2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST)

Learning to Optimize the Alloy Analyzer

Wenxi Wang*, Kaiyuan Wang', Mengshi Zhang* and Sarfraz Khurshid*
*University of Texas at Austin
{wenxiw,mengshi.zhang,khurshid } @utexas.edu
TGoogle Inc.
kaiyuanw @google.com

Abstract—Constraint-solving is an expensive phase for scenario
finding tools. It has been widely observed that there is no single
“dominant” SAT solver that always wins in every case; instead,
the performance of different solvers varies by cases. Some SAT
solvers perform particularly well for certain tasks while other
solvers perform well for other tasks. In this paper, we propose an
approach that uses machine learning techniques to automatically
select a SAT solver for one of the widely used scenario finding
tools, i.e. Alloy Analyzer, based on the features extracted from
a given model. The goal is to choose the best SAT solver for a
given model to minimize the expensive constraint solving time. We
extract features from three different levels, i.e. the Alloy source
code level, the Kodkod formula level and the boolean formula
level. The experimental results show that our portfolio approach
outperforms the best SAT solver by 30% as well as the baseline
approach by 128% where users randomly select a solver for any
given model.

Index Terms—Alloy Analyzer, SAT solver, machine learning

I. INTRODUCTION

Writing declarative models and specifications has numerous
benefits, ranging from automated reasoning and correction
of design-level properties before systems are built [1], to
automated testing and debugging of the implementations after
systems are built [2]. Alloy [3] is one of the well-known
scenario finding tools that model system properties. Alloy
models are declarative and expressive enough to capture the
intricacies of real systems. Alloy comes with an analyzer
which provides an automatic analysis engine based on off-
the-shelf SAT solvers [4] and it is able to generate valuations
for the relations in the models such that the properties modeled
hold or are refuted as desired. The powerful Alloy analysis has
motivated its use in a wide range of applications, including
security [5], networking [6] and UML analysis [7].

Alloy supports first-order relational logic with transitive
closure. The Alloy analyzer is able to analyze Alloy models
which consist of relational expressions/formulas under user-
defined scopes. Internally, the analyzer translates the Alloy
model into Kodkod formulas [8], which in turn is translated
into the boolean formulas. Finally, the boolean formulas are
fed into a SAT solver to find a solution which is then mapped
back to an Alloy instance for analysis. In this paper, we refer
the Alloy source code level as level 1, the Kodkod formula
level as level 2, and the boolean formula level as level 3.

Typically, the SAT solving time takes a majority of the
analysis time and is often the bottleneck for the end-to-end
time. As the scope of the model becomes larger, Alloy’s

978-1-7281-1736-2/19/$31.00 ©2019 IEEE

DOI 10.1109/1CST.2019.00031

228

analyzing ability drops dramatically because of the expensive
SAT solving. We observed that there is no single “dominant”
SAT solver that always win in every model. Instead, the
performance of different solvers varies by models. This paper
aims to alleviate the expensive SAT solving by helping the
users to pick the SAT solver that achieves the best performance
given an arbitrary Alloy model. The idea is to extract features
from the model and use a machine learning model to predict
which SAT solver is more likely to solve the problem in the
minimum amount of time from a set of component solvers.

Our technique has four phases: (1) feature extraction phase;
(2) feature selection phase; (3) training phase; and (4) testing
phase. In the feature extraction phase, we extract features from
all 3 levels of a given Alloy model, including the Alloy source
code level, the Kodkod formula level and the boolean formula
level. These features are all static and fast to extract. We extract
the number of different operators at the source code level (e.g.
set union), the Kodkod formula level (e.g. n-nary expression
and relational bounds) and the boolean formula level (e.g. not
gate). Additionally, we also collect the metrics of an AST,
e.g. the height, diameter and total number of nodes, across
all 3 levels. The feature extraction phase is applied before the
training and testing phase. We only focus on static features
to avoid the overhead of extracting the dynamic features from
invoking the SAT solver. In the feature selection phase, we
evaluate the importance of the features in each level and
only select the ones that make good impacts. In the training
phase, we extract features of various models with different
scopes. These models are run against multiple SAT solvers we
collected from the SAT competition [9] and all running times
are collected to label different models with various scopes.
Then, we apply Adaptive Boosting (AdaBoost) learning model
to learn the best performance SAT solver for each model and
scope. In the testing phase, we extract features of unseen
models with different scopes and use the learned model to
predict the best SAT solver and compare the result against
each component solver, the random solver selection, and the
best solver selection.

The experimental results show that our technique outper-
forms the baseline approaches significantly, including 30%
acceleration of the best on average component solver, 2.28
times the speed of random solver selection and 0.62 times the
speed of the best solver selection.

This paper makes the following contributions:

o the first (as far as we know) portfolio approach proposed

IEEE
computer
® psoaety

relational
Instance

Level 1

Kodkod
formula
(optimization &
simplification)

Kodkod
instance

SAT
solver

boolean
formula

boolean

instances
Level 3

Fig. 1: Architecture of the Alloy analyzer version 4.2.

for the Alloy Analyzer.

« feature extraction from three levels in the Alloy Analyzer;
and evaluated the feature importance in each level.

« results suggesting that, our machine learning based port-
folio approach is promising and can be a good direction
for further development.

II. BACKGROUND
A. Alloy Analyzer

Alloy is a declarative language for lightweight modeling and
software analysis. The language is based on first-order logic
with transitive closure. Alloy comes with an analyzer which is
able to perform a bounded exhaustive analysis under a given
scope. The input of the Alloy analyzer is an Alloy model that
describes the system properties. Users write Alloy models with
relational expressions and formulas, and provide commands
with given scopes bounded on the universe of discourse. The
analyzer translates the commands with scopes into conjunctive
normal form (CNF) and invokes an off-the-shelf SAT solver
to search for solutions, i.e. boolean instances. The boolean
instances are then mapped back to Alloy level instances that
contain valuations of all relations and displayed to the end
users. The overall architecture of Alloy Analyzer is shown in
Figure 1. The architecture can be divided into three levels: the
Alloy source code level (level 1), the Kodkod formula level
(level 2), and the boolean formula level (level 3). As of version
4.2, the Alloy analyzer invokes the Kodkod model-finder to
translate formulas between levels 2 and 3, where users write
models in the analyzer at level 1.

1) Alloy Models: An Alloy model consists of a set of
relations (e.g. signatures, fields and variables) and constraints
(e.g. predicates, facts and assertions). A signature defines a
set of atoms. A field maps each atom of a signature to other
atoms. Note that a signature is a special relation of arity 1
and a field is a relation of arity > 1. Users can also introduce
new relations using variable declarations, e.g. parameters or
let expressions. A predicate defines a boolean formula that
evaluates to either true or false. Users can use the Alloy’s
built-in run command to invoke a predicate and the Alloy

229

. sig List {

// header: List->Node is a partial function
header: lone Node }

. sig Node {

// link: Node->Node

link: one Node }

. pred Acyclicl(l: List) {

all n: l.header.xlink | n !in n.”link }

9. pred Acyclic2(1l: List) {
no l.header || some n:
. check { // command

all 1: List | Acyclicl[l]
. } for 6

W do U WN P

1l.header.+1link | no n.link }

<=> Acyclic2[1]

Fig. 2: An example Alloy model that checks if two different
ways of modeling acyclicity constraint on a list are equivalent.

analyzer either returns an instance if the predicate is satisfiable
or reports that the predicate is unsatisfiable. A fact is a boolean
formula that is implicitly enforced to be true by the Alloy
analyzer. An assertion is a boolean formula that is used with
the built-in check command to check if any counter example
can refute the asserted formula. If the assertion is valid, then
no counter-example is found; otherwise, an counter-example
is reported. All analysis are performed in a bounded scope.

Figure 2 shows an Alloy model which checks if two
acyclicity predicate of a list (Acyclicl in lines 7-8 and
Acyclic2 in lines 9-10) are semantically equivalent. The
signature List (lines 1-3) declares a set of list atoms. The
signature Node (lines 4-6) declares a set of node atoms. The
header field (line 3) is a partial function and maps each list
atom to at most one node atom. The 1ink field (line 6) is a
function and maps each node atom to exactly one node atom.
Acyclicl states that for every node n which is reachable from
the parameter list 1’s header following zero or more traversals
along the 1ink, n is not reachable from itself following one or
more traversals along the 1ink. Acyclic2 states that either
the parameter list 1 has no header or there exists some node
n reachable from 1’s header following zero or more traversals
along the link such that n does not have a subsequent node
along the link. The check command (lines 11-13) checks
if Acyclicl and Acyclic2 are semantically equivalent for
every list 1 up to 6 lists and 6 nodes.

2) Kodkod Translation: Kodkod [8] is an efficient SAT-
based model finder which is able to specify partial solutions,
i.e., a priori partial but exact knowledge about a problem’s
solution. It is able to effectively detect and break symmetric
formulas. Internally, Kodkod translates Alloy code into Kod-
kod formulas, which is then translated to boolean formulas and
fed into a SAT solver. Kodkod achieves symmetry breaking by
a symmetry detection algorithm that works in the presence of
partial solutions, a sparse-matrix representation of relations,
and a compact representation of boolean formulas. These
techniques make Kodkod effective in translating relational
logic into boolean formulas and alleviating the burden of
existing SAT solvers by removing redundant constraints.

Note that Kodkod converts the scope of Alloy commands
with the notion of relational bounds. A bounded relational
specification is a collection of constraints on relational vari-

iy
7 7

7
o 7
frelational /) -

/ bounds /!

~—_
symmetry
breaker

 —
¥ u /A
/relational /)

/ formulas /
///‘

skolemizer

— -
P] 7 |
/simplified // /simplified ////// |

/ relational / / relational
/ formulas / /_bounds

—
/ circuits /)
[cireuits JJ

/simplifed ,//;

/ circuits

/e 7/
/ /

Fig. 3: Translation from relational logic to CNF in Kodkod

ables that are bounded by relational constants (i.e., sets of
tuples). All bounded constants consist of tuples that are drawn
from the same finite universe of discourse. The upper bound
specifies the tuples that a relation may contain; the lower
bound specifies the tuples that the relation must contain. Thus,
the scope of the command in an Alloy model is translated into
the relational bounds with lower bound of 0 and upper bound
of the given scope. For the example in Figure 2, the scope 6
is translated such that Kodkod will only consider the search
space of each signature from 0 to 6 atoms.

The translation from Kodkod formulas to boolean formulas
refers to level 2 and level 3, respectively in Figure 1. The
translation process inside Kodkod is depicted in Figure 3.
The Kodkod formula and bounds are firstly simplified and
optimized by symmetry breaking and skolemizing, which
tighten the bounds and eliminate the top-level predicates. The
optimized relational formula and bounds are then translated
into a circuit, which are further augmented with a symmetry
breaking predicate that eliminates any remaining symmetries.
Finally the optimized circuit is translated to CNF formula.
Note that the part above the horizontal dash line in Figure 3
corresponds to level 2 in the Alloy analyzer, while the part
below the dash line corresponds to level 3.

3) Back-end SAT Solvers: After the translation to boolean
formulas in Kodkod, off-the-shelf SAT solvers can be used
to solve the boolean formulas. The input of the SAT solver
is a formula ¢ in CNF, that is, a conjunction of clauses.
Each clause ¢ consists of a disjunction of literals. A literal
{ is either a variable b, or its complement —b. For instance in
Example II.1, CNF formula %7 includes two clauses c¢; and
¢y where four variables by, bo, b3 and by are included.

Example 1L.1. d}l =c1/N\cCy; c1 = b1 \/"bg; Cy = b2 \/b4 \/bd,

In the last decades, the performance of SAT solvers has
increased dramatically with the invention of advanced search-
ing and learning strategy, and the data structures that allow
efficient implementation of search space pruning. However, the
SAT solving ability is still the core challenge and bottleneck
for applications like the Alloy analyzer. Therefore, reducing
the SAT solving time is an important aspect in improving

230

the application user experience. To achieve this, one way is
to increase the solving efficacy of a particular SAT solver.
Another way is to integrate the solving strength of different
solvers to introduce a “solver” which is more powerful than
any of the component solvers.

The International SAT Solver Competition [9] is an es-
tablished series of competitive events aiming at objectively
evaluating the progress in state-of-the-art procedures for solv-
ing boolean satisfiability (SAT) instances. Over the years, the
competitions have significantly contributed to the fast progress
in SAT solver technology. Our idea is to combine the state-
of-the-art SAT solvers in the competition to propose a more
powerful portfolio SAT solver for the Alloy analyzer.

B. Portfolio Solvers with Machine Learning

The essential problem behind the portfolio solver develop-
ment is the algorithm selection problem. The “No Free Lunch”
(NFL) theorems [10] state that no algorithm can be the best
across all possible problems and that on average all algorithms
perform the same. This makes the algorithm selection essential
for improving the problem solving capability. The idea is
to select different algorithms best for different parts of the
problem space.

In the area of combinatorial search problems, such as
constraint satisfaction problems (CSP), satisfiability (SAT) and
satisfiability modulo theories (SMT) problems, solvers indeed
comply with the NFL theorems and many portfolio solvers are
proposed in response to that trying to gain the optimal world.
There is a trade-off between risk (the variability in solving
performance) and reward (the expected solving performance)
that we need to make a choice. An efficient portfolio is the
one that has the highest possible reward for a given level of
risk, or the lowest risk for a given reward [11].

The searching in solvers is usually very complicated and
unpredictable in different cases even to the authors who invent
those solvers. Given this, finding a way to generalize the
searching and solving behaviors of the solvers in different
problem cases with the big statistical data they produce during
their solving history seems promising. In addition, classifying
the component solvers based on their outperformed solving
history in certain input problem instances to make them work
only in their specialties is very demanding in portfolio solvers.
Nevertheless, this is under the assumption that the solvers
would behave similarly in similar recognized problem cases.
Given the above two points, machine learning approach, which
uses statistical techniques to give systems the ability to “learn”
with data, without being explicitly programmed, are highly
suitable for developing portfolio solvers.

III. MOTIVATION

Table I shows the run time result (time in seconds) among
top 5 solvers in the International SAT Competitions
2018, namely MapleLCMDistChronoBT (MapleL.1),
Maple_LCM_Scavel_fix2 (MapleL2), Maple_CM (MapleC1),
cms55-main-all4fixed (cms55), and Maple_CM_ordUIP
(MapleC2) in order of ranking in the competition. The Alloy

TABLE I: Solving time in seconds for sample Alloy models
with different SAT solvers.

Model cms55 | MapleCl | MapleC2 | MapleL1 | MapleL2 | Optimal
abstMem 49.7 37.6 473 80.7 300 37.6
addrsB1h 452 14.8 17.1 12.3 324 123
filesystem 69.7 88.7 87.7 46.2 25.0 25.0
grandpal 33 14.6 17.3 14.2 26.9 33

hotell 40.1 10.7 124 94.8 62.1 10.7

lists 78.1 50.5 59.1 124.9 91.8 50.5
p300hot 27.2 104.7 103.7 149.5 300 272
[sum [3133 [3217 [3446 [5224 [8381 | 1666 |

models we use are from the sample models in the Alloy
4.2 distribution. abstMem models the abstract memory and
we use the check command checks$2 with scope 30 for
solving. addrsB1h models the address book and we use the
check command delUndoesAdd with scope 11. filesystem
models a file system and we use the check command check$1
with scope 11. grandpal models the grandpa puzzle and
we use the check command NoSelfGrandpa with scope 42.
hotell models guest accessing rooms in a hotel and we use
the check command NoBadEntry with scope 9. p300hot
models possible intruders in a hotel and we use the check
command NoIntruder with scope 13.

We have the following three observations based on the
results in Table I: 1) there is no best solver in all cases;
and each solver could be the best for certain cases. 2) the
solving time differs quite a lot among the solvers, although
the solving behaviors of MapleC1 and MapleC2 are similar.
The ideal optimal portfolio solver would take 166.6 seconds,
which outperforms each component solver dramatically. 3) the
solver that wins in a majority of times in the competition does
not always perform the best for a majority of our Alloy model
samples. This result is consistent with our further experimental
results in Section V. All of the above observations makes
selecting the best SAT solver for different Alloy models
even more important. Moreover, the portfolio approach would
reduce the end to end time of Alloy users by selecting the
fastest solvers for models with larger scope, which helps the
users to gain more confidence in the checked model properties.

IV. BACK-END SAT SOLVER SELECTION

We take the solver selection in our portfolio approach as
the classification problem using supervised machine learning
strategy. We aim to classify each component solver based
on the problem cases in which it wins. To make fully use
of the machine learning techniques, we need to feed it with
enough sample cases whose features are extracted from cor-
responding Alloy models. Additionally, we use the CNF files
translated from these Alloy models by Kodkod as the input
of different SAT solvers and collect the SAT solving time.
The outperforming solvers serve as the predicted labels for
the machine learning classifiers. Finally, we use the collected
data to train machine learning models and try to avoid the
over-fitting issues. The machine learning models can be then
used to predict the best solvers for unseen models.

231

A. Case Generation

As mentioned in Section II, the scope in each command
sets the bound of each signature in Alloy model. Therefore,
as the scope in the Alloy models increases, the complexity of
the problem grows exponentially which becomes a challenge
even for the most advanced SAT solvers. In order to obtain
more data and models with different complexities, we not only
collect all different sample models from Alloy distribution and
existing works [12], [13], but also use various scopes for the
same model. For each model, we increase the scope of one
signature by one at a time, until the scopes of all the signatures
reach to the maximum scope we set up. In this case, for
one Alloy model with ¢ commands and f signatures, with
the initial overall scope for all signatures ¢s, and maximum
scope ms, there are c* (ms —is+1)f potential sample cases.
Note that the cases here refers to the CNF input files generated
from different Alloy models with different scopes. Each case is
indexed with m_c_s where m refers to the Alloy model name,
¢ refers to the command name and s refers to the scope.

B. Feature Extraction

We extracted the features from all three levels in Alloy
as shown in Figure 1, aiming to get the machine learning
model a complete picture of how the input Alloy models look
like in three perspectives. Note that we only collect the static
features which cost little overhead for our portfolio solver. We
also evaluate the feature extraction time, as well as how the
features in each level contribute to the portfolio approach in
Section V. Details about how we extract the features in each
level are illustrated in the following Sections IV-B1, IV-B2
and IV-B3. In addition, we discuss the feature refinement in
Section IV-B4.

function/
predicate

Fig. 4: The General AST Node Classification in Alloy

1) Feature Extraction in Level 1: We collect the features in
level 1 (denoted as X) from the Abstract Syntax Tree (AST) at
the Alloy source code level to capture the model characteristics
at a higher level.

Figure 4 shows the general AST structure of an Alloy
model. Note that we distinguish each node with each other
even though they are in the same kind. For instance, the
“expr” node under the “fact/assert” node is different from the

“expr” node under “function/predicate” node. The reason is
that we want to collect more detailed information which may
help the machine learning techniques learn the internal rules.
Table II shows specifically how the expressions (“expr” node
in Figure 4) look like. We further differentiate the expressions
(Expr) from the ones that return a boolean value which we call
formulas (Form). For detailed Alloy grammars, please refer to
the Alloy tutorials [14].

We count the occurrence number of each node in Figure 4
and the occurrence of each kind of operators in normal
expressions and formulas respectively. In addition, the height,
the diameter, and the total node number of the AST, together
with the scope generated in Section IV-A are also extracted as
features in this level. There are in total 123 features. Note that
different commands in the same Alloy model invoke different
parts of the AST. Thus, the extracted features are also different
for different commands.

2) Feature Extraction in Level 2: We collect the features in
level 2 (denoted as 2)) from the AST of the simplified Kodkod
formulas, and the simplified relational bounds in Figure 3.
The goal is to capture the model complexity information
in the level just before the Kodkod formulas are translated
into boolean formulas. The feature kinds extracted from the
Kodkod formulas are similar to the ones in level 1 but
with different operator types. Additionally, AST nodes at the
Kodkod formula level contain relational bound which are
different from the ones in Alloy source code level.

We extract features from the Kodkod ASTs based on the
node types. More details of the Kodkod AST node types can
be found in the the Kodkod documentation [15]. We choose
42 features in total which fall into four categories:

o The total number of expressions, the total number of
integer expressions, the total number of formulas; the
total number of the AST nodes; the height of the AST;
the diameter of the AST.

The number of constants, variables and declarations.
The ratio of the integer expressions and expressions, and
the ratio of the quantified formulas and any formulas;
the ratio of the expressions and formulas; the ratio of the
relations and predicates.

The number of each specific kind of expressions, formu-
las and declarations.

The relational bound in Kodkod defines the bound on each
relation. The number of each relation in different Alloy model
is different. In addition, there is no natural order in the
relational bounds. In order to extract features for machine
learning models, we need to properly convert the relational
bounds into a fixed length feature vector. We sort the relational
bounds in descending order, with the intuition that larger
bound values indicate a higher complexity of the models.
Therefore, keeping larger bound values is better than keeping
smaller bound values. Then, we make the feature vectors fixed
length ¢ by doing the following steps. For models that have
shorter feature vectors (derived from the bound values), we
append zeros to the end of the feature vectors. This strategy
can be interpreted in a way that the bound of each non-

232

TABLE II: Expressions in Alloy Abstract Syntax Tree

Expression Descriptions
Call Expr/Form predicate/function invocation
Expr sum, comprehension
quant
Form all, no, some, one, lone
. Expr disjoint, total order
list
Form and, or
Expr —, ., <:, >, ++, set operators(+, -, &),
binary P arithmetic operators (plus, minus, *, /, remainder, <, >, >>)
Form =, |=, implies, < , <=, >, >=, in, !in, and, or, iff
Expr set, lone, one, some, exactly, ~, ~, *(transitive closure)
unary
Form Tone, one, no, some, not
ITE Expr/Form implies else

existing signature is zero. For models that have longer feature
vectors, we use the top ¢ bound features and truncate the
remaining features. Formally, we introduce a sorting function
8([[)11 , bi2, .oy b’iBD as

S([bilvbiw “7biB]) = [bjl7bj27 -t bjBL

where [b;,,b;,,..,b;,] is a list of relational bounds such that

vjza]y € {j1>j2a 7‘73}(1‘ S Yy — bj;:: Z b]y)

The relational bound feature vector extraction function is
defined as

where o 0,_p means padding ¢ — B zeros after the corre-
sponding feature vectors to length /.

Besides the feature vectors derived from the bound values,
we also take 1) the total bound value of all the relation nodes
in AST; 2) and the ratio of the total bound and the relations,
as two additional bound features.

[bjlvbjzv 3 bjz]v
[bj1 ’ bjz? 3 bjB} 00, g,

1Bl > ¢
|B| < ¢

jw(‘s([bilvbizv "7biB]))

3) Feature Extraction in Level 3: The features in level
3 (denoted as 3) are extracted from the CNF formula in
Figure 3, which includes the total number of boolean variables
and clauses respectively, and the ratio of the variable number
and clause number. Note that, the reason we do not extract
features from the simplified circuits after the further symmetry
breaking (refer to Figure 3) is that traversing the heavy circuits
is exponentially time-consuming, even more expensive than
the whole translation time from level 1 to level 3.

4) Feature Refinement: Some features we collected from all
three levels are the same across all models and thus we assume
these features would have less opportunity to provide useful
information for the machine learning classifiers to differentiate
models with different complexities. We remove these features
from our feature list.

Furthermore, we investigate how the features in each level
contribute to the machine learning models based on ablation
studies. We select the features which make positive contri-
bution to the prediction results. The experimental results are
shown in Section V.

TABLE III: Format of Raw Data.

m_cs X1 .. Xen D1 oo Dyn 31 - 32n 61 .. Sspn Label
t1 ei ein)"11 f;n g% . gi" sti stin s1
to e? .. efm 2. fj,,, g . gf" st? .. stfn ED)
t3 e:f ezn ff f;n g‘? . gzn st‘rf st?n s1
ty el .oed oL f;,ny gt .ogt, sttt osth s

C. Data for Learning

Table III gives the format of our raw data. Each data sample
corresponds to a case (m_c_s) which includes the values for
each feature type X, 2), and 3, the solving time of each
component solver (&) and the solver that wins for that case
according to the solving time (Label). The format of the input
training data for machine learning is the raw data sample
excluding the solving time columns (S).

In this paper, the solving time is the most important target
we want to optimize. However, sometimes the solving time for
multiple solvers varies only in a couple of seconds. Moreover,
the small solving time difference might be due to many factors
such as I/O and machine workload. To mitigate this issue,
we setup a solving time threshold to determine if multiple
solvers perform similarly in each sample case. The threshold
is defined as follows. We first find the minimum solving time
among all component solvers for each sample case (indexed
by i), which is denoted by mgs = min(st!,...stl,). Then,
we choose a percentage p and compute a so called “relative”
solving time tt(p) = mg * (1 + p) which we treat as one
maximum solving time under which multiple solvers perform
equally well. Next, we choose an absolute value v and compute
a so called “absolute” solving time at(v) which we treat as
another maximum solving time under which multiple solvers
perform equally well. Finally, we compute the threshold as
t = max(rt, at). Note that all the solving time is in seconds.

We use the threshold ft to filter out the samples where the
solving time of all SAT solvers is below ft. For example,
suppose we have a sample that includes the solving time vector
[1.8, 0.9, 1.2] of three component solvers, with p = 10 and
v = 1. The minimum solving time is 0.9, thus tt(p) = 0.99,
at(v) = 1.9, and ft 1.9. Since all the three solving
times (1.8, 0.9 and 1.2) are less than ft, this sample will be
eliminated from our dataset.

Additionally, we use the threshold to decide fairly if the
machine learning model selects the right solver. Suppose we
have a sample that includes the solving time vector [18, 19,
300] of three component solvers sg, s; and s, with p = 10
and v = 1, and ft = 19.8. Assume that the classifier predicts
s1 as the good solver. Since the solving time of sy and s; are
both less than the threshold, we treat that the classifier chooses
the correct solver.

D. Learning and Overfitting Mitigation

We run the supervised machine learning of classification in
four steps. Firstly, we divide the labeled dataset into training

233

and test data. Secondly, we pick the appropriate kinds of the
machine learning algorithms for the classification problem.
Thirdly, we use the training data to train the selected classi-
fiers. Finally, we use the test data with the actual labels and the
labels predicted by the classifiers to evaluate the performance
and get the prediction accuracy. In all these steps, we try to
mitigate the over-fitting problem, which is the main concern
when using machine learning techniques, to make our portfolio
approach more robust and applicable.

Firstly, we apply k-fold cross-validation which is a powerful
preventative approach against over-fitting, to divide and train
the labeled dataset. Cross-validation allows us to tune hyper-
parameters with only the original training dataset. This can
keep the test set as a truly unseen dataset for selecting the
final model.

When applying the machine learning models, we try to
reduce the complexities of all the learning models. Firstly, we
choose classic supervised learning models which are simple
and use ensembling strategies such as Bagging and Boosting
[16]. Our selected classic supervised learning models are K-
Nearest Neighbor (K-NN) [17], Logistic Regression (LR) [18],
Support Vector Machine (SVM) [19], Decision Tree (DT) [20],
Multi-Layer Perceptions (MLP) [21], AdaBoost (ADA) [22]
and Gradient Boosting (GBT) [23]. We do not use complex
deep learning models such as Convolutional Neural Network
or Recurrent Neural Network.

Furthermore, we conduct fine-grained model complexity
reduction according to the characteristics of each model.
Specifically, for tree-based models such as DT, we limit the
maximal tree depth, the maximum number of leaf nodes and
the minimum number of samples in a leaf node. We also utilize
post-prune technology to simplify the tree. For neural network
models such as MLP, we only set one hidden layer and ensure
that the hidden layer size is smaller than the input layer size.
We also use the early stopping mechanism, which terminates
the training process when the fitness score does not improve
any more. For regression-based models such as LR, we make
use of L2 Regularization to penalize the large coefficients. For
K-NN, we set a large K to reduce its sensitivity to noise data.

V. EXPERIMENTAL SETUP

To evaluate our portfolio solver, we answer the following
research questions:

e RQI: How does each solver in the SAT competition
perform on our dataset? How should we select the com-
ponent solvers to use in our portfolio solver?

o RQ2: How does the scope affect the performance of each
component solvers?

o RQ3: How do the features in each level affect the per-
formance of our portfolio solver? How should we select
the feature level?

e RQ4: How much does our portfolio solver improve,
compared to each component solver, the random selection
approach, and the best selection approach?

« RQ5: How do different machine learning models affect
the performance of our portfolio solver?

A. Subjects

As mentioned in Section IV-B1, since different commands
of the same model can be modeled as different abstract syntax
trees in Alloy, in the experiment, we take commands of
Alloy models as our subjects. We only consider the check
commands and ignore the run commands. The reason is that
the run commands are typically much easier to solve because
it mostly does not invoke all formulas in the model. Totally,
we collect 119 Alloy models, where 103 models are collected
from the sample dataset of Alloy analyzer release 4.2, and 16
models are collected from existing work [12]. Finally, we find
69 check command subjects from these models.

B. Metrics

We evaluate the effectiveness of our portfolio approach
using the following three metrics. The first one is the accuracy
of predicting the fastest solver. The second one is the abso-
lute solving time of our portfolio approach and the baseline
approaches. The third metric is the speedup ratio between the
portfolio approach and the baseline approaches. Note that we
set the thresholds (as introduced in Section IV-C) as p = 10
for the relative threshold tt(p), and v = 1 for the absolute
threshold at(v).

C. Experimental Protocol

1) Solver Candidates: We select five state-of-the-art SAT
solvers from the SAT competition 2018 as our candidate
solvers, which is described in Section III.

2) Case Suite: Section IV-A mentioned the potential cases
given the number of commands and signatures in each Alloy
model, the maximum scope ms and the initial scope is. Here,
we set the maximum scope to 40. In addition, since the sample
case (typically the CNF file) generation takes time, we also
set the timeout of the case generation to 60 seconds. In total,
we generated 7376 cases under this timeout and we refer these
cases as the whole case suite. We run all 5 candidate solvers
over the whole case suite, setting the timeout of SAT solving as
300 seconds. For cases where the solver performs erroneously
(like segmentation fault), we set the corresponding solving
time as 600 seconds.

Note that we set the p in the relative threshold tt(p) to
10%, and the v in the absolute threshold at(v) to 1 second,
which aims to remove the cases with poor discriminability of
solvers’ performance. With these two thresholds, we filtered
out 3729 cases in which all the candidate solvers have almost
no solving time difference. These cases also included the cases
in which all the candidate solvers timed out. The remaining
case suite contains in total 3647 cases and we refer to this
suite as the refined suite. Note that both the whole and refined
suites contain 69 Alloy subjects.

3) Platform: We conduct all our experiments on Ubuntu
Linux 16.04 with a Intel Core-i7 6700 CPU (3.40 GHz) and
16GB RAM.

234

TABLE IV: Performance of the Candidate Solvers

Solver . Outperformance
Name i) Overall Time(s) Num P Percent (%) Errors
cms55-main-all4fixed S0 659590 1997 55 0
Maple_CM s1 567402 666 18 3
Maple_CM_ordUIP So 567291 632 17 3
MapleLCMDistChronoBT | s3 662575 469 13 0
Maple_LCM_Scavel_fix2 S4 836180 287 8 205

VI. RESULT ANALYSIS

A. RQI: Candidate Solver Performance

Table IV depicts the performance of individual candidate
solver (labeled by ID) on the whole case suite. To be specific,
the Overall Time presents the overall solving time (in
seconds) in all cases, Outperformance shows how each
solver beats others on the number and percentage of cases,
respectively, and Errors indicates the number of cases
where the solver performs erroneously. From Table IV, we
can observe that solver cms55-main-all4fixed outperforms on
more cases (i.e. 55%) than others. However, interestingly,
its overall solving time is only ranked at the third place.
This implies that cmsS55-main-all4fixed may lose much in the
cases it underperforms. Maple_CM and Maple_CM_ordUIP
shows similar performance in term of all the indicators, where
Maple_CM performs slightly better in term of the amount of
the cases, while Maple_CM_ordUIP performs slightly better
in term of the overall time. Moreover, despite of the winner in
SAT competition, MapleLCMDistChronoBT only ranked the
fourth place in term of the overall solving time as well as the
number of cases. Lastly, Maple_LCM_Scavel_fix2 performs
the worst in terms of all three indicators.

Figure 6 shows the similarity in each combination of two
candidate solvers (denoted by the corresponding solver ID),
where the similarity is determined with the relative threshold
tt(p) and the absolute threshold at(v). We set two pairs of
the thresholds for the similarity analysis. One is p 10
and v 1; the other one is p = 20 and v = 2. The
similarity is the percentage of the cases of which the solving
time is within the determined thresholds. We can observe
from Figure 6 that, Maple_CM and Maple_CM_ordUIP
shows the highest similarity which is also consistent with the
observation from Table IV. This may be rooted in the fact that
Maple_CM_ordUIP is developed based on Maple_CM with
a modified learning strategy. For details, please refer to the
Proceedings of SAT Competition 2018 [24].

We decide to eliminate Maple_LCM_Scavel_fix2 from
our candidate solver list, given the quite amount of cases
in which it shows erroneous behavior and the few amount
of win cases it can potentially contribute (e.g. it only beats
others on 287 cases while crashes on 205 cases). In addi-
tion, since Maple_CM and Maple_CM_ordUIP show similar
solving behavior, we only select one of them. We assume
Maple_CM may have slightly more possibility to contribute
to the portfolio approach, since it wins in more cases.
Therefore, we choose Maple_CM over Maple_CM_ordUIP.

addressBook1lh/delUndoesAdd

stable_ringlead/CMustConverge

farmer/NoQuantumObjects

300 ..“A.A:..... 0.100
40 : i
506 e "2 0.075
e 0.050 A
20 100 g = o
i 0.025 e T
Ly IR L s
0 0] wunnp2234%° 0.000 | =
25 50 75 5 10 15 20 25 30 20 40 60 80
(b) ©
file_system/check_2 birthday/DellsUndo hotel2/NoBadEntry
20 10.0 - 300 T
15 7]
200 . .
10 . 5.0 . .
Py o 5
5 5 | F 25 100 i
"h— - -l % ‘l « an .
0 0.0 01 Tennflancianccnn "un ms .
50 100 150 200 25 50 75 100 125 20 30 40 50
(d) (e) (9]

Fig. 5: Solving Behaviors with Scopes (x axis indicates the solving time in seconds; y axis indicates the total scope of all the

signatures in the corresponding Alloy model)

= p=10, v=1
. p=20, v=2

o e e o
] o ~ ©
. L s .

Similarity
o
-

0.3 4

0.2 4

0.1

50,51 50,52 50,53 S0,54 51,52 51,53 51,54 52,53 52,54 53,54
Solver combination

Fig. 6: Similarity in each combination of two candidate solvers

Finally, the SAT solvers, namely MapleLCMDistChronoBT,
Maple_CM and cms55-main-alldfixed are selected as the
component solvers for our portfolio approach, and we label
them as cg, ¢; and cy respectively.

B. RQ2: Solving Behaviors with Scope

This section investigates how the scope affects the per-
formance of the component solvers. Figure 5 presents their
performances on 6 Alloy subjects, in which the z axis indicates
the total scope of all the signatures in the corresponding
Alloy model, the y axis indicates the solving time in seconds.
The red, green and blue dots indicate solver cg, c¢; and ca,
respectively. According to Figure 5, we can find that as the
scope increases, the solving time of all component solvers
increases generally. However, there is no obvious patterns
behind the curves to help us predict which solver performs the

235

best in which kind of Alloy subject. This makes machine learn-
ing highly demanding for classifying the component solvers
according to their suitability for the input Alloy subjects.

C. RQ3: Feature Importance and Selection

The length of the relational bound feature vector we intro-
duced in Section IV-B2 is set to 40. Given this, there are 208
features in all the three levels. Among these, 45 are constant
across all cases. After removing these features, we have 85
features in level 1, 75 features in level 2, and 3 features in
level 3. In order to evaluate how the features in each level
affect the model prediction, we conduct an ablation study of
all the combinations of the feature levels. Table V shows the
prediction accuracy in each machine learning model under
each combination.

We can see that the features from level 2 contribute the
most in the prediction results. In all the machine learning
models except for MLP, even using the level 2 features alone
outperforms the circumstances when using the features from
all the three levels. The level 1 features contribute more than
the level 3 features. Using level 3 features combined with level
1 can make improvements compared with using the level 1
features alone; While using level 3 features combined with
level 2 can downgrade the performance compared with using
the level 2 features alone. Furthermore, using combination of
level 2 and 3 features outperforms using combination of level
1 and 3 features. These two observations indicates that features
in level 1 are not as good as the features in level 2. In addition,
level 2 features can almost cover the information expressed
in level 3 features. This result can also be explained with the
translation in Alloy analyzer, that the optimized and simplified
Kodkod relational formulas are closer to the boolean formulas
the SAT solver directly uses. Additionally, we can extract more
features at level 2 compared with level 3, which means level

TABLE V: Model accuracy on different feature combinations

Accuracy(%)

Model (1) 2 3) 1,2y (d1,3) (2,3 (1,23
svm 73.55 80.26 63.02 7620 7476 79.45 76.95
decisiontree 7035 80.53 69.29 7542 7281 7759 75.91
adaboost 73.70 81.68 71.08 73.78 7427 8133 75.73
gradientboosting 7727 81.43 70.04 78.88 7442 80.37 78.28
bagging 7376 81.09 7205 8046 73.39 81.25 80.50
knn 76.46 80.92 71.02 80.14 76.66 80.89 80.14
Ir 7528 77776 59.51 75.08 74770 76.55 76.63
Isvm 7239 76.52 59.42 73.69 7233 75.86 74.18
mlp 75.67 77.27 71.89 7833 7736 76.13 78.67

TABLE VI: Portfolio Approach Performance (time in seconds)

Portfolio co c1 co BS RS
solve time | 64638.5 | 176872.0 | 84627.5 | 180407.4 | 40046.5 | 1472258
ratio NA 2.74 1.31 2.79 0.62 2.28

2 features can provide more accurate and expressive logical
information.

Given the above discussion, we decide to only select the
features from level 2 for our portfolio approach. The feature
extraction time in level 2 for the whole case suite is 119.15
seconds, which is on average 0.016 seconds for each case.

D. RQA4: Effectiveness of Portfolio Approach

Our portfolio approach applies Adaboost classification algo-
rithm to do the solver selection. The accuracy of the selection
is 82%. We conduct 10-fold cross-validation to evaluate our
portfolio approach. Note that we divide our refined case suite
into 10 groups in unit of Alloy subjects. The solving time
of the portfolio approach is based on the prediction of each
validation set where the Alloy subjects are unseen in the
corresponding training set. For instance, if the prediction on
a sample in validation set is component solver cy, we get the
solving time of ¢ as the solving time of our portfolio approach
on this sample. Since there is no overlap among the validation
sets, we can get all the predicted solving time of the case suite.
We repeat the 10-fold cross-validation for 10 times to mitigate
the over-fitting problem.

The baselines of our portfolio approach are the individual
component solvers (co, ¢; and cg), the virtual solver which
randomly selects the component solver (RS), and the virtual
solver which always select the best component solver (BS).
The results of portfolio approach comparing with the baselines
are shown in Table VI in which solve time means the total
solving time of each solver on the refined test suite, and ratio
means the ratio between the baseline time overhead and our
portfolio approach time overhead. We can conclude from the
results that our portfolio approach outperforms each individual
component solver, as well as the random selection approach
significantly. In addition, the speed of our portfolio approach
achieves 62% of best selection approach speed and saves

236

19989 seconds comparing to the best on average component
solver cy.

E. RQS5: Machine Learning Model Effectiveness

We tried 9 machine learning models and the results are
shown in Table VII, in which mean and std indicate the
average predicted solving time and the standard deviation in
10 repetitions, Acc means the accuracy with the threshold
consideration. According to the results, we can say that all the
machine learning models perform relatively similar and stable
regarding the average solving time as well as the standard
deviation of the prediction. Furthermore, they all outperform
the three individual component solvers as well as the virtual
solver which does the random selection. Besides, these results
can further confirm that our extracted features are not only
informative but also robust.

Note that Decision tree, AdaBoost and SVM all perform
well in terms of the predicted time. The reason we choose
AdaBoost over Decision Tree and SVM is because it achieves
both the accuracy (in terms of the mean predicted time and the
accuracy) and the stability (in terms of the standard deviation)
of prediction.

VII. RELATED WORK

Our portfolio solver helps solve the problem of choosing a
good solver for given Alloy models based on machine learning
approach. Here, we discuss the related works in portfolio
combinatorial solvers using machine learning and Alloy.

A. Portfolio CSP Solvers Using Machine Learning

CPHydra [11] is the first portfolio CSP solver which ap-
plies a machine learning technique called k-nearest neighbor
algorithm (K-NN) to exploit the similarity of problems and
select the component solvers. The extracted features include
both static (syntactic) and dynamic features. The dynamic fea-
tures include modeling choices and search statistics. CPHydra
combines machine learning with the idea of partitioning CPU
time between the component solvers to select the solvers and
maximize the expected number of solved problems within a
settled time limit. SUNNY [29] is a lazy portfolio approach
which uses the K-NN algorithm just as CPHydra, but applies
three heuristics to decide the order of the component solvers
to run and minimize the average solving time of each problem.

TABLE VII: Execution time of predicted portfolio and acceleration ratio

Predicted time

Acceleration ratio

Model mean std(%) Acc(%) 1.t. s.t. at. S0 S1 S2
svm 64938.44 0.00 0.80 455 062 227 272 130 278
decisiontree 64477.84 4.03 0.81 459 062 229 275 131 280
adaboost 64638.51 0.10 0.82 457 062 228 274 131 279
gradientboosting 70040.82 0.00 0.81 421 057 210 253 121 258
bagging 69628.43 0.40 0.81 424 058 211 254 122 259
knn 76148.18 0.00 0.81 388 053 194 232 1.11 237

Ir 76748.25 0.00 0.78 385 052 192 230 1.10 235

Isvm 75977.08 1.50 0.77 389 053 194 233 1.11 238

mlp 70642.10 1.70 0.77 418 057 209 250 120 2.55

Variants of SUNNY have been proposed — a sequential port-
folio solver called sunny-cp [30], and a parallel solver called
sunny-cp2 [31]. In addition, Stojadinovi¢ et al. [32] propose
a simplified K-NN based portfolio solver which has a short
training phase and achieves better performance.

Some researchers have looked at the problem from other
angles. Loreggia et al. [33] introduce an automated way for
generating features by training a neural network on images
translated from problems. Arbelaez et al. [34], [35] use support
vector machines (SVM) to dynamically adapt the search
heuristics inside a single CSP solver. Stojadinovi¢ et al. [36]
and Hurley et al. [37] propose portfolio CSP approaches
for selecting among different SAT encoding, instead of CSP
solvers. An empirical study of the portfolio approaches for
CSPs is presented by Amadini [38], [39].

B. Portfolio SAT and SMT Solvers Using Machine Learning

SATzilla-07 [40] is the first mature SAT portfolio solver
which selects solvers using machine learning models for run-
time prediction. SATzilla [41] performs better than SATzilla-
07 and becomes a successful approach, making the portfolio
construction scalable and completely automated. To achieve
that, it integrates local-search solvers as component solvers
and applies hierarchical machine learning models on different
types of SAT problems. Malitsky et al. [42] investigated
alternative ways of building algorithm portfolios with K-NN
classification to determine which solver to use for a given
problem. In the SMT literature, Abdul Aziz et al. [43] uses a
linear machine learning technique called Ridge regression to
estimate the hardness of SMT problems. A Portfolio bit-vector
SMT solver called Wombit [44] applies a Decision Tree model
to select the candidate solvers.

Note that the potential advantage of using our portfolio
solver instead of the off-the-shelf portfolio SAT solver is that
our solver can make use of the features from relational logic
which makes our approach more specific and targeted for
Alloy models. Since the component SAT solvers we applied
in our portfolio solver are totally different from the ones in
the of-the-shelf portfolio solver, we leave an apple-to-apple
comparison for future work.

C. Alloy

Over the past years, researchers have developed many
extensions for Alloy [45]-[47]. Alloy* [48] allows users to

237

write models in second order logic. AUnit [49] defines unit
testing for Alloy. MuAlloy [50], [51] brings mutation testing
to Alloy. ASketch [52]-[54] is able to sketch partial Alloy
models. AlloyFL [55] helps to locate faults in Alloy models.

VIII. THREAD TO VALIDITY

Threats to internal validity are about whether over-fitting
may have occurred in the experimental evaluation, that is,
whether the generated machine learning model is designed to
fit the training data so closely that it becomes inaccurate for
unseen data. If the over-fitting happens, then our conclusions
about the advantages of the portfolio approach may not remain
valid once the approach is applied more broadly. To mitigate
this, the 10-fold cross validation has been used. Besides, the
techniques for reducing the machine learning model complex-
ity has also been applied to mitigate the over-fitting risk.

The main threat to external validity is that our collected
Alloy models may not generalize to other unseen models. We
use the models from the examples in Alloy Analyzer tool as
our subjects, but these models may not be representative of
other Alloy models. Although the models are from a diversity
of sources and applications, it is still possible that they exhibit
an undesirable lack of variety. In particular, previous research
has shown that machine learning techniques may behave
differently on a totally different problem.

IX. FUTURE WORK & CONCLUSION

Regarding to the above threats, we plan to generate a more
pervasive Alloy model dataset from the real-world systems to
make our portfolio approach more robust and applicable.

This paper proposed a portfolio approach for the Alloy
Analyzer based on machine learning techniques which auto-
matically selects an appropriate SAT solver for a certain Alloy
model. To achieve this, we extract the Alloy specific features
from three levels: Alloy source code level, Kodkod formula
level and the boolean formula level. Experimental results show
that our portfolio approach outperforms each of the component
solvers as well as random solver selection approach.

ACKNOWLEDGMENT

We thank Sasa Misailovic for helpful discussion and the
anonymous reviewers for valuable comments. This research
was partially supported by the US National Science Founda-
tion under Grant No. CCF-1718903.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

REFERENCES

G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for detailed
design,” in Behavioral Specifications of Businesses and Systems, 1999.
D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” in ASE, 2001.

D. Jackson, “Alloy: A lightweight object modelling notation,” TOSEM,
2002.

N. Eén and N. Sorensson, “An extensible sat-solver,” in SAT, 2003.

T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis,” in LISA, 2010.

N. Ruchansky and D. Proserpio, “A (not) nice way to verify the openflow
switch specification: Formal modelling of the openflow switch using
alloy,” SIGCOMM, 2013.

S. Maoz, J. O. Ringert, and B. Rumpe, “Cd2alloy: Class diagrams
analysis using alloy revisited,” in MODELS, 2011.

E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS, 2007.

“Sat competition 2018 homepage,”
http://sat2018.forsyte.tuwien.ac.at/

D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67-82, April 1997.

E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
“Using case-based reasoning in an algorithm portfolio for constraint
solving,” in Irish Conference on Artificial Intelligence and Cognitive
Science, 2008, pp. 210-216.

K. Wang, A. Sullivan, and S. Khurshid, “Automated model repair for
alloy,” in ASE, 2018.

K. Wang, A. Sullivan, and S. Khurshid, “Arepair: A repair framework
for alloy,” in ICSE, 2019.

2018. [Online]. Available:

“Alloy 4 tutorial materials.” [Online]. Available:
http://alloy.lcs.mit.edu/alloy/tutorials/day-course/
E. Torlak, “Kodkod documentation.” [Online]. Available:

http://emina.github.io/kodkod/doc/

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (Second Edition).
Springer, 2017, vol. 1.

N. S. Altman, “An introduction to kernel and nearest-
neighbor nonparametric regression,” The American Statistician,
vol. 46, no. 3, pp. 175-185, 1992. [Online]. Available:

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
P. McCullagh and J. Nelder, Generalized Linear Models, Second
Edition, ser. Chapman and Hall/lCRC Monographs on Statistics
and Applied Probability Series. Chapman & Hall, 1989. [Online].
Available: http://books.google.com/books?id=h9kFH2_FfBkC

M. A. Hearst, “Support vector machines,” IEEE Intelligent Systems,

vol. 13, no. 4, pp. 18-28, Jul. 1998. [Online]. Available:
http://dx.doi.org/10.1109/5254.708428

J. R. Quinlan, “Induction of decision trees,” Mach. Learn.,
vol. 1, no. 1, pp. 81-106, Mar. 1986. [Online]. Available:

http://dx.doi.org/10.1023/A:1022643204877

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119-139, 1997.

J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189-1232, 2001.

M. J. H. Heule, M. J. Jarvisalo, and M. Suda, “Proceedings of sat
competition 2018: Solver and benchmark descriptions,” ser. Department
of Computer Science Series of Publications B, 2018. [Online].
Available: http://hdl.handle.net/10138/237063

F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algo-
rithm runtime prediction: The state of the art,” 2012, coRR,
http://arxiv.org/abs/1211.0906.

L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” Al Magazine, vol. 35, no. 3, pp. 48-60, 2014.

K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning
for algorithm selection,” ACM Computing Surveys, vol. 41, no. 1, pp.
6:1-6:25, 2009.

L. Kotthoff, I. P. Gent, and 1. Miguel, “An evaluation of machine
learning in algorithm selection for search problems,” AI Commun.,

238

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

vol. 25, no. 3, pp. 257-270, Aug. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2350296.2350300

R. Amadini, M. Gabbrielli, and J. Mauro, “SUNNY: A lazy portfolio
approach for constraint solving,” Theory and Practice of Logical Pro-
gramming, vol. 14, no. 4-5, pp. 509-524, 2014.

R. Amadini, M. Gabbrielli, and J. Mauro, “SUNNY-CP: A sequential
CP portfolio solver,” pp. 1861-1867, 2015.

R. Amadini, M. Gabbrielli, and J. Mauro, “A multicore tool for con-
straint solving,” pp. 232-238, 2015.

M. Stojadinovié¢, M. Nikoli¢, and F. Mari¢, “Short portfolio training for
CSP solving,” 2015, coRR, https://arxiv.org/abs/1505.02070.

A. Loreggia, Y. Malitsky, H. Samulowitz, and V. A. Saraswat, “Deep
learning for algorithm portfolios,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence, 2016, pp. 1280-1286.

A. Arbelaez, Y. Hamadi, and M. Sebag, “Online heuristic selection in
constraint programming,” in Proceedings of the International Symposium
on Combinatorial Search, 2009, https://hal.inria.fr/inria-00392752/.

A. Arbelaez, Y. Hamadi, and M. Sebag, “Continuous search in constraint
programming,” in Autonomous Search, Y. Hamadi et al., Eds., 2011,
ch. 9, pp. 219-243.

M. Stojadinovi¢ and F. Mari¢, “meSAT: Multiple encodings of CSP to
SAT,” Constraints, vol. 19, no. 4, pp. 380403, 2014.

B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan, “Proteus: A
hierarchical portfolio of solvers and transformations,” in Integration of
Al and OR Techniques in Constraint Programming: Proceedings of the
11th International Conference (CPAIOR’14), H. Simonis, Ed., vol. 8451,
2014, pp. 301-317.

R. Amadini, M. Gabbrielli, and J. Mauro, “An extensive evaluation of
portfolio approaches for constraint satisfaction problems,” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 3,
no. 7, pp. 81-86, 2016.

R. Amadini, M. Gabbrielli, and J. Mauro, “An empirical evaluation of
portfolios approaches for solving CSPs,” in Integration of Al and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems: Proceedings of the 10th International Conference, C. Gomes
and M. Sellmann, Eds., 2013, pp. 316-324.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla-07: The
design and analysis of an algorithm portfolio for sat,” in Principles
and Practice of Constraint Programming — CP 2007, C. Bessiere, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 712-727.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-
based algorithm selection for SAT,” CoRR, vol. abs/1111.2249, 2011.
[Online]. Available: http://arxiv.org/abs/1111.2249

Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Non-
model-based algorithm portfolios for sat,” in Theory and Applications
of Satisfiability Testing - SAT 2011, K. A. Sakallah and L. Simon, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 369-370.
M. A. Aziz, A. Wassal, and N. Darwish, “A machine learning technique
for hardness estimation of QFBV SMT problems,” in Proceedings
of the 10th International Workshop on Satisfiability Modulo Theories
(SMT’12), ser. EPiC Series in Computing, P. Fontaine and A. Goel,
Eds., vol. 20. EasyChair, 2013, pp. 57-66.

W. Wang, H. Sgndergaard, and P. J. Stuckey, “Wombit:
A portfolio bit-vector solver using word-level propagation,”
Journal of Automated Reasoning, Nov 2018. [Online]. Available:
https://doi.org/10.1007/s10817-018-9493-1

A. Sullivan, K. Wang, S. Khurshid, and D. Marinov, “Evaluating state
modeling techniques in Alloy,” in SQAMIA, 2017.

T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“Aluminum: principled scenario exploration through minimality,” in
ICSE, 2013.

T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi, “The
power of "why" and "why not": Enriching scenario exploration with
provenance,” in FSE, 2017.

A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A general-
purpose higher-order relational constraint solver,” in ICSE, 2015.

A. Sullivan, K. Wang, and S. Khurshid, “AUnit: A Test Automation
Tool for Alloy,” in ICST, 2018.

A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid, “Automated test
generation and mutation testing for Alloy,” in ICST, 2017.

K. Wang, A. Sullivan, and S. Khurshid, “MuAlloy: A Mutation Testing
Framework for Alloy,” in ICSE, 2018.

[52]

[53]
[54]

[55]

K. Wang, A. Sullivan, M. Koukoutos, D. Marinov, and S. Khurshid,
“Systematic generation of non-equivalent expressions for relational
algebra,” in ABZ, 2018.

K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Solver-based
sketching Alloy models using test valuations,” in ABZ, 2018.

K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Asketch: A
sketching framework for alloy,” in FSE, 2018.

K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Fault localization
for declarative models in Alloy,” in eprint arXiv:1807.08707, 2018.

239

