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ABSTRACT

Manually locating and removing bugs in faulty program is often

tedious and error-prone. A common automated program repair

approach called generate-and-validate (G&V) iteratively creates

candidate fixes, compiles them, and runs these candidates against

the given tests. This approach can be costly due to a large number

of re-compilations and re-executions of the program. To tackle this

limitation, recent work introduced the SketchFix that tightly inte-

grates the generation and validation phases, and utilizes runtime

behaviors to substantially prune a large amount of repair candidates.

This tool paper describes our Java implementation of SketchFix,

which is an open-source library that we released on Github. Our

experimental evaluation using Defects4J benchmark shows that

SketchFix can significantly reduce the number of re-compilations

and re-executions compared to other approaches and work well in

repairing expression manipulation at the AST node-level granular-

ity. The demo video is at: https://youtu.be/AO-YCH8vGzQ.
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1 INTRODUCTION

Automated program repair (APR) [11, 14, 16] has shown much

promise to reduce human effort in debugging. A common repair

approach is generate-and-validate (G&V) [8, 12, 17, 18], where can-

didate fixes are iteratively generated and validated against the

given tests. However, traditional G&V techniques require many

candidates to be re-compiled and re-executed until a candidate
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that passes all tests is found. The times for re-compilation and re-

execution are non-trivial, especially for open source projects. Our

recent work introduced SketchFix [5] that enhances the traditional

G&V approach. The novelty of SketchFix is that it reduces the

compilation and execution overhead by tightly integrating the gen-

eration and validation phases and using lazy candidate generation.

Intuitively, SketchFix utilizes precise runtime information to cre-

ate candidates as needed. To illustrate, consider trying to fix a faulty

while-loop condition and the body of the loop; if a test execution

raises an exception when evaluating the condition candidate of the

loop, SketchFix does not consider any candidate in the while-loop

body because the body is never executed. Different from traditional

G&V approaches that generate thousands of concrete candidates,

SketchFix does not create any concrete candidates for the parts

of the program that are not reached by the test executions. This

lazy candidate generation approach leverages runtime behavior to

substantially prune a large part of the search space.

Another common repair approach is based on constraint solv-

ing [3, 9, 13], which uses off-the-shelf solvers to synthesize re-

pairs based on the constraints created from faulty programs and

tests. Such techniques generally reason about boolean or integer

type [9, 13] and can hardly handle non-primitive-type expressions

in presence of complex libraries (e.g., Angelix [13] cannot repair

subjects from python and lighttpd). Without translation to SAT,

SketchFix explores the actual runtime behavior to synthesize re-

pairs in presence of libraries. Moreover, SketchFix can be applied to

projects with unconventional structures, whereas many tools (e.g.,

Astor [12] and ACS [18]) cannot repair defects from the Closure

project due to its non-standard test-cases.

This paper describes the Java implementation of SketchFix [5].

It performs fine-grained repairs at the AST node-level. Given a

faulty Java program and a test suite as input, SketchFix first

uses an existing spectrum-based fault localization technique called

Ochiai [1] to rank suspicious statements based on the suspicious-

ness value. For each suspicious statement, SketchFix introduces

“holes” [15] at this location based on AST node-level transformation

schemas. SketchFix provides APIs to specify “holes” using Java

syntax that can be directly compiled and executed against the test

suite. SketchFix employs a sketch engine called EdSketch [4] to

fill in the holes with backtracking search. When a test fails due to

either a runtime exception or an assertion failure, the parts of the

candidate program that were executed determine the generation of

the future candidates. SketchFix backtracks when it encounters

exceptions or test failures, and selects the next candidate until it

finds a repair candidate that satisfies all tests.

SketchFix defines transformation schemas at a fine granularity

and prioritizes schemas that introduce smaller perturbations to

the original programs. Recent studies [9, 14] propose the insight
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// Input: the path for source code and tests

// d4j.dir.src.classes=src

// d4j.dir.src.tests=test

// Human -written patch

public Vector2D intersection (...) {

Vector2D v2D = line1.intersection(line2);

// throw NullPointerException if v2D is null

+ if (v2D == null)

+ return null; ...}

// A sketch automatically generated by SketchFix

public Vector2D intersection (...) {

Vector2D v2D = line1.intersection(line2);

if (SketchFix.COND (...);

return (Vector2D) SketchFix.EXP (...); ...}

// Output: Synthesized repair

// SketchFix.COND: v2D == null

// SketchFix.EXP: v2D

Figure 1: The input and output of SketchFix

that patches that are semantically closer to the original programs

are more likely to be correct. Our ranking strategy is consistent

with this insight, which aims to mitigate the overfitting issue [14].

SketchFix is available at https://github.com/sketchFix.

We evaluated SketchFix using Defects4J [7] benchmark. With

the default setting, SketchFix correctly fixes 19 out of 357 bugs in 23

minutes on average. With lazy candidate generation, SketchFix re-

quires only 1.6% of re-compilations (#compiled sketches/#candidates)

and 3% of re-executions out of all repair candidates when it finds

the first repair. Even if SketchFix exhaustively explores the en-

tire search space, it only compiles 7% of all candidates (#sketch-

es/#candidates), whereas without lazy candidate generation, all

100% of candidates must be compiled.

2 EXAMPLE

We describe SketchFix through a defect from the Apache Math

project. Figure 1 presents the input and output of SketchFix, a

human-written patch, and a sketch generated by SketchFix that

leads to a correct fix. Note that the end user is not aware of the

intermediate results (sketches). We list the sketch to illustrate the

notion of lazy candidate generation.

Given the path of source code and tests, SketchFix uses the

Ochiai [1] fault localization approach to identify a list of suspi-

cious statement. For each returned suspicious statement, SketchFix

applies AST node-level transformations to generate sketches. For

each sketch, SketchFix replaces the original source file with the

sketch, compiles it, and executes the sketch against the given tests.

This process is automated and no other human effort is required.

In Figure 1, SketchFix transforms the faulty program to a sketch

based on two AST node-level transformation schemas: a condition

schema that introduces a new if-condition and a return schema

that inserts a return statement. Different from other repair tech-

niques [8, 17] that generate a list of concrete candidates and compile

them iteratively, SketchFix uses a sketch with holes to encode all

candidates of the if-return repair template. Thus the sketch is com-

piled only once yet it represents hundreds of concrete candidates.

SketchFix executes the given test suite against the compiled

sketch. When the test execution reaches the hole SketchFix.COND

(...), instead of considering hundreds of concrete candidates such

as v2D != null and line1 != line2, SketchFix only considers two

boolean values (true and false) and selects either true or false to

Figure 2: Workflow of SketchFix

fill in the condition hole. If SketchFix selects false for the if condi-

tion, it does not initialize any candidate in the return expression be-

cause the test execution does not reach the hole SketchFix.EXP(...)

inside the if-condition body. In contrast, traditional G&V repair

techniques can hardly utilize the runtime information that the con-

dition is evaluated to be false. As a result, they must compile and

execute all candidates for the body of the if-condition that are not

reached by the test execution. In this example, selecting false leads

to a test failure. SketchFix backtracks and selects the next candi-

date, which sets the if-condition to true. When the test execution

reaches the hole SketchFix.EXP(...), SketchFix lazily generates

candidates for this hole and selects a candidate to fill in the expres-

sion hole. In this example, SketchFix selects the visible variable

v2D to fill in the hole and this candidate passes all tests.

3 IMPLEMENTATION

Figure 2 shows the workflow of SketchFix. Given a faulty program

and a test suite, SketchFix first identifies a list of suspicious state-

ments sorted by the suspiciousness value based on Ochiai fault

localization technique. For each suspicious location, SketchFix

applies pre-defined AST node-level transformation schemas (Sec-

tion 3.1) to create sketches. These sketches are directly compiled

and executed against the test suite. Once the execution triggers

test failures or runtime exceptions, SketchFix backtracks, selects

the next candidate to fill the hole, and executes the new candidate

(Section 3.2) against the tests.

3.1 AST Node-Level Transformation

SketchFix performs a systematic reduction of program repair to

program synthesis by translating faulty programs to sketches at

a fine granularity. The API provided by SketchFix mainly take

three parameters: an object list that contains all visible variables

and default values (null or 0), a hole id to distinguish different

holes for the same type, and the target type of the generated can-

didates. For instance, the expression hole in Figure 1 is specified

as SketchFix.EXP(new Object[]{v2D,line1,...,null},0,Vector2D.

class). The target type of the hole is derived from the return type of

the method based on Java syntax. Different types of holes can have

the same id yet this id must be unique across the same type of holes.

For example, the condition hole in Figure 1 is SketchFix.COND(new

Object[]{v2D,line1,...,null}, 0), and SketchFix will not use

the hole id 0 to specify another condition hole. If the target type

of hole is unknown, SketchFix takes the first two parameters and

treats the target type as another hole to synthesize.
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We use JavaParser [6] to automatically transform the faulty

program to sketches. To handle defects that require multiple holes

to fix, such as the null pointer checking, SketchFix applies transfor-

mation schemas incrementally at the same suspicious location. Due

to the large search space of repair candidates, SketchFix creates

no more than two schemas at the same location by default.

Transformation Schema. We define six AST node-level trans-

formation schemas that take a suspicious location as input and

produce sketches with holes.

Expression Transformer (EXP): If the faulty statement contains any

AST node of variables, constant values, or field dereferences, the

node is transformed to a hole SketchFix.EXP(...), which returns

an object. This object is casted to the corresponding type.

Operator Transformer (AOP): If the faulty line contains a binary ex-

pression with arithmetic operator (+, −, ×, /), this binary expression

is transformed to a hole SketchFix.AOP(...).

Overloading Transformer (PAR): If the faulty statement contains

a method invocation that has an overloading method, SketchFix

maps parameter types and generates expression holes to represent

parameters in different types.

Condition Transformer (COND): This schema appends a new clause

to the faulty condition, e.g., if (cond &&SketchFix. COND(...)). The

new clause is represented as left and right hand side expressions

combined with a relational operator. If the expressions are of non-

primitive types, SketchFix applies relational operators “==” and

“! =” to construct the clause, while for primitive types, it applies

all 6 operators (==, ! =, >, <,6,>). The new clause is appended to

the existing condition cond with logical operators (“&&” and “| |”).

If-condition transformer (IF): SketchFix introduces an if-condition

before the faulty statement with a condition hole.

Return-statement transformer (RTN): SketchFix inserts a return

statement before the faulty statement. If the return type of the

current method is void, SketchFix simply inserts an empty return

statement, otherwise, SketchFix inserts an expression hole based

on the method’s return type.

Ranking Strategies. Intuitively, the synthesis cost increases if

more holes are introduced to the sketch. We define the cost of

transformation schemas as the number of atomic holes (expression

holes and operator holes) introduced by the schemas. We priori-

tize the schemas with lower synthesis cost. For instance, we favor

expression (EXP) and operator (AOP) schemas over the condition

schema (COND) because the condition schema inserts a relational

operator hole and two expression holes at the left and right hand

side of the relational operator. This strategy is consistent with the

heuristic from the existing literature [9, 14]: repair candidates that

semantically closer to the original programs are relatively easier to

comprehend by the developers.

With the intuition that variables declared closer to the hole are

more likely to be used [9], we rank variables based on their prox-

imity to the hole location, i.e., the number of statements between

the hole and the variable declaration. For conditional holes whose

target types are unknown, we explore target types based on the

types of variables declarations in descending order of their close-

ness to the hole location. For instance, SketchFix prioritizes the

target type Vector2D for the condition hole in Figure 1 because the

closest defined variable (v2D) is of this type.

JUnitCore core = new JUnitCore ();

Result result = null;

Class target = Class.forName(Defects4J.triggerTest );

do {

try {

result = core.run(target );

if (result.wasSuccessful ()) {

System.out.println("Solution:"+SketchFix.getString ());

break;

} catch (Exception e) { }

} while (SketchExecutor.incrementCounter ()); }}

Figure 3: Test driver used by SketchFix

3.2 Lazy Candidate Generation

When the test execution first reaches a hole, SketchFix initial-

izes candidates of the hole based on the given visible variables and

default values. Each candidate is assigned a unique identifier, which

is its index in the list. Each hole’s candidate identifier is initialized

as -1, indicating that this hole has not been initialized. When the

execution first reaches a hole whose identifier is -1, SketchFix

selects an identifier starting from 0 to represent the candidate used

to fill in the hole. In Figure 1, the identifier 0 maps to the value false

for the condition hole. The execution continues with this choice of

candidates until the execution encounters a runtime exception or a

test failure, leading to a backtrack with an increment of the candi-

date identifier (Figure 3 incrementCounter()), which dynamically

selects the next candidate. In Figure 1, the identifier 1 maps to the

value true for the condition hole. If there exist multiple holes, the

method incrementCounter will increment a hole identifier at a time.

The process terminates when a repair that passes all tests is found

or the space of candidate programs is exhausted, i.e., all candidate

identifiers have reaches their maximum values – the sizes of the

candidate lists. In this case, the method incrementCounter returns

false and the program exits the while loop. Note that checking

the test result (result.wasSuccessful()) can be generalized to other

frameworks apart from JUnit, e.g. TestNG. Therefore, SketchFix

can perform repair for the subjects that do not use JUnit tests.

4 EXPERIMENTS

We evaluate SketchFix on the Defects4J benchmark [7], which

consists of 357 defects from 5 open source Java projects.

To identify suspicious statements for the defects, we use the

ASM bytecode analysis framework [2] to capture the coverage of

failing and passing test executions. SketchFix uses an existing

spectrum-based fault localization technique called Ochiai [1] to

rank suspicious statements. Existing empirical study [19] illustrates

that Ochiai is effective on localizing defects in object-oriented

programs. It has been applied to all four repair techniques [3, 10,

12, 18] that we use in the comparison. If multiple statements have

the same suspiciousness score, we order them randomly.

We first compare SketchFix’s repair efficacy with other repair

techniques –Astor [12], Nopol [3], ACS [18] and HDRepair [10]

that have been evaluated against the Defects4J benchmark. Due

to the space limit, Figure 4 only presents part of the repair re-

sult through manual inspection that contains the defects fixed by

SketchFix. A full comparison can be found at [5]. We check three

conditions to identify if the repair is semantically equivalent to the
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No. SF A N C H No. SF A N C H

CH1 X ? × × X L6 X × × × X

CH8 X × × × X L51 ? × ? × X

CH9 X × × × × L55 X ? X × ×

CH11 X × × × × L59 X × × × X

CH13 ? ? ? × × T4 ? ? × × ×

CH20 X × × × × M5 X X × X X

CH24 X × × × × M33 X × ? × ×

CH26 ? ? ? × × M50 X X X × X

C14 X × × × X M59 X × × × ×

C62 X × × × X M70 X X × × X

C70 ? × × × X M73 ? X ? × ×

C73 ? × × × X M82 X ? ? X X

C126 X × × × X M85 X ? ? × ×

Figure 4: Manual Assessment Result of Patches Generated by

SketchFix and Other Repair Approaches. SF represents Sketch-

Fix, A represents Astor [12], N represents Nopol [3], C represents

ACS [18], and H representsHDRepair [10].Xrepresents correct fix,

? represents plausible fix, and × represents not generating fix.

human-written patch: 1) the repair is at the same location; 2) the

repair is with the same type of repair, i.e., expression or operator

manipulation; 3) the runtime value of the candidate for the hole is

the same as the value of the expression developer used to fix the

defect. For example, in Figure 1, we treat return v2D as semantically

equivalent to return null in the null pointer checking. SketchFix

generates 19 correct repairs and 7 plausible ones, i.e., repairs that

pass all tests but fail in manual inspection. This result compares

well with other four repair techniques.

Compared to other repair techniques, SketchFix works partic-

ularly well in manipulating expressions and variable types. For

instance, Figure 5 presents a human-written patch that uses differ-

ent parameters with different types (integer vs. double). SketchFix

correctly fixes this bug with the overloading transformation schema.

In contrast, the constraint-solving-based repair techniques [3, 13] in

general only modify expressions in conditions or the right hand side

of assignments with boolean or integer types. These techniques

can hardly fix defects that require manipulations of expression and

variable types. Shown as Figure 5, the constraint-based tool Nopol

generates a plausible repair by inserting a new if-statement. This

example also illustrates that compared to Nopol, SketchFix intro-

duces smaller AST node-level change to the original program and

this repair is more likely to be accepted by the user.

With lazy candidate generation, every sketch will be compiled

once which may represent thousands of candidates. When Sketch-

Fix finds the first repair, it compiles 1.6% (avg. #compiled sketch-

es/#space). Even if SketchFix exhaustively searches the entire

space of repair candidates, it only compiles 7% (avg. #sketches/#space)

of all candidates, which must all be compiled without lazy candidate

generation. The experiment shows that SketchFix only executes

3% of candidates (avg. #Gen/#Space) when it finds the first patch

that passes all tests. On average, SketchFix spends 9 minutes to

locating faults and generating sketches, and 23 minutes to generat-

ing the first repairs that satisfy all test assertions. The performance

of our tool compares well with other repair techniques.

5 CONCLUSION

This paper described SketchFix, an automated program repair tool

with lazy candidate generation. The key insight of SketchFix is

to utilize runtime information to substantially prune the space of

candidates. It transforms the faulty program to sketches with holes

/* Human -Written patch for SimplexTableau.java */

private final int maxUlps;

private final double epsilon;

protected void dropPhase1Objective () {

- if (Precision.compareTo(entry ,0d,maxUlps ) >0){...

+ if (Precision.compareTo(entry ,0d,epsilon ) >0){... }

/* SimplexTableau.java as sketch */

protected void dropPhase1Objective () {

if (Precision.compareTo(entry ,0d,( Double)SketchFix.EXP(

Double.class ,new Object []{.., epsilon ,maxUlps ,..})) >0)...

// Synthesized solution: SketchFix.EXP: epsilon

// A plausible repair generated by Nopol

protected void dropPhase1Objective () {

if (Precision.compareTo(entry , 0d, maxUlps) > 0) {

+ if (numSlackVariables <constraints.size ()) {...}}

Figure 5: Patches Generated by SketchFix and Nopol

at the fine-grained granularity. SketchFix can be applied to a wide

class of programs with various code structures in presence of li-

braries. With a tight integration of the generation and validation

phase, SketchFix substantially pruned a large amount of candi-

date fixes based on our experiments. Our result also indicates that

SketchFix works well in repairing defects with non-primitive-type

expression manipulation at the AST node-level.
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