
Efficient Parallel and Adaptive Partitioning for
Load-balancing in Spatial Join

Jie Yang
Computer Science Department

Marquette University
Milwaukee, USA

jie.yang@marquette.edu

Satish Puri
Computer Science Department

Marquette University
Milwaukee, USA

satish.puri@marquette.edu

Abstract—Due to the developments of topographic techniques,
clear satellite imagery, and various means for collecting infor-
mation, geospatial datasets are growing in volume, complexity,
and heterogeneity. For efficient execution of spatial computations
and analytics on large spatial data sets, parallel processing is
required. To exploit fine-grained parallel processing in large
scale compute clusters, partitioning in a load-balanced way is
necessary for skewed datasets. In this work, we focus on spatial
join operation where the inputs are two layers of geospatial
data. Our partitioning method for spatial join uses Adaptive
Partitioning (ADP) technique, which is based on Quadtree par-
titioning. Unlike existing partitioning techniques, ADP partitions
the spatial join workload instead of partitioning the individual
datasets separately to provide better load-balancing. Based on
our experimental evaluation, ADP partitions spatial data in a
more balanced way than Quadtree partitioning and Uniform grid
partitioning. ADP uses an output-sensitive duplication avoidance
technique which minimizes duplication of geometries that are not
part of spatial join output. In a distributed memory environment,
this technique can reduce data communication and storage
requirements compared to traditional methods.

To improve the performance of ADP, an MPI+Threads based
parallelization is presented. With ParADP, a pair of real world
datasets, one with 717 million polylines and another with 10
million polygons, is partitioned into 65,536 grid cells within 7
seconds. ParADP performs well with both good weak scaling up
to 4,032 CPU cores and good strong scaling up to 4,032 CPU
cores.

Index Terms—spatial join, spatial data partitioning, load-
balancing, Adaptive Partitioning, Parallel Partitioning, MPI-GIS,
HPC

I. INTRODUCTION

With the increasing volume and complexity of spatial
data, there is an increasing demand for efficient geospatial
techniques for parallelizing spatial computations [11]. Spatial
join and map overlay are important in many scenarios like
disaster prediction and rescue, urban planning and so on.
Parallel processing can be used to speed up the compute- and
data-intensive spatial computations. Spatial data partitioning
is an efficient method for data-parallel applications. However,
spatial data is often skewed and contains a variety of geometric
shapes, leading to a load-balancing problem in the paralleliza-
tion of spatial computations.

Spatial join involves two spatial layers, namely, R and S.
Performing spatial join queries with predicate Intersects,
Contains, Overlap, etc, on R and S generates a collection

of pairs (r, s), where r ∈ R, s ∈ S that satisfy the join
predicate. For example, “find all roads that cross a river” is an
Intersects query [9]. A spatial join can be performed in two
phases: 1) filter phase and 2) refinement phase. In the filter
phase, the minimum bounding rectangles (MBR) of geometries
are utilized to generate a collection of candidate pairs where
each pair consists of cross-layer geometries whose MBRs have
spatial overlap. These candidate pairs are further refined in the
second phase using the actual geometric representations.

Many existing spatial data partitioning techniques are based
on one layer, which ignore the distribution of data in another
layer. In our prior work, we developed MPI-GIS for partition-
based polygon overlay and spatial join computation [14]. MPI-
Vector-IO is a component of MPI-GIS that performs parallel
I/O of spatial data stored in parallel filesystem [13]. We
experimented with uniform grid partitioning which does not
perform well for skewed data. Adaptive spatial partitioning,
as described in this paper, is designed to improve the load
balancing in MPI-GIS.

Fig. 1. Number of geometries shown in each grid cell. The workload of a cell
in grid C is the product of the number of geometries present in corresponding
cells in A and B (e.g., workload in the fourth cell is 9*5).

To illustrate workload partitioning for spatial join, an ex-
ample is provided in Figure 1 using A and B as the two input
layers. A and B have different data distribution and the data
is partitioned among four grid cells. The output is layer C
which assumes the worst case scenario where a geometry in
A needs to be compared against all geometries in B. In output
grid C, the maximum workload is present in the fourth cell,
even though the corresponding fourth cell in grid A and B do
not have the maximum geometries in their respective grids.
This is in contrast to the traditional partitioning algorithms
which will prioritize dividing the second cell in grid A for



example. However, neither partitioning on A nor B alone will
focus on partitioning the actual workload. In this paper, we
propose a Quadtree-based algorithm (ADP) based on both
layers. ADP takes the distribution of geometries in both layers
into consideration which can improve spatial partitioning by
producing grid cells with similar workload.

Since we use a filtering-based approach to find the poten-
tially overlapping geometries, we can minimize duplication of
geometries that do not take part in spatial computations in
the refine phase. We refer to this technique as output-sensitive
duplication avoidance. This is not possible in a single layer
partitioning approach.

Moreover, we propose a parallel adaptive partitioning al-
gorithm (ParADP) for High-Performance Computing (HPC)
environment using MPI and C++ threads. Our distributed-
memory algorithm with p multi-core processors scans the
MBRs of an entire dataset by choosing p sample MBRs by
each processor to get a global view of the data distribution.
This is accomplished using the sample sort algorithm. For an
HPC cluster with p multi-core processors with q cores each, p
vertical stripes and q horizontal stripes within a vertical stripe
are created. Further partitioning is carried out by each CPU
core in parallel to meet the user-defined number of partitions.
This method is designed to keep the processors busy and min-
imize the overall data movement during spatial partitioning.
Once the grid partitions are created and geometries are mapped
to the grid cells, actual geometries can be finally moved to the
corresponding cell(s) where they belong. Therefore, the actual
geometries need to move only once from source processor
to destination processor. This is in contrast to dynamic load-
balancing approach where repartitioning is used after initial
partitioning to distribute workload to processors with lighter
workload [9].

Various experiments are designed to inspect the performance
of ADP and Parallel Adaptive Partitioning (ParADP). As a se-
quential partitioning technique, ADP’s and ParADP’s partition
qualities are compared with Quadtree partitioning and Uni-
form partitioning. Our implementations use Geometry Engine
OpenSource1 (GEOS) library which provides 1) spatial data
indices such as Rtree, 2) geometry-based algorithms, and 3)
parsing of spatial data.

The main contributions of this paper are as follows:
1) A load-balancing focused partitioning algorithm together

with an improved Duplication Avoidance technique and
an OpenMP tasks based in-memory parallel Quadtree
partitioning implementation.

2) A fast adaptive parallel partitioning algorithm for load-
balancing compute-intensive spatial operations imple-
mented using Message Passing Interface (MPI) and C++
threads for spatial datasets containing geometries like
polyline and polygon.

3) Experimental evaluation of the algorithm on a large
compute cluster containing up to 4032 CPU cores with
real-world datasets. Partitioning two layers 1) roads

1http://trac.osgeo.org/geos

(24 GB) and 2) parks (9 GB) containing 75 million
candidate pairs is completed within 7 seconds on a
cluster of 4032 cores.

This paper is organized as follows. Section II introduces
background information and related work. Section III de-
scribes Adaptive Partitioning and its OpenMP based version.
Section IV presents a parallel partitioning algorithm for ADP.
Section V evaluates the performance of ADP and ParADP.
Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

Partitioning spatial data has been well-studied in litera-
ture. Equi-Partitioning, Min-Skew [2], Uniform grid, R-tree,
Quadtree, and binary space partitioning are some classic exam-
ples of space partitioning. The choice of partitioning scheme
depends on the application where it is used. Multijagged is
a scalable spatial data partitioning algorithm [5]. However, it
is applicable for point data only. In our work, we consider
polyline and polygon data as input.

Parallel and Distributed partitioning: Parallel data parti-
tioning has been studied in the context of spatial query pro-
cessing, spatial join operation, and polygon overlay [8], [12],
[13], [15], [19], [24]–[26]. SpatialHadoop supports different
partitioning schemes using techniques based on Quadtree, R-
tree, grid, etc in a MapReduce environment [7]. PolySketch
is a tile-based partitioning of polygons and polylines for
GPU-based computations [1], [23]. Our parallel partitioning
algorithm uses MPI.

MPI-based GIS system: In our prior work, we experi-
mented with MPI-based approaches [3], [14] and developed
parallel I/O and partitioning framework called MPI-Vector-IO
as an HPC system [13]. MPI-Vector-IO partitions WKT files
stored in parallel filesystems like Lustre and GPFS into file
splits. After data partitioning, a uniform grid is used for spa-
tial partitioning. However, it suffers from load-imbalance for
skewed data due to the lack of adaptive grid partitioning. This
motivated the research into load-balancing spatial partitioning
techniques.

Load-balancing: The output for an ideal spatial partitioning
algorithm is to produce partitions that can be assigned to
processors in a load-balanced fashion so that the total execu-
tion time is minimized. Ideally, processors should have equal
amounts of work and a processor is not waiting for other
processors to finish their computation. Both SpatialHadoop
(SH) and Hadoop-GIS use dynamic load balancing present
in Apache Hadoop framework [4], [7], [21]. In [7], Quadtree
method performed well relatively to other methods. To avoid
the cost of reading and shuffle-exchange of the entire data, SH
reads only a small percentage (e.g. 1%) of the data randomly to
generate a global space partitioning. Our methods presented
here read all the MBR data. In our prior work, we studied
load-balancing using Asynchronous Dynamic Load Balancing
(ADLB) library, but the scalability was limited due to the high
cost of moving polygonal data across MPI processes [20].

Data skew results in load imbalance. To mitigate the effects
of load imbalance, SPINOJA system [15] partitions the spatial



dataset such that the amount of computation demanded by each
partition is equalized and the processing skew is minimized.
Heuristics like declustering skewed distribution of geometries
and round-robin assignment of partitions to processors has
been shown to be effective for loadbalancing [15], [16]. The
experimental evaluation in [15] was done on a single processor
with 8 cores. In our current work, we have evaluated the
performance using thousands of CPU cores in a distributed
memory environment.

In this paper, ST intersection2 and ST intersects3 op-
erations on two datasets are considered. ST intersection is
used to find the intersection region of two geometries and
ST intersects is used to find whether two geometries intersect
with each other.

III. ADAPTIVE PARTITIONING

In our adaptive partitioning (ADP) method, we consider
both layers to capture the data skew inherent in spatial join and
overlay operations. For each geometry in a layer, we take its
minimum bounding rectangle (MBR) and the number of points
it contains as input. The output is an adaptive grid consisting
of cells and a mapping from candidate pairs to grid cells. The
goal is to generate a spatial partition that minimizes the load
imbalance when spatial computations are carried out in the
refine phase in each cell.

The Adaptive Partitioning contains two steps: 1) find pairs
of geometries from two spatial data layers whose MBRs
overlap with each other, and 2) generate a grid using Quadtree
partitioning and map those pairs to the grid cells. In partition-
based spatial join (PBSJ), for a given number of partitions
(cells), geometries from each layer is stored in all the partitions
where it belongs. Spatial join is then carried out in each
partition. Instead of partitioning data from each layer, in this
paper, we propose to first find all the candidate pairs, and then
partition the candidate pairs on a grid. The advantages of this
approach is workload-aware partitioning as well as reducing
the inter-process communication.

A. Finding candidates for partitioning

Algorithm 1 Algorithm for finding candidates
1: Input: Two collections of spatial objects R and S.
2: Output: Candidate set denoted by C,
3: Build Rtree index RI using MBRs of R
4: for MBR sj in S do
5: results← RI.query(sj .MBR)
6: for rk in results do
7: Find the intersection of rk.MBR and sj .MBR
8: Calculate center point of intersection denoted by pjk
9: Calculate weight wjk using weight equation.

10: C ← C ∪ tuple(rk, sj , pjk, wjk)
11: end for
12: end for

2https://postgis.net/docs/ST Intersection.html
3https://postgis.net/docs/ST Intersects.html

Algorithm 1 describes the procedure used to find the pairs of
cross-layer geometries which potentially intersect each other,
i.e. their MBRs have overlap. The inputs to the algorithm are
two collections (layers) of geometries denoted by R and S. An
Rtree index is built from MBRs of R which helps in reducing
searching time [10]. Then an R-tree query is performed using
MBRs of S which generates a collection of candidates denoted
by C.

Candidate set C is a collection of objects from layer 1
whose MBRs intersect with MBRs of objects in layer 2.
For each element from this collection, we find actual MBR
intersection, which can be a rectangle, line or point. We also
calculate a candidate’s weight based on the numbers of vertices
in the two objects. The weight can be calculated based on
the time complexity of the computational geometry algorithm
involved in the refinement phase. Based on our previous
research [20], assuming m and n are the number of vertices
in two geometries, we use weight, w = ((n+m)log(n+m))
for finding geometric intersection. Weight and center points
are attributes of each candidate as shown in Line 10 of
Algorithm 1. The center points of MBR intersections are used
for reference point method and output-sensitive duplication
avoidance.

Reference point method: As described earlier, geometry
spanning multiple cells of a grid is duplicated in all the
cells it passes through. As shown in Figure 2, a candidate
(r2, s3) gets mapped to two cells (C,IV) and (C,V). To avoid
redundant computation on the same candidate pair by two
different processors in adjacent cells, reference point method
is used [6]. As shown in Figure 2, this method calculates the
intersection of MBRs r2 and s3 of a candidate and assigns
it to the processor owning the cell where the center point of
the MBR intersection belongs. For (r2, s3), the owner cell
is (C,V). Since, this method works in the refinement phase,
in a distributed memory implementation of PBSJ, mapping
these geometries to their corresponding partitions requires data
communication [4], [9], [13].

Output-sensitive Duplication Avoidance technique: We
employ the reference point method in our implementation.
This method can be applied to reduce redundant storage of
geometries in spatial join. Our new method takes advantage
of the fact that since all candidates are known, a geometry need
not be stored in all the grid cells it passes through. The storage
of geometries in grid cells can be determined by the location of
the candidates in the grid. We illustrate this observation using
geometry r1 that spans through multiple cells in Figure 2.
The space saving is one of the advantages of considering both
layers during spatial partitioning. In a filter and refine based
join processing, there can be thousands/millions of candidates.
Less redundancy resulting from avoiding unnecessary storage
of geometries leads to reduced storage requirements as the grid
cells become finer in resolution. This also applies to minimiz-
ing the communication required to move the large geometries
to their corresponding cells in a distributed memory version
of PBSJ.

After the filter step, we know all the candidates. Geome-



Fig. 2. Mapping of candidates to grid cells. (r1, s1), (r1, s2), (r2, s3) are
candidates. Due to our output-sensitive method, geometry r1 is not stored
in cell ids (D, I), (C, I), (B, III), (B, IV), and (A, IV) even though it passes
through these grid cells. Instead, r1 is stored in cells (C,II) and (A,V) because
it is part of two candidates (r1, s1) and (r1, s2) only.

tries from a layer that do not participate in any spatial join
operations are considered to have zero-weight and thus do not
impact the weight associated with a grid partition. Moreover,
these geometries are not considered while mapping the pairs
to the grid cells. Some of these geometries have thousands of
vertices and span multiple grid cells. As such, in a distributed
GIS system, where data partitioning is used, this improves the
effectiveness of weight calculation and thus load balancing
when grid dimensions become fine-grained.

B. Multi-threaded Partitioning of Candidates

For grid partitioning of candidates, we use each candidate’s
center point and weight attributes. Standard Quadtree parti-
tioning divides a cell recursively if the number of objects in
it is more than a threshold value. The goal of our parallel
partitioning method is different. For a user-specified target
number N of grid cells, the main goal is to generate N cells
with roughly equivalent weight. Our sequential implementa-
tion of this method uses a greedy approach of selecting the cell
with highest weight and generating four sub-cells. This can
be implemented using a max-heap where cells are accessed
in descending order of their weights. The weights of those
new sub-cells are recalculated by summing the weights of all
candidates within those sub-cell area. The greedy approach
of first partitioning the cell with highest weight limits the
concurrency to four tasks per step. Therefore, we relax this
constraint by allowing multiple cells to be partitioned in
parallel. However, we still want to generate grid cells that
are closer to sequential implementation.

To illustrate an issue with parallelization of our Quadtree
partitioning approach, here is an example. Let us consider 4
cells with weights given by an array A = {20, 15, 6, 4}. Let us
assume that the first cell (A[0]) got divided into four sub-cells
with weights {19, 1, 0, 0} by a thread. If another thread picks
cell with weight 6 for division instead of picking cell with
weight 19 and we need only eight cells as output, it is clear

that we may not end up with desired output. A single-threaded
execution would pick 19 before 6 because of its descending
order priority. As, we can see, we do not want a lower weight
cell to be considered for sub-division by a thread, if there
are relatively higher weight cells still undergoing division by
another thread. This decision making also depends on how
many cells have already been partitioned w.r.t the target N .

Theorem 1 is used for guiding the parallelism of Quadtree
partitioning in ADP and ParADP.

Theorem 1. Assume that A is an array of cells arranged in
descending order of its cell-weights. A sequential algorithm
partitions cells in A by selecting a cell with the largest weight,
and splitting the cell into sub-cells by dividing its weight. If
wi ≥ w0/κ, a sub-set B = w0, w1, ..., wi−2, wi−1 can be
partitioned into at most i∗κ sub-cells whose values are ≥ wi,
where split factor κ ≥ 1.

Proof. If (i∗κ)+q sub-cells were generated by the partitioning
algorithm, whose weights ≥ wi, where q > 0, then

∑i−1
n=0 wn

≥ ((i∗κ)+q)∗wi ≥ i∗w0+q∗wi. This leads to contradiction
since

∑i−1
n=0 wn can at most be i ∗ w0. �

Based on Theorem 1, we can simultaneously split cells
with weights w0 to wi when wi ≥ w0/κ. An algorithm can
control the degree of concurrency by choosing κ. Moreover, by
adjusting the value of κ, we can trade-off speed-up vs accuracy
of a parallel partitioning method. Here the accuracy means the
similarity of the partitioning grid produced by parallel method
compared to the sequential method.

By applying Theorem 1, we have incorporated a heuristic in
our OpenMP algorithm which compares the weight of a cell
against the cell with the maximum weight wmax. A cell other
than the cell with wmax can be partitioned if its weight is
≥ wmax/κ, where κ ≥ 1. The value of κ can be customized.
With lower value of κ, the output of parallel partitioning is
closer to a sequential partitioning.

Algorithm 2 describes the OpenMP based Parallel Quadtree
partitioning algorithm. A user provides the desired number
of partitions in the grid. C is the set of candidate pairs.
Elements in C contains points with weights. The weight of
a cell is the summation of the weights of candidates in that
cell. Initially, G only contains an MBR, which is denoted by
GlobalMBR in the algorithm, that covers all objects in R and
S. During the execution of the algorithm, G will contain sub-
cells generated at a given time and elements of G are sorted
by their weights in descending order. Cells whose weights are
≥ κ ∗G[0].weight are sub-divided concurrently via OpenMP
tasks. The computations in Step 9 include distribution of the
candidates in a cell among its sub-cells and calculating the
weights of the new sub-cells.

The task number is bounded by the number of CPU cores
P to achieve a balance between concurrency and partitioning
quality. A list R is used to retrieve grid cells from tasks, as
directly writing to G will cause a race condition. After all tasks
are completed, all cells which were selected for partitioning
will be removed from G. Next iteration begins when G is



sorted. A threshold T is needed to avoid generating more sub-
cells than required. Taking parallel Quadtree partitioning as an
example, T can be set to 4 ∗ P or more.

Algorithm 2 OpenMP based Quadtree Partitioning Algorithm
1: Input: Candidate collection C, target number of cells N ,
GlobalMBR, maximum OpenMP tasks P , number of
OpenMP tasks counter in queue R, threshold T

2: Output: A list of grid cells G
3: Initialize G← GlobalMBR
4: Initialize R← ∅
5: while number of cells less than N − T do
6: counter ← 0
7: #pragma omp parallel num threads(P )
8: {
9: #pragma omp single

10: {
11: //Only the main thread adds tasks
12: for i = 0; i < P ; i++ do
13: if G[i].weight ≥ G[0].weight/κ then
14: counter++
15: #pragma omp task
16: R[i]← Quadtree partition on G[i]
17: end if
18: end for
19: }//End omp single
20: #pragma omp taskwait
21: }// End omp parallel
22: G.delete(0, counter − 1)
23: //In each iteration the number of tasks may vary
24: G← all elements in R
25: R← ∅
26: G.sort() // in descending order of cell-weights
27: end while
28: //After loop terminates, G’s size is around N − T + 4P
29: Sequential Quadtree partitioning of G to the size of N

IV. PARALLEL ADAPTIVE PARTITIONING

In this section, we will discuss a parallel partitioning system
to accelerate ADP using MPI+Threads approach. In short, we
first split the candidate pairs along x-axis among compute
nodes and then split those pairs along the y-axis among
threads in a compute node. Finally, each thread employs ADP
to further partition the grid into a user-defined number of
partitions denoted by N .

First, we will describe how to partition a single layer of
geometries using their MBRs as input in the next subsection.
Then, we will discuss how to use both layers to guide parallel
partitioning.

A. Parallel ADP for Distributed Memory

To speed up the partitioning algorithms, we designed a
parallel partitioning algorithm, called ParADP, by using a
hybrid MPI and multi-threaded implementation. MPI is only
used to facilitate data communication among the compute

nodes. C++ Threads are used within each multi-core node.
ParADP consists of a parallel MBR sorting phase, a data
communication phase, a work distribution phase, and a par-
tition phase. Parallel Sorting by Regular Sampling (PSRS)
technique [17] is used for sorting regular samples of MBRs
taken from different compute nodes.

ADP for two datasets of size m and n using p nodes is
shown next:

1) Parallel Sorting Phase: Each compute node reads m/p
and n/p MBRs from the two datasets respectively.
Then each node sorts the MBRs from dataset I by
the maximum x-coordinate values. Each node chooses p
regular samples and node 0 gathers all samples. Node 0
sorts all samples and chooses p−1 pivot values from the
sorted sample list. Node 0 broadcasts all pivot values.

2) Communication Phase: Partition the whole world into
p vertical stripes based on the pivot values and assign
each node a stripe. Each node marks the MBRs meant
for other p − 1 nodes for communication. Since each
node has a fraction of the entire data, it contains MBRs
that do not belong to the stripe it is assigned. So,
each node sends MBRs to their corresponding nodes
based on whether a given MBR overlaps with a stripe.
Also, MBRs belonging to the local stripe are received
from other nodes. These steps can be performed by
using MPI Send and MPI Recv functions or using
MPI Alltoall function.

3) In-memory Work Distribution Phase: After com-
munication, each node sorts the data it received by
the maximum y-coordinate values of the MBRs from
dataset II. For creating horizontal stripes, each node
chooses q − 1 pivot values from the sorted maximum y
values, where q is the number of cores in each compute
node. Each node partitions its stripe into q horizontal
cells and redistributes its MBRs among the respective
cells. Each CPU core is assigned one cell.

4) Partitioning Phase: Here we use ADP algorithm as
discussed earlier. Each cell cij calculates its total weight
wij by adding all candidates’ weights within it. Each
node gathers the total weight wi of its stripe and uses
MPI Reduce to get the total weight W for the whole
dataset. Each cell generates wij ÷W ×N number of
sub-cells using Quadtree partitioning, where N is the
target number of cells required in the grid.

The grid generated by the parallel partitioning system is
different from a normal Quadtree grid. An example is given
in Figure 3 to show how ParADP works. Each processor in
ParADP gets a unique stripe and divides the stripe further
among its cores. To reach the user-defined target number of
partitions, each core partitions the space within its horizontal
stripe independently.

Figure 4 shows a grid with 8192 cells generated by ParADP
for the roads and the parks using 32 nodes on Bridges. There
are 32 stripes which can be distinguished by different coloring
scheme.



Fig. 3. ParADP using 4 compute nodes with 4 cores in each node.
Longitudinal thick black lines are generated first for rearranging data based
on its stripe boundary in each node. The green lines are generated by each
node independently. Every CPU core/thread is assigned one cell. The thin red
lines are partitioning boundaries generated by each CPU core individually.

Fig. 4. Parallel partitioning of the roads and the parks into 8192 grid cells
using ParADP

B. Time Complexity

Execution time breakdown: 1) In the parallel sorting
phase, sorting m/p MBRs on each node takes O((m/p)∗log
(m/p)) and communicating pivot values takes O(p2) time.
2) In the communication phase, each node gets approximately
(m+n)/p MBRs and sends (m+n)∗(p−1)/p MBRs, which
takes O(m+ n) time. 3) In the work distribution phase, each
node sorts MBRs from dataset II and divides two datasets
into q subsets, which takes O(m/p∗log (m/p)) + O(q∗log
(m/p)) + O(q∗log (n/p)) time. 4) The partition phase takes
O(mij ∗ nij) time, where mij and nij represent the number
of MBRs in a cell from dataset I and II respectively.

Best and worst case: ADP takes O(mn) time because an
MBR in dataset I can potentially overlap with all the MBRs
in dataset II. However, in ParADP, MBRs from dataset I is
roughly equally divided among p nodes. PSRS algorithm en-
sures that a processor ends up with at most 2m/p objects [17].
If we assume that MBRs are drawn from uniform distribution,
each compute node roughly gets m/p MBRs.

In the worst case, m/p MBRs from dataset I and n/q MBRs
from dataset II, are clustered in one cell (owned by a CPU
core), while other cells only have MBRs from one layer only.
The time complexity in the worst case is the product of the
number of MBRs from I and II, i.e., O(mn/(pq)). Even in

the worst case, ParADP is pq times faster than ADP, which is
O(mn).

The best case is when both datasets are uniformly dis-
tributed. In this case, each CPU core gets m/pq and n/pq
MBRs from the two datasets respectively. For the best case,
ParADP is (pq)2 times faster than ADP.

V. EXPERIMENTAL RESULTS

All of our experiments used various real world data sets,
sports, lakes, parks, and roads, which are taken from Spatial-
Hadoop website4. The attributes of the datasets are shown in
Table I. ADP in this section refers to the sequential version.

TABLE I
ATTRIBUTES OF THE DATA SETS

Name Type #Geometries File size

sports Polygons 1.8 M 590 MB
lakes Polygons 8.4 M 9 GB
parks Polygons 10 M 9.3 GB
Roads Polylines 72 M 24 GB

Most of the experiments are done on a supercomputer
named Bridges5 at the Pittsburgh Supercomputing Center.
Bridges has 752 regular nodes and each node has 2 Intel
Haswell (E5-2695 v3, 14 cores each processor) processors
running at 2.3 - 3.3 GHz with 128 GBs of memory.

In the subsections below, we have provided the storage
space savings due to our duplicate avoidance technique. We
performed experiments to analyze ADP’s execution time. The
weak scaling and strong scaling experiments are designed for
testing the scalability of ParADP. The partition qualities of
ADP, ParADP, Quadtree Partitioning, and Uniform Partitioning
were compared.

A. Performance of Output-sensitive Duplication Avoidance

Three pairs of real world data sets were used: 1) lakes and
sports, 2) roads and sports, and 3) roads and lakes. By storing
in Well Known Text (WKT) format, sports, lakes and roads
take 24 GB, 9 GB, 590 MB disk space respectively. They were
partitioned into 1024, 2048, 4096, 8192, 16384 parts using
three techniques: ADP, Quadtree, and Uniform grid. Then the
geometries in each grid cell were stored separately in a file
and written to hard disk in WKT format.

To evaluate the performance of our new duplication avoid-
ance technique on the pre-processing stage of spatial join,
ADP, Quadtree, and Uniform partitioning were used on differ-
ent pairs of datasets. Their outputs were stored in a hard disk.
We applied output-sensitive duplication avoidance technique in
ADP only to compare the improvement in space complexity.
In Figure 5, in all situations, ADP generates less data than
Quadtree and Uniform partitioning. In the case of partitioning
sports and lakes into 1024 cells, the total size of files generated
by ADP only use around 10% of the disk space used by data
generated by Quadtree and Uniform partitioning.

4http://spatialhadoop.cs.umn.edu/datasets.html
5bridges.psc.edu



0 2K 4K 6K 8K 10K 12K 14K 16K 18K
0

10

20

30

40

Number of cells

Fi
le

si
ze

(G
B

)

Original ADP Quadtree Uniform

sports and lakes

0 2K 4K 6K 8K 10K 12K 14K 16K 18K
0

10

20

30

40

Number of cells

Fi
le

si
ze

(G
B

)

Original ADP Quadtree Uniform

sports and roads

0 2K 4K 6K 8K 10K 12K 14K 16K 18K
0

20

40

60

80

Number of cells

Fi
le

si
ze

(G
B

)

Original ADP Quadtree Uniform

lakes and roads

Fig. 5. Storage space needed using different partitioning techniques

When one dataset is much smaller than the other one, the
number of candidate pairs may be smaller than the number of
geometries in the two datasets. ADP can take this advantage
and save disk space when the partitions are written to disk.
This also means less communication for an in-memory dis-
tributed PBSJ algorithm. When the number of candidate pairs
generated is high, such as 188 million, for lakes and roads,
ADP may use more disk space than the original files. However,
ADP still uses less space than Quadtree Partitioning because
ADP stores geometries that are part of the candidate pairs
only. As Quadtree partitioning generates more cells in areas
with high density than Uniform grid, there is a higher chance
of geometries being duplicated in Quadtree partitioning, which
results in higher disk space consumption.

B. OpenMP Quadtree Partitioning Speedup

To evaluate the performance of the OpenMP based Quadtree
partitioning, we used 3.3 million points which are the center
points of a candidate’s MBR intersections from lakes and
sports generated by Algorithm 1. Several experiments were
done by using different number of CPU cores. The value of
κ is set to 2 and the threshold is set to 4P , where P is the
number of available CPU cores.

As shown in Table II, the benefits of OpenMP parallelization
is realized for higher number of cells. For 32K cells, OpenMP
based Quadtree partitioning achieved its highest speedup of
2.63 compared to the sequential Quadtree partitioning. Per-
formance is impacted by the lack of scalable multi-threaded
R-tree library that we use internally in Line 9 of Algorithm 2.

TABLE II
OPENMP BASED QUADTREE PARTITIONING TIME

Cores\Cells 1024 2048 4096 8192 16384 32768

1 16.03 18.33 21.09 27.10 42.43 99.39
4 16.17 18.43 21.06 26.18 35.21 62.09
8 16.06 18.31 21.57 26.54 33.42 51.87

16 15.99 18.26 20.54 24.66 30.84 50.22
32 15.41 17.79 19.93 24.04 28.89 38.05

C. Computing cost for ADP

We designed several experiments to test the impact on ADP
quality using different partition numbers. Parks and sports data
are partitioned into 1024, 2048, 4096, 8192, 16384 cells for

0 5,000 10,000 15,000 20,000
0

5

10

15

Number of cells
Ti

m
e

(s
ec

on
d)

Max Time Min Time

Fig. 6. Max process time and min process time for GEOS Intersects method
using parks and sports using increasing number of grid cells generated by
ADP. 84 cores are used for all cases.

five experiments respectively. For all cases, three nodes (84
cores) on Bridges are used. As shown in Figure 6, with a
higher number of partitions, the gap between maximum and
minimum MPI process execution times narrows for GEOS
Intersects method. This demonstrates that load-balancing
improves for a higher number of partitions for ADP.

Partitioning cost is determined not only by the number
of objects in the two layers but also by the number of
candidate pairs found during the filtering phase. The number
of candidates found in the filtering phase using Algorithm 1
are as follows:

1) parks and sports is about 2.7 millions.
2) roads and parks is about 8.1 millions.

TABLE III
ADP EXECUTION TIME FOR DIFFERENT PAIRS OF DATASETS

R S Partition Number Talg1 (s) Tquad(s)

parks sports 8192 835.69 28.43
parks sports 16384 828.93 43.10
parks sports 32768 853.57 99.32
parks sports 65536 859.63 346.73
roads parks 8192 19714.0 1222.69
roads parks 16384 19193.3 1562.82
roads parks 32768 19972.4 1975.74
roads parks 65536 19829.0 2757.72

Table III shows the time it takes for ADP on different pairs
of datasets to generate a given number of partitions. Talg1 is



the time used for finding the candidates. For the same pair of
datasets, Talg1 doesn’t change as the number of candidates
doesn’t change much when the partition number changes.
Tquad is the time for implementing Quadtree partitioning.

When the size of the two datasets increases, the time
for finding candidates pairs grows faster than the Quadtree
partitioning time. This is shown in Table III. Partition based
spatial join is affected by data partitioning [9] cost. From
Table III, we can see that partitioning can take a lot of time
when the target partition number is large for bigger datasets.
Even though ADP is effective as we saw earlier, it is time-
consuming. This motivates the need for parallel partitioning.

D. Weak scaling for ParADP

Here we discuss weak scaling experiments for ParADP. We
generate new pairs of datasets by duplicating geometries in
parks. When the number of compute nodes increases by 16,
one duplication of parks is added to the workload and the
number of cells in the target grid increases by 8192. As shown
in Table IV, ParADP has good weak scaling.

TABLE IV
PARADP EXECUTION TIME FOR WEAK SCALING

R S Candidates Nodes Grid cells Ttotal(s)

roads parks 75 M 16 8192 49.32
roads 2*parks 150 M 32 16384 38.63
roads 3*parks 225 M 48 24576 36.89
roads 4*parks 300 M 64 32768 41.45
roads 5*parks 375 M 80 40960 40.13
roads 6*parks 450 M 96 49152 32.26
roads 7*parks 525 M 112 57344 30.77
roads 8*parks 600 M 128 65536 31.70
roads 9*parks 675 M 144 73728 30.56

E. Strong scaling for ParADP

For strong scaling experiments, roads and parks are used.
Nine experiments are performed with 16, 32, 48, 64, 80, 96,
112, 128, 144 nodes on Bridges. Each node on Bridges has
28 cores.

TABLE V
PARADP EXECUTION TIME FOR STRONG SCALING

R S Partition Number Nodes Ttotal(s) Ts(s)

roads parks 65536 16 55.56 1.82
roads parks 65536 32 24.69 0.73
roads parks 65536 48 19.32 0.64
roads parks 65536 64 13.80 0.38
roads parks 65536 80 11.98 0.32
roads parks 65536 96 10.13 0.15
roads parks 65536 112 9.64 0.15
roads parks 65536 128 7.46 0.14
roads parks 65536 144 6.84 0.14

In Table V, Ttotal stands for the total time for ParADP and
Ts stands for the time for parallel sorting step. In all instances,
ParADP has high speedups as shown in Figure 7. ParADP
has high efficiency which ranges from 0.84 to 1.02, where
the highest efficiency of 1.02 is achieved with 32 nodes. The

0 1,000 2,000 3,000 4,000
0

1,000

2,000

3,000

Number of cores

Pa
rA

D
P

sp
ee

du
p

w
.r.

t.
A

D
P

ParADP speedups

Fig. 7. Speedups of ParADP w.r.t. ADP for generating a grid with 65536
cells using two datasets - 1) roads (72 million polylines) and 2) parks (10
million polygons).

reasons that the efficiency is greater than 1 are that 1) with
data decomposition for both layers, the query range for every
geometry is sharply reduced; 2) within a certain number of
nodes, the parallel sorting time decreases with more nodes as
R doesn’t change.

F. Partition Quality

We compare the partition qualities between ADP, Quadtree
partitioning, and Uniform partitioning. For the partitioned
data, we have implemented refinement phase using 1)
GEOS Intersects method and 2) GEOS Intersection.
Intersection method takes more time than Intersects
method because the output geometry needs to be computed
for Intersection. Round-robin scheduling of partitions/cells
to MPI processes is carried out. Static scheduling captures the
partition quality for a given partitioning technique. Maximum
and minimum execution time is reported. The maximum time
taken by a thread/process determines the end-to-end time.

Figure 8 shows the comparison of execution time for ADP,
Quadtree Partitioning, and Uniform Partitioning. As shown in
the figure, with more MPI processes involved, the average
execution times decrease. However, using Uniform partition-
ing, the maximum MPI process execution time doesn’t change
much; using Quadtree partitioning, the overall maximum MPI
process execution time changes slightly but in some cases it
increases. Since the execution time of a parallel application is
decided by the thread taking the longest time (straggler effect),
using ADP minimizes the overall execution time.

Figure 9 shows the timing for the refinement phase using
GEOS Intersection method. We compare the partition quality
using ADP, Quadtree partitioning, and ParADP. Figure 9(a)
shows the maximum (max) and minimum (min) MPI process
times when a MPI-GIS implementation applied Intersection
on the partitioned parks and sports. Both data are partitioned
into 8192 parts. As shown in the figure, the max process times



Fig. 8. Box-plot showing distribution of execution time by different MPI processes running GEOS Intersects query using parks and the sports data. Each
time the data sets are partitioned into 8192 parts. Max process execution time along with few outliers are also shown for each partitioning scheme.

28 56 84 112 140 168
0

20

40

60

80

100

Number of MPI processes

E
xe

cu
tio

n
tim

e
(s

ec
on

d) UNImax UNImin QDmax QDmin ADPmax ADPmin

(a) Applying GEOS Intersection on two datasets generated by ADP, Quadtree partitioning, and uniform partitioning.

28 56 84 112 140 168
0

20

40

Number of MPI processes

E
xe

cu
tio

n
tim

e
(s

ec
on

d) QDmax QDmin ADPmax ADPmin ParADPmax ParADPmin

(b) Applying GEOS Intersects method on two datasets generated by ADP, ParADP, and Quadtree partitioning.

Fig. 9. Max and min process execution times. Datasets parks and sports were used and partitioned into 8192 parts.

for ParADP are much lower than the max process times for
Quadtree partitioning. The min process times for ParADP are
higher than the min process times for Quadtree partitioning.
The MPI process times for ParADP-based partitioned data

are in a much narrower range than the MPI process times
for Quadtree-based partitioned data. Figure 9(b) shows the
maximum (max) and minimum (min) MPI process times when
Intersects operation is applied on the partitioned parks and



Fig. 10. Execution time of applying Intersects on different cells of the partitioned parks and sports. The data sets are partitioned into 8192 cells by ParADP
and Quadtree partitioning.

Fig. 11. Execution time of applying Intersects on different cells of the partitioned parks and sports data. The data sets are partitioned into 8192 cells by
ParADP and ADP.

sports. ParADP shows improvement over Quadtree partition-
ing in both experiments.

The Intersects execution times for processing each cell
of partitioned parks and sports are shown in Figure 10. The
parks and sports are partitioned to 8192 cells by ParADP
and Quadtree partitioning. As we can see, the Intersects
execution times for processing ParADP-based partitioned cells
are within a narrow range and none of them exceed 0.8
second. On the other hand, the Intersects execution times
for processing Quadtree-based partitioned cells have higher
variation and the longest execution time taken is 7 seconds. If
we consider a large scale HPC system with as many CPU cores
as the number of partitions and each CPU core is assigned data
in a pair of cells, spatial join can be done within 0.8 second
using ParADP partitioned cells while 7 seconds are needed to
process Quadtree-based partitioned cells.

The Intersects execution times for processing each cell of
partitioned parks and sports are shown in Figure 11. The parks
and sports are partitioned into 8192 cells by ADP and ParADP.
Cells with higher cell id take a longer time in ADP. This is
because cells with higher id have larger weight. Compared to
ADP, ParADP shows a narrower process execution time range

and a lower value for maximum MPI process execution time.
ParADP shows better partition quality than Quadtree par-

titioning. Once the candidate pairs are partitioned among the
CPU cores, ParADP internally calls ADP. In this way, ParADP
method can exploit parallelism in adaptively partitioning the
workload. The above-mentioned experimental results prove the
benefit of partitioning workload by considering both layers
versus partitioning data in a layer by layer basis.

For load balancing spatial computations, an alternative
approach is to start with a grid that is based on a single layer
(dataset) and dynamically rebalance the workload in cells that
have higher workload. In a distributed memory environment,
this leads to the movement of complex geometries from an
MPI process with higher workload to another MPI process
with lower workload. Moreover, there is overhead involved
in serializing, deserializing and parsing the geometries due
to communication. This is based on our prior experience of
parallelizing spatial join with ADLB library for load balancing.
The size of individual geometries varies from few KB to 10
MB. Therefore, the cost of dynamic load balancing while
running partition-based spatial join is quite high. Thus, we
explored the feasibility of generating a grid with user-specified



number of partitions in this paper.

VI. CONCLUSION

In this paper, we proposed Adaptive Partitioning techniques.
ADP can partition spatial data like polygons and polylines
in a load-balanced fashion. We have presented experiments
on various real-world data sets and evaluated the partition
quality between ADP and two classic partitioning techniques,
Quadtree partitioning, and Uniform partitioning. A new dupli-
cation avoidance technique is introduced by which unneces-
sary duplication of geometries spanning multiple grid cells is
reduced. An OpenMP version of ADP was also presented.

We have also designed a parallel partitioning system. Par-
allel ADP can partition large real-world spatial datasets with
data skew in a shorter time. ParADP algorithm has been shown
to be scalable on thousands of CPU cores. ParADP shows bet-
ter partition quality than ADP and Quadtree-based partitioning.
The weak scaling and strong scaling experiments prove that
ParADP has good scalability and improves performance with
increase in the size of compute cluster up to 4032 CPU cores.

ACKNOWLEDGMENT

This work is partly supported by the National Science Foun-
dation CRII Grant No.1756000 and the Northwestern Mutual
Data Science Institute. This work used the NSF Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by ACI-1548562.

REFERENCES

[1] Y. Liu, J. Yang and S. Puri, “Hierarchical Filter and Refinement
System Over Large Polygonal Datasets on CPU-GPU,” 2019 IEEE 26th
International Conference on High Performance Computing, Data, and
Analytics (HiPC), Hyderabad, India, 2019, pp. 141-151.

[2] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. 1999.
“Selectivity estimation in spatial databases,” In Proceedings of the
1999 ACM SIGMOD international conference on Management of data
(SIGMOD ’99). ACM, New York, NY, USA, 13-24.

[3] D. Agarwal, S. Puri, X. He and S. K. Prasad, “A System for GIS
Polygonal Overlay Computation on Linux Cluster - An Experience
and Performance Report,” 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, Shanghai,
2012, pp. 1433-1439.

[4] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xi-
aodong Zhang, and Joel Saltz. 2013. “Hadoop GIS: a high performance
spatial data warehousing system over mapreduce,” Proc. VLDB Endow.
6, 11 (August 2013), 1009-1020.

[5] M. Deveci, S. Rajamanickam, K. D. Devine and U. V. Catalyurek,
“Multi-Jagged: A Scalable Parallel Spatial Partitioning Algorithm,” in
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 3,
pp. 803-817, 1 March 2016.

[6] J. -. Dittrich and B. Seeger, “Data redundancy and duplicate detection in
spatial join processing,” Proceedings of 16th International Conference
on Data Engineering (Cat. No.00CB37073), San Diego, CA, USA, 2000,
pp. 535-546.

[7] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. 2015. “Spatial
partitioning techniques in SpatialHadoop,” Proc. VLDB Endow. 8, 12
(August 2015), 1602-1605.

[8] Franklin, Wm Randolph, Chandrasekhar Narayanaswaml, Mohan
Kankanhalll, David Sun, Meng-Chu Zhou, and Peter YF Wu. “Uniform
grids: A technique for intersection detection on serial and parallel
machines,” In Proceedings of Auto-Carto 9. 1989.

[9] Edwin H. Jacox and Hanan Samet. 2007. “Spatial join techniques,” ACM
Trans. Database Syst. 32, 1, Article 7 (March 2007).

[10] Ming-Ling Lo and Chinya V. Ravishankar. 1994. “Spatial joins using
seeded trees,” In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data (SIGMOD ’94), Richard Thomas
Snodgrass and Marianne Winslett (Eds.). ACM, New York, NY, USA,
209-220.

[11] Sushil K Prasad, Danial Aghajarian, Michael McDermott, Dhara Shah,
MohamedMokbel, Satish Puri, Sergio J Rey, Shashi Shekhar, Yiqun
Xe, Ranga Raju Vat-savai, et al.2017. “Parallel processing over spatial-
temporal datasets from geo, bio, climate and social science communities:
A research roadmap,” In2017 IEEE International Congress on Big Data
(BigData Congress). IEEE, 232–250.

[12] Satish Puri, D. Agarwal, X. He and S. K. Prasad, “MapReduce Algo-
rithms for GIS Polygonal Overlay Processing,” 2013 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd
Forum, Cambridge, MA, 2013, pp. 1009-1016.

[13] Satish Puri, Anmol Paudel, and Sushil K Prasad. 2018. “MPI-Vector-IO:
Parallel I/O and partitioning for geospatial vector data,” In Proceedings
of the 47th International Conference on Parallel Processing, ICPP. 13.

[14] Satish Puri and Sushil K Prasad. 2015. “A parallel algorithm for clipping
poly-gons with improved bounds and a distributed overlay processing
system usingmpi,” In2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 576–585.

[15] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson.
2014. “Skew-resistant parallel in-memory spatial join,” InProceedings of
the 26th International Conference on Scientific and Statistical Database
Management. ACM, 6.

[16] Shashi Shekhar, Sivakumar Ravada, Vipin Kumar, Douglas Chubb, and
GregTurner. 1995. “Load-balancing in high performance GIS: Decluster-
ing polygonal maps,” In International Symposium on Spatial Databases.
Springer, 196–215.

[17] Hanmao Shi and Jonathan Schaeffer. 1992. “Parallel sorting by regular
sampling,” Journal of parallel and distributed computing, 4 (1992),
361–372.

[18] Edgar Solomonik and Laxmikant V Kale. 2010. “Highly scalable
parallel sorting,” In2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, 1-12.

[19] Xiaofang Zhou, David J Abel, and David Truffet. 1998. “Data parti-
tioning for parallel spatial join processing,” Geoinformatica2, 2 (1998),
175–204.

[20] Jie Yang, Anmol Paudel, and Satish Puri. 2019. “Spatial Data Decom-
position and Load Balancing on HPC Platforms,” In Proceedings of the
Practice and Experience in Advanced Research Computing on Rise of
the Machines (learning) (PEARC ’19). ACM, New York, NY, USA,
Article 121, 4 pages.

[21] S. Shohdy, Y. Su and G. Agrawal, “Load Balancing and Accelerating
Parallel Spatial Join Operations Using Bitmap Indexing,” 2015 IEEE
22nd International Conference on High Performance Computing (HiPC),
Bangalore, 2015, pp. 396-405.

[22] Finkel, Raphael A., and Jon Louis Bentley. “Quad trees a data structure
for retrieval on composite keys.” Acta informatica 4, no. 1 (1974): 1-9.

[23] Anmol Paudel and Satish Puri, “OpenACC Based GPU Parallelization
of Plane Sweep Algorithm for Geometric Intersection. Accelerator Pro-
gramming Using Directives 2018. Lecture Notes in Computer Science,
vol 11381. Springer.

[24] Satish Puri, Sushil K. Prasad. 2013. “Efficient Parallel and Distributed
Algorithms for GIS Polygonal Overlay Processing,” 2013 IEEE Inter-
national Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum, Cambridge, MA, 2013, pp. 2238-2241.

[25] Satish Puri, Sushil K. Prasad. 2014. “Output-Sensitive Parallel Algo-
rithm for Polygon Clipping,” 2014 43rd International Conference on
Parallel Processing, Minneapolis MN, 2014, pp. 241-250.

[26] Danial Aghajarian, Satish Puri, Sushil K. Prasad. 2016. “GCMF: an
efficient end-to-end spatial join system over large polygonal datasets on
GPGPU platform,” In Proceedings of the 24th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems.
Association for Computing Machinery, New York, NY, USA, Article 18,
1–10.


