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Abstract. Alloy is a well-known tool-set for building and analyzing soft-
ware designs and models. Alloy’s key strengths are its intuitive notation
based on relational logic, and its powerful analysis engine backed by
propositional satisfiability (SAT) solvers to help users find subtle design
flaws. However, scaling the analysis to the designs of real-world systems
remains an important technical challenge. This paper introduces a new
approach, iAlloy, for more efficient analysis of Alloy models. Our key
insight is that users often make small and frequent changes and repeat-
edly run the analyzer when developing Alloy models, and the devel-
opment cost can be reduced with the incremental analysis over these
changes. iAlloy is based on two techniques – a static technique based on
a lightweight impact analysis and a dynamic technique based on solution
re-use – which in many cases helps avoid potential costly SAT solving.
Experimental results show that iAlloy significantly outperforms Alloy
analyzer in the analysis of evolving Alloy models with more than 50%
reduction in SAT solver calls on average, and up to 7x speedup.

1 Introduction

Building software models and analyzing them play an important role in the
development of more reliable systems. However, as the complexity of the modeled
systems increases, both the cost of creating the models and the complexity of
analyzing these models become high [24].

Our focus in this paper is to reduce the cost of analyzing models written in
Alloy [5] – a relational, first-order logic with transitive closure. The Alloy ana-
lyzer provides automatic analysis of Alloy models. To analyze the model, the user
writes Alloy paragraphs (e.g., signatures, predicates, functions, facts and asser-
tions), and the analyzer executes the commands that define constraint solving
problems. The analyzer translates the commands and related Alloy paragraphs
into propositional satisfiability (SAT) formulas and then solves them using off-
the-shelf SAT solvers. We focus on successive runs of the analyzer as the model
undergoes development and modifications. The key insight is that during model
development and validation phases, the user typically makes many changes that
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are relatively small, which enables the incremental analysis to reduce the subse-
quent analysis cost [1].

We introduce a novel technique called iAlloy that incrementally computes
the analysis results. iAlloy introduces a two-fold optimization for Alloy analyzer.
Firstly, iAlloy comes with a static technique that computes the impact of a change
on commands based on a lightweight dependency analysis, and selects for execu-
tion a subset of commands that may be impacted. We call this technique regression

command selection (RCS), since it shares the spirit of regression test selection for
imperative code [4] and adapts it to declarative models in Alloy. Secondly, iAlloy
comes with a dynamic technique that uses memoization to enable solution reuse

(SR) by efficiently checking if an existing solution already works for a command
that must be executed. SR uses a partial-order based on sets of parameters in pred-
icate paragraphs to enable effective re-use of solutions across different commands.

To evaluate iAlloy we conduct experiments using two sets of Alloy models that
havemultiple versions.One set, termedmutant version set, uses simulated evolving
Alloy models where different versions are created using the MuAlloy [21,27] tool
for generating mutants with small syntactic modifications of the given base Alloy
models. This set includes 24 base Alloy models and 5 mutant versions for each
base model. The other set, termed real version set, uses base Alloy models that
had real faults and were repaired using the ARepair [25,26] tool for fixing faulty
Alloy models. For each faulty base model, its evolution is the corresponding fixed
model. This set includes 36 base Alloy models and 2 versions for each model.

The experimental results show that iAlloy is effective at reducing the overall
analysis cost for both sets of subject models. Overall, iAlloy provides more than
50% command execution reduction on average, and up to 7x speed up. In addi-
tion, SR performs surprisingly well in the real version set with 58.3% reduction
of the selected commands, which indicates that our approach is promising for
incrementally analyzing real-world evolving Alloy models.

This paper makes the following contributions:

– Approach. We introduce a novel approach, iAlloy, based on static analysis
(regression command selection) and dynamic analysis (solution re-use) for
incrementally analyzing evolving Alloy models, and embody the approach as
a prototype tool on top of the Alloy analyzer.

– Evaluation. We conduct an extensive experimental evaluation of our app-
roach using two sets of subject Alloy models, one based on syntactic mutation
changes and the other based on fault fixing changes. The results show that
iAlloy performs well on both sets.

– Dataset. We publicly release our subject Alloy models and their versions
at the following URL: https://github.com/wenxiwang/iAlloy-dataset. Given
the lack of common availability of Alloy models with evolution history, we
believe that our dataset will be particularly useful for other researchers who
want to evaluate their incremental analysis techniques for Alloy.

While our focus in this paper is the Alloy modeling language and tool-set, we
believe our technique can generalize to optimize analysis for models in other
declarative languages, e.g., Z [17] and OCL [2].
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2 Background

In this section, we first introduce Alloy [5] based on an example which we use
through the paper. Then, we describe MuAlloy [21,27] – a mutation testing
framework for Alloy, which we apply to create different versions of an Alloy
model to simulate model evolutions. Finally, we briefly describe regression test
selection (RTS) for imperative code. Although our regression command selection
(RCS) applies to declarative code, the two methods share similar ideas.

2.1 Alloy

Alloy [5] is a declarative language for lightweight modeling and software analysis.
The language is based on first-order logic with transitive closure. Alloy comes
with an analyzer which is able to perform a bounded exhaustive analysis. The
input of the Alloy analyzer is an Alloy model that describes the system proper-
ties. The analyzer translates the model into conjunctive normal form (CNF) and
invokes an off-the-shelf SAT solver to search for solutions, i.e., boolean instances.
The boolean instances are then mapped back to Alloy level instances and dis-
played to the end user.

Figure 1 shows the Dijkstra Alloy model which illustrates how mutexes are
grabbed and released by processes, and how Dijkstra’s mutex ordering constraint
can prevent deadlocks. This model comes with the standard Alloy distribution
(version 4.2). An Alloy model consists of a set of relations (e.g., signatures, fields
and variables) and constraints (e.g., predicates, facts and assertions) which we
call paragraphs. A signature (sig) defines a set of atoms, and is the main data
type specified in Alloy. The running example defines 3 signatures (lines 3–6),
namely Process, Mutex and State.

Facts (fact) are formulas that take no arguments and define constraints that
must be satisfied by every instance that exists. The formulas can be further
structured using predicates (pred) and functions (fun) which are parameterized
formulas that can be invoked. Users can use Alloy’s built-in run command to
invoke a predicate and the Alloy analyzer either returns an instance if the pred-
icate is satisfiable or reports that the predicate is unsatisfiable. The IsStalled

predicate (lines 12–14) is invoked by the GrabMutex predicate (line 16) and the
run command (line 53). The parameters of the IsStalled predicate are s and p

with signature types State and Process, respectively. An assertion (assert) is
also a boolean formula that can be invoked by the built-in check command to
check if any counter example can refute the asserted formula. Assertions does
not take any parameter. The DijkstraPreventsDeadlocks assertion (lines 45–47)
is invoked by the check command (line 60) with a scope of up to 6 atoms for
each signature.

2.2 MuAlloy

MuAlloy [21,27] automatically generates mutants and filters out mutants that
are semantically equivalent to the original base model. Table 1 shows the muta-
tion operators supported in MuAlloy. MOR mutates signature multiplicity,
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Fig. 1. Dijkstra Alloy model from standard Alloy distribution (version 4.2); the line
written in red was absent from the faulty version

e.g., lone sig to one sig. QOR mutates quantifiers, e.g., all to some. UOR, BOR

and LOR define operator replacement for unary, binary and formula list opera-
tors, respectively. For example, UOR mutates a.∗b to a.ˆb; BOR mutates a=>b

to a<=>b; and LOR mutates a&&b to a||b. UOI inserts an unary operator before
expressions, e.g., a.b to a.∼b. UOD deletes an unary operator, e.g., a.∗ ∼b to a.∗b.
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Table 1. Mutation Operators Supported in MuAlloy

Mutation Operator Description

MOR Multiplicity Operator Replacement

QOR Quantifier Operator Replacement

UOR Unary Operator Replacement

BOR Binary Operator Replacement

LOR Formula List Operator Replacement

UOI Unary Operator Insertion

UOD Unary Operator Deletion

LOD Logical Operand Deletion

PBD Paragraph Body Deletion

BOE Binary Operand Exchange

IEOE Imply-Else Operand Exchange

LOD deletes an operand of a logical operator, e.g., a||b to b. PBD deletes the body
of an Alloy paragraph. BOE exchanges operands for a binary operator, e.g., a=>b
to b=>a. IEOE exchanges the operands of imply-else operation, e.g., a => b else c

to a => c else b.

2.3 Regression Test Selection for Imperative Code

Regression test selection (RTS) techniques select a subset of test cases from an
initial test suite. The subset of tests checks if the affected sources of a project
continue to work correctly. RTS is safe if it guarantees that the subset of selected
tests includes all tests whose behavior may be affected by the changes [4,32].
RTS is precise if tests that are not affected are also not selected. Typical RTS
techniques has three phases: the analysis phase selects tests to run, the execution

phase runs the selected tests, and the collection phase collects information from
the current version for future analysis. RTS techniques can perform at different
granularities. For example, FaultTracer [35] analyzes dependencies at the method
level while Ekstazi [3] does it at the file level, and both tools target projects
written in Java.

During the analysis phase, RTS tools commonly compute a checksum, i.e.,
a unique identifier, of each code entity (e.g., method or file) on which a test
depends. If the checksum changes, we view its source code as changed, in which
case the test is selected and executed; otherwise it is not selected. The execution
phase is tightly integrated with the analysis phase and simply executes selected
tests. During the collection phase, RTS either dynamically monitors the test
execution [3] or statically analyzes the test [7] to collect accessed/used entities,
which are saved for the analysis phase in the next run.
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3 Motivating Example

This section describes how iAlloy works using two versions of the Dijkstra Alloy
model. Line 18 (highlighted in red) in Fig. 1 was absent in a faulty version of the
model which we denote as Version 1. The model in Fig. 1 is the correct version
which we denote as Version 2.

First, we apply iAlloy to Version 1. iAlloy invokes commands Initial (line
52), IsStalled (line 53), IsFree (line 54) and GrabMutex (line 55) with the
SAT solver. Before invoking command ReleaseMutex (line 56), iAlloy finds that
the solution obtained from invoking GrabMutex can be reused as the solution
of ReleaseMutex. Therefore, command ReleaseMutex is solved without invoking
SAT. iAlloy continues to invoke the rest of the commands and finds that com-
mand Deadlock (line 58) can reuse the solution of IsStalled, and command
DijkstraPreventsDeadlocks can reuse the solution of ShowDijkstra. Next, we
apply iAlloy again to Version 2. iAlloy performs dependency analysis between
Version 1 and Version 2, and only selects the commands that are affected by
the change (Line 18 in Fig. 1), namely commands GrabMutex, GrabOrRelease,
ShowDijkstra and DijkstraPreventsDeadlocks. iAlloy tries to reuse the solutions
of previous runs when invoking the four selected commands and GrabMutex reuses
the solution of command GrabMutex in Version 1.

Traditionally, Alloy analyzer needs to execute 18 commands with expensive
SAT solving, which takes total of 103.01 seconds. In comparison, iAlloy only
invokes 9 commands where 5 commands are saved by regression command selec-
tion and 4 commands are saved by solution reuse. In total, iAlloy takes 84.14
seconds. Overall, iAlloy achieves 1.22x speed-up with 18.87 seconds time saving.
Section 5 evaluates more subjects and shows that iAlloy achieves 1.59x speed-up
on average and reduces unnecessary command invocations by more than 50%.

4 Techniques

In an evolving Alloy model scenario, we propose a two-step incremental analysis
to reduce the time overhead of command execution. The first step is regression
command selection (RCS) based on static dependency analysis (Sect. 4.1). The
second step is solution reuse (SR) using fast instance evaluation (Sect. 4.2). Note
that RCS handles paragraph-level dependency analysis, while SR covers more
sophisticated expression-level dependency analysis.

Algorithm 1 shows the general algorithm of our incremental analysis. For each
version (mv) in a sequence of model evolutions (ModelV ersionSeq), iAlloy first
applies RCS (RCmdSelection) to select the commands (SelectCmdList) that
are affected since the last version. Then, for each command in SelectCmdList,
iAlloy further checks whether the solutions of previous commands can be reused
in the new commands (CheckReuse). Note that the solutions of commands in
the same version can also be reused. However, if the signatures change in the
current version, then SR is not applicable and all commands are executed. If
none of the old solutions can be reused for the current command c, then iAlloy
invokes the SAT solver (Execute) to find a new solution which may be used for
the next run.



180 W. Wang et al.

Algorithm 1. General Algorithm for Incremental Alloy Model Solving

Input: model version sequence ModelV ersionSeq

Output: solution for each command

1: for mv ∈ ModelV ersionSeq do

2: SelectCmdList = RCmdSelection(mv);
3: for c ∈ SelectCmdList do

4: if Changed(c.Dependency.SigList) then

5: Execute(c, SolutionSet);
6: else if !CheckReuse(c, SolutionSet) then

7: Execute(c, SolutionSet);
8: end if

9: end for

10: end for

Algorithm 2. Algorithm for Regression Command Selection

Input: one model version mv

Output: selected command list

1: procedure RCmdSelection(Model mv)
2: List<Cmd> SelectCmdList;
3: Map<Cmd, Nodes> Cmd2DpdParagraphs = DpdAnalysis(mv.AllCmd);
4: for c ∈ mv.AllCmd do

5: DpdParagraphs = Cmd2DpdParagraphs.get(c);
6: if Exist(c.Dependency) then ⊲ old dependency
7: newDependency = CheckSum(DpdParagraphs);
8: if Changed(c.Dependency, newDependency) then

9: Update(c, newDependency);
10: SelectCmdList.add(c); ⊲ update dependency and select commands
11: end if

12: else

13: dependency = CheckSum(DpdParagraphs)
14: Update(c, dependency);
15: SelectCmdList.add(c); ⊲ update dependency and select commands
16: end if

17: end for

18: return SelectCmdList;
19: end procedure

4.1 Regression Command Selection (RCS)

Algorithm 2 presents the algorithm for RCS. iAlloy first gets the dependent
paragraphs of each command (Cmd2DpdParagraphs) based on the depen-
dency analysis (DpdAnalysis). For each command c in model version mv, iAl-
loy generates a unique identifier, as described in Sect. 2.3, for each dependent
paragraph (CheckSum). If the checksum of any dependent paragraph changes,
iAlloy selects the corresponding command as the command execution candidate
(SelectCmdList) and updates the dependency with new checksum.
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Fig. 2. Dependency graph for ShowDijkstra (left) and ReleaseMutex (right) command
in the Dijkstra model

The dependency information of each command is the key for RCS. The
dependency analysis for Alloy models can be either at the paragraph level or
at the expression level. For safety reasons as we mentioned in Sect. 2.3, we do
dependency analysis on the paragraph level in RCS. And we address further fine-
grained expression level analysis in SR to achieve a better precision. To filter out
the changes in comments and spaces, we traverse the AST of each paragraph
and output the canonicalized string of the paragraph. The canonicalized string
is hashed into a checksum which represents the unique version of the paragraph.

We take the Dijkstra Alloy model in Fig. 1 as an example. The dependency
graph of command ShowDijkstra is shown in Fig. 2 (left), including transitively
dependent Alloy paragraphs and their corresponding checksums CS_i. Since the
checksum CS_4 of predicate GrabMutex is changed (line 18 in Fig. 1) and GrabMutex

is in the dependency graph of command ShowDijkstra, command ShowDijkstra

is selected. In comparison, the dependency graph of command ReleaseMutex is
shown in Fig. 2 (right). Since the checksums of both IsStalled and ReleaseMutex

do not change, command ReleaseMutex is not selected.

4.2 Solution Reuse (SR)

Algorithm 3 illustrates how iAlloy checks if a solution can be reused by the
current command. The input to Algorithm 3 is each selected command (c) from
RCS and a solution set containing all the previous solutions (SolutionSet). If the
solution s from SolutionSet includes valuations of parameters of the Alloy para-
graph (represented as CheckList which includes implicit Alloy facts) invoked by
c (Sect. 4.2.1), and CheckList is satisfiable under s (Sect. 4.2.2), then s can be
reused as the Alloy instance if c is invoked and c need not be invoked with expen-
sive SAT solving (return true). Otherwise, SAT solving is involved to generate a
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Algorithm 3. Algorithm for Solution Reuse Checking

Input: one command and the solution set
Output: if the command can reuse any solution in the solution set

1: procedure CheckReuse(Cmd c, Set<Solution> SolutionSet)
2: List<Nodes> CheckList;
3: CheckList.add(c.Dependency.FactList);
4: if CheckCmd(c) then ⊲ c is check command
5: CheckList.add(c.Dependency.Assert);
6: else ⊲ c is run command
7: CheckList.add(c.Dependency.Pred);
8: end if

9: for s ∈ SolutionSet do

10: if c.param ⊆ s.cmd.param && s.sol.evaluator(CheckList) = true then

11: return true;
12: end if

13: end for

14: return false;
15: end procedure

new solution (if there is any) which is stored for subsequent runs (Algorithm 4,
Sect. 4.2.3).

Note that SR not only filters out the semantically equivalent regression
changes, but also covers the sophisticated expression-level dependency analysis.
For example, suppose the only change in an Alloy model is a boolean expres-
sion changed from A to A || B where || stands for disjunction and B is another
boolean expression, the old solution of the corresponding command is still valid
and can be reused. Besides, SR allows solutions from other commands to be
reused for the current command, which further reduces SAT solving overhead.

4.2.1 Solution Reuse Condition

As described in Sect. 2, each command invokes either a predicate or an assert.
Each predicate has multiple parameter types which we denote as parameter set

for simplicity in the rest of the paper. The parameter set of any assertion is an
empty set (∅). As shown in the following equation, we define the parameter set
of a command c (c.param) as the parameter set of the directly invoked predicate
(ParamSet(c.pred)) or assertion (∅).

c.param =

{

ParamSet(c.pred), c is run command

∅, c is check command

A command that invokes an Alloy paragraph with parameters implicitly
checks if there exists a set of valuations of the corresponding parameters that
satisfies the paragraph. We observe that command c2 can reuse the solution s1

obtained by invoking c1 if the parameter set of c2 is a subset of that of c1, namely
c2.param ⊆ c1.param. The solution reuse complies to a partial order based on
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Fig. 3. Parameter relations of commands in the Dijkstra model

Algorithm 4. Algorithm for Command Execution

Input: one command and the solution set
Output: save the solution if it is SAT or print out UNSAT

1: procedure CmdExecute(Cmd c, Set<Solution> SolutionSet)
2: A4Solution sol = Alloy.solve(c);
3: if sol.IsSat() then ⊲ if the solution is SAT;
4: Solution s;
5: s.sol = sol; ⊲ store the instance and corresponding command;
6: s.cmd = c;
7: SolutionSet.add(s);
8: else

9: print UNSAT
10: end if

11: end procedure

the subset relation of command parameters. On the other hand, solution s1 can-
not be reused by c2 if c2.param � c1.param, in which case we do not know all
the valuations of c2’s parameters.

Figure 3 shows how solution reuse is conducted based on the subset relations
of command parameter set in the Dijkstra model. For instance, since the param-
eter set {} (∅) is the subset of all parameter sets above it, the corresponding
commands Deadlock, DijkstraPreventsDeadlocks and ShowDijkstra with param-
eter set {} can reuse all solutions of commands whose parameter sets are the
super set of {}, namely Initial, IsFree, IsStalled, GrabMutex and ReleaseMutex.
Since any parameter set is a subset of itself, a solution s1 of command c1 can be
reused by the command c2 which has the same parameter set as c1.

4.2.2 Solution Reuse Evaluation

Once a solution s can be reused for command c, we need to further check if
s is actually the solution of c that satisfies the corresponding constraints. As
described in Sect. 2, the constraints of a command come from all facts and the
transitively invoked predicate/assertion. To reuse s in the old version, s must be
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Fig. 4. Speedup results on Mutant Version Set

satisfiable for c in the new version. If c is unsatisfiable under the valuations of
s, it does not imply that c is unsatisfiable in the solution space and thus c must
be invoked with SAT solving. The satisfiability of command c is determined by
the Alloy built-in evaluator under the valuation of s.

4.2.3 Command Execution

If none of the solutions can be reused by command c, iAlloy executes the command
as described in Algorithm 4. If a solution sol is found (Sol.IsSat()), the solution
sol together with the command c is saved for subsequent runs. To avoid saving too
many solutions as the model evolves (which may slow down the SR and reduce the
overall gain), we only keep the most recent solution for each command. In future
work, we plan to evaluate how long a solution should be kept.

5 Experimental Evaluation

In this paper, we answer the following research questions to evaluate iAlloy:

– RQ1: How does iAlloy perform compared to traditional Alloy Analyzer (which
we treat as the baseline)?

– RQ2: How much reduction of the commands executed does Regression Com-
mand Selection and Solution Reuse contribute in the two subject sets?

– RQ3: What is the time overhead of Regression Command Selection, Solution
Reuse and command execution in iAlloy, respectively?
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Fig. 5. Speedup results on Real Version Model Set

5.1 Experimental Setup

Subjects: There are two subject sets in the experiment. The first set of subjects
is the simulated evolving Alloy model version sets, which we call Mutant Version
Set. In this set, we take 24 Alloy models from the standard Alloy distribution
(version 4.2) and use them as the first version. For each model in version 1, we
use MuAlloy [27] to generate several mutants and randomly select one as version
2. This process continues until we get the fifth version. Thus, each subject in
the Mutant Version Set includes five versions. The second subject set is called
Real Version Set. Each subject in this set consists of two model versions: the
real faulty model (version 1) from the ARepair [26] distribution and the correct
model after the fix (version 2). There are 36 subjects in this set.

Baseline: The baseline in this experiment is the traditional Alloy Analyzer,
which executes each command for each version.

Platform: We conduct all our experiments on Ubuntu Linux 16.04, an Intel
Core-i7 6700 CPU (3.40 GHz) and 16GB RAM. The version of Alloy we did
experiments on is version 4.2.



186 W. Wang et al.

Table 2. RCS, SR and Command Execution Results in Mutant Version Set

Model cmd select reuse execute T_select (%) T_reuse (%) T_execute (%)

addr 5 5 (100%) 0 (0%) 5 (100%) 4.2 0.0 95.8

addressBook 10 9 (90%) 3 (33.3%) 6 (66.7%) 0.3 53.5 46.2

arr 5 5 (100%) 2 (40%) 3 (60%) 3.6 1.9 94.5

balancedBST 20 16 (80%) 13 (81.3%) 3 (18.7%) 12.3 23.7 64.0

bempl 10 10 (100%) 4 (40%) 6 (60%) 1.4 1.8 96.8

binaryTree 5 5 (100%) 3 (60%) 2 (40%) 1.7 0.9 97.4

cd 20 13 (65%) 9 (69.2%) 4 (30.8%) 0.7 0.8 98.5

ceilings 30 18 (60%) 13 (72.2%) 5 (27.8%) 2.9 5.3 91.7

dijkstra 30 23 (76.7%) 9 (39.1%) 14 (60.9%) 0.6 36.3 63.2

dll 20 14 (70%) 9 (64.3%) 5 (35.7%) 11.4 14.8 73.9

farmer 15 15 (100%) 3 (20%) 12 (80%) 0.3 1.6 98.1

filesystem 15 11 (73.3%) 3 (27.3%) 8 (72.7%) 27.9 17.4 54.7

fullTree 15 13 (86.7%) 11 (84.6%) 2 (15.4%) 1.6 2.3 96.1

grade 10 10 (100%) 0 (0%) 10 (100%) 1.2 0.9 97.9

grandpa1 15 15 (100%) 0 (0%) 15 (100%) 0.6 0.0 99.4

grandpa2 10 7 (70%) 3 (42.9%) 4 (57.1%) 1.2 1.0 97.8

grandpa3 25 16 (64%) 6 (37.5%) 10 (62.5%) 0.3 0.5 99.2

handshake 20 20 (100%) 0 (0%) 20 (100%) 0.5 0.0 99.5

life 15 7 (46.7%) 1 (14.3%) 6 (85.7%) 0.9 2.2 96.9

lists 20 20 (100%) 9 (45%) 11 (55%) 0.2 0.4 99.4

peterson 85 69 (81.2%) 41 (59.4%) 28 (40.6%) 0.8 7.8 91.5

ringElection1 30 30 (100%) 7 (23.3%) 23 (76.7%) 0.4 1.7 97.9

sll 5 5 (100%) 0 (0%) 5 (100%) 29.9 6.2 63.9

student 25 23 (92%) 20 (87.0%) 3 (13.0%) 9.2 21.5 69.3

Overall 460 379 (82.4%) 169 (44.6%) 210 (55.4%) 4.7 8.4 86.8

5.2 RQ1: Speed-up Effectiveness

Figures 4 and 5 show the speedup of iAlloy compared to the baseline on Mutant
Version Set and Real Version Set, respectively. The x-axis denotes the subject
names and the y-axis denotes the speed up. In Mutant Version Set, iAlloy achieves
speed-up for 19 subjects (75% of the subject set), with up to 4.5x speed-up
and 1.79x on average. The reason iAlloy did not speed up on the remaining 5 sub-
jects is that either the change is in the signatures or many commands are unsat-
isfiable under the previous solutions, where the analysis time overhead in iAlloy
(RCS and SR) is larger than the savings. In Real Version Set, we observe that iAl-
loy achieves a speedup of up to 7.66x and 1.59x on average over all subjects except
one (97% of the subject set). iAlloy does not save any time on arr1 because there
exists a single command in the subject and the command is unsatisfiable (in which
case neither RCS nor SR can save any command executions).

5.3 RQ2: Command Selection and Solution Reuse Effectiveness

Columns 2–5 in Tables 2 and 3 show the total number of commands in each
subject (cmd), the number of the selected commands and their percentage com-
pared to the total number of commands (select), the number of solution reuse
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Table 3. RCS, SR and Command Execution Results in Real Version Set

Model cmd select reuse execute T_select (%) T_reuse (%) T_execute (%)

addr 2 2 (100%) 1 (50%) 1 (50%) 24.9 4.7 70.4

arr1 2 2 (100%) 0 (0%) 2 (100%) 7.4 0.0 92.6

arr2 2 2 (100%) 1 (50%) 1 (50%) 7.2 1.4 91.4

bBST1 8 8 (100%) 6 (75%) 2 (25%) 13.4 15.2 71.4

bBST2 8 8 (100%) 6 (75%) 2 (25%) 14.0 15.0 70.9

bBST3 8 8 (100%) 6 (75%) 2 (25%) 13.5 14.9 71.5

bempl 4 4 (100%) 0 (0%) 4 (100%) 1.8 0.4 97.8

cd1 8 7 (87.5%) 5 (71.4%) 2 (28.6%) 1.1 0.9 97.9

cd2 8 7 (87.5%) 6 (85.7%) 1 (14.3%) 3.5 3.0 93.5

dijk 12 10 (83.3%) 5 (50%) 5 (50%) 0.7 23.2 76.2

dll1 8 8 (100%) 6 (75%) 2 (25%) 13.2 16.0 70.8

dll2 8 8 (100%) 6 (75%) 2 (25%) 12.7 17.0 70.3

dll3 8 8 (100%) 7 (87.5%) 1 (12.5%) 16.3 22.3 61.3

dll4 8 8 (100%) 7 (87.5%) 1 (12.5%) 17.6 22.3 60.1

farmer 7 7 (100%) 2 (28.6%) 5 (71.4%) 0.7 2.5 96.8

grade 4 4 (100%) 1 (25%) 3 (75%) 3.6 1.7 94.8

stu0 10 10 (100%) 7 (70%) 3 (30%) 8.1 11.0 80.9

stu1 10 10 (100%) 6 (60%) 4 (40%) 5.8 8.3 85.9

stu10 10 10 (100%) 5 (50%) 5 (50%) 6.7 10.1 83.2

stu11 10 10 (100%) 7 (70%) 3 (30%) 7.6 10.4 81.9

stu12 10 10 (100%) 7 (70%) 3 (30%) 7.6 9.2 83.2

stu13 10 10 (100%) 7 (70%) 3 (30%) 6.4 9.5 84.1

stu14 10 10 (100%) 6 (60%) 4 (40%) 6.6 8.7 84.8

stu15 10 10 (100%) 6 (60%) 4 (40%) 6.9 6.7 86.4

stu16 10 10 (100%) 4 (40%) 6 (60%) 9.4 13.3 77.4

stu17 10 10 (100%) 5 (50%) 5 (50%) 6.7 8.0 85.3

stu18 10 10 (100%) 4 (40%) 6 (60%) 7.7 10.5 81.8

stu19 10 10 (100%) 4 (40%) 6 (60%) 6.1 9.8 84.1

stu2 10 10 (100%) 4 (40%) 6 (60%) 6.2 8.6 85.2

stu3 11 11 (100%) 5 (45.5%) 6 (54.5%) 5.3 8.9 85.8

stu4 10 10 (100%) 4 (40%) 6 (60%) 7.1 9.6 83.3

stu5 10 10 (100%) 7 (70%) 3 (30%) 8.1 8.2 83.7

stu6 10 10 (100%) 6 (60%) 4 (40%) 7.0 9.1 84.0

stu7 10 10 (100%) 6 (60%) 4 (40%) 6.6 8.9 84.5

stu8 10 10 (100%) 7 (70%) 3 (30%) 6.7 7.4 85.9

stu9 10 10 (100%) 4 (40%) 6 (60%) 7.1 11.0 81.9

Overall 306 302 (98.7%) 176 (58.3%) 126 (41.7%) 8.1 9.7 82.2

and their percentage in selected commands (reuse), and the number of actu-
ally executed commands and their percentage in selected commands (execute),
for the Mutant and Real Version Set respectively. We can see that, both RCS
and SR help reduce command execution in both subject sets, but to different
extent. A smaller portion of commands are selected in Mutant Set (82.4%) than
in Real Set (98.7%). This is due to the fact that there are more changes between
versions in Real Set than in Mutant Set. However, smaller portion (41.7% vs.
55.4%) of the selected commands are executed and a larger portion (58.3% vs.
44.6%) of selected commands successfully reuse solutions in Real Set, comparing
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with Mutant Set. Besides, there are 54.3% command execution reduction

(
cmd − execute

cmd
) in Mutant Set and 58.8% in Real Set. The result shows that

iAlloy is promising in reducing the command executions in analyzing real world
Alloy models as they evolve.

5.4 RQ3: Time Consumption

Columns 6–8 in Tables 2 and 3 present the percentage of time consumption in
RCS (T_select), SR (T_reuse), and command execution (T_execute) in the
Mutant Version Set and Real Version Set, respectively. We can see that in both
subject sets, execution takes most of the time while RCS and SR are lightweight.

6 Related Work

A lot of work has been done to improve [20,22,24] and extend [10–13,16,19,25,
28–31,33] Alloy. We discuss work that is closely related to iAlloy.

Incremental Analysis for Alloy. Li et al. [9] first proposed the incremental
analysis idea for their so-called consecutive Alloy models which are similar to the
evolving models. They exploit incremental SAT solving to solve only the delta

which is the set of boolean formulas describing the changed part between two
model versions. Solving only the delta would result in a much improved SAT
solving time than solving the new model version from scratch. Titanium [1] is
an incremental analysis tool for evolving Alloy models. It uses all the solutions
of the previous model version to potentially calculate tighter bounds for certain
relational variables in the new model version. By tightening the bounds, Tita-
nium reduces the search space, enabling SAT solver to find the new solutions at a
fraction of the original solving time. These two approaches are the most relevant
to our work that both focus on improving solving efficiency in the translated
formulas. Whereas our incremental approach is to avoid the SAT solving phase
completely, which is fundamentally different from existing approaches. In addi-
tion, Titanium has to find all the solutions in order to tighten the bounds, which
would be inefficient when only certain number of solutions are needed.

Regression Symbolic Execution. Similar to the SAT solving applications
such as Alloy analyzer, symbolic execution tools also face the scalability prob-
lems, in which case a lot of work has been done to improve the perfor-
mance [6,14,23,34]. The most closely related to our work is regression symbolic
execution [14,15,34]. Similar to our RCS, symbolic execution on the new version
is guided through the changed part with the previous versions. In addition, there
is also work on verification techniques that reuses or caches the results [8,18].
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7 Conclusion and Future Work

In this paper, we proposed a novel incremental analysis technique with regression
command selection and solution reuse. We implemented our technique in a tool
called iAlloy. The experimental results show that iAlloy can speed up 90% of our
subjects. Furthermore, it performs surprisingly well in models of the real faulty
versions with up to 7.66 times speed up and above 50% command execution
reduction. This indicates that iAlloy is promising in reducing time overhead of
analyzing real-world Alloy models. In the future, we plan to extend iAlloy to
support changes that involve Alloy signatures and perform a more fine-grained
analysis to improve command selection.
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