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ABSTRACT

Automated program repair is an active research area. However,

existing research focuses mostly on imperative code, e.g. in Java.

In this paper, we study the problem of repairing declarative mod-

els in Alloy – a �rst order relational logic with transitive closure.

We introduce ARepair, the �rst technique for repairing Alloy mod-

els. ARepair follows the spirit of traditional automated program

repair techniques. Speci�cally, ARepair takes as input a faulty Al-

loy model and a test suite that contains some failing test, and out-

puts a repaired model that is correct with respect to the given tests.

ARepair integrates ideas from mutation testing and program syn-

thesis to provide an e�ective solution for repairing Alloy models.

The experimental results show that ARepair can �x 28 out of 38

real-world faulty models we collected.
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1 INTRODUCTION

Automatic program repair techniques signi�cantly reduce the hu-

man e�ort required to diagnose, debug, and repair faulty programs [2,

7, 17, 21, 24, 30, 35, 38, 39, 43, 59, 63, 66, 79]. The standard generate-

and-validate approach [14, 19, 29, 34, 62, 80, 81, 83, 84] starts with

a faulty program and a test suite that reveals the defect. It explores

candidate programs in the search space, and validates each can-

didate program against the given test suite until a program that

passes all tests is found. Some repair techniques infer specs of

the program and translate the repair problem into constraints, and

then use SAT/SMT solvers to synthesize patches that conform to

the specs [33, 44, 55, 64].
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Existing program repair techniques mainly focus on imperative

languages like Java. Our focus in this paper is declarative models

written in Alloy [22] – a �rst-order relational logic with transi-

tive closure. The Alloy language and its back-end analyzer have

been explored within the software engineering community. Alloy

is used in various domains, including UML analysis [31, 41, 42],

security [40, 52], networking [61], and feature modeling [20]. Ad-

ditionally, the Alloy analyzer has been extended to provide better

scenario �nding experiences [6, 28, 47, 49, 54]. Alloy users write

models that describe the properties of the system of interest. The

Alloy analyzer translates Alloy models into Kodkod [73] formu-

las and invokes o�-the-shelf SAT solvers to search for solutions.

The analyzer performs scope-bounded analysis, which checks the

properties within a given scope, i.e. bound on the universe of dis-

course. AUnit [69] de�nes the notion of testing in Alloy following

the spirit of traditional testing frameworks, e.g. JUnit. Developers

write test predicates and invoke commands to assert the existence

or non-existence of solutions.

In this paper, we present ARepair, a novel generate-and-validate

program repair technique for Alloy, which is able to handle Al-

loy models with multiple faults. ARepair has three main compo-

nents: (1) a mutation-based fault localization technique [48, 56],

AlloyFL [77] that locates faults at the AST node granularity; (2)

a generator that systematically generates Alloy expressions (with

equivalence pruning rules for relational algebra [75]); and (3) a syn-

thesizer that explores the search space until a model with all pass-

ing tests is found. ARepair starts by invoking AlloyFL to locate

faults. Each time AlloyFL is invoked, ARepair checks if the most

suspicious node can be �xed by mutation and applies the change if

that is the case. Otherwise, for each suspicious AST node returned,

ARepair creates holes for descendant nodes in the suspicious AST

and enumerates candidate fragments (generated by the expression

generator) of corresponding holes until some failing test passes

and the results of passing tests are preserved. ARepair implements

two strategies to explore the search space: all-combinations and

base-choice. The all-combinations strategy explores all combina-

tions of candidate fragments for all holes until some failing test

passes and no passing test fails. The base-choice strategy enumer-

ates candidate fragments for one hole at a time, while keeping the

candidate fragments of the other holes constant. After enumerat-

ing all the fragments for one hole, the base-choice strategy �lls

the hole with the fragment that makes the most failing tests pass

and no passing test fails. Both strategies are inspired by textbook

input space criteria for test coverage [4]. ARepair avoids running

AUnit test predicates with expensive SAT solver calls by building

formula dependency graphs and leveraging Alloy’s built-in eval-

uator to evaluate a minimal number of a�ected formulas that de-

termine a test’s satis�ability. A hierarchical cache further reduces

the sizes of inputs to the evaluator. ARepair repeatedly �xes faults

until all tests pass or it exhausts the bounded search space.
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We evaluate ARepair using models collected from the standard

Alloy 4.1 distribution and Amalgam [53]. We also collect Alloy as-

signment solutions from graduate students. With the default set-

ting, ARepair is able to repair 28 out of 38 real faulty models. We

make the following contributions:

• Alloy Model Repair. ARepair is the �rst repair technique for

Alloy, which uses both mutations and synthesis to repair faulty

models. The experimental results show that the combined ap-

proach works well and many faulty models require both muta-

tions and synthesis for a complete �x. ARepair does not require

isolated faults. It can �x models with multiple faults or faults

involving multiple locations.

• Optimizations for Practical Model Repair.ARepair does not

search for fault patterns and apply repair templates to �x faults.

Instead, it tries to repair a faulty AST in a bottom-up fashion,

so it is more likely to repair faults with unseen patterns. The

absence of repair templates results in an immense search space

and we implement the following optimizations to make the tech-

nique tractable and reduce end-to-end time. (1) The expression

generator prunes equivalent expressions based on equivalence

pruning rules [75] and modulo test inputs [32]. (2) The enumer-

ation based approach explores the search space without expen-

sive constraint solving [3]. (3) The construction of dependency

graphs for constraint formulas enables a small number of evalu-

ator calls during the enumeration based approach. (4) The base-

choice search strategy reduces the exploration space. (5) The hi-

erarchical caching reduces sizes of the inputs to evaluator calls.

• Evaluation.We evaluate ARepair on real faults and show that it

is able to �x 28 out of 38 faultymodels.We qualitatively compare

patches generated by ARepair and human written patches, and

show that the quality of the generated patches is good.

• Open Source. We release 38 real-world Alloy models with an-

notated fault locations and human-written patches, and open

source ARepair so researchers can use them in the future. The

repo is available at https://github.com/kaiyuanw/ARepair.

2 EXAMPLE

This section presents a real-world faulty Alloy model to introduce

the basics of Alloy and AUnit. Then, we describe how AlloyFL [77]

and ARepair �x the model.

Figure 1a shows the “Farmer River Crossing” puzzle where the

goal is to allow a farmer to transport a fox, chicken and grain from

one river bank to the other. The farmer uses a boat and can only

carry one item at a time. If left unattended, the fox eats the chicken

and the chicken eats the grain. The model contains a fault which

prevents the “eating” from happening while the farmer is away.

Instead, the faulty model enforces the “eating” to happen when

the farmer comes back.

Lines 2-4 declare the basic types in the problem: a notion of ob-

ject (line 2; sig denotes a set and introduces a type), four concrete

objects (line 3), and a set of states (line 4) that model the objects in

both the near and far banks after every farmer’s river crossing ac-

tion (line 4). The abstract keyword enforces that an object is one

of its concrete subtypes: Farmer, Fox, Chicken and Grain. The one

keyword constrains each concrete object type to contain a single,

distinct object atom. The eats �eld declares that each object can eat

a set of objects and the fact on line 5 restricts that the fox can eat the

chicken and the chicken can eat the grain. The initialState fact

on lines 6-7 constrains that initially everything is on the near bank

and nothing is on the far bank. The crossRiver predicate on lines

8-13 de�nes the river crossing action. It takes four parameters: the

set of objects on the bankwhere the farmer starts at (pre-state: from

and post-state: from’) and the set of objects on the bank the farmer

will cross to (pre-state: to and post-state: to’). The predicate states

that either the farmer takes nothing or the farmer takes one item

to the other side of the river. The stateTransition fact on lines 14-

19 states that for every two consecutive states, if the farmer is on

the near bank in the pre-state, then he would cross the river to the

far bank in the post-state, and vice versa. The solvePuzzle on line

20 restricts that everything should be on the far bank of the river

in the last state.

The fault is in the crossRiver predicate (highlighted in orange).

The predicate enforces eating to happen only after the farmer comes

back and not immediately after the farmer leaves the bank. This

means if the farmer takes the grain from the near bank to the far

bank, the fox will not eat the chicken. But when the farmer comes

back to the near bank, the fox eats the chicken. Thismodeling error

was in Alloy release 4.1 and was �xed in release 4.2.

An AUnit test [69] that reveals the fault is shown in Figure 1b.

Predicate test1 encodes the valuations of each signature type and

�eld relation in the faulty farmermodel. The invocation of crossRiver

predicate on line 18 states that everything is on one bank and noth-

ing is on the other bank in the pre-state. In the post-state (after the

farmer crosses the river with the fox), only the chicken is left on

the one bank (because the chicken eats the grain) and both the

farmer and the fox are on the other bank. The command in line 19

runs the test with at most 4 atoms for each sig type and expects the

existence of a solution. However, the test predicate is unsatis�able

because of the modeling error, resulting in a test failure.

ARepair invokes AlloyFL to locate faults at the AST node gran-

ularity. The most suspicious node AlloyFL returns is shown in

Figure 2. ARepair creates holes to replace each level of AST nodes

in a bottom-up fashion. For example, it �rst creates holes for to and

eats (highlighted in red). Then, ARepair generates a set of candi-

date expressions for each hole using all signatures/�elds/variables

in scope, e.g. Farmer, from and item, etc. Next, ARepair enumerates

the candidate expressions for each hole and runs all a�ected tests

to see if any test result changes from failing to passing. ARepair

keeps the candidate values that make some failing tests pass and

preserves the results of passing tests. In this case, ARepair replaces

to with none and now one failing test passes (and no passing test

fails). Next, ARepair reruns AlloyFL and �nds that the most suspi-

cious node is still the same. In this iteration, ARepair creates holes

for to and the relational join operator "·" (highlighted in yellow).

ARepair keeps synthesizing expressions/formulas under each sus-

picious node to make failing tests pass. If ARepair cannot make

any failing test pass for the suspicious node, then it repeats the

same process for the next suspicious node. Note that AlloyFL is

a mutation-based technique and it can also repair the model with

mutations. Each time AlloyFL is invoked, we check if there is a mu-

tation over the most suspicious node AlloyFL reports that makes

some failing tests pass and no passing test fails. If such mutation



Automated Model Repair for Alloy ASE ’18, September 3–7, 2018, Montpellier, France

1. open util/ordering[State] as ord

2. abstract sig Object { eats: set Object }

3. one sig Farmer, Fox, Chicken, Grain extends Object {}

4. sig State { near,far: set Object }

5. fact eating { eats = Fox->Chicken + Chicken->Grain }

6. fact initialState {

7. let s0 = ord/first | s0.near = Object && no s0.far }

8. pred crossRiver[from,from',to,to': set Object] {

9. (from' = from - Farmer

10. && to' = to - to.eats + Farmer ) ||

11. (some item: from - Farmer {

12. from' = from - Farmer - item

13. && to' = to - to.eats + Farmer + item })}

14. fact stateTransition {

15. all s: State, s': ord/next[s] {

16. Farmer in s.near =>

17. crossRiver[s.near, s'.near, s.far, s'.far]

18. else crossRiver[s.far, s'.far, s.near, s'.near]

19. }}

20. pred solvePuzzle { ord/last.far = Object }

(a) Faulty farmer river crossing model.

1. pred test1 {

2. some disj F0: Farmer | some disj X0: Fox |

3. some disj C0: Chicken | some disj G0: Grain |

4. some disj F0, X0, C0, G0: Object |

5. some disj S0, S1, S2, S3: State {

6. Farmer = F0

7. Fox = X0

8. Chicken = C0

9. Grain = G0

10. Object = F0 + X0 + C0 + G0

11. eats = X0->C0 + C0->G0

12. State = S0 + S1 + S2 + S3

13. near = S0->F0 + S0->X0 + S0->C0 + S0->G0

14. + S1->X0 + S2->F0 + S2->X0 + S3->X0

15. far = S1->F0 + S1->G0 + S2->G0 + S3->F0 + S3->G0

16. ord/first = S0

17. ord/next = S0->S1 + S1->S2 + S2->S3

18. crossRiver[F0+X0+C0+G0, C0, none, F0+X0] } }

19. run test1 for 4 expect 1

20. // More tests ...

(b) A failing test of the farmer river crossing model [77].

Figure 1: Faulty Farmer Example and Tests.

&&

= =

from' � to' +

� item + item

from Farmer � Farmer

to ·

to eatsLevel 7

Level 6

Level 1

Figure 2: First Suspicious Node for Faulty Farmer Example.

(A) A human-written patch.

1. pred crossRiver[from,from',to,to': set Object] {

2.- (from' = from - Farmer

3.+ (from' = from - Farmer - from'.eats

4.- && to' = to - to.eats + Farmer ) ||

5.+ && to' = to + Farmer ) ||

6. (some item: from - Farmer {

7.- from' = from - Farmer - item

8.+ from' = from - Farmer - item - from'.eats

9.- && to' = to - to.eats + Farmer + item })}

10.+ && to' = to + Farmer + item })}

(B) A patch generated by ARepair.

1. pred crossRiver[from,from',to,to': set Object] {

2.- (from' = from - Farmer

3.- && to' = to - to.eats + Farmer ) ||

4.- (some item: from - Farmer {

5.+ (some item: from + Farmer {

6.- from' = from - Farmer - item

7.+ from' = from - (Farmer + from'.eats) - item

8.- && to' = to - to.eats + Farmer + item })}

9.+ && to' = to + Farmer + item })}

Figure 3: Patches for the faulty farmer model.

exists, then we mutate the model and start the next iteration. Fi-

nally, if ARepair can �x the faulty model, i.e. all tests pass, then it

post-processes the �xed model to remove redundant code, e.g. re-

place "to-none.eats" with "to", and returns the model to the user.

Figure 3 shows the human written patch (A) and the �rst patch

generated byARepair (B).We can see that the humanwritten patch

�xes the “eating” action both when the farmer crosses the river

with (lines 7-10) or without (lines 2-5) an item. The patch ARepair

generates deletes the formula that models the farmer’s crossing-

river without an item (lines 2-3), and �xes the “eating” actionwhen

the farmer crosses the river with an item (lines 6-9). The interest-

ing part is that the patch also changes the domain of a variable

declaration (lines 4-5), which actually merges both cases when the

farmer crosses the river with/without an item. The new domain

(line 5) allows the item to be the farmer himself and it models the

correct semantics corresponding to the deleted formula on lines 2-

3. In this case, we validate the equivalence of generated patch and

the human-written patch with a scope-bounded analysis using the

Alloy analyzer and �nd that the generated patch is semantically

equivalent to the human written patch.

3 BACKGROUND: FAULT LOCALIZATION

In this section, we describe AlloyFL [77], which is the fault local-

ization technique used by ARepair.

AlloyFL follows the traditional mutation-based fault localiza-

tion techniques [48, 56] and implements a variety of mutation op-

erators as shown in Figure 4. MOR mutates signature multiplicity,

e.g. "lone sig" to "one sig". QOR mutates quanti�ers, e.g. "all" to

"some". UOR, BOR and LOR de�ne operator replacement for unary,

binary and formula list operators, respectively. For example, UOR

mutates "a.�b" to "a.ˆb"; BOR mutates "a=>b" to "a<=>b"; and LOR

mutates "a&&b" to "a||b". UOI inserts an unary operator before ex-

pressions, e.g. "a.b" to "a.�b". UOD deletes an unary operator, e.g.

"a.� �b" to "a.�b". LOD deletes an operand of a logical operator, e.g.

"a||b" to "b". PBD deletes the body of an Alloy paragraph. BOE ex-

changes operands for a binary operator, e.g. "a=>b" to "b=>a". IEOE

exchanges the operands of imply-else operation, e.g. "a => b else

c" to "a => c else b". These operators are well de�ned such that

AlloyFL is able to accurately locate faults and even �x the faults in

some cases. For example, to �x the faulty farmer example in Fig-

ure 1a, AlloyFL �xes parts of the faults by applying BOR (Figure 3

(B) lines 4-5) and LOD (Figure 3 (B) lines 2-3).

The input of AlloyFL is a faulty Alloy model and a set of Alloy

commands with the expect keyword. These commands can invoke

Alloy predicates, function or assertions. "expect 1" means that the

corresponding command is expected to be satis�able while "expect
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Mutation
Description

Operator

MOR Multiplicity Operator Replacement

QOR Quanti�er Operator Replacement

UOR Unary Operator Replacement

BOR Binary Operator Replacement

LOR Formula List Operator Replacement

UOI Unary Operator Insertion

UOD Unary Operator Deletion

LOD Logical Operand Deletion

PBD Paragraph Body Deletion

BOE Binary Operand Exchange

IEOE Imply-Else Operand Exchange

Figure 4: Mutation Operators

0" means that the command is expected to be unsatis�able. In this

paper, each command invokes an AUnit [69] test predicate and we

say an AUnit test fails if the corresponding command is satis�able

but is expected to be unsatis�able, or vice versa. The output of Al-

loyFL is a list of AST nodes in descending order of their suspicious-

ness given a formula. In this paper, we use the Ochiai [1] formula
f ailed (e )�

total f ailed×(f ailed (e )+passed (e ))
, where failed(e) and passed(e)

are the number of tests that failed and passed (with respect to the

original faulty model) that kill the mutant e, and totalfailed is the

total number of failed tests for the faulty model. AlloyFL system-

atically mutates the faulty Alloy model using mutation operators

in Figure 4 and runs the test suite against each mutant. A suspi-

ciousness score computed from the Ochiai formula is assigned to

each mutated AST node. In case more than one mutation operator

is applicable to an AST node, the maximum suspiciousness score

computed for the node is used. Finally, AlloyFL ranks all nodes

in the descending order of suspiciousness and returns the ranked

list. We modify AlloyFL to also return the mutation operator cor-

responding to the most suspicious AST node so later ARepair can

determine if that mutation should be applied as a potential �x.

4 TECHNIQUE

In this section, we �rst describe how we create holes (Section 4.1)

and howwe generate expressions to �ll in holes (Section 4.2). Next,

we describe the search strategies (Section 4.3). Then, we describe

how we run tests without invoking a SAT solver (Section 4.4) and

the hierarchical cachingwe use to improve performance (Section 4.5).

Finally, we describe the enumeration-based repair approach as a

whole (Section 4.6).

4.1 Create Holes

For each suspicious AST node returned byAlloyFL, we create holes

at each level of the corresponding AST in a bottom-up fashion. For

example, the most suspicious node in the faulty farmer model (Fig-

ure 2) has 7 levels. We �rst create holes at level 7 (shown in red)

and synthesize new expressions at that level without modifying

nodes of other levels. We repeat this process from level 7 to level 1

(root level) until some failing test passes and no passing test fails.

The intuition is that AlloyFL is designed to mutate upper-level op-

erator nodes and if the fault cannot be �xed by AlloyFL, then the

issue is likely at the lower levels of the AST. This approach also pri-

oritizes patches with smaller perturbations to the original model,

which is consistent with the insight: patches that introduce smaller

perturbations to the original program are more likely to be cor-

rect [10, 33].

Creating a single hole for each node in a given level may not

result in valid models. For example, replacing the && node with a

hole at level 1 in Figure 2 does not make the new program compile.

Consequently, the schema to create holes for di�erent AST nodes

may vary. ARepair introduces di�erent types of holes, i.e. quanti-

�er holes (denoted by qh), logical operator holes (denoted by loh),

comparison operator holes (denoted by coh), implication holes (de-

noted by ih), cardinality holes (denoted by ch), boolean holes (de-

noted by bh) and expression holes (denoted by eh). The value of

qh can be one of "all", "no", "some", "lone" or "one". The value of loh

can be either "&&" or "||". The value of coh can be one of "=", "in",

"!=" or "!in". The value of ih can be either "=>" or "<=>". The value

of ch can be one of "no", "lone", "one" or "some". The value of bh can

be either empty � or "!". The value of eh can be any expression.

Figure 5 shows the meaning of di�erent types of AST nodes and

the corresponding schemas to create holes. Each schema is denoted

by "h̄(x) := H ", where h̄(x) means the holes created from AST node

type x and H shows the way to compute holes. For example, the

most suspicious node returned by AlloyFL is a conjunction node

("&&" as shown in Figure 2). To create holes for the root node, we

can apply the schema for the conjunction node, which states that

the holes we should create include a logical operator hole loh, holes

created from the left child and holes created from the right child. In

this case, both the left and right children of the conjunction node

are set equality nodes ("="), so we recursively apply schemas in Fig-

ure 5 until no more holes are created. In the end, we would create

4 expression holes, 2 comparison operator holes and a logical oper-

ator hole. This step guarantees that if we �ll holes with candidate

operators/expressions, then the resulting expression/formula will

always compile.

4.2 Generating Expressions

The space of candidate fragments for operator holes, e.g. quanti�er

holes and cardinality holes, are �xed, but the space of candidate

fragments for expression holes depends on the expression genera-

tor. To generate valid candidate fragments for expression holes, we

need to �nd all atomic expressions in the model that can be used.

ARepair has a static analyzer which �nds all atomic expressions,

i.e. sigs, �elds, predicate/function parameters, quanti�er variables

and let variables, in scope of each expression hole. The holes that

share the same set of atomic expressions in scope have the same

set of generated candidate fragments.

ARepair implements an expression generator that generates ex-

pressions following the grammars in Figure 6. The generator imple-

ments two pruning strategies. First, the generator prunes seman-

tically equivalent expressions using equivalence pruning rules for

relational algebra described in RexGen [75]. Second, the generator

implements a modulo test checker that prunes equivalent expres-

sionswith respect to the given tests. The equivalence pruning rules

and the modulo test checker signi�cantly reduce the number of ex-

pressions to consider and make the repair problem tractable.
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Meaning Schema Meaning Schema

Cartesian product h̄(� ×� ) := eh Relational join h̄(� �� � ) := eh

Union h̄(� �� ) := eh Intersection h̄(� �� ) := eh

Set di�erence h̄(� \� ) := eh Overriding union h̄(�++� ) := eh

Domain restriction h̄(� <: � ) := eh Range restriction h̄(� :> � ) := eh

Transitive closure h̄(ˆ� ) := eh Re�exive transitive closure h̄(�� ) := eh

Inverse relational join h̄(�[� ]) := eh Relational transpose h̄(~� ) := eh

Cardinality h̄(#� ) := eh Set comprehension h̄({t̄ : � |� (t̄ ) }) := eh

Identity relation (binary) h̄(iden) := eh Universe (unary) h̄(univ) := eh

Conjunction h̄(� � � ) := h̄(� ) loh h̄(� ) Disjunction h̄(� � � ) := h̄(� ) loh h̄(� )
Implication h̄(� 	 � ) := h̄(� ) ih h̄(� ) Bi-implication h̄(� 
 � ) := h̄(� ) ih h̄(� )

If-then-else h̄(� ?� : � ) := h̄(� ) h̄(� ) h̄(� ) Negation h̄(¬� ) := bh h̄(� )

Relational equality h̄(� = � ) := h̄(� ) coh h̄(� ) Relational containment h̄(� in � ) := h̄(� ) coh h̄(� )

Universal quanti�cation h̄(�t̄ : � |� (t̄ )) := qh h̄(� ) h̄(� (t̄ )) Existential quanti�cation h̄(�t̄ : � |� (t̄ )) := qh h̄(� ) h̄(� (t̄ ))

|� | = 1 h̄(one � ) := ch h̄(� ) |� | 
 1 h̄(lone � ) := ch h̄(� )

|� | � 1 h̄(some � ) := ch h̄(� ) |� | = 0 h̄(no � ) := ch h̄(� )

Figure 5: Hole creation schemas for Alloy Surface Syntax. h̄(x) computes the holes for syntax x . � , � and � denote formulas

which evaluate to true or false. � and� denote expressions which evaluate to relations. t̄ : � denote tuple membership t̄ � �.

expression e := uop e | e bop e | atome | const

unary op uop := � | ˆ | ˜
binary op bop := + | & | � | ·
atomic expr atome := si�e | f ielde | parame | vare
constant const := none | iden | univ | Int | 0 | 1

Figure 6: Expression generation syntax.

Next, we describe the modulo test pruning technique with an

example. Consider the model shown below:

sig Node { link: lone Node } pred p { some n: Node | no ?? }

pred t1 { some disj N0: Node | Node=N0 && link=N0->N0 }

pred t2 { some disj N0,N1: Node {

Node=N0+N1 && link=N0->N1+N1->N0 && p[] } }

The model has a signature Node, a binary �eld link and a quan-

ti�er variable n. Implicitly, "n" is of type Node and has a cardinality

of 1. The model contains two AUnit tests t1 and t2. Suppose we

want to generate expressions of type Node in the body (denoted by

??) of the existential quanti�cation, and we can use "n", "link" and

"Node" as the atomic expressions. The following table shows the val-

uations of four syntactically di�erent expressions, i.e. "n", "n.link",

"link.(Node-n)" and "(link.Node)&n", with respect to t1 and t2.

test n n n.link link.(Node-n) (link.Node) & n

t1 N0 {N0} {N0} � {N0}

t2
N0 {N0} {N1} {N0} {N0}
N1 {N1} {N0} {N1} {N1}

For test t1, n can only be N0 and link is N0->N0. It is easy to

see that "n", "n.link" and "(link.Node)&n" evaluate to the same set

{N0} and thus are equivalent with respect to t1. For test t2, n can

be N0 or N1, and link is {N0->N1, N1->N0}. "n", "link.(Node-n)" and

"(link.Node)&n" are equivalent with respect to t2 both when n=N0

and n=N1. So "n" and "(link.Node)&n" are equivalent with respect

to the test suite and the modulo test checker can prune either "n"

or "(link.Node)&n". In practice, we keep expressions with smaller

sizes, so "(link.Node)&n" will be pruned. If the expression does not

contain any free variable, its valuation does not change based on

the valuations of free variables. If the expression contains more

than one free variable, thenwe need to enumerate all combinations

of possible valuations of the free variables to get the valuations of

the expression. If the free variable’s cardinality is greater than 1,

then its valuation can be any subset of its declaring type. Two ex-

pressions are equivalentwith respect to a test if their valuations are

the same across all combinations of possible valuations of free vari-

ables in the scope. The expression generator prunes expressions

that are equivalent to any existing expression with respect to the

entire test suite.

In this paper, the size of an expression is de�ned as the number

of descendant nodes in the AST representation of the expression.

The expression generator is able to generate expressions of a given

type and size.

4.3 Search Strategies

Given a level of nodes in a suspicious node and the correspond-

ing holes created, ARepair implements two search strategies: all

combinations and base choice [4].

All combinations. Under this search strategy, ARepair tries all

combinations of candidate fragments for all holes until it �nds

some failing test passed and no passing test failed. This strategy

is typically impractical as the number of holes and the number

of candidate fragments for each hole grow. For example, with 4

holes and 100 candidate fragments for each hole, the search space

is 108. In our implementation, we limit the maximum number of

combinations to explore (per level of holes) for this search strat-

egy. Typically, the limit we set is still large, so we stop exploring

more combinations the �rst time a combination of candidate frag-

ments makes some failing test pass and no passing test fails. If such

a combination is found, we �ll the holes with the corresponding

fragments and save the changes before starting the next iteration.

Intuitively, we want to �rst explore combinations of candidate

fragments of expression holes with smaller expression sizes, be-

cause we assume small-sized expressions are more natural to de-

velopers, e.g. "n" vs "(Node-�link.n)". Figure 7 shows howwe priori-

tize exploring combinations of candidate expressions with smaller

sizes. Suppose we have n holes (hole1 to holen) and holei has Si
number of candidate fragments. Then we can partition the candi-

date fragments of holei into ki parts (P
i
1 to P

i
ki
) of equal size. Next,

we create size-n tuples U = {(x1, x2, . . . ,xn ) |
n�

i=1
xi � [1,ki ]} and
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Figure 7: All combinations partitions.

sort the tuples �rst by
n�

i=1
xi and then by | max

�i �[1,n]
xi � min

�i �[1,n]
xi |

to gets a ranked list of tuplesL. For example, ifn = 2,k1 = 2,k2 = 3,

then the ranked tuple listL = [(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 3)].

Finally, we iterate each tuple (x1, . . . ,xn ) in L and explore all com-

binations of candidate fragments C = {( f1, . . . , fn ) |
n�

i=1
fi � P ixi }.

Since expressions are generated in a bottom-up fashion, expres-

sions with smaller sizes are generated �rst, which means expres-

sion sizes in Pxi are smaller than expression sizes in Pxj if i < j.

Therefore, the exploration strategy guarantees that combinations

of smaller expressions are explored �rst.

Base Choice. Under this search strategy, ARepair holds candidate

fragments of all holes constant except one hole (base choice). It

enumerates candidate fragments of holei with the candidate frag-

ments of the rest holes unchanged. For each holei , ARepair ex-

plores all candidate fragments and picks the one (fi ) that makes

the maximum number of failing tests pass and no passing test fails.

Then, ARepair enumerates candidate fragments ofholei+1with the

fragment of holei set to fi . ARepair uses this exploration strategy

from hole1 to holen and saves the �nal changes as the potential �x.

For example, with 4 holes and 100 candidate fragments for each

hole, the search space is 400. In practice, the number of generated

candidate fragments for an expression hole can be large, so we set

a limit on the number of candidate fragments to explore per hole.

4.4 Running Tests

ARepair invokes tests in the expression generation phase (to prune

expressions), the fault localization phase (to locate faults) and the

repair phase (to validate candidate patches). Since the search space

is large and each repair problem contains many tests, invoking all

tests at the repair phase takes a majority of the time. Moreover,

invoking each test predicate with a SAT solver is expensive. We in-

troduce a technique that determines test satis�ability using Alloy’s

built-in evaluator (without sat solving) and builds a dependency

graph for each test to reduce the number of evaluator calls.

For a given faulty Alloy model, ARepair normalizes the signa-

ture multiplicity constraints, the �eld multiplicity constraints and

the signature facts, and creates a formula for each constraint. In the

faulty farmer example (Figure 1a), the Object signature is declared

to be an arbitrary set of atoms, so it does not need to be normalized

and we create an empty formula (denoted by Objectmult ) which

evaluates to true by default. Similarly, the �eld eats is declared to

relate an object to a set of objects, so we simply create an empty

formula (denoted by eatsmult ). "one sig Farmer" is declared to

test1

Objectmult

Farmermult

Foxmult

Chickenmult

Grainmult

Statemult

eatsmult

nearmult

farmult

eating

initialState

stateTransition

crossRiver

Figure 8: Dependency graph for test1 in Figure 1b.

be a singleton set so we normalize it as "sig Farmer" (remove sig-

nature multiplicity constraint) and create a formula "one Farmer"

(denoted by Farmermult ). Thus, ARepair creates a formula for each

signature and �eld. Since the farmer model does not have any sig-

nature facts, we do not need to create any formula for signature

facts. For each fact paragraph, ARepair creates a formula (denoted

by the fact name) that is identical to the fact body.

For each AUnit test, we create a dependency graph that encodes

the formulas the test depends on. For example, Figure 8 shows

the dependency graph for test1 in Figure 1b. test1 depends on

all signature/�eld multiplicity constraints and all fact constraints,

because those constraints are enforced by the Alloy analyzer when

we invoke the test. Since both test1 and stateTransition directly

invoke the crossRiver predicate, they both depend on crossRiver.

Once we build the dependency graph for each AUnit test, it is

easy to compute a test’s satis�ability from the formulas the test

depends on. Initially, ARepair evaluates each formula the test de-

pends on and stores the satis�ability of each formula. When ARe-

pair enumerates candidate fragments for holes, it only evaluates

the a�ected formulas to determine the satis�ability of the test. In

the faulty farmer example, when ARepair enumerates candidate

fragments for holes under the most suspicious AST node (Figure 2),

the only a�ected predicate is crossRiver and the a�ected formulas

are stateTransition and test1. To determine the satis�ability of

test1, we only need to evaluate the body of stateTransition and

the body of test1. Moreover, if any una�ected formula is unsatis�-

able, then we know the test is unsatis�able even without invoking

the evaluator. In practice, the technique improves the performance

of ARepair because it does not involve any expensive SAT solving

and is able to determine the test satis�ability with a minimal num-

ber of evaluator calls.

4.5 Hierarchical Caching

The evaluator-based approach to determine the test satis�ability

can be further improved by our hierarchical caching algorithm.

The idea is that we can reuse the previously evaluated result (i.e.

valuation) of a formula if its subformulas evaluate to the same set

of values as some subformulas we evaluated before. We explain hi-

erarchical caching through the farmer example. Suppose we want

to determine the satis�ability of test1 (Figure 1b) by evaluating

the fact formula stateTransition, and the created holes that cor-

respond to nodes at level 7 of the most suspicious AST node, i.e.

"to" and "eats" in Figure 2 highlighted in red. Also assume that

hole h̄(to) is �rst replaced by fragment "none" and hole h̄(eats)

is unchanged. We create a hierarchical cache for test1 as follows.

First, we invoke the evaluator for the fragments of both holes and

�nd that "none" evaluates to � and "eats" evaluates to {X0�C0,
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Algorithm 1: ARepair algorithm.

Input: Faulty Alloy model M, test suite T.

Output: Fully �xed model or partially �xed model.

1 canFix = True

2 while canFix do

3 res = runTests(M)

4 if allTestsPassed(res) then return M // Full �x.

5 L = locateFaults(M, res)

6 if isEmpty(L) then return M // Partial �x.

7 canFix = False

8 if isFixed(M, L[0]) then

9 M = applyChange(M, L[0])

10 canFix = True

11 else

12 foreach n � L do

13 patch = synthesize(M, n)

14 if isFixed(M, patch) then

15 M = applyChange(M, patch)

16 canFix = True

17 break

18 return M // Partial �x.

C0�G0}. Sowe create mappings <"none", [�]> for h̄(to) and <"eats",

[{X0�C0, C0�G0}]> for h̄(eats). Since the join operator "·" in level

6 is the lowest common ancestor of both holes in level 7, a mapping

<"�. {X0�C0, C0�G0}", [�]> is created for the join operator. Note

that the key of the join operator is its string representation with

all descendant holes replaced by their valuations under test1. The

value of the mapping is obtained by evaluating the string repre-

sentation of the join operator, i.e. "none.eats", which is�. We then

create a mapping for the body of the declaring crossRiver pred-

icate. But because the body has parameters ("from", "from’", "to",

"to’"), we need to assign possible values to all parameters and cre-

ate amapping for the body<"A1A2...An ", [{B1},{B2},...,{Bn }]>, where

Ai means the string representation of the body (with the join op-

erator "·" replaced with its actual valuation) given ith possible as-

signment of parameters, and Bi is the corresponding boolean re-

sult of the body formula in this case. We �nally maps the cached

value of crossRiver, i.e. [{B1},{B2},...,{Bn }], to the satis�ability of the

stateTransition fact.

If the next fragment of hole h̄(to) is "item-Object" which evalu-

ates to � (h̄(eats) is unchanged), then we immediately know that

stateTransition evaluates to the same result as when hole h̄(to)

is "none". Because the new keys we computed for other nodes, e.g.

the join operator in level 6, are already in the cache. Therefore, we

only invoke the evaluator once to evaluate "item-Object" instead

of evaluating the big stateTransition body to determine its satis�-

ability. In general, the hierarchical cache reduces the input size of

evaluator calls but increase the number of evaluator calls. In prac-

tice, we observe speed-ups for a majority of repairing problems

and few repair problems su�er from a slow-down.

4.6 Repair Algorithm

Algorithm 1 shows the algorithm of ARepair. The algorithm takes

as input a faulty Alloy model M and a test suite T that reveals the

fault. The output is either a fully �xed model if all tests pass or a

partially �xed model otherwise. In the worst scenario, ARepair is

not able to �x any fault, in which case the partially �xed model

is the original faulty model. Initially, we set canFix to true (line 1)

and enter the loop (line 2). For each iteration in the loop, we �rst

run all tests against M (line 3). If all tests pass, M is returned (line

4). Otherwise, we run AlloyFL to return a ranked list (L) of suspi-

cious AST nodes (line 5). If L is empty, then the algorithm cannot

�x the faultymodel and it returns the latest state ofM (line 6). Oth-

erwise, we set canFix to false (line 7) and try to �x the faults. The

algorithm checks if the most suspicious AST node (L[0]) has a po-

tential �x (line 8). The isFixed check determines if we want to use

the mutation or the synthesizer to �x the model. In general, the

isFixed method returns true if the mutation makes X failing tests

pass and Y passing tests fail, where X > 0 and Y = 0. In prac-

tice, X and Y can be arbitrary numbers as long as X > Y holds,

because we want to make sure the algorithm terminates. Since ini-

tially we have a �nite number of failing tests and X > Y makes

sure that fewer tests are failing at each iteration. The total num-

ber of iterations is bounded by the number of initial failing tests.

If isFixed (line 8) returns true, then we apply the mutation to M

(line 9) and set canFix to true (line 10). Otherwise, we iterate over

the ranked suspicious nodes (line 12) and try to �x the model us-

ing the synthesizer. For each suspicious node in L, we invoke the

synthesizer to create holes, generate candidate fragments, explore

the search spaces and �nd a potential patch (line 13). Then, the al-

gorithm checks if the patch is a potential �x (line 14). The isFixed

method in line 14 is similar to the method in line 8. If the patch is a

�x, then we apply the patch to the model (line 15) with canFix set

to true and exit the inner loop (line 12-17). Otherwise, we invoke

the synthesizer on the next suspicious node in L. If the synthesizer

cannot �nd a �x after exploring all suspicious nodes, the algorithm

exits the outer loop (line 2) and returns the latest state ofM.

If the resulting model passes all tests, ARepair simpli�es the

model to make it look more natural to the developer. For exam-

ple, ARepair replaces "to-none.eats" with "to" because "none.eats"

always evaluates to an empty set.

5 EVALUATION

We evaluate ARepair on 38 real faults collected from Alloy release

4.1, Amalgam [53] and Alloy homework solutions from graduate

students. These faulty models contain various types of faults, i.e.

overconstraints, underconstraints and amixture of both.We de�ne

the number of faults as the number of incorrectly modeled Alloy

paragraphs, e.g. signatures, predicates, functions and facts.

We address the following research questions in this section:

• RQ1. What is the repair e�cacy of ARepair?

• RQ2. How does the quality of ARepair generated patches com-

pared to human-written patches?

• RQ3. Why is ARepair unable to �x some models?

5.1 Experiment Setting

Unlike existing datasets that isolate faults for the repair techniques,

e.g. Defects4J [25], we use the exact human-written faulty Alloy

models as an input to ARepair. We use the Ochiai [1] formula
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all-combinations search strategy base-choice search strategy

Model #Ast #Test #Flt #Fix Status Types SS ES FL(s) EG(s) EE(s) #Fix Status Types SS ES FL(s) EG(s) EE(s)

addr1 124 30 1 1 � M 1 1 41.0 0.0 45.3 1 � M 1 1 7.3 0.0 8.3

arr1 64 37 1 0 � – 1.7e5 1.3e5 36.0 13.5 291.4 1 � S 4e4 88 1.8 1.9 6.7

arr2 80 37 1 1 � M+S 3.4e7 5e6 11.6 1.9 3.4e3 1 � M+S 3.4e7 178 11.4 1.9 16.9

bst1 186 124 1 1 � M 1 1 67.6 0.0 74.2 1 � M 1 1 46.4 0.0 48.8

bst2 161 124 3 – � – – – – – – 0 � – 2e17 1.6e5 678.6 597.2 4.8e3

bst3 165 124 2 – � – – – – – – 2 � M+S 2e8 4e3 241.3 1174 1.5e3

bempl1 51 25 1 0 � – 325 325 2.6 0.4 5.3 0 � – 325 67 2.6 0.3 5.3

cd1 59 31 2 1 � M 1e4 993 5.9 1.3 10.6 2 � M+S 1.9e5 688 6.0 3.9 12.7

cd2 50 31 1 1 � S 966 350 2.3 0.6 6.4 1 � S 2.4e5 810 2.2 4.7 11.2

ctree1 71 22 1 1 � M 1 1 5.6 0.0 6.5 1 � M 1 1 5.5 0.0 6.4

dll1 109 50 2 2 � S 4.9e4 8522 19.5 2.3 42.1 2 � S 6.7e4 239 19.0 8.3 34.1

dll2 105 50 2 2 � M+S 4.9e4 8521 26.7 1.7 46.9 2 � M+S 6.6e4 192 27.3 7.7 39.8

dll3 101 50 3 – � – – – – – – 0 � – 1.7e9 2.1e4 31.3 30.4 94.7

dll4 109 50 1 1 � M+S 4.9e4 8384 16.3 1.7 36.2 1 � M+S 6.6e4 191 16.5 7.7 28.8

farmer1 180 76 1 – � – – – – – – 1 � M+S 7.6e13 4556 140.7 1.6e4 4.5e4

fsm1 116 15 2 2 � M 2 2 7.0 0.0 7.7 2 � M 2 2 6.9 0.0 7.7

fsm2 93 15 1 1 � M 1 1 3.8 0.0 4.7 1 � M 1 1 3.9 0.0 4.7

grade1 71 42 1 – � – – – – – – 1 � S 1.5e9 1e3 5.2 9.5 739.6

other1 68 22 1 1 � S 7593 586 2.4 0.7 8.3 0 � – 1.7e4 387 2.4 0.7 8.4

stu1 213 98 1 1 � S 9.3e4 836 52.6 6.7 85.1 1 � S 1.7e6 186 26.3 1.8 46.6

stu2 195 98 2 – � – – – – – – 1 � S 9.6e12 9905 141.7 40.0 453.5

stu3 237 98 2 – � – – – – – – 0 � – 1.7e15 3.5e4 347.9 355.9 2.8e3

stu4 190 98 1 1 � S 9.3e4 836 53.6 6.6 85.6 1 � S 1.7e6 186 26.8 1.9 46.9

stu5 235 98 1 1 � S 9.3e4 836 55.0 6.7 87.9 1 � S 1.7e6 186 27.5 1.9 48.4

stu6 191 98 3 – � – – – – – – 2 � M+S 3.8e8 4e3 120.2 22.4 282.4

stu7 174 98 2 2 � M+S 5.4e5 1e4 188.9 15.4 265.7 1 � S 9.3e10 2.5e4 213.7 291.6 1.7e3

stu8 213 98 1 1 � S 1.4e4 1e4 33.4 7.9 78.7 1 � S 1.4e4 120 33.4 7.5 54.7

stu9 198 98 1 1 � M 1 1 49.0 0.0 51.0 1 � M 1 1 49.9 0.0 51.9

stu10 200 98 1 1 � S 9.3e4 836 63.7 6.4 95.9 1 � S 1.7e6 186 30.4 1.9 50.5

stu11 221 98 1 1 � S 1.4e7 4317 97.6 20.7 174.5 1 � S 1.4e7 571 65.3 16.4 131.5

stu12 201 98 2 2 � M+S 9.3e4 887 179.8 8.1 224.6 2 � M+S 1.7e6 264 152.9 3.5 186.9

stu13 221 98 1 1 � M 1 1 64.3 0.0 66.4 1 � M 1 1 64.5 0.0 66.5

stu14 183 98 3 – � – – – – – – 2 � M+S 3.8e8 4e3 105.5 23.4 266.2

stu15 207 98 1 1 � S 9.3e4 836 68.6 6.8 100.7 1 � S 1.7e6 186 33.7 2.0 53.6

stu16 113 98 4 – � – – – – – – 0 � – 5.9e5 6901 43.0 67.9 250.3

stu17 190 98 2 – � – – – – – – 1 � S 3.5e8 3741 61.0 22.5 205.5

stu18 207 98 3 3 � M+S 2.9e9 3.7e5 160.6 6.8 1.1e3 3 � M+S 2.9e9 409 115.4 7.4 152.1

stu19 216 98 2 – � – – – – – – 1 � S 1e13 8221 194.1 9e3 9596

Figure 9: ARepair Results. Times are in seconds. – denotes not applicable.

to rank suspicious AST nodes in AlloyFL, because existing stud-

ies [68, 85] show that Ochiai is e�ective. The expression genera-

tor generates di�erent sizes of expressions based on the level of

the holes in the suspicious AST. We set the expression size to 3

for the deepest level of holes in each suspicious AST. The expres-

sion size increases by 1 for holes at depth Di�1 compared to holes

at depth Di where Di � Di�1 = 1, up to a maximum expression

size of 6. For the all-combinations search strategy, we partition

the candidate fragments for each hole into 10 parts (i.e. ki = 10

in Figure 7), and we set the maximum number of combinations of

candidate fragments to explore to 10000 (per level of holes). For the

base-choice search strategy, we set the maximum number of can-

didate fragments to explore for each hole to 1000. The AUnit tests

we use to validate the patches are automatically generated using

MuAlloy [74] so that they are able to detect all non-equivalent mu-

tant models [71]. Additionally, the authors manually inspect the

generated tests and add some new tests to cover di�erent corner

cases. The manually written tests account for <7% of the total tests.

We validate the correctness of a generated patch by both inspect-

ing themmanually and using theAlloy analyzer to perform a scope

bounded equivalence check. The human-written patches are writ-

ten with the intention of introducing small perturbations that are

su�cient to �x the faults. We terminate ARepair once it �nds a

patch that passes all tests.

All experiments are performedonUbuntu 16.04 LTSwith 2.4GHz

Intel Xeon CPU and 16 GB memory. To save space, we denote the

all-combinations search strategy as AC and the base-choice search

strategy as BC in the following sections.

5.2 Repair E�cacy

Figure 9 shows the detailed results for ARepair. Model, #Ast, #Test

and #Flt show the name, the number of AST nodes, the number of

tests and the number of faults, respectively, for each subject model.

farmer1 is from Alloy release 4.1. addr1, bempl1, grade1 and

other1 are fromAmalgam [53]. The rest models are from graduate

student solutions. Student solutions for the same question share

the same test suite. #Fix shows the number of faults a search strat-

egy is able to �x. Status shows the repair status. � means the gen-

erated patch is syntactically identical to the human-written patch.

� means the generated patch is syntactically di�erent but seman-

tically equivalent to the human-written path. � means the patch is

plausible (incorrect but passes all tests). � means ARepair fails to

generate a patch that pass all tests. � means the repair times out

after 15 hours. Types shows whether the �x requires mutations (M)

or synthesis (S). SS shows the search space size, which is de�ned as

the sum of the number of combinations of candidate fragments (in-

cluding applied mutations for �xes) to consider in each iteration.

ES is the actual number of combinations (or mutations) ARepair
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tried. FL is the fault localization time. EG is the expression genera-

tion time. EE is the end-to-end time. All times are in seconds.

The entire experiments contain 38 faulty models and 62 individ-

ual faults. AC is able to �x 24 models and 31 faults. BC is able to �x

26 models and 42 faults. Additionally, AC times out (� 15h) for 12

models while BC �nishes all models in 15h. AC is able to �x 2 mod-

els that BC is not able to �x, e.g. other1 and stu7. BC is able to �x

5 models that AC is not able to �x (including 1 plausible patch for

cd1), e.g. arr1, bst3, cd1, farmer1 and grade1. Many models re-

quire bothmutations and synthesis for a complete�x, e.g. arr2 and

dll2. AC’s search space ranges from 1 to 2.9e9 and the maximum

size of the explored space is 5e6. BC’s search space ranges from 1

to 2e17 and the maximum size of the explored space is 1.6e5. We

can see that BC explores less of its search space than AC, though

BC typically has a much larger search space. In general, BC runs

faster than AC, with the exceptions of cd1, cd2 and stu7. For AC,

the fault localization time ranges from 2.3 sec to 188.9 sec and the

maximum expression generation time is 20.7 sec, excluding time-

out cases. For BC, the fault localization time ranges from 1.8 sec to

678.6 sec and the maximum expression generation time is 1.6e4 sec.

Typically, AC times out for models whose expression generation

time is large (� 1000s) under BC. A large expression generation

time is a re�ection of ARepair producing a large number of expres-

sions, resulting in large search spaces. This means that when there

are so many combinations of candidate fragments to consider, AC

typically times out. In comparison, despite the large number of ex-

pressions produced, BC explores much less space and thus is faster.

However, BC can run into its local optimum. For example, the ex-

plored space for other1 is less than 600 for both BC and AC, but

BC cannot �x the model. Overall, AC and BC are complementary

and BC is superior in the sense that it takes less time to run and

�xes more faults.

5.3 Patch Quality

To answer RQ2, we �nd that BC generates 26 patches that pass all

tests (all patches are correct and 7 patches exactly match human-

written patches). AC generates 24 patches that pass all tests (23

patches are correct; 7 patches exactlymatch human-written patches;

and 1 patch is plausible but incorrect). We compare the generated

patches that are syntactically di�erent but semantically equivalent

to human-written patches. In addition to patches for the faulty

farmer model (Figure 3), Figure 10 compares ARepair generated

patches and human-written patches for bst1 (A and B), cd2 (C and

D) and stu8 (E and F). The Sorted predicate in bst1models that the

value of the current node should be greater than values of its left de-

scendants and less than values of its right descendants. The devel-

oper incorrectly use "n.^left" to represent the domain of n’s left de-

scendants. The correct domain should be "n.left.*(left+right)"

as shown in the human-written patch. The generated patch re-

stricts the domain to be "n.^left.*right" which means all nodes

that can be reachable from n by �rst following one or more left re-

lation and then zero or more right relation. The Acyclic predicate

in cd2 models that a class does not transitively extend itself. The

faulty model does not consider the transitivity requirement, which

is �xed in the human-written patch by replacing "c = c.ext" with

"c in c.^ext". The generated patch uses "c = c & c.^ext" which

(A) Human-written patch for bst1.

1. pred Sorted() { all n: Node {

2.- all n2: n.^left | n2.elem < n.elem

3.+ all n2: n.left.*(left+right) | n2.elem < n.elem

4.- all n2: n.^right | n2.elem > n.elem}}

5.+ all n2: n.right.*(left+right) | n2.elem > n.elem}}

(B) ARepair generated patch for bst1.

1. pred Sorted() { all n: Node {

2.- all n2: n.^left | n2.elem < n.elem

3.+ all n2: n.^left.*right | n2.elem < n.elem

4.- all n2: n.^right | n2.elem > n.elem}}

5.+ all n2: n.^right.*left | n2.elem > n.elem}}

(C) Human-written patch for cd2.

1. pred Acyclic() {

2.- no c: Class | c = c.ext }

3.+ no c: Class | c in c.^ext }

(D) ARepair generated patch for cd2.

1. pred Acyclic() {

2.- no c: Class | c = c.ext }

3.+ no c: Class | c = c & c.^ext }

(E) Human-written patch for stu8.

1. pred Sorted(This: List) {

2.- all n: Node | n.elem<=n.link.elem }

3.+ all n: Node | some n.link => n.elem<=n.link.elem }

(F) ARepair generated patch for stu8.

1. pred Sorted(This: List) {

2.- all n: Node | n.elem<=n.link.elem }

3.+ all n: link.Node | n.elem<=n.link.elem }

Figure 10: Comparison of ARepair generated patches and

human-written patches.

states that no class is equal to the intersection of the class and all

its subclasses, transitively. The Sorted predicate in stu8 models a

linked list sorted in descending order of the node values. The faulty

model does not allow the existence of any list with a single node

(without any link). The human-written patch allows such cases by

stating that if a node n has a subsequent node following the link,

then its value should be less than or equal to the value of its sub-

sequent node. The generated patch instead modi�es the domain to

restrict the less than or equal relation only applying to nodes that

have a subsequent node.

The authors check correct patches that are syntactically di�er-

ent from human-written patches and �nd that these patches are

easy to understand in general. There are rare cases that ARepair

generates some complex expressions that can be further simpli-

�ed through semantic reasoning. Additionally, ARepair generates

a patch which �xes a fact instead of the predicate the developer

would �x for ctree1.

5.4 Limitation

To answer RQ3, we manually inspect all faulty models that ARe-

pair is unable to �x. The reasons are categorized as follow:

(1) The repair requires synthesizing predicate and function calls.

For example, one of the property to �x in bst2 requires invok-

ing predicates and functions.

(2) The repair requires moving a �eld declaration from one signa-

ture to another, e.g. bempl1.

(3) The repair requires creation of new syntactic structures. For

example, dll3 models a property using a single quanti�er, but

the model needs two. stu2 has a formula with the structure

(�	� ) | |� , but the correct �x requires �	� else� , where � , �

and� are formulas. stu6 is overconstrained and the �x requires
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creating a disjunction of a new formula and an existing formula.

dll3 and stu16 have empty predicates and require ARepair to

synthesize formulas from scratch.

(4) Both AC and BC search strategies are greedy and may run into

a local optimum. For example, a correct patch of other1 re-

quires changing two formulas at the same time and BC runs

into a local optimum that leads to a repair failure. Similarly,

AC runs into a local optimum for arr1.

We �nd that the majority of the faults ARepair is unable to �x

fall under category 3, followed by category 4. To handle faults in

category 3, we can add repair templates that introduce new syntac-

tic structures if the current version of ARepair is not able to �nd

a correct patch. New search strategies can be designed to address

faults under category 4. From our experiment, ARepair is able to

handle a majority of the faulty models (28 out of 38) and we plan

to handle the limitations in future works.

6 THREATS TO VALIDITY

There exists several threats to the validity of our results. Many

of the parameters in the implementation and experimental setup

were chosen by heuristics. They may not represent the optimum

set of parameter values. Moreover, these parameter values may not

generalize to other unseen faulty models. ARepair’s ability to �x

faulty models depends on the fault localization technique and the

AUnit test suite. Our experiment results may vary if we use a di�er-

ent fault localization technique, e.g. Tarantula [23]. If the test suite

is too weak to capture the desired model properties, ARepair may

give toomany plausible but incorrect patches. The real faulty mod-

els we use in the experiment are limited in the sense that most of

them are written by graduate students. So the experiment results

may not generalize to faulty models written by experienced devel-

opers. However, we collected our set of subject faulty models to

the best of our ability.

The AUnit tests (e.g., the test in Figure 1b), when written man-

ually, can require some e�ort. In this paper, a majority of the tests

(> 93%) are generated by MuAlloy [74] in which case the manual

e�ort is substantially reduced. In general, the manual e�ort can be

reduced by writing partial tests that provide valuations for a sub-

set of the relations declared in the model. For example, the test in

Figure 1b can omit the constraints on various relations (e.g., State,

near, and far) because these constraints are irrelevant to the prop-

erty the test is intended to check.

7 RELATED WORK

ARepair is a generate-and-validate repair technique for declarative

models written in Alloy. The technique is able to �x models with

multiple faults or faults that require �xes at multiple locations.

ARepair does not have any repair templates, instead it creates holes

in suspicious AST nodes level by level and can �x di�erent kinds

of bugs. The idea of combining mutations (from MBFL) and a syn-

thesizer to repair faulty programs is new. The base-choice search

strategy reduces the exploration space and is di�erent from search

strategies of existing repair techniques. The hierarchical caching

reduces the input sizes of evaluator calls and is di�erent from ex-

isting memoization techniques. Next, we highlight the main areas

of work related to ARepair.

Generate-and-ValidateRepair . The generate-and-validate repair

techniques apply a set of code transformations to generate pro-

gram candidates and validate each candidate under the given test

suite. These techniques implement di�erent search strategies, e.g.

genetic algorithms [81], semantic search [27], random search [59]

and adaptive search [80], to explore the immense search space

of repair candidates. Researchers also proposed other repair tech-

niques that remove program functionalities [60], create program

variants [8, 11], leverage dynamic program state [18, 19, 86], or

focus on improving performance by removing bottlenecks in con-

current programs [87]. Astor [43] is a repair library that imple-

ments existing techniques to �x Java code. Techniques that pri-

oritize patches are built based on human-written code [29, 37, 66,

83], historical data [14, 34], document analysis [36, 62, 84], anti-

patterns [72] and test generation [82].

Constraint-Solving Repair . The constraint-solving repair tech-

niques use the semantics of the faulty program and translate the

repair problem into a constraint solving problem. Then, the con-

straint solving problem is solved by an o�-the-shelf solver to �nd

a repair that satis�es all inferred speci�cations. The constraints

can be inferred from test executions [12, 38, 64] or semantic analy-

sis [10, 26, 33, 55]. Other techniques use formal speci�cations [17,

30, 67, 79] or infer invariants [13, 24, 58, 63] to �x programs.

Declarative Debugging. The fundamental idea of declarative de-

bugging is that the programmer (or some oracle) has an intended

interpretation of the program and debuggers can query the pro-

grammer to obtain this information. The debugger compares the

intended interpretation of a (buggy) program with its (incorrect)

actual behavior on some computation. The cause of the di�erence

is isolated to a small section of code which must contain a bug.

Declarative debugging was �rst introduced in Prolog [65] and then

extended for functional and logic programs [50, 51, 57]. Researchers

also developed program repair technique for SQL [5, 16].

Alloy. Over the past years, many extensions have been built for

Alloy [9, 15, 45, 46, 70, 75]. Aluminum [54] generates minimal

instances tomake it easy for users to inspect. Amalgam [53] allows

users to ask why and why not a relation exist in an Alloy instance.

ASketch [76, 78] provides a sketching framework for Alloy.

8 CONCLUSION

This paper introduces a generate-and-validate repair technique, ARe-

pair, to�x faultyAlloymodels. ARepair leverages amutation-based

fault localization technique, an expression generator and a syn-

thesizer to repair various kinds of faults. ARepair is enumeration-

based and it enbodies two search strategies, i.e. the all-combination

strategy and the base-choice strategy. ARepair implements vari-

ous optimizations, including the use of modulo test input pruning

to remove equivalent expressions, the construction of dependency

graph to reduce evaluator calls, and the employment of a hierarchi-

cal cache to reduce evaluator input size. The experimental results

show that ARepair works well in �xing real faulty models.
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