identities, behaviours, and emotions
shift when they appear together in the context of social events. For
example, a hero seems much more good, powerful, and active when
he rescues a child (3.8, 2.0, 1.7) than when he compromises with
a villain (0.1, 0.9, -0.1). These event-contextualized EPA meanings,
known as transient impressions, capture the group’s interpretation
of actors, behaviours, and other elements of the situation and help
to predict their behavioural and emotional responses to unfold-
ing events. A�ect control theory postulates that we can derive a
group member’s likely behavioural and emotional responses to a

1for historical reasons, EPA measurements are scaled to lie between -4.3 and +4.3

given situation from their transient impressions of that situation
because human beings seek mental consistency between cultural
expectations and social action. In other words, people act in ways
that maintain the a�ective meanings associated with the group’s
interpretation of the situation, and expect others to do the same.

When our expectations about the identities and behaviours in-
volved in an event are violated, we experience de�ection, a tension
about the situation which signals that our experiences are out of
alignment with cultural expectations. A�ect control theorists cal-
culate de�ection as the sum of the squared Euclidean distances
between transient impressions of the identities and behaviours
emerging from the situation and fundamental sentiments for these
event elements. Thus, the lower the de�ection, the greater the align-
ment between cultural expectations and situational circumstances.
De�ection is much lower, for example, when a hero rescues a child
than when they compromise with a villain. People seek to minimize
de�ection by acting in ways that maintain the group’s interpreta-
tion of the situation; this is known as the a�ect control principle.
Social actions are planned and carried out to either maintain situa-
tional meanings or to bring them back into alignment with cultural
expectations. Reinterpretation and re-labeling can also be used to
reduce de�ection, and emotional signaling can be used to enhance
coordination and agreement between agents.

A�ect control theory was extended to model small-group inter-
actions by developing an agent-based simulation platform called
GroupSimulator [16]. Like the classic ACT model of dyadic inter-
actions on which it is based, GroupSimulator rests on the a�ect
control principle, according to which agents strive to maintain the
shared meanings of all identities involved in the interaction. The
model capitalizes on the many strengths of ACT, such as its capacity
to e�ciently model the creative human interpretive process in a
diversity of social situations, using a parsimonious dimensional
structure to represent cultural meanings, and small set of inputs
to characterize events. GroupSimulator also provides a mechanism
by which group behaviours, coded into a set of basic categories as
de�ned in Interaction Process Analysis [4], can be mapped into the
ACT framework and used to drive a simulation. IPA categories clas-
sify acts directed from onemember of a group to another into twelve
di�erent functional categories. These categories cluster together
into two types of task-oriented behaviours (giving vs. soliciting
information or guidance) and two types of expressive behaviours
(positive vs. negative) aimed at socio-emotional regulation. IPA and
similar categorical systems have been employed in numerous stud-
ies reviewed by [4] to pursue questions such as status emergence in
groups, over-time phases in group dynamics, and the e�ectiveness
of collective problem-solving. IPA categories are mapped to EPA
space in [16], and used to validate GroupSimulator using mock
jury deliberations previously recorded, transcribed and manually
classi�ed into IPA categories. The distribution of behaviours exhib-
ited by the jurors in this study was successfully reproduced using
GroupSimulator [16].

Nevertheless, the model is not without its shortcomings. Al-
though GroupSimulator is able to reproduce the behaviours of
task groups, many of the parameters associated with social sense-
making and turn-taking are external to the model rather than theo-
retically integrated components. Consequently, studies conducted
with GroupSimulator are vulnerable to over�tting (creating an
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overly complex model to explain idiosyncrasies in the data). For
instance, two new theoretical assumptions were introduced in con-
structing this model to address uncertainty in turn-taking: 1) the
actor with the greatest de�ection will act next when self-selection is
possible; and 2) actors will choose to interact with the group mem-
ber that will most e�ectively minimize their de�ection. In addition,
GroupSimulator features only one utility function, the minimiza-
tion of de�ection. In real-world small-group interactions, group
members must balance identity maintenance with task-related pri-
orities. The recent development of Bayesian a�ect control theory
(BayesAct), provides a means to address many of these limitations.

3.2 Bayesian Generalization of ACT
The Bayesian generalization of ACT, called BayesAct, overcomes
many of the limitations mentioned in the previous section [19, 38].
BayesAct adds three new elements to ACT, which can also be viewed
as removing limiting assumptions of the theory.

(1) BayesAct models all sentiments as probability distributions,
thereby accounting for population-level di�erences in a�ec-
tive meanings for identities and behaviour that are likely
replicated in personal uncertainties in social perception. Sen-
timent distributions can also be multi-modal, meaning that
di�erent viewpoints and multiple simultaneous identities
and emotions of social agents are accounted for.

(2) BayesAct includes a denotative state space that can represent
other semantically meaningful elements of an interaction.
Using this, utility can be de�ned beyond de�ection to include
other aspects of individual preference that are likely to a�ect
agents’ interpretations of and responses to events. BayesAct
can therefore account for the tension involved in a social
dilemma where individual and social gains are at odds with
each other. BayesAct can also account for task-related aspects
of group behaviour in addition to the regulation of social-
emotional relations among agents.

(3) BayesAct allows for the simultaneous optimisation of all el-
ements of an interaction, including identities, behaviours,
turn-taking. Themodel thus overcomes the above-mentioned
over�tting problems of the GroupSimulator.

With these additions, BayesAct is constructed as a suitable basis
model for task-oriented group interactions. BayesAct uses a prob-
abilistic and decision theoretic model of stochastic control that
arises in operations research called a partially observable Markov
decision process (POMDP) [1].

BayesAct has been extended to take into account notions of the
self [18], paralleling recent work on the a�ect control theory of
self [24]. Self-sentiments can be represented as distributions over
the same a�ective space as identities and behaviour, and re�ect per-
sons’ autobiographical memories about themselves as they really
are. The a�ect control theory of self builds on the key insight of
ACT, the a�ect control principle, showing that people are motivated
to seek out situations that help them maintain their self-sentiments.
The Bayesian a�ect control theory of self therefore includes a mech-
anism for selection of interactants into social situations (i.e., the
alignment of self-sentiments with situational identity enactments),
providing a theoretical justi�cation for some of the seemingly ad
hoc mechanisms used in GroupSimulator. A BayesAct version of

GroupSimulator is under construction in order to allow such simu-
lations to be crried out. Some early examples can be found in [18].
In the following section, we describe simulations done with the
basic ACT GroupSimulator, leaving simulations with BayesAct for
future work.

4 ILLUSTRATION: GROUP DYNAMICS IN
VIRTUAL TEAMS

In this section, we describe an ongoing study 2 and some pre-
liminary results from it, aimed at understanding group dynamics
in online software-development teams with the help of arti�cial-
intelligence tools capitalizing on ACT. First, we review the GitHub
platform, which is widely used for virtual collaboration and makes
the resulting digital data traces available to researchers. Second,
we use GroupSimulator to investigate some simple collaborative
dynamics on GitHub in simulation.

4.1 Online Collaborative Networks
GitHub is a social coding platform where software developers from
around the world come together to collaborate on software projects
of common interest. The site enables software developers to work
on the same software project (and even the same �le in a project) si-
multaneously, and tomerge their contributions without overwriting
one another. The history of their contributions is saved, and one can
always revert to an older version. Discussion about contributions
can focus on the actual function of the code, or on the alignment of
the function with the overall approach taken on the project. From
a social psychological point of view, this process of discussion and
revision is a crucial part of creating a relational meaning for the
group of developers, which may later become a strong motivating
force behind the group collaboration. Below, we show how we can
make use of the data generated in such discussions to make infer-
ences about the group process with machine-learning techniques
informed by social psychological theories.

4.2 A�ective Dynamics on GitHub
Emotions and interaction processes play an important role in soft-
ware collaborations. For example, both positive and negative emo-
tions have been shown to a�ect task quality, productivity, creativity,
group rapport, and job satisfaction [3, 6, 10]. While large-scale digi-
tal data traces for discussions of software projects are openly avail-
able on GitHub, sentiment and emotional analysis can be challeng-
ing as a�ective content is embedded in technical discussions and
punctuated with segments of code. Previous attempts include: [29],
who perform a feasibility study of emotions mining using Parrott’s
framework on Apache issue reports; [12], who use lexical sentiment
analysis to study emotions expressed in commit comments of open
source projects; and [33], who use a Natural Language Text Process-
ing tool (Natural Language Toolkit) to conduct a sentiment analysis
of security-related discussions on GitHub. While studies like these
yield interesting results, they are primarily descriptive in nature
and therefore contribute little to the kind of theoretical explanation
of group dynamics usually of interest to social and behavioural
scientists. We hope that our present theory-driven approach helps

2themis-cog.ca
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to overcome such gaps between description and explanation, which
are common in computational social science.

4.3 Simulating Interactions on GitHub
We focus on two example simulations as an illustration of how
GroupSimulator works, and the types of insights it can provide:
1) peer interactions occurring in a group of developers, and 2)
interactions consisting of a leader and two newcomers. This allows
us not only to compare a non-hierarchical group to a hierarchical
one, but also to address a common and important type of interaction
in online communities, the integration of newcomers [25]. We use
GroupSimulator to examine the behaviours that are produced in
each group, as well as who is enacting these behaviours and who
is the target. We also examine how experiences of de�ection are
distributed across members of the group.

In order to develop generative models of self-organized collabo-
rations on GitHub, we �rst recruited a sample of 503 GitHub users
and asked them to provide evaluation, potency, and activity ratings
of 587 identities, behaviours, and other concepts. We oversampled
with respect to both gender (50% female) and race (30% non-white).
Participants ranged from eighteen to seventy-nine years of age,
with most being in their thirties. While the majority of respondents
had some college (17%) or a bachelor’s (38%) or advanced degree
(20%), others reported having some high school education (3%), a
high school education (14%), or vocational training (5%). This study
provides a basis for the further evaluation of group behaviour on
GitHub and is used as a resource throughout our ongoing work.

Our simulation of a non-hierarchical group of developers con-
sists of three good, powerful, and lively agents. The agents’ identity
sentiments are drawn randomly from a multivariate normal distri-
bution, centered at 1.61, 1.91, and 1.76 in E, P, and A dimensions,
respectively. In contrast, the leader and newcomer simulation con-
sists of one very good, potent, and active identity (the group’s
leader), and two good but less potent and active identities (the two
newcomers). Identity sentiments for the leader are drawn from a
multivariate normal distribution centered at 2.67, 2.37, and 2.27,
while the sentiments of the two newcomers are drawn from mul-
tivariate distributions centered at 1.78, .77, and .62. These values
come from the survey described above.

GroupSimulator works by �rst selecting a group member to
act. Each group member is examined in turn, and the one with
the action that will lead to the greatest reduction in de�ection is
selected next. This group member is then simulated as taking that
de�ection minimizing action, and we refer to the acted-upon group
member as the object of the interaction. The process repeats, but
has a number of heuristic methods that allow for a more reasonable
simulation. First, group members that have acted are more likely
to act next (regardless of de�ection reduction), and turn-taking is
also more likely than switching to a new interactant. The behaviors
from the simulations (E,P,A values) are converted to IPA categories
according to the mapping de�ned in [16].

Figure 1 displays the behaviour distributions predicted by Group-
Simulator for a group of developers and a leader and two newcomers
in the left and right panels, respectively. The x-axis indicates the IPA
categories to which the behaviours were assigned. IPA categories
refer to four clusters of behaviours: positive expressive behaviours
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Figure 1: IPA Frequency Distributions for a Group of Three
Developers and a Leader and Two Newcomers

(categories 1-3), behaviours associated with providing information
or advice (categories 4-6), behaviours associated with soliciting
information or advice (categories 7-9), and negative expressive be-
haviours (categories 10-12). The y-axis indicates the percentage of
behaviours by IPA category each group member enacted, with the
lines indicating the identities of each group member. The points
indicate the frequency of behaviours in each category, with the
absence of points indicating that the agent did not engage in a
behaviour associated with that category. For example, developer 3
never agreed with other group members over the course of 1,500
turns across 220 simulations.

The simulation is able to capture the di�erence in the power
dynamics implied by the identity labels. Although group mem-
bers in both groups most frequently laughed or joked with others
(category 2), the leader had many more opportunities than either
developers or newcomers to engage in these behaviours. The leader
also more frequently provided information than newcomers, and
solicited for information or advice less often than newcomers. As
expected, newcomers solicited for information and advice more
often than either leaders or developers. Leaders also never engaged
in negative expressive behaviours, most likely because the leader
had numerous opportunities to a�rm its identity. The developers
also fell into a superior/subordinate pattern, with developer 1 most
often giving advice and suggestions while developers 2 and 3 most
often solicited information and advice. The higher frequency of
antagonism (category 12) among the developers, however, suggests
that this was not always a happy arrangement.

Figure 2 clari�es these dynamics by showing the proportion
of actions directed at each group member, and at the group as a
whole. The left and right panels display the interaction networks
of the developers, and of the leader and newcomers respectively.
The nodes correspond to each group member and the group, and
are sized by the number of behaviours directed at them. The ar-
rows indicate behaviours directed by one group member at another
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Developers Leader and Newcomers

Figure 2: Interaction Networks of the Group of Three Devel-
opers and of the Leader and Two Newcomers.

member; the thickness of the arrows indicates the relative propor-
tion of the total behaviours that occurred between each pair of
actors. For example, the relatively equal weighting of the arrows
directed by each developer towards the group indicates that each
developer had essentially an equal number of opportunities to ad-
dress the group, while the thicker arrows between developer 1 and
developer 2 and between developer 2 and developer 3 indicate that
interactions between these pairs of group members were more fre-
quent than between the other group members. The roughly equal
sizes of the nodes, however, indicate that each group member and
the group were addressed by other group members at nearly the
same frequency.

The high proportion of behaviours enacted by the leader com-
pared to newcomers and developers in Figure 1 emerges from the
interaction patterns in Figure 2. Leaders address the group, and
newcomers tend solicit information and advice. The leader and
newcomers tend to address the group more often than each other,
with the exception of newcomer 1 and the leader. Nevertheless, the
dominant interaction is the leader addressing the group, with far
fewer pairwise interactions occurring than in the developers group.

Finally, Figure 3 displays the distribution of de�ecting events
experienced by each group member across the 220 runs, with the
left and right panels referring to the developers and to the leader
and newcomers respectively. The mean de�ection and con�dence
interval of the developers is 7.41 (7.39-7.43). In contrast, the mean
de�ection and con�dence interval of the leader and two newcomers
is 6.39 (6.38-6.40) and 5.5 (5.41-5.62) respectively. The di�erence in
the levels of de�ection experienced by the developers compared to
the leader and newcomers emerges from an interaction dynamic
referred to by a�ect control theorists as the object diminishment
e�ect. Being an object of an interaction results in a loss of perceived
potency, and thus is a source of de�ection for potent identities such
as developers [39]. Increased de�ection results in groupmembers di-
recting compensatory behaviours meant to restore their perceived
loss of potency to other group members which in turn leads to
greater de�ection, resulting in the pattern of peer-to-peer interac-
tions shown in Figure 2 and the antagonism shown in Figure 1. In
contrast, the lower relative potency of newcomers compared to the
leader allows them to endure the leader’s jokes and accept direc-
tion, and to direct most interactions towards the group rather than

Figure 3: De�ection Experienced in a Group of Three Devel-
opers Compared to a Leader and Two Newcomers

towards each other. By directing actions towards the group, the
loss of perceived potency is distributed across the group reducing
the tendency towards compensatory behaviours and thus reducing
the overall level of de�ection experienced by the group.

5 FUTUREWORK
The long term aim of our research is to understand the social forces
behind group interactions on social collaborative networks like
GitHub. By using well-grounded social-psychological models, we
aim to better understand how these forces shape group outputs,
including implicit biases and relations, and how these outputs then
translate into products that a�ect the wider social structure. We
also aim to use predictions to help groups be more e�ective by
focussing interpersonal interactions and group-level ties. These
predictions could take the form of automated suggestions for struc-
tural changes, on-the-�y interaction recommendations (e.g. for how
to communicate), or could take the form of new, automated group
members (“bots”) whose function is to serve as a social lubricant.

Our next steps are to automate the extraction of relational in-
formation from GitHub interactions. Initial e�orts in this direction
have shown the problem to be challenging, but not insurmount-
able [36]. Analysis of identity from GitHub user pro�les and overall
interactions, framed in terms of social interaction systems [4], will
complement the survey described above, and will allow the creation
of simulated groups (as presented here) that re�ect real groups. Us-
ing BayesAct, we can then simulate group dynamics and compare
statistics of interactions on dimensions of interaction processes,
following the same model as in [16]. This will help validate the
BayesAct models, and will allow us to make wider and longer term
predictions about the social impacts of collaboration online. Further,
we plan to use the data and simulations to learn the parameters
of the BayesAct model, allowing it to adapt and change with the
changing culture on the platform. Finally, we are also interested in
moving beyond online (text-based) groups and to in-person groups
with verbal and gestural communication.
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6 CONCLUSION
This paper described our initial work towards integrating arti�cial
intelligence models with classic social psychological approaches
to the study of groups from Bales’ Interaction Process Analysis
to a�ect control theory. We illustrated here how we use sophisti-
cated, psychologically grounded agent-based modeling to explain
dynamical patterns of behaviour observed in such groups.

The use of arti�cial intelligence (AI) in group process research
has, to date, been somewhat limited. The limitations have stemmed
in part from the inherent complexity ofmodeling human behaviours
in groups. Arti�cial intelligence has largely been concerned with
building arti�cial agents based on a principle of rationality in the de-
cision theoretic sense. These approaches fail to yield su�ciently rich
or detailed models of human behaviour, especially within groups.
In contrast, our work in building emotionally aligned AI is built
upon a foundation of social-psychological theorizing about the role
of emotion in group behaviour. Its fundamental tenet is that rela-
tional attachments between individuals and between individuals
and groups de�ne social orders that are strong, long lasting, and
cooperative. These attachments form the basis for much human
social interaction.
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