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ABSTRACT

Automated program repair is an active research area. However,
existing research focuses mostly on imperative code, e.g. in Java.
In this paper, we study the problem of repairing declarative mod-
els in Alloy — a first order relational logic with transitive closure.
We introduce ARepair, the first technique for repairing Alloy mod-
els. ARepair follows the spirit of traditional automated program
repair techniques. Specifically, ARepair takes as input a faulty Al-
loy model and a test suite that contains some failing test, and out-
puts a repaired model that is correct with respect to the given tests.
ARepair integrates ideas from mutation testing and program syn-
thesis to provide an effective solution for repairing Alloy models.
The experimental results show that ARepair can fix 28 out of 38
real-world faulty models we collected.
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1 INTRODUCTION

Automatic program repair techniques significantly reduce the hu-
man effort required to diagnose, debug, and repair faulty programs [2,
7,17, 21, 24, 30, 35, 38, 39, 43, 59, 63, 66, 79]. The standard generate-
and-validate approach [14, 19, 29, 34, 62, 80, 81, 83, 84] starts with
a faulty program and a test suite that reveals the defect. It explores
candidate programs in the search space, and validates each can-
didate program against the given test suite until a program that
passes all tests is found. Some repair techniques infer specs of
the program and translate the repair problem into constraints, and
then use SAT/SMT solvers to synthesize patches that conform to
the specs [33, 44, 55, 64].
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Existing program repair techniques mainly focus on imperative
languages like Java. Our focus in this paper is declarative models
written in Alloy [22] - a first-order relational logic with transi-
tive closure. The Alloy language and its back-end analyzer have
been explored within the software engineering community. Alloy
is used in various domains, including UML analysis [31, 41, 42],
security [40, 52], networking [61], and feature modeling [20]. Ad-
ditionally, the Alloy analyzer has been extended to provide better
scenario finding experiences [6, 28, 47, 49, 54]. Alloy users write
models that describe the properties of the system of interest. The
Alloy analyzer translates Alloy models into Kodkod [73] formu-
las and invokes off-the-shelf SAT solvers to search for solutions.
The analyzer performs scope-bounded analysis, which checks the
properties within a given scope, i.e. bound on the universe of dis-
course. AUnit [69] defines the notion of testing in Alloy following
the spirit of traditional testing frameworks, e.g. JUnit. Developers
write test predicates and invoke commands to assert the existence
or non-existence of solutions.

In this paper, we present ARepair, a novel generate-and-validate
program repair technique for Alloy, which is able to handle Al-
loy models with multiple faults. ARepair has three main compo-
nents: (1) a mutation-based fault localization technique [48, 56],
AlloyFL [77] that locates faults at the AST node granularity; (2)
a generator that systematically generates Alloy expressions (with
equivalence pruning rules for relational algebra [75]); and (3) a syn-
thesizer that explores the search space until a model with all pass-
ing tests is found. ARepair starts by invoking AlloyFL to locate
faults. Each time AlloyFL is invoked, ARepair checks if the most
suspicious node can be fixed by mutation and applies the change if
that is the case. Otherwise, for each suspicious AST node returned,
ARepair creates holes for descendant nodes in the suspicious AST
and enumerates candidate fragments (generated by the expression
generator) of corresponding holes until some failing test passes
and the results of passing tests are preserved. ARepair implements
two strategies to explore the search space: all-combinations and
base-choice. The all-combinations strategy explores all combina-
tions of candidate fragments for all holes until some failing test
passes and no passing test fails. The base-choice strategy enumer-
ates candidate fragments for one hole at a time, while keeping the
candidate fragments of the other holes constant. After enumerat-
ing all the fragments for one hole, the base-choice strategy fills
the hole with the fragment that makes the most failing tests pass
and no passing test fails. Both strategies are inspired by textbook
input space criteria for test coverage [4]. ARepair avoids running
AUnit test predicates with expensive SAT solver calls by building
formula dependency graphs and leveraging Alloy’s built-in eval-
uator to evaluate a minimal number of affected formulas that de-
termine a test’s satisfiability. A hierarchical cache further reduces
the sizes of inputs to the evaluator. ARepair repeatedly fixes faults
until all tests pass or it exhausts the bounded search space.
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We evaluate ARepair using models collected from the standard
Alloy 4.1 distribution and Amalgam [53]. We also collect Alloy as-
signment solutions from graduate students. With the default set-
ting, ARepair is able to repair 28 out of 38 real faulty models. We
make the following contributions:

e Alloy Model Repair. ARepair is the first repair technique for
Alloy, which uses both mutations and synthesis to repair faulty
models. The experimental results show that the combined ap-
proach works well and many faulty models require both muta-
tions and synthesis for a complete fix. ARepair does not require
isolated faults. It can fix models with multiple faults or faults
involving multiple locations.

e Optimizations for Practical Model Repair. ARepair does not
search for fault patterns and apply repair templates to fix faults.
Instead, it tries to repair a faulty AST in a bottom-up fashion,
so it is more likely to repair faults with unseen patterns. The
absence of repair templates results in an immense search space
and we implement the following optimizations to make the tech-
nique tractable and reduce end-to-end time. (1) The expression
generator prunes equivalent expressions based on equivalence
pruning rules [75] and modulo test inputs [32]. (2) The enumer-
ation based approach explores the search space without expen-
sive constraint solving [3]. (3) The construction of dependency
graphs for constraint formulas enables a small number of evalu-
ator calls during the enumeration based approach. (4) The base-
choice search strategy reduces the exploration space. (5) The hi-
erarchical caching reduces sizes of the inputs to evaluator calls.

o Evaluation. We evaluate ARepair on real faults and show that it
is able to fix 28 out of 38 faulty models. We qualitatively compare
patches generated by ARepair and human written patches, and
show that the quality of the generated patches is good.

e Open Source. We release 38 real-world Alloy models with an-
notated fault locations and human-written patches, and open
source ARepair so researchers can use them in the future. The
repo is available at https://github.com/kaiyuanw/ARepair.

2 EXAMPLE

This section presents a real-world faulty Alloy model to introduce
the basics of Alloy and AUnit. Then, we describe how AlloyFL [77]
and ARepair fix the model.

Figure 1a shows the “Farmer River Crossing” puzzle where the
goal is to allow a farmer to transport a fox, chicken and grain from
one river bank to the other. The farmer uses a boat and can only
carry one item at a time. If left unattended, the fox eats the chicken
and the chicken eats the grain. The model contains a fault which
prevents the “eating” from happening while the farmer is away.
Instead, the faulty model enforces the “eating” to happen when
the farmer comes back.

Lines 2-4 declare the basic types in the problem: a notion of ob-
ject (line 2; sig denotes a set and introduces a type), four concrete
objects (line 3), and a set of states (line 4) that model the objects in
both the near and far banks after every farmer’s river crossing ac-
tion (line 4). The abstract keyword enforces that an object is one
of its concrete subtypes: Farmer, Fox, Chicken and Grain. The one
keyword constrains each concrete object type to contain a single,
distinct object atom. The eats field declares that each object can eat
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aset of objects and the fact on line 5 restricts that the fox can eat the
chicken and the chicken can eat the grain. The initialState fact
on lines 6-7 constrains that initially everything is on the near bank
and nothing is on the far bank. The crossRiver predicate on lines
8-13 defines the river crossing action. It takes four parameters: the
set of objects on the bank where the farmer starts at (pre-state: from
and post-state: from’) and the set of objects on the bank the farmer
will cross to (pre-state: to and post-state: to’). The predicate states
that either the farmer takes nothing or the farmer takes one item
to the other side of the river. The stateTransition fact on lines 14-
19 states that for every two consecutive states, if the farmer is on
the near bank in the pre-state, then he would cross the river to the
far bank in the post-state, and vice versa. The solvePuzzle on line
20 restricts that everything should be on the far bank of the river
in the last state.

The fault is in the crossRiver predicate (highlighted in orange).
The predicate enforces eating to happen only after the farmer comes
back and not immediately after the farmer leaves the bank. This
means if the farmer takes the grain from the near bank to the far
bank, the fox will not eat the chicken. But when the farmer comes
back to the near bank, the fox eats the chicken. This modeling error
was in Alloy release 4.1 and was fixed in release 4.2.

An AUnit test [69] that reveals the fault is shown in Figure 1b.
Predicate test1 encodes the valuations of each signature type and
field relation in the faulty farmer model. The invocation of crossRiver
predicate on line 18 states that everything is on one bank and noth-
ing is on the other bank in the pre-state. In the post-state (after the
farmer crosses the river with the fox), only the chicken is left on
the one bank (because the chicken eats the grain) and both the
farmer and the fox are on the other bank. The command in line 19
runs the test with at most 4 atoms for each sig type and expects the
existence of a solution. However, the test predicate is unsatisfiable
because of the modeling error, resulting in a test failure.

ARepair invokes AlloyFL to locate faults at the AST node gran-
ularity. The most suspicious node AlloyFL returns is shown in
Figure 2. ARepair creates holes to replace each level of AST nodes
in a bottom-up fashion. For example, it first creates holes for to and
eats (highlighted in red). Then, ARepair generates a set of candi-
date expressions for each hole using all signatures/fields/variables
in scope, e.g. Farmer, from and item, etc. Next, ARepair enumerates
the candidate expressions for each hole and runs all affected tests
to see if any test result changes from failing to passing. ARepair
keeps the candidate values that make some failing tests pass and
preserves the results of passing tests. In this case, ARepair replaces
to with none and now one failing test passes (and no passing test
fails). Next, ARepair reruns AlloyFL and finds that the most suspi-
cious node is still the same. In this iteration, ARepair creates holes
for to and the relational join operator "-" (highlighted in yellow).
ARepair keeps synthesizing expressions/formulas under each sus-
picious node to make failing tests pass. If ARepair cannot make
any failing test pass for the suspicious node, then it repeats the
same process for the next suspicious node. Note that AlloyFL is
a mutation-based technique and it can also repair the model with
mutations. Each time AlloyFL is invoked, we check if there is a mu-
tation over the most suspicious node AlloyFL reports that makes
some failing tests pass and no passing test fails. If such mutation
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1. open util/ordering[State] as ord

2. abstract sig Object { eats: set Object }

3. one sig Farmer, Fox, Chicken, Grain extends Object {}
4. sig State { near,far: set Object }

5. fact eating { eats = Fox->Chicken + Chicken->Grain }
6. fact initialState {

7 let s@ = ord/first | s@.near = Object & no s@.far }
8. pred crossRiver[from,from',to,to': set Object] {

9. (from' =

10. && to' = + Farmer ) |

11. (some item: from - Farmer {

12. from' =

13. && to' = + Farmer + item })}

14. fact stateTransition {
15. all s: State, s': ord/next[s] {

16. Farmer in s.near =>

17. crossRiver[s.near, s'.near, s.far, s'.far]

18. else crossRiver[s.far, s'.far, s.near, s'.near]
19. 1

20. pred solvePuzzle { ord/last.far = Object }

(a) Faulty farmer river crossing model.
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1. pred testl {

2 some disj FO: Farmer | some disj X0: Fox

3 some disj CO: Chicken | some disj G@: Grain
4. some disj FO, X0, CoO, GO: Object

5. some disj SO, S1, S2, S3: State {

6 Farmer = F@

7

8

Fox = X@

. Chicken = C@
9. Grain = GO
10. Object = Fo + X0 + CO + GO
11. eats = X0->C@ + C0->GO
12. State = S@ + S1 + S2 + S3
13. near = SO->F@Q + SO->X0 + SO->C@ + SO->GO
14. + S1->X0 + S2->FQ + S2->X0 + S3->X@
15. far = S1->F@ + S1->G@ + S2->G@ + S3->F0 + S3->GO
16. ord/first = S@
17. ord/next = S@->S1 + S1->S2 + S2->S3
18. crossRiver[Fo+X0+C0+Go, C@, none, FO+X0] } }

19. run testl for 4 expect 1
20. // More tests ...

(b) A failing test of the farmer river crossing model [77].

Figure 1: Faulty Farmer Example and Tests.

! Level 1 &&

from' to' +

{ Level 7

Figure 2: First Suspicious Node for Faulty Farmer Example.

(A) A human-written patch.
pred crossRiver[from,from',to,to': set Object] {

1
A= (from' = from - Farmer
3.+ (from' = from - Farmer - from'.eats
4.- &% to' = to - to.eats + Farmer ) |
5. &% to' = to + Farmer ) |
6. (some item: from - Farmer {
/5 from' = from - Farmer - item
8o from' = from - Farmer - item - from'.eats
9.- && to' = to - to.eats + Farmer + item })}
10.+ && to' = to + Farmer + item })}

(B) A patch generated by ARepair.
1 pred crossRiver[from,from',to,to': set Object] {
2.- (from' = from - Farmer
.= && to' = to - to.eats + Farmer ) |
4.~ (some item: from - Farmer {
5.+ (some item: from + Farmer {
6
7
8
9

o2 from' = from - Farmer - item

il from' = from - (Farmer + from'.eats) - item
o= &% to' = to - to.eats + Farmer + item })}
o && to' = to + Farmer + item })}

Figure 3: Patches for the faulty farmer model.

exists, then we mutate the model and start the next iteration. Fi-
nally, if ARepair can fix the faulty model, i.e. all tests pass, then it
post-processes the fixed model to remove redundant code, e.g. re-
place "to-none.eats" with "to", and returns the model to the user.
Figure 3 shows the human written patch (A) and the first patch
generated by ARepair (B). We can see that the human written patch
fixes the “eating” action both when the farmer crosses the river

with (lines 7-10) or without (lines 2-5) an item. The patch ARepair
generates deletes the formula that models the farmer’s crossing-
river without an item (lines 2-3), and fixes the “eating” action when
the farmer crosses the river with an item (lines 6-9). The interest-
ing part is that the patch also changes the domain of a variable
declaration (lines 4-5), which actually merges both cases when the
farmer crosses the river with/without an item. The new domain
(line 5) allows the item to be the farmer himself and it models the
correct semantics corresponding to the deleted formula on lines 2-
3. In this case, we validate the equivalence of generated patch and
the human-written patch with a scope-bounded analysis using the
Alloy analyzer and find that the generated patch is semantically
equivalent to the human written patch.

3 BACKGROUND: FAULT LOCALIZATION

In this section, we describe AlloyFL [77], which is the fault local-
ization technique used by ARepair.

AlloyFL follows the traditional mutation-based fault localiza-
tion techniques [48, 56] and implements a variety of mutation op-
erators as shown in Figure 4. MOR mutates signature multiplicity,
e.g. "lone sig" to "one sig". QOR mutates quantifiers, e.g. "all" to
"some". UOR, BOR and LOR define operator replacement for unary,
binary and formula list operators, respectively. For example, UOR
mutates "a.xb" to "a."b"; BOR mutates "a=>b" to "a<=>b"; and LOR
mutates "a&&b" to "a| |b". UOI inserts an unary operator before ex-
pressions, e.g. "a.b" to "a.~b". UOD deletes an unary operator, e.g.
"a.x ~b" to "a.xb". LOD deletes an operand of a logical operator, e.g.
"al |b" to "b". PBD deletes the body of an Alloy paragraph. BOE ex-
changes operands for a binary operator, e.g. "a=>b" to "b=>a". IEOE
exchanges the operands of imply-else operation, e.g. "a => b else
c"to"a => c else b". These operators are well defined such that
AlloyFL is able to accurately locate faults and even fix the faults in
some cases. For example, to fix the faulty farmer example in Fig-
ure 1a, AlloyFL fixes parts of the faults by applying BOR (Figure 3
(B) lines 4-5) and LOD (Figure 3 (B) lines 2-3).

The input of AlloyFL is a faulty Alloy model and a set of Alloy
commands with the expect keyword. These commands can invoke
Alloy predicates, function or assertions. "expect 1" means that the
corresponding command is expected to be satisfiable while "expect
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Mutation L.
Description
Operator
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR Formula List Operator Replacement
U0I Unary Operator Insertion
UoD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

Figure 4: Mutation Operators

0" means that the command is expected to be unsatisfiable. In this
paper, each command invokes an AUnit [69] test predicate and we
say an AUnit test fails if the corresponding command is satisfiable
but is expected to be unsatisfiable, or vice versa. The output of Al-
loyFL is a list of AST nodes in descending order of their suspicious-
ness given a formula. In this paper, we use the Ochiai [1] formula

failed(e) .
\/tutalfailedx(failed(e)+passed(e))’ where falled(e) and passed(e)

are the number of tests that failed and passed (with respect to the
original faulty model) that kill the mutant e, and totalfailed is the
total number of failed tests for the faulty model. AlloyFL system-
atically mutates the faulty Alloy model using mutation operators
in Figure 4 and runs the test suite against each mutant. A suspi-
ciousness score computed from the Ochiai formula is assigned to
each mutated AST node. In case more than one mutation operator
is applicable to an AST node, the maximum suspiciousness score
computed for the node is used. Finally, AlloyFL ranks all nodes
in the descending order of suspiciousness and returns the ranked
list. We modify AlloyFL to also return the mutation operator cor-
responding to the most suspicious AST node so later ARepair can
determine if that mutation should be applied as a potential fix.

4 TECHNIQUE

In this section, we first describe how we create holes (Section 4.1)
and how we generate expressions to fill in holes (Section 4.2). Next,
we describe the search strategies (Section 4.3). Then, we describe
how we run tests without invoking a SAT solver (Section 4.4) and

the hierarchical caching we use to improve performance (Section 4.5).

Finally, we describe the enumeration-based repair approach as a
whole (Section 4.6).

4.1 Create Holes

For each suspicious AST node returned by AlloyFL, we create holes
at each level of the corresponding AST in a bottom-up fashion. For
example, the most suspicious node in the faulty farmer model (Fig-
ure 2) has 7 levels. We first create holes at level 7 (shown in red)
and synthesize new expressions at that level without modifying
nodes of other levels. We repeat this process from level 7 to level 1
(root level) until some failing test passes and no passing test fails.
The intuition is that AlloyFL is designed to mutate upper-level op-
erator nodes and if the fault cannot be fixed by AlloyFL, then the
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issue is likely at the lower levels of the AST. This approach also pri-
oritizes patches with smaller perturbations to the original model,
which is consistent with the insight: patches that introduce smaller
perturbations to the original program are more likely to be cor-
rect [10, 33].

Creating a single hole for each node in a given level may not
result in valid models. For example, replacing the && node with a
hole at level 1 in Figure 2 does not make the new program compile.
Consequently, the schema to create holes for different AST nodes
may vary. ARepair introduces different types of holes, i.e. quanti-
fier holes (denoted by gh), logical operator holes (denoted by loh),
comparison operator holes (denoted by coh), implication holes (de-
noted by ih), cardinality holes (denoted by ch), boolean holes (de-
noted by bh) and expression holes (denoted by eh). The value of

"o "on

gh can be one of "all", "no", "some", "lone" or "one". The value of loh
can be either "88" or "||". The value of coh can be one of "=", "in",
"1="or "!in". The value of ih can be either "=>" or "<=>". The value
of ch can be one of "no", "lone", "one" or "some". The value of bh can
be either empty € or "!". The value of eh can be any expression.
Figure 5 shows the meaning of different types of AST nodes and
the corresponding schemas to create holes. Each schema is denoted
by "h(x) := H", where h(x) means the holes created from AST node
type x and H shows the way to compute holes. For example, the
most suspicious node returned by AlloyFL is a conjunction node
("8&" as shown in Figure 2). To create holes for the root node, we
can apply the schema for the conjunction node, which states that
the holes we should create include a logical operator hole loh, holes
created from the left child and holes created from the right child. In
this case, both the left and right children of the conjunction node
are set equality nodes ("="), so we recursively apply schemas in Fig-
ure 5 until no more holes are created. In the end, we would create
4 expression holes, 2 comparison operator holes and a logical oper-
ator hole. This step guarantees that if we fill holes with candidate
operators/expressions, then the resulting expression/formula will

always compile.

4.2 Generating Expressions

The space of candidate fragments for operator holes, e.g. quantifier
holes and cardinality holes, are fixed, but the space of candidate
fragments for expression holes depends on the expression genera-
tor. To generate valid candidate fragments for expression holes, we
need to find all atomic expressions in the model that can be used.
ARepair has a static analyzer which finds all atomic expressions,
i.e. sigs, fields, predicate/function parameters, quantifier variables
and let variables, in scope of each expression hole. The holes that
share the same set of atomic expressions in scope have the same
set of generated candidate fragments.

ARepair implements an expression generator that generates ex-
pressions following the grammars in Figure 6. The generator imple-
ments two pruning strategies. First, the generator prunes seman-
tically equivalent expressions using equivalence pruning rules for
relational algebra described in RexGen [75]. Second, the generator
implements a modulo test checker that prunes equivalent expres-
sions with respect to the given tests. The equivalence pruning rules
and the modulo test checker significantly reduce the number of ex-
pressions to consider and make the repair problem tractable.
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Meaning Schema Meaning Schema
Cartesian product h(p X ) := eh Relational join h($p > ) = eh
Union h(@UY):=eh Intersection h(@Ny):=eh
Set difference h(@\¢):=ch Overriding union h(p++y) = eh
Domain restriction h(p <: ) :=eh Range restriction h(¢:> ¢):=eh
Transitive closure h(’$) :=eh Reflexive transitive closure h(x¢):=eh
Inverse relational join h(@[y]) = eh Relational transpose h(~p) = eh
Cardinality h(#$) := eh Set comprehension h({E: pla(F)}):=eh
Identity relation (binary) h(iden) := eh Universe (unary) h(univ) := eh

h(a A B) := h(a) loh h(B)
h(e = B) = h(a) ih h(B)
h(@?f : y) = h(@) h(B) h(y)
h(¢p =) :=h(¢) con h(})
Universal quantification h(VE: ¢la()):= qh h(p) h(a(F))
gl =1 h(one §) = ch h($)
ol =1 h(some ¢) := ch h(¢})

Conjunction

Implication

If-then-else
Relational equality

Disjunction
Bi-implication
Negation

h(a v )= h(a)loh h(B)
h(a & B):= h(a)ih h(B)
h(=a) := bh h(a)

Relational containment fl(qﬁ iny):= }-L(qﬁ) coh }-L(l//)
Existential quantification h@AE: pla(F)):= qh h($) h(a(F))
¢l <1 h(lone $) := ch h(¢)

I$1 =0 h(no §) = ch h($)

Figure 5: Hole creation schemas for Alloy Surface Syntax. i(x) computes the holes for syntax x. «, f and y denote formulas
which evaluate to true or false. ¢ and ¥ denote expressions which evaluate to relations. 7 : ¢ denote tuple membership f € ¢.

expression e:= uope | ebope | atom | const
unary op uop:= x| " |~

binary op bop:=+ | & | - | -

atomic expr  atome := sige | fielde | parame | vare

constant const := none | iden | univ | Int | 0| 1

Figure 6: Expression generation syntax.

Next, we describe the modulo test pruning technique with an
example. Consider the model shown below:

sig Node { link: lone Node } pred p { some n: Node | no 3
pred t1 { some disj N@: Node | Node=N@ && link=Ne->No }
pred t2 { some disj NO,N1: Node {

Node=No+N1 && 1ink=No->N1+N1->No && p[] } }

The model has a signature Node, a binary field link and a quan-
tifier variable n. Implicitly, "n" is of type Node and has a cardinality
of 1. The model contains two AUnit tests t1 and t2. Suppose we
want to generate expressions of type Node in the body (denoted by
??) of the existential quantification, and we can use "n", "link" and
"Node" as the atomic expressions. The following table shows the val-
uations of four syntactically different expressions, i.e. "n", "n.1ink",

"link. (Node-n)" and "(link.Node)&n", with respect to t1 and t2.

test n n n.link link.(Node-n) (link.Node) & n
t1 NoO {No} {No} IZ] {No}
@ NoO {No} {N1} {No} {No}
N1 {N1} {No} {N1} {N1}

For test t1, n can only be No and link is Ne->Ne. It is easy to
see that "n", "n.link" and "(link.Node)&n" evaluate to the same set
{Ne} and thus are equivalent with respect to t1. For test t2, n can
be No or N1, and link is {Ne->N1, N1->Ne}. "n", "link. (Node-n)" and
"(link.Node)&n" are equivalent with respect to t2 both when n=Ne
and n=N1. So "n" and "(link.Node)&n" are equivalent with respect
to the test suite and the modulo test checker can prune either "n"
or "(link.Node)&n". In practice, we keep expressions with smaller
sizes, so "(link.Node)&n" will be pruned. If the expression does not
contain any free variable, its valuation does not change based on
the valuations of free variables. If the expression contains more
than one free variable, then we need to enumerate all combinations
of possible valuations of the free variables to get the valuations of

the expression. If the free variable’s cardinality is greater than 1,

then its valuation can be any subset of its declaring type. Two ex-
pressions are equivalent with respect to a test if their valuations are
the same across all combinations of possible valuations of free vari-
ables in the scope. The expression generator prunes expressions
that are equivalent to any existing expression with respect to the
entire test suite.

In this paper, the size of an expression is defined as the number
of descendant nodes in the AST representation of the expression.
The expression generator is able to generate expressions of a given
type and size.

4.3 Search Strategies

Given a level of nodes in a suspicious node and the correspond-
ing holes created, ARepair implements two search strategies: all
combinations and base choice [4].
All combinations. Under this search strategy, ARepair tries all
combinations of candidate fragments for all holes until it finds
some failing test passed and no passing test failed. This strategy
is typically impractical as the number of holes and the number
of candidate fragments for each hole grow. For example, with 4
holes and 100 candidate fragments for each hole, the search space
is 108. In our implementation, we limit the maximum number of
combinations to explore (per level of holes) for this search strat-
egy. Typically, the limit we set is still large, so we stop exploring
more combinations the first time a combination of candidate frag-
ments makes some failing test pass and no passing test fails. If such
a combination is found, we fill the holes with the corresponding
fragments and save the changes before starting the next iteration.
Intuitively, we want to first explore combinations of candidate
fragments of expression holes with smaller expression sizes, be-
cause we assume small-sized expressions are more natural to de-
velopers, e.g. "n" vs "(Node-+1ink.n)". Figure 7 shows how we priori-
tize exploring combinations of candidate expressions with smaller
sizes. Suppose we have n holes (hole; to holep) and hole; has S;
number of candidate fragments. Then we can partition the candi-
date fragments of hole; into k; parts (P{ to P]ii) of equal size. Next,

n
we create size-n tuples U = {(x1,x2,...,xn) | A xi € [1,k;]} and
i=1
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holey

Figure 7: All combinations partitions.

sort the tuples first by Z x; and then by | max x; — min x;|
Vie[l,n] Vie[l,n]

to gets aranked list oftuplesL For example, ifn = 2,k; = 2,ky =3,

then the ranked tuple list L = [(1, 1), (1,2), (2, 1), (2, 2), (1,3), (2, 3)].

Finally, we iterate each tuple (xi,...,x,) in L and explore all com-

fn)l/\szP’

Since expressions are generated in a bottom-up fashlon, expres-
sions with smaller sizes are generated first, which means expres-
sion sizes in PY are smaller than expression sizes in PY if i < j.

binations of candidate fragments C = {(fi, ..

Therefore, the exploration strategy guarantees that combinations
of smaller expressions are explored first.

Base Choice. Under this search strategy, ARepair holds candidate
fragments of all holes constant except one hole (base choice). It
enumerates candidate fragments of hole; with the candidate frag-
ments of the rest holes unchanged. For each hole;, ARepair ex-
plores all candidate fragments and picks the one (f;) that makes
the maximum number of failing tests pass and no passing test fails.
Then, ARepair enumerates candidate fragments of hole;+1 with the
fragment of hole; set to f;. ARepair uses this exploration strategy
from hole; to hole, and saves the final changes as the potential fix.
For example, with 4 holes and 100 candidate fragments for each
hole, the search space is 400. In practice, the number of generated
candidate fragments for an expression hole can be large, so we set
a limit on the number of candidate fragments to explore per hole.

4.4 Running Tests

ARepair invokes tests in the expression generation phase (to prune
expressions), the fault localization phase (to locate faults) and the
repair phase (to validate candidate patches). Since the search space
is large and each repair problem contains many tests, invoking all
tests at the repair phase takes a majority of the time. Moreover,
invoking each test predicate with a SAT solver is expensive. We in-
troduce a technique that determines test satisfiability using Alloy’s
built-in evaluator (without sat solving) and builds a dependency
graph for each test to reduce the number of evaluator calls.

For a given faulty Alloy model, ARepair normalizes the signa-
ture multiplicity constraints, the field multiplicity constraints and
the signature facts, and creates a formula for each constraint. In the
faulty farmer example (Figure 1a), the Object signature is declared
to be an arbitrary set of atoms, so it does not need to be normalized
and we create an empty formula (denoted by Object,,,;,) which
evaluates to true by default. Similarly, the field eats is declared to
relate an object to a set of objects, so we simply create an empty
formula (denoted by eats,,,;;). "one sig Farmer" is declared to
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Figure 8: Dependency graph for test1 in Figure 1b.

be a singleton set so we normalize it as "sig Farmer" (remove sig-
nature multiplicity constraint) and create a formula "one Farmer"
(denoted by Farmer,,,;,). Thus, ARepair creates a formula for each
signature and field. Since the farmer model does not have any sig-
nature facts, we do not need to create any formula for signature
facts. For each fact paragraph, ARepair creates a formula (denoted
by the fact name) that is identical to the fact body.

For each AUnit test, we create a dependency graph that encodes
the formulas the test depends on. For example, Figure 8 shows
the dependency graph for test1 in Figure 1b. test1 depends on
all signature/field multiplicity constraints and all fact constraints,
because those constraints are enforced by the Alloy analyzer when
we invoke the test. Since both test1 and stateTransition directly
invoke the crossRiver predicate, they both depend on crossRiver.

Once we build the dependency graph for each AUnit test, it is
easy to compute a test’s satisfiability from the formulas the test
depends on. Initially, ARepair evaluates each formula the test de-
pends on and stores the satisfiability of each formula. When ARe-
pair enumerates candidate fragments for holes, it only evaluates
the affected formulas to determine the satisfiability of the test. In
the faulty farmer example, when ARepair enumerates candidate
fragments for holes under the most suspicious AST node (Figure 2),
the only affected predicate is crossRiver and the affected formulas
are stateTransition and testl. To determine the satisfiability of
test1, we only need to evaluate the body of stateTransition and
the body of test1. Moreover, if any unaffected formula is unsatisfi-
able, then we know the test is unsatisfiable even without invoking
the evaluator. In practice, the technique improves the performance
of ARepair because it does not involve any expensive SAT solving
and is able to determine the test satisfiability with a minimal num-
ber of evaluator calls.

4.5 Hierarchical Caching

The evaluator-based approach to determine the test satisfiability
can be further improved by our hierarchical caching algorithm.
The idea is that we can reuse the previously evaluated result (i.e.
valuation) of a formula if its subformulas evaluate to the same set
of values as some subformulas we evaluated before. We explain hi-
erarchical caching through the farmer example. Suppose we want
to determine the satisfiability of test1 (Figure 1b) by evaluating
the fact formula stateTransition, and the created holes that cor-
respond to nodes at level 7 of the most suspicious AST node, i.e.
to" and "eats" in Figure 2 highlighted in red. Also assume that
hole h(to) is first replaced by fragment "none" and hole A(eats)
is unchanged. We create a hierarchical cache for test1 as follows.
First, we invoke the evaluator for the fragments of both holes and
find that "none" evaluates to @ and "eats" evaluates to {X0—CO,
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Algorithm 1: ARepair algorithm.

Input: Faulty Alloy model M, test suite T.
Output: Fully fixed model or partially fixed model.

1 canFix = True
2 while canFix do

3 res = runTests(M)

4 if allTestsPassed(res) then return M // Full fix.
5 L = locateFaults(M, res)

6 if isEmpty(L) then return M // Partial fix.
7 canFix = False

8 if isFixed(M, L[0]) then

9 M = applyChange(M, L[0])

10 canFix = True

11 else

12 foreach n € Ldo

13 patch = synthesize(M, n)

14 if isFixed(M, patch) then

15 M = applyChange(M, patch)
16 canFix = True

17 break

18 return M // Partial fix.

C0—GO0}. So we create mappings <"none", [@]> for A(to) and <"eats",
[{X0—C0, C0—GO0}]> for A(eats). Since the join operator "-" in level

6 is the lowest common ancestor of both holes in level 7, a mapping

<"@.{X0—C0, C0—>GO0}", [&]> is created for the join operator. Note

that the key of the join operator is its string representation with

all descendant holes replaced by their valuations under test1. The

value of the mapping is obtained by evaluating the string repre-
sentation of the join operator, i.e. "none. eats", which is @. We then

create a mapping for the body of the declaring crossRiver pred-
icate. But because the body has parameters ("from", "from’", "to",

"to’"), we need to assign possible values to all parameters and cre-
ate a mapping for the body <"A1A...An", [{B1},{B2}....{Bn}]>, where

A; means the string representation of the body (with the join op-
erator "-" replaced with its actual valuation) given ith possible as-
signment of parameters, and B; is the corresponding boolean re-
sult of the body formula in this case. We finally maps the cached

value of crossRiver, i.e. [{B1}{B2}.....{Bn}], to the satisfiability of the

stateTransition fact.

If the next fragment of hole A(to) is "item-Object" which evalu-
ates to @ (h(eats) is unchanged), then we immediately know that
stateTransition evaluates to the same result as when hole h(to)
is "none". Because the new keys we computed for other nodes, e.g.
the join operator in level 6, are already in the cache. Therefore, we
only invoke the evaluator once to evaluate "item-Object" instead
of evaluating the big stateTransition body to determine its satisfi-
ability. In general, the hierarchical cache reduces the input size of
evaluator calls but increase the number of evaluator calls. In prac-
tice, we observe speed-ups for a majority of repairing problems
and few repair problems suffer from a slow-down.

4.6 Repair Algorithm

Algorithm 1 shows the algorithm of ARepair. The algorithm takes
as input a faulty Alloy model M and a test suite T that reveals the
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fault. The output is either a fully fixed model if all tests pass or a
partially fixed model otherwise. In the worst scenario, ARepair is
not able to fix any fault, in which case the partially fixed model
is the original faulty model. Initially, we set canFix to true (line 1)
and enter the loop (line 2). For each iteration in the loop, we first
run all tests against M (line 3). If all tests pass, M is returned (line
4). Otherwise, we run AlloyFL to return a ranked list (L) of suspi-
cious AST nodes (line 5). If L is empty, then the algorithm cannot
fix the faulty model and it returns the latest state of M (line 6). Oth-
erwise, we set canFix to false (line 7) and try to fix the faults. The
algorithm checks if the most suspicious AST node (L[0]) has a po-
tential fix (line 8). The isFixed check determines if we want to use
the mutation or the synthesizer to fix the model. In general, the
isFixed method returns true if the mutation makes X failing tests
pass and Y passing tests fail, where X > 0 and Y = 0. In prac-
tice, X and Y can be arbitrary numbers as long as X > Y holds,
because we want to make sure the algorithm terminates. Since ini-
tially we have a finite number of failing tests and X > Y makes
sure that fewer tests are failing at each iteration. The total num-
ber of iterations is bounded by the number of initial failing tests.
If isFixed (line 8) returns true, then we apply the mutation to M
(line 9) and set canFix to true (line 10). Otherwise, we iterate over
the ranked suspicious nodes (line 12) and try to fix the model us-
ing the synthesizer. For each suspicious node in L, we invoke the
synthesizer to create holes, generate candidate fragments, explore
the search spaces and find a potential patch (line 13). Then, the al-
gorithm checks if the patch is a potential fix (line 14). The isFixed
method in line 14 is similar to the method in line 8. If the patch is a
fix, then we apply the patch to the model (line 15) with canFix set
to true and exit the inner loop (line 12-17). Otherwise, we invoke
the synthesizer on the next suspicious node in L. If the synthesizer
cannot find a fix after exploring all suspicious nodes, the algorithm
exits the outer loop (line 2) and returns the latest state of M.

If the resulting model passes all tests, ARepair simplifies the
model to make it look more natural to the developer. For exam-
ple, ARepair replaces "to-none.eats" with "to" because "none.eats"
always evaluates to an empty set.

5 EVALUATION

We evaluate ARepair on 38 real faults collected from Alloy release
4.1, Amalgam [53] and Alloy homework solutions from graduate
students. These faulty models contain various types of faults, i.e.
overconstraints, underconstraints and a mixture of both. We define
the number of faults as the number of incorrectly modeled Alloy
paragraphs, e.g. signatures, predicates, functions and facts.

We address the following research questions in this section:

e RQ1. What is the repair efficacy of ARepair?

e RQ2. How does the quality of ARepair generated patches com-
pared to human-written patches?

e RQ3. Why is ARepair unable to fix some models?

5.1 Experiment Setting

Unlike existing datasets that isolate faults for the repair techniques,
e.g. Defects4] [25], we use the exact human-written faulty Alloy
models as an input to ARepair. We use the Ochiai [1] formula
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all-combinations search strategy base-choice search strategy

Model #Ast #Test #Flt #Fix Status  Types SS ES FL(s) EG(s) EE(s) #Fix Status  Types SS ES FL(s) EG(s) EE(s)
addr1 124 30 1 1 * M 1 1 41.0 0.0 45.3 1 * M 1 1 73 0.0 8.3
arrl 64 37 1 0 X - 1.7e5 1.3e5 36.0 13.5 2914 1 * S 4e4 88 1.8 19 6.7
arr2 80 37 1 1 * M+S 3.4e7 5e6 11.6 19 3.4e3 1 * M+S 3.4e7 178 11.4 19 16.9
bst1 186 124 1 1 v M 1 1 67.6 0.0 74.2 1 v M 1 1 46.4 0.0 48.8
bst2 161 124 3 = oo = - - = = = 0 X = 2el7 1.6e5 678.6 597.2 4.8e3
bst3 165 124 2 - 0 = - - - - - 2 v M+S 2e8 4e3 2413 1174 1.5e3
bempl1 51 25 1 0 X = 325 325 2.6 0.4 53 0 X = 325 67 2.6 0.3 3
cdl 59 31 2 1 + M le4 993 59 13 10.6 2 v M+S 1.9e5 688 6.0 3.9 12.7
cd2 50 31 1 1 v S 966 350 213 0.6 6.4 1 v S 2.4e5 810 2'2 4.7 M2
ctreel 71 22 1 1 v M 1 1 5.6 0.0 6.5 1 v M 1 1 5.5 0.0 6.4
dil1 109 50 2 2 v S 4.9e4 8522 19.5 2.3 42.1 2 v S 6.7e4 239 19.0 8.3 34.1
dl2 105 50 2 2 v M+S 4.9e4 8521 26.7 1.7 46.9 2 v M+S 6.6e4 192 27.3 7.7 39.8
dis 101 50 3 = oo = - - = = = 0 X = 1.7¢9 2.1e4 313 30.4 94.7
dll4 109 50 1 1 v M+S 4.9e4 8384 16.3 1.7 36.2 1 v M+S 6.6e4 191 16.5 7.7 28.8
farmer1 180 76 1 - oo - - - - - - 1 v M+S 7.6e13 4556 140.7 1.6e4 4.5e4
fsmi 116 15 2 2 * M 2 2 7.0 0.0 7.7 2 * M 2 2 6.9 0.0 7.7
fsm2 93 15 1 1 * M 1 1 3.8 0.0 4.7 1 * M 1 1 3.9 0.0 4.7
gradel 71 42 1 - [N - - - - - - 1 v S 1.5e9 le3 5.2 9.5 739.6
other1 68 22 1 1 * S 7593 586 2.4 0.7 8.3 0 X = 1.7e4 387 2.4 0.7 8.4
stul 213 98 1 1 v S 9.3e4 836 52.6 6.7 85.1 1 v S 1.7e6 186 26.3 1.8 46.6
stu2 195 98 2 = o - - - = = 1 X S 9.6e12 9905 141.7 40.0 453.5
stu3 237 98 2 - 0 - - - - - - 0 X - 1.7e15 3.5e4 347.9 355.9 2.8e3
stud 190 98 1 1 v S 9.3e4 836 53.6 6.6 85.6 1 v S 1.7e6 186 26.8 19 46.9
stus 235 98 1 1 v S 9.3e4 836 55.0 6.7 87.9 1 v S 1.7e6 186 27.5 19 48.4
stu6 191 98 B = o = = = = = = 2 X M+S 3.8e8 4e3 120.2 22.4 282.4
stu7 174 98 2 2 v M+S 5.4e5 le4 188.9 15.4 265.7 1 X S 9.3e10 2.5e4 213.7 291.6 1.7e3
stu8 213 98 1 1 v S 1.4e4 le4 33.4 78 78.7 1 v S 1.4e4 120 33.4 75 54.7
stu9 198 98 1 1 * M 1 1 49.0 0.0 51.0 1 * M 1 1 49.9 0.0 51.9
stul0 200 98 1 1 v S 9.3e4 836 63.7 6.4 95.9 1 v S 1.7e6 186 30.4 19 50.5
stull 221 98 1 1 v S 1.4e7 4317 97.6 20.7 174.5 1 v S 1.4e7 571 65.3 16.4 131.5
stul2 201 98 2 2 v M+S 9.3e4 887 179.8 8.1 224.6 2 v M+S 1.7e6 264 152.9 B35} 186.9
stul3 221 98 1 1 * M 1 1 64.3 0.0 66.4 1 * M 1 1 64.5 0.0 66.5
stuld 183 98 3 = =) = = - = = = 2 X M+S 3.8e8 4e3 105.5 23.4 266.2
stuls 207 98 1 1 v S 9.3e4 836 68.6 6.8 100.7 1 v S 1.7e6 186 33.7 2.0 53.6
stul6 113 98 4 = -3 - - - = = = 0 X = 5.9e5 6901 43.0 67.9 250.3
stul? 190 98 2 - 0 - - - - - - 1 X S 3.5e8 3741 61.0 22.5 205.5
stul8 207 98 3 v M+S 2.9¢9 3.7e5 160.6 6.8 1.1e3 3 v M+S 2.9¢9 409 115.4 7.4 152.1
stul9 216 98 2 - 0 - - - - - - 1 X S lel3 8221 194.1 9e3 9596

Figure 9: ARepair Results. Times are in seconds. — denotes not applicable.

to rank suspicious AST nodes in AlloyFL, because existing stud-
ies [68, 85] show that Ochiai is effective. The expression genera-
tor generates different sizes of expressions based on the level of
the holes in the suspicious AST. We set the expression size to 3
for the deepest level of holes in each suspicious AST. The expres-
sion size increases by 1 for holes at depth D;_; compared to holes
at depth D; where D; — D;—; = 1, up to a maximum expression
size of 6. For the all-combinations search strategy, we partition
the candidate fragments for each hole into 10 parts (ie. k; = 10
in Figure 7), and we set the maximum number of combinations of
candidate fragments to explore to 10000 (per level of holes). For the
base-choice search strategy, we set the maximum number of can-
didate fragments to explore for each hole to 1000. The AUnit tests
we use to validate the patches are automatically generated using
MuAlloy [74] so that they are able to detect all non-equivalent mu-
tant models [71]. Additionally, the authors manually inspect the
generated tests and add some new tests to cover different corner
cases. The manually written tests account for <7% of the total tests.

We validate the correctness of a generated patch by both inspect-
ing them manually and using the Alloy analyzer to perform a scope
bounded equivalence check. The human-written patches are writ-
ten with the intention of introducing small perturbations that are
sufficient to fix the faults. We terminate ARepair once it finds a
patch that passes all tests.

All experiments are performed on Ubuntu 16.04 LTS with 2.4GHz
Intel Xeon CPU and 16 GB memory. To save space, we denote the
all-combinations search strategy as AC and the base-choice search
strategy as BC in the following sections.

5.2 Repair Efficacy

Figure 9 shows the detailed results for ARepair. Model, #Ast, #Test
and #Flt show the name, the number of AST nodes, the number of
tests and the number of faults, respectively, for each subject model.
farmer1 is from Alloy release 4.1. addr1, bempl1, gradel and
other1 are from Amalgam [53]. The rest models are from graduate
student solutions. Student solutions for the same question share
the same test suite. #Fix shows the number of faults a search strat-
egy is able to fix. Status shows the repair status. % means the gen-
erated patch is syntactically identical to the human-written patch.
v means the generated patch is syntactically different but seman-
tically equivalent to the human-written path. T means the patch is
plausible (incorrect but passes all tests). X means ARepair fails to
generate a patch that pass all tests. co means the repair times out
after 15 hours. Types shows whether the fix requires mutations (M)
or synthesis (S). SS shows the search space size, which is defined as
the sum of the number of combinations of candidate fragments (in-
cluding applied mutations for fixes) to consider in each iteration.
ES is the actual number of combinations (or mutations) ARepair
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tried. FL is the fault localization time. EG is the expression genera-
tion time. EE is the end-to-end time. All times are in seconds.

The entire experiments contain 38 faulty models and 62 individ-
ual faults. AC is able to fix 24 models and 31 faults. BC is able to fix
26 models and 42 faults. Additionally, AC times out (> 15h) for 12
models while BC finishes all models in 15h. AC is able to fix 2 mod-
els that BC is not able to fix, e.g. other1 and stu?7. BC is able to fix
5 models that AC is not able to fix (including 1 plausible patch for
cdl), e.g. arrl, bst3, cd1, farmer1 and gradel. Many models re-
quire both mutations and synthesis for a complete fix, e.g. arr2 and
dll2. AC’s search space ranges from 1 to 2.9¢9 and the maximum
size of the explored space is 5e6. BC’s search space ranges from 1
to 2e17 and the maximum size of the explored space is 1.6e5. We
can see that BC explores less of its search space than AC, though
BC typically has a much larger search space. In general, BC runs
faster than AC, with the exceptions of ¢d1, cd2 and stu7. For AC,
the fault localization time ranges from 2.3 sec to 188.9 sec and the
maximum expression generation time is 20.7 sec, excluding time-
out cases. For BC, the fault localization time ranges from 1.8 sec to
678.6 sec and the maximum expression generation time is 1.6e4 sec.
Typically, AC times out for models whose expression generation
time is large (> 1000s) under BC. A large expression generation
time is a reflection of ARepair producing a large number of expres-
sions, resulting in large search spaces. This means that when there
are so many combinations of candidate fragments to consider, AC
typically times out. In comparison, despite the large number of ex-
pressions produced, BC explores much less space and thus is faster.
However, BC can run into its local optimum. For example, the ex-
plored space for other1 is less than 600 for both BC and AC, but
BC cannot fix the model. Overall, AC and BC are complementary
and BC is superior in the sense that it takes less time to run and
fixes more faults.

5.3 Patch Quality

To answer RQ2, we find that BC generates 26 patches that pass all
tests (all patches are correct and 7 patches exactly match human-
written patches). AC generates 24 patches that pass all tests (23
patches are correct; 7 patches exactly match human-written patches;
and 1 patch is plausible but incorrect). We compare the generated
patches that are syntactically different but semantically equivalent
to human-written patches. In addition to patches for the faulty
farmer model (Figure 3), Figure 10 compares ARepair generated
patches and human-written patches for bst1 (A and B), ¢d2 (C and
D) and stu8 (E and F). The Sorted predicate in bst1 models that the
value of the current node should be greater than values of its left de-
scendants and less than values of its right descendants. The devel-
oper incorrectly use "n. *left" to represent the domain of n’s left de-
scendants. The correct domain should be "n.left.x(left+right)"
as shown in the human-written patch. The generated patch re-
stricts the domain to be "n.*left.*right" which means all nodes
that can be reachable from n by first following one or more left re-
lation and then zero or more right relation. The Acyclic predicate
in ¢d2 models that a class does not transitively extend itself. The
faulty model does not consider the transitivity requirement, which
is fixed in the human-written patch by replacing "c = c.ext" with
"c in c.”ext". The generated patch uses "c = ¢ & c.%ext" which
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(A) Human-written patch for bst1.
pred Sorted() { all n: Node {

1.

2.- all n2: n.*left | n2.elem < n.elem

3.+ all n2: n.left.x(left+right) | n2.elem < n.elem
4.- all n2: n.*right | n2.elem > n.elem}}

5.+ all n2: n.right.x(left+right) | n2.elem > n.elem}}

(B) ARepair generated patch for bst1.
pred Sorted() { all n: Node {

1.

2.- all n2: n.*left | n2.elem < n.elem

3.+ all n2: n.*left.xright | n2.elem < n.elem
4.- all n2: n.*right | n2.elem > n.elem}}

5.+ all n2: n.*right.xleft | n2.elem > n.elem}}

(C) Human-written patch for cd2.

pred Acyclic() {

2.- noc: Class | ¢ = c.ext }

3.+ no c: Class | c in c.”ext }

(D) ARepair generated patch for cd2.

1. pred Acyclic() {
2.- no c: Class | ¢
3.+ no c: Class | ¢

c.ext }
c & c.%ext }
(E) Human-written patch for stus.
1. pred Sorted(This: List) {
all n: Node | n.elem<=n.link.elem }
all n: Node | some n.link => n.elem<=n.link.elem }
(F) ARepair generated patch for stu8.
. pred Sorted(This: List) {
2.- all n: Node | n.elem<=n.link.elem }
3.+ all n: link.Node | n.elem<=n.link.elem }

w N
+

Figure 10: Comparison of ARepair generated patches and
human-written patches.

states that no class is equal to the intersection of the class and all
its subclasses, transitively. The Sorted predicate in stu8 models a
linked list sorted in descending order of the node values. The faulty
model does not allow the existence of any list with a single node
(without any link). The human-written patch allows such cases by
stating that if a node n has a subsequent node following the link,
then its value should be less than or equal to the value of its sub-
sequent node. The generated patch instead modifies the domain to
restrict the less than or equal relation only applying to nodes that
have a subsequent node.

The authors check correct patches that are syntactically differ-
ent from human-written patches and find that these patches are
easy to understand in general. There are rare cases that ARepair
generates some complex expressions that can be further simpli-
fied through semantic reasoning. Additionally, ARepair generates
a patch which fixes a fact instead of the predicate the developer
would fix for ctreel.

5.4 Limitation

To answer RQ3, we manually inspect all faulty models that ARe-
pair is unable to fix. The reasons are categorized as follow:

(1) The repair requires synthesizing predicate and function calls.
For example, one of the property to fix in bst2 requires invok-
ing predicates and functions.

(2) The repair requires moving a field declaration from one signa-
ture to another, e.g. bempl1.

(3) The repair requires creation of new syntactic structures. For
example, d113 models a property using a single quantifier, but
the model needs two. stu2 has a formula with the structure
(a=p) || y, but the correct fix requires a=p elsey, where a, f
and y are formulas. stu6 is overconstrained and the fix requires
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creating a disjunction of a new formula and an existing formula.
dll3 and stu16 have empty predicates and require ARepair to
synthesize formulas from scratch.

(4) Both AC and BC search strategies are greedy and may run into
a local optimum. For example, a correct patch of other1 re-
quires changing two formulas at the same time and BC runs
into a local optimum that leads to a repair failure. Similarly,
AC runs into a local optimum for arr1.

We find that the majority of the faults ARepair is unable to fix
fall under category 3, followed by category 4. To handle faults in
category 3, we can add repair templates that introduce new syntac-
tic structures if the current version of ARepair is not able to find
a correct patch. New search strategies can be designed to address
faults under category 4. From our experiment, ARepair is able to
handle a majority of the faulty models (28 out of 38) and we plan
to handle the limitations in future works.

6 THREATS TO VALIDITY

There exists several threats to the validity of our results. Many
of the parameters in the implementation and experimental setup
were chosen by heuristics. They may not represent the optimum
set of parameter values. Moreover, these parameter values may not
generalize to other unseen faulty models. ARepair’s ability to fix
faulty models depends on the fault localization technique and the
AUnit test suite. Our experiment results may vary if we use a differ-
ent fault localization technique, e.g. Tarantula [23]. If the test suite
is too weak to capture the desired model properties, ARepair may
give too many plausible but incorrect patches. The real faulty mod-
els we use in the experiment are limited in the sense that most of
them are written by graduate students. So the experiment results
may not generalize to faulty models written by experienced devel-
opers. However, we collected our set of subject faulty models to
the best of our ability.

The AUnit tests (e.g., the test in Figure 1b), when written man-
ually, can require some effort. In this paper, a majority of the tests
(> 93%) are generated by MuAlloy [74] in which case the manual
effort is substantially reduced. In general, the manual effort can be
reduced by writing partial tests that provide valuations for a sub-
set of the relations declared in the model. For example, the test in
Figure 1b can omit the constraints on various relations (e.g., State,
near, and far) because these constraints are irrelevant to the prop-
erty the test is intended to check.

7 RELATED WORK

ARepair is a generate-and-validate repair technique for declarative
models written in Alloy. The technique is able to fix models with
multiple faults or faults that require fixes at multiple locations.
ARepair does not have any repair templates, instead it creates holes
in suspicious AST nodes level by level and can fix different kinds
of bugs. The idea of combining mutations (from MBFL) and a syn-
thesizer to repair faulty programs is new. The base-choice search
strategy reduces the exploration space and is different from search
strategies of existing repair techniques. The hierarchical caching
reduces the input sizes of evaluator calls and is different from ex-
isting memoization techniques. Next, we highlight the main areas
of work related to ARepair.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid

Generate-and-Validate Repair. The generate-and-validate repair
techniques apply a set of code transformations to generate pro-
gram candidates and validate each candidate under the given test
suite. These techniques implement different search strategies, e.g.
genetic algorithms [81], semantic search [27], random search [59]
and adaptive search [80], to explore the immense search space
of repair candidates. Researchers also proposed other repair tech-
niques that remove program functionalities [60], create program
variants [8, 11], leverage dynamic program state [18, 19, 86], or
focus on improving performance by removing bottlenecks in con-
current programs [87]. Astor [43] is a repair library that imple-
ments existing techniques to fix Java code. Techniques that pri-
oritize patches are built based on human-written code [29, 37, 66,
83], historical data [14, 34], document analysis [36, 62, 84], anti-
patterns [72] and test generation [82].

Constraint-Solving Repair. The constraint-solving repair tech-
niques use the semantics of the faulty program and translate the
repair problem into a constraint solving problem. Then, the con-
straint solving problem is solved by an off-the-shelf solver to find
a repair that satisfies all inferred specifications. The constraints
can be inferred from test executions [12, 38, 64] or semantic analy-
sis [10, 26, 33, 55]. Other techniques use formal specifications [17,
30, 67, 79] or infer invariants [13, 24, 58, 63] to fix programs.
Declarative Debugging. The fundamental idea of declarative de-
bugging is that the programmer (or some oracle) has an intended
interpretation of the program and debuggers can query the pro-
grammer to obtain this information. The debugger compares the
intended interpretation of a (buggy) program with its (incorrect)
actual behavior on some computation. The cause of the difference
is isolated to a small section of code which must contain a bug.
Declarative debugging was first introduced in Prolog [65] and then
extended for functional and logic programs [50, 51, 57]. Researchers
also developed program repair technique for SQL [5, 16].

Alloy. Over the past years, many extensions have been built for
Alloy [9, 15, 45, 46, 70, 75]. Aluminum [54] generates minimal
instances to make it easy for users to inspect. Amalgam [53] allows
users to ask why and why not a relation exist in an Alloy instance.
ASketch [76, 78] provides a sketching framework for Alloy.

8 CONCLUSION

This paper introduces a generate-and-validaterepair technique, ARe-
pair, to fix faulty Alloy models. ARepair leverages a mutation-based
fault localization technique, an expression generator and a syn-
thesizer to repair various kinds of faults. ARepair is enumeration-
based and it enbodies two search strategies, i.e. the all-combination
strategy and the base-choice strategy. ARepair implements vari-
ous optimizations, including the use of modulo test input pruning
to remove equivalent expressions, the construction of dependency
graph to reduce evaluator calls, and the employment of a hierarchi-
cal cache to reduce evaluator input size. The experimental results
show that ARepair works well in fixing real faulty models.
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