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ABSTRACT

Manually locating and removing bugs in faulty program is often
tedious and error-prone. A common automated program repair
approach called generate-and-validate (G&V) iteratively creates
candidate fixes, compiles them, and runs these candidates against
the given tests. This approach can be costly due to a large number
of re-compilations and re-executions of the program. To tackle this
limitation, recent work introduced the SKETcHFIX that tightly inte-
grates the generation and validation phases, and utilizes runtime
behaviors to substantially prune a large amount of repair candidates.
This tool paper describes our Java implementation of SKETCHFIX,
which is an open-source library that we released on Github. Our
experimental evaluation using DEFECTs4] benchmark shows that
SKETCHFIX can significantly reduce the number of re-compilations
and re-executions compared to other approaches and work well in
repairing expression manipulation at the AST node-level granular-
ity. The demo video is at: https://youtu.be/AO-YCH8vGzQ.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

KEYWORDS

Program Repair, Program Synthesis, Program Sketching

ACM Reference Format:

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018.
SketchFix: A Tool for Automated Program Repair Approach using Lazy
Candidate Generation. In Proceedings of the 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4-9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3236024.3264600

1 INTRODUCTION

Automated program repair (APR) [11, 14, 16] has shown much
promise to reduce human effort in debugging. A common repair
approach is generate-and-validate (G&V) [8, 12, 17, 18], where can-
didate fixes are iteratively generated and validated against the
given tests. However, traditional G&V techniques require many
candidates to be re-compiled and re-executed until a candidate
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that passes all tests is found. The times for re-compilation and re-
execution are non-trivial, especially for open source projects. Our
recent work introduced SKETCHF1X [5] that enhances the traditional
G&V approach. The novelty of SKETCHFIX is that it reduces the
compilation and execution overhead by tightly integrating the gen-
eration and validation phases and using lazy candidate generation.
Intuitively, SKETCHFIX utilizes precise runtime information to cre-
ate candidates as needed. To illustrate, consider trying to fix a faulty
while-loop condition and the body of the loop; if a test execution
raises an exception when evaluating the condition candidate of the
loop, SkETCHFIX does not consider any candidate in the while-loop
body because the body is never executed. Different from traditional
G&V approaches that generate thousands of concrete candidates,
SkETCHFIX does not create any concrete candidates for the parts
of the program that are not reached by the test executions. This
lazy candidate generation approach leverages runtime behavior to
substantially prune a large part of the search space.

Another common repair approach is based on constraint solv-
ing [3, 9, 13], which uses off-the-shelf solvers to synthesize re-
pairs based on the constraints created from faulty programs and
tests. Such techniques generally reason about boolean or integer
type [9, 13] and can hardly handle non-primitive-type expressions
in presence of complex libraries (e.g., ANGELIX [13] cannot repair
subjects from python and lighttpd). Without translation to SAT,
SKETCHFIX explores the actual runtime behavior to synthesize re-
pairs in presence of libraries. Moreover, SKETCHFIX can be applied to
projects with unconventional structures, whereas many tools (e.g.,
AsTor [12] and ACS [18]) cannot repair defects from the Closure
project due to its non-standard test-cases.

This paper describes the Java implementation of SKETCHFIX [5].
It performs fine-grained repairs at the AST node-level. Given a
faulty Java program and a test suite as input, SKETCHFIX first
uses an existing spectrum-based fault localization technique called
OcHiatl [1] to rank suspicious statements based on the suspicious-
ness value. For each suspicious statement, SKETCHFIX introduces
“holes” [15] at this location based on AST node-level transformation
schemas. SKETCHFIX provides APIs to specify “holes” using Java
syntax that can be directly compiled and executed against the test
suite. SKETCHFIX employs a sketch engine called EDSKETCH [4] to
fill in the holes with backtracking search. When a test fails due to
either a runtime exception or an assertion failure, the parts of the
candidate program that were executed determine the generation of
the future candidates. SKETCHFIxX backtracks when it encounters
exceptions or test failures, and selects the next candidate until it
finds a repair candidate that satisfies all tests.

SkETCHFIX defines transformation schemas at a fine granularity
and prioritizes schemas that introduce smaller perturbations to
the original programs. Recent studies [9, 14] propose the insight
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/7
//

Input: the path for source code and tests
d4j.dir.src.classes=src
// d4j.dir.src.tests=test
// Human-written patch
public Vector2D intersection(...) {
Vector2D v2D linel.intersection(line2)
// throw NullPointerException if v2D is null
+ if (v2D == null)
+ return null; ...}
// A sketch automatically generated by SketchFix
public Vector2D intersection(...) {
Vector2D v2D linel.intersection(line2)
if (SketchFix.COND(...);
return (Vector2D) SketchFix.EXP(...); ...}
// Output: Synthesized repair
// SketchFix.COND: v2D null
// SketchFix.EXP: v2D

Figure 1: The input and output of SKETCHFIX

that patches that are semantically closer to the original programs
are more likely to be correct. Our ranking strategy is consistent
with this insight, which aims to mitigate the overfitting issue [14].
SKETCHFIX is available at https://github.com/sketchFix.

We evaluated SKETCHFIX using DEFECTS4] [7] benchmark. With
the default setting, SKETCHFIX correctly fixes 19 out of 357 bugs in 23
minutes on average. With lazy candidate generation, SKETCHFIX re-
quires only 1.6% of re-compilations (#compiled sketches/#candidates)
and 3% of re-executions out of all repair candidates when it finds
the first repair. Even if SkETcHFIX exhaustively explores the en-
tire search space, it only compiles 7% of all candidates (#sketch-
es/#candidates), whereas without lazy candidate generation, all
100% of candidates must be compiled.

2 EXAMPLE

We describe SKETCHFIX through a defect from the Apache Math
project. Figure 1 presents the input and output of SkETcHFIX, a
human-written patch, and a sketch generated by SkETcHFIX that
leads to a correct fix. Note that the end user is not aware of the
intermediate results (sketches). We list the sketch to illustrate the
notion of lazy candidate generation.

Given the path of source code and tests, SKETCHFIX uses the
OcHiat [1] fault localization approach to identify a list of suspi-
cious statement. For each returned suspicious statement, SKETCHFIx
applies AST node-level transformations to generate sketches. For
each sketch, SKETcHFIX replaces the original source file with the
sketch, compiles it, and executes the sketch against the given tests.
This process is automated and no other human effort is required.

In Figure 1, SKETCHFIX transforms the faulty program to a sketch
based on two AST node-level transformation schemas: a condition
schema that introduces a new if-condition and a return schema
that inserts a return statement. Different from other repair tech-
niques [8, 17] that generate a list of concrete candidates and compile
them iteratively, SKETCHFIX uses a sketch with holes to encode all
candidates of the if-return repair template. Thus the sketch is com-
piled only once yet it represents hundreds of concrete candidates.

SKETCHFIX executes the given test suite against the compiled
sketch. When the test execution reaches the hole SketchFix.COND
(...), instead of considering hundreds of concrete candidates such
as v2D != null and linel != line2, SKETCHFIX only considers two
boolean values (true and false) and selects either true or false to
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Figure 2: Workflow of SKETCHFIX

fill in the condition hole. If SKETCHFIX selects false for the if condi-
tion, it does not initialize any candidate in the return expression be-
cause the test execution does not reach the hole SketchFix.EXP(...)
inside the if-condition body. In contrast, traditional G&V repair
techniques can hardly utilize the runtime information that the con-
dition is evaluated to be false. As a result, they must compile and
execute all candidates for the body of the if-condition that are not
reached by the test execution. In this example, selecting false leads
to a test failure. SKETCHFIX backtracks and selects the next candi-
date, which sets the if-condition to true. When the test execution
reaches the hole SketchFix.EXP(...), SKETCHFIx lazily generates
candidates for this hole and selects a candidate to fill in the expres-
sion hole. In this example, SKETCHFIxX selects the visible variable
v2D to fill in the hole and this candidate passes all tests.

3 IMPLEMENTATION

Figure 2 shows the workflow of SKETcHFIX. Given a faulty program
and a test suite, SKETCHFIX first identifies a list of suspicious state-
ments sorted by the suspiciousness value based on OcHIAI fault
localization technique. For each suspicious location, SKETcHFIX
applies pre-defined AST node-level transformation schemas (Sec-
tion 3.1) to create sketches. These sketches are directly compiled
and executed against the test suite. Once the execution triggers
test failures or runtime exceptions, SKETCHFIX backtracks, selects
the next candidate to fill the hole, and executes the new candidate
(Section 3.2) against the tests.

3.1 AST Node-Level Transformation

SkETCHFIX performs a systematic reduction of program repair to
program synthesis by translating faulty programs to sketches at
a fine granularity. The API provided by SkETCHFIX mainly take
three parameters: an object list that contains all visible variables
and default values (null or 0), a hole id to distinguish different
holes for the same type, and the target type of the generated can-
didates. For instance, the expression hole in Figure 1 is specified
as SketchFix.EXP(new Object[]{v2D,linel,...,null},@,Vector2D.
class). The target type of the hole is derived from the return type of
the method based on Java syntax. Different types of holes can have
the same id yet this id must be unique across the same type of holes.
For example, the condition hole in Figure 1 is SketchFix.COND(new
Object[1{v2D,1linel,...,null}, @), and SKETCHFIX will not use
the hole id 0 to specify another condition hole. If the target type
of hole is unknown, SKETCHFIX takes the first two parameters and
treats the target type as another hole to synthesize.
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We use JAVAPARSER [6] to automatically transform the faulty
program to sketches. To handle defects that require multiple holes
to fix, such as the null pointer checking, SKETcHF1xX applies transfor-
mation schemas incrementally at the same suspicious location. Due
to the large search space of repair candidates, SKETCHFIX creates
no more than two schemas at the same location by default.
Transformation Schema. We define six AST node-level trans-
formation schemas that take a suspicious location as input and
produce sketches with holes.

Expression Transformer (EXP): If the faulty statement contains any
AST node of variables, constant values, or field dereferences, the
node is transformed to a hole SketchFix.EXP(...), which returns
an object. This object is casted to the corresponding type.
Operator Transformer (AOP): If the faulty line contains a binary ex-
pression with arithmetic operator (+, —, x, /), this binary expression
is transformed to a hole SketchFix.AOP(...).

Overloading Transformer (PAR): If the faulty statement contains
a method invocation that has an overloading method, SKETCHFIX
maps parameter types and generates expression holes to represent
parameters in different types.

Condition Transformer (COND): This schema appends a new clause
to the faulty condition, e.g., if (cond &&SketchFix. COND(...)). The
new clause is represented as left and right hand side expressions
combined with a relational operator. If the expressions are of non-
primitive types, SKETCHFIX applies relational operators “==" and
“1 =” to construct the clause, while for primitive types, it applies
all 6 operators (==,! =, >, <, <, >). The new clause is appended to
the existing condition cond with logical operators (“&&” and “||”).
If-condition transformer (IF): SKETCHFIX introduces an if-condition
before the faulty statement with a condition hole.
Return-statement transformer (RTN): SKETCHFIX inserts a return
statement before the faulty statement. If the return type of the
current method is void, SKETCHFIX simply inserts an empty return
statement, otherwise, SKETCHFIX inserts an expression hole based
on the method’s return type.

Ranking Strategies. Intuitively, the synthesis cost increases if
more holes are introduced to the sketch. We define the cost of
transformation schemas as the number of atomic holes (expression
holes and operator holes) introduced by the schemas. We priori-
tize the schemas with lower synthesis cost. For instance, we favor
expression (EXP) and operator (AOP) schemas over the condition
schema (COND) because the condition schema inserts a relational
operator hole and two expression holes at the left and right hand
side of the relational operator. This strategy is consistent with the
heuristic from the existing literature [9, 14]: repair candidates that
semantically closer to the original programs are relatively easier to
comprehend by the developers.

With the intuition that variables declared closer to the hole are
more likely to be used [9], we rank variables based on their prox-
imity to the hole location, i.e., the number of statements between
the hole and the variable declaration. For conditional holes whose
target types are unknown, we explore target types based on the
types of variables declarations in descending order of their close-
ness to the hole location. For instance, SKETCHFIX prioritizes the
target type Vector2D for the condition hole in Figure 1 because the
closest defined variable (v2D) is of this type.
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JUnitCore core =
Result result =
Class target =
do {
try {
result = core.run(target);
if (result.wasSuccessful()) {
System.out.println("Solution:"+SketchFix.getString());
break;
} catch (Exception e) { }
} while (SketchExecutor.incrementCounter())

new JUnitCore();
null;
Class.forName (Defects4J.triggerTest);

3
Figure 3: Test driver used by SKETcHFIX

3.2 Lazy Candidate Generation

When the test execution first reaches a hole, SKkETcHFIX initial-
izes candidates of the hole based on the given visible variables and
default values. Each candidate is assigned a unique identifier, which
is its index in the list. Each hole’s candidate identifier is initialized
as -1, indicating that this hole has not been initialized. When the
execution first reaches a hole whose identifier is -1, SKETCHFIX
selects an identifier starting from 0 to represent the candidate used
to fill in the hole. In Figure 1, the identifier 0 maps to the value false
for the condition hole. The execution continues with this choice of
candidates until the execution encounters a runtime exception or a
test failure, leading to a backtrack with an increment of the candi-
date identifier (Figure 3 incrementCounter()), which dynamically
selects the next candidate. In Figure 1, the identifier 1 maps to the
value true for the condition hole. If there exist multiple holes, the
method incrementCounter will increment a hole identifier at a time.

The process terminates when a repair that passes all tests is found
or the space of candidate programs is exhausted, i.e., all candidate
identifiers have reaches their maximum values - the sizes of the
candidate lists. In this case, the method incrementCounter returns
false and the program exits the while loop. Note that checking
the test result (result.wasSuccessful()) can be generalized to other
frameworks apart from JUnit, e.g. TestNG. Therefore, SKETCHFIX
can perform repair for the subjects that do not use JUnit tests.

4 EXPERIMENTS

We evaluate SKETCHFIX on the DEFECTS4] benchmark [7], which
consists of 357 defects from 5 open source Java projects.

To identify suspicious statements for the defects, we use the
ASM bytecode analysis framework [2] to capture the coverage of
failing and passing test executions. SKETCHFIX uses an existing
spectrum-based fault localization technique called OcHiaI [1] to
rank suspicious statements. Existing empirical study [19] illustrates
that OcHial is effective on localizing defects in object-oriented
programs. It has been applied to all four repair techniques [3, 10,
12, 18] that we use in the comparison. If multiple statements have
the same suspiciousness score, we order them randomly.

We first compare SKETCHFIXs repair efficacy with other repair
techniques —AsTor [12], Noror [3], ACS [18] and HDREPAIR [10]
that have been evaluated against the DEFECTS4] benchmark. Due
to the space limit, Figure 4 only presents part of the repair re-
sult through manual inspection that contains the defects fixed by
SkeTcHFIX. A full comparison can be found at [5]. We check three
conditions to identify if the repair is semantically equivalent to the
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No. |SF|A|N|C|H||No. | SF|A|N]|] C|H
CH1 Vi |? | x| x|V L6 v X X X v
CH3 V| x| x| x|V L51 ? X ? X v
CH9 VoI x| x| x| x L55 v ? v X X
CHI1l | v | X | X | X | X L59 v X X X v
CH13 ? ? ? | x X T4 ? ? X X X
CH20 | v | X | X | X | X M5 vV | v | x v v
CH24 | v | X | X | X | X M33 v | x ? X X
CH26 | ? 20?7 | x| x M50 | vV | V|V X v
C14 Vx| x| x|V M59 | v X X X X
C62 Vi x| x| x| Vv |[[Mo| Vv |V |Xx X v
C70 ? X | x| x|V M73 ? v ? X X
C73 ? X | x| x|V M82 | vV ? ? v v
C126 | v | X | X | X |V M85 | v ? ? X X
Figure 4: Manual Assessment Result of Patches Generated by

SKETCHFIX and Other Repair Approaches. SF represents SKETCH-
F1x, A represents AsTor [12], N represents NopoL [3], C represents
ACS [18], and H represents HDREPAIR [10]. v represents correct fix,
? represents plausible fix, and X represents not generating fix.

human-written patch: 1) the repair is at the same location; 2) the
repair is with the same type of repair, i.e., expression or operator
manipulation; 3) the runtime value of the candidate for the hole is
the same as the value of the expression developer used to fix the
defect. For example, in Figure 1, we treat return v2D as semantically
equivalent to return null in the null pointer checking. SKETCHFIX
generates 19 correct repairs and 7 plausible ones, i.e., repairs that
pass all tests but fail in manual inspection. This result compares
well with other four repair techniques.

Compared to other repair techniques, SKETcHF1X works partic-
ularly well in manipulating expressions and variable types. For
instance, Figure 5 presents a human-written patch that uses differ-
ent parameters with different types (integer vs. double). SKETCHFIX
correctly fixes this bug with the overloading transformation schema.
In contrast, the constraint-solving-based repair techniques [3, 13] in
general only modify expressions in conditions or the right hand side
of assignments with boolean or integer types. These techniques
can hardly fix defects that require manipulations of expression and
variable types. Shown as Figure 5, the constraint-based tool NororL
generates a plausible repair by inserting a new if-statement. This
example also illustrates that compared to Nopor, SKETCHFIX intro-
duces smaller AST node-level change to the original program and
this repair is more likely to be accepted by the user.

With lazy candidate generation, every sketch will be compiled
once which may represent thousands of candidates. When SKETCH-
Fix finds the first repair, it compiles 1.6% (avg. #compiled sketch-
es/#space). Even if SKETCHFIX exhaustively searches the entire
space of repair candidates, it only compiles 7% (avg. #sketches/#space)
of all candidates, which must all be compiled without lazy candidate
generation. The experiment shows that SKETCHFIX only executes
3% of candidates (avg. #Gen/#Space) when it finds the first patch
that passes all tests. On average, SKETCHFIX spends 9 minutes to
locating faults and generating sketches, and 23 minutes to generat-
ing the first repairs that satisfy all test assertions. The performance
of our tool compares well with other repair techniques.

5 CONCLUSION

This paper described SKETCHFIX, an automated program repair tool
with lazy candidate generation. The key insight of SKETCHFIX is
to utilize runtime information to substantially prune the space of
candidates. It transforms the faulty program to sketches with holes
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/* Human-Written patch for SimplexTableau.java =/
private final int maxUlps;

private final double epsilon;

protected void dropPhaselObjective() {

- if (Precision.compareTo(entry,0d,maxUlps)>0){...

+ if (Precision.compareTo(entry,0d,epsilon)>0){...
/% SimplexTableau.java as sketch */

protected void dropPhaselObjective() {
if (Precision.compareTo(entry,@d, (Double)SketchFix.EXP(
Double.class,new Object[]{..,epsilon,maxUlps,..}))>0)...

// Synthesized solution: SketchFix.EXP: epsilon

// A plausible repair generated by Nopol

protected void dropPhaselObjective() {

if (Precision.compareTo(entry, @d, maxUlps) > @) {

+ if (numSlackVariables<constraints.size()) {...3}}

}

Figure 5: Patches Generated by SKETcHFI1X and NopoL

at the fine-grained granularity. SKETCHFIX can be applied to a wide
class of programs with various code structures in presence of li-
braries. With a tight integration of the generation and validation
phase, SKETCHFIxX substantially pruned a large amount of candi-
date fixes based on our experiments. Our result also indicates that
SkeTCHFIX works well in repairing defects with non-primitive-type
expression manipulation at the AST node-level.
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