f‘)

Check for
updates

A Study of Learning Data Structure
Invariants Using Off-the-shelf Tools

Muhammad Usman®™), Wenxi Wang®™), Kaiyuan Wang®™), Cagdas Yelen®™,
Nima Dini® and Sarfraz Khurshid ™=

University of Texas at Austin, Austin, TX 78712, USA
muhammadusman,wenxiw,kaiyuanw, cagdas,nima.dini,khurshid}{@utexas.edu
y g

Abstract. Data structure invariants play a key role in checking correct-
ness of code, e.g., a model checker can use an invariant, e.g., acyclicity
of a binary tree, that is written in the form of an assertion to search for
program executions that violate it, e.g., erroneously introduce a cycle in
the structure. Traditionally, the properties are written manually by the
users. However, writing them manually can itself be error-prone, which
can lead to false alarms or missed bugs. This paper presents a controlled
experiment on applying a suite of off-the-shelf machine learning (ML)
tools to learn properties of dynamically allocated data structures that
reside on the program heap. Specifically, we use 10 data structure sub-
jects, and systematically create training and test data for 6 ML methods,
which include decision trees, support vector machines, and neural net-
works, for binary classification, e.g., to classify input structures as valid
binary search trees. The study reveals two key findings. One, most of the
ML methods studied — with off-the-shelf parameter settings and without
fine tuning — achieve at least 90% accuracy on all of the subjects. Two,
high accuracy is achieved even when the size of the training data is sig-
nificantly smaller than the size of the test data. We believe future work
can utilize the learnt invariants to automate dynamic and static analy-
ses, thereby enabling advances in machine learning to further enhance
software testing and verification techniques.

Keywords: Data structure invariants - Machine learning - Korat

1 Introduction

Data structure invariants are properties that the data structures in a program
must satisfy in valid states, e.g., a binary search tree implementation must create
structures that are trees, i.e., contain no cycles, and consist of keys that appear
in the tree in the correct search order. In object-oriented programs such invari-
ants are termed class invariants and are expected to hold in all publicly-visible
states [28,34].

Data structure invariants play a key role in testing and verification. For exam-
ple, when written as assertions they enable a number of assertion-based checking
© Springer Nature Switzerland AG 2019

F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 226-243, 2019.
https://doi.org/10.1007/978-3-030-30923-7_13

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 227

techniques. To illustrate, in software testing, they serve as test assertions as well
as a basis of automated test generation [4,27]; in model checking, they serve as
target assertions that a model checker can try to violate, i.e., find a program
execution that leads to an assertion violation [20,23,33,47]; in runtime verifica-
tion, they provide a basis for error recovery using data structure repair [11,13];
and in static analysis, they enable deep semantic checking [8,24,35,40,42,48].

Data structure invariants are often written manually by users who want to
utilize them for automated testing or verification. However, writing complex
invariants manually itself can be error-prone and errors in invariants can lead
to false alarms or undetected faults. To reduce the burden on the user to write
invariants, researchers have developed several techniques for automatically cre-
ating invariants using various forms of analyses. While a vast majority of the
techniques utilize static or dynamic analysis [10,12,14,26,29,32,35,40,42,43,48],
a few techniques have leveraged machine learning methods to characterize invari-
ants [16,30] and serve as a basis for our work.

This paper presents a controlled experiment on applying a suite of off-the-
shelf machine learning (ML) tools to learn invariants of dynamically allocated
data structures. Specifically, we use 6 ML methods that include four methods
based on decision trees [39], as well as support vector machines [9] and multi-
layer perceptrons [36]. As data structure subjects we use structural invariants of
10 data structures that have been studied before in several contexts [4,13,16],
including most recently for training binary classifiers using feed-forward artificial
neural networks [16].

The subjects were introduced in the public distribution of the automated
test input generator Korat [1,4] and were originally developed for the purpose
of evaluating Korat’s input generation. Each data structure contains a Java
method called repOFk that implements an executable check for the properties
that represent the corresponding structural invariants (and a variety of other
methods). Given a repOk method and a bound on the input size, e.g., 5 nodes for
a binary search tree, Korat performs a backtracking search over the space of all
candidate inputs (up to the size bound) for repOk to systematically enumerate
all inputs for which repOk returns true. For increased efficiency, Korat only
considers non-isomorphic candidates. During its search, Korat typically inspects
each candidate by running repOFk on it to get feedback for pruning the search,
and as a result outputs only the valid inputs, i.e., inputs for which rep Ok returns
true.

Our study methodology is as follows. For each data structure subject invari-
ant and ML model, we first create training and test data, then we train the ML
model using the training data, and finally we evaluate it using the test data. To
create the training/test data, we use Korat to exhaustively explore the bounded
input space and create every valid input. The set of all valid inputs forms the
positive samples and a subset of invalid inputs inspected by Korat forms the
negative samples. In general, for complex structural properties, the number of
valid structures is much smaller than the number of invalid structures. There-
fore, to avoid training an incorrect model that simply learns to predict false with

228 M. Usman et al.

high probability, we use balanced sets of samples such that there are the same
number of positive and negative samples. To study how learnable the invariants
are we vary the ratio of training and test data from 75 to 25 respectively, which
is common in the field of machine learning, to 10 to 90 respectively, which allow
us to study the setting where the training data is relatively scarce.

The study reveals two key findings. One, most of ML methods studied — with
off-the-shelf parameter settings and without fine tuning — achieve at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the size
of the training data is significantly smaller than the size of the test data. We
find the results quite encouraging and believe machine learning methods hold
much promise in developing new techniques for more effective software analysis.

The training and test/evaluation datasets used in our study are publicly
available at: https://github.com/muhammadusman93/Spin2019KoratML.

2 Background: Korat and Learning

This section provides the necessary background on the Korat test input genera-
tor [4] and basic machine learning models that we use in our study.

2.1 Korat

Korat is a framework for automatic test input generation for Java programs. It
takes as input a Java predicate, termed repOk method, and a finitization on the
input domain, and generates all possible inputs for which the predicate returns
true. Korat repeatedly executes repOk on candidate inputs, monitors the object
fields accessed by repOk for each input, and uses this information to create next
candidates to consider. Korat implements a backtracking search that prunes
large parts of the input space while preserving the completeness of the search
and correctness of the generated valid test input. Moreover, Korat generates
only non-isomorphic inputs and does not consider any isomorphic candidates
during search, which significantly reduces the number of generated inputs and
time overhead.

To illustrate, Fig. 1 shows the BinaryTree class, including the rep0k predicate
and finitization finBinaryTree. The binary tree has a root field of type Node
and a size field that is a primitive integer. The Node class declares a left field
and a right field, representing the left child and the right child of the node. The
method repOk checks if its input does not have any cycle and has the correct value
for size. repOk returns true if the checked property holds and false otherwise.
The finitization method finBinaryTree specifies a bound on the total number of
nodes, and the min and max values for size.

The Korat search internally represents each candidate input structure using
a candidate vector of integer indices whose length depends on the finitization
and elements that represent object fields. Each element of the candidate vector
indexes into an appropriate domain of values for the corresponding field. To
illustrate, for a finitization of up to 3 nodes (Node 1, Node 2, and Node 3) and

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 229

class BinaryTree {
static class Node {
Node left, right; }

Node root;
int size;

boolean repO0k() {
if (root == null) return size == 0;
// checks that tree has no cycle
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root) ;
while (!workList.isEmpty()) {
Node current = (Node) workList.removeFirst();
if (current.left != null) {
if (!visited.add(current.left)) return false;
workList.add(current.left);
}
if (current.right != null) {
if (!visited.add(current.right)) return false;
workList.add (current.right);

}
}
// checks that size is consistent
return (visited.size() == size); }

static IFinitization finBinaryTree(int size) {
return finBinaryTree(size, size, size); }

static IFinitization finBinaryTree(int nodesNum, int minSize,
int maxSize) {
IFinitization f = FinitizationFactory.create(BinaryTree.class);
I0bjSet nodes = f.createObjSet(Node.class, nodesNum, true);
f.set("root", nodes);
f.set("size", f.createIntSet(minSize, maxSize));
f.set("Node.left", nodes);
f.set("Node.right", nodes);
return f; }}

Fig. 1. BinaryTree repOk and finitization

size equal to 3, Korat creates a candidate vector of length 8: index 0 represents
the value of the root field; index 1 represents the size (and its value is fixed as
0 since size is allowed to take only one value, i.e., 3); indexes 2 and 3 represent
the left and right children of Node 1 respectively; likewise indexes 4, 5 and
6, 7 represent the left/right children of Node 2 and Node 3 respectively. The

230 M. Usman et al.

value of each index that represents a node ranges from 0 to 3, representing
4 possibilities: [null, Node 1, Node 2 and Node 3]. This finitization defines a
bounded exploration space of size 4 x 1 x (4 x 4)3 = 16, 384 since the tree root
and each of left and right fields of each of the 3 nodes have 4 possible values,
and the tree size is fixed to 1 value.
The Korat search generates the following candidate vectors for a binary tree
using this finitization:
00000000::01
10000000::0231
10010000::023
10020000::023451
10020100::02345
10020200::02345
10020300::02345671***
10020301::0234567
10231000::0234
10232000::0234
10233000::02314

Each row shows two entities separated by ::. The first entity is the candidate
vector and is shown before ::. The second entity is field access ordering and is
shown after ::. Valid structures are marked by *x*x*.

Fig. 2. Invalid binary tree Fig. 3. Valid binary tree

To illustrate, the candidate vector [1 0 0 2 0 2 0 0] represents an invalid
binary tree as shown in Fig.2. The first index states that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node
2 itself. Both children of Node 3 are null. Thus, the candidate vector represents
an invalid binary tree because Node 2 has a self-loop (cycle).

Another example candidate vector [1 0 0 2 0 3 0 0] represents a valid binary
tree as shown in Fig.3. This candidate vector shows that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 231

3. Both children of node 3 are null. Since the binary tree has no cycle, and it
has size 3 with 3 nodes reachable from the root, the binary tree is valid.

For this finitization, Korat creates and inspects 63 candidate structures (out
of 16384 total candidates while pruning the rest), and outputs 5 of them as valid
binary trees with 3 nodes. Korat search breaks isomorphisms, which helps to
reduce the number of structures to be explored and generated, thus speeding
up the search — note, none of the structures explored by Korat are isomorphic.
To illustrate Korat’s backtracking search, when Korat finds that the candidate
vector [1 0 0 2 0 2 0 0] makes the repOk returns false and the last accessed field
is the right child of Node 2, it simply increases the value of index 5 (from 2 to
3) and point the right child of Node 2 to Node 3. Korat knows that the left
and right children of Node 3 do not affect the result of repOk since those fields
are not read by repOk for the given candidate and thus can be ignored for this
combination of values for fields accessed. This pruning helps Korat remove a lot
of invalid structures in practice.

2.2 Machine Learning Models

The machine learning models used in the study are Decision Tree (DT) Classi-
fier [39], ensemble Decision Tree Classifiers (including Random Forest Tree Clas-
sifier (RFT) [22], Gradient Boosting Tree Classifier (GBDT) [18] and Adaboost
Decision Tree Classifier (ADT) [17]), Support Vector Machine (SVM) [9], and
Multi-Layer Perceptron (MLP) [36]. We used Python programming language
and Scikit-Learn library [2] to implement these machine learning models.

2.2.1 Decision Tree Classifiers

DT classifier takes a tree as a classifier where each leaf node represents the label
of the class, and each intermediate node represents a test on a feature. DT is
easy to train and can handle qualitative features without using dummy encod-
ing. However, DT is not good in understanding complex relationships between
features and is sensitive to the changes in training data.

2.2.2 Ensemble Decision Tree Classifiers

RFT classifier is based on the bootstrap aggregating (Bagging) technique. The
underlying idea is to create multiple decision trees and then combine their results
to predict the final classification labels. This technique reduces variance of the
model and also does not increase bias, and usually overcomes the problem of
over-fitting if sufficient number of decision trees are used. GBDT classifier uses
a differentiable loss function and creates a strong model using many weak models.
ADT classifier makes use of the results of previous trees to select the next trees
so that the focus can be shifted on samples which are much harder to classify.
Here, multiple weak learners work together to make a strong classifier. After
every iteration, weights are assigned to the training samples and higher weight
samples get more priority in later trees.

232 M. Usman et al.

Input Feature 1 ————)

> Valid Structure
Input Feature 2 ———)

Machine Learning
Model
———— Invalid Structure

Input Feature n ————%|

Fig. 4. Architecture of the experimental setup

2.2.3 Support Vector Machine

SVM is a non-probabilistic binary linear classifier and assigns each training sam-
ple to one of the two categories. They use a technique called kernel trick in
which the data is mapped to a higher dimension making it linearly separable.
This makes SVM useful in high dimensional spaces, and flexible with different
kernel functions. However, when the number of features is more than the train-
ing samples, it is critical to choose the right kernel function and regularization
parameters.

2.2.4 Multi-layer Perceptron

MLP is a type of artificial neural network consisting of multiple layers. The first
layer is called the input layer and the last layer is called the output layer, with
at least one hidden layer in between. The algorithm applies back propagation
technique for training, using different non-linear activation functions like tanh
and relu. MLP are fully connected and each connection has a weight which is
updated during the training phase usually by Stochastic Gradient Descent [41]
approach. The main advantage of MLP is its excellent performance in classifi-
cation, although more training data is needed which makes the training phase
time-consuming.

2.3 Encoding Data Structures as Inputs to ML Models

The Korat candidate vector representation provides an immediate encoding for
input structures as inputs for binary classification using machine learning models
as shown in recent work [16]. Once the finitization is defined, the length of the
candidate vector and the ranges of values each element in the vector are precisely
defined. Thus, if the candidate vector has length n, the machine learning model
for binary classification has n input features and one output (in {0, 1}), which
represents whether the input structure is valid (1) or not (0).
Figure 4 illustrates the experimental setup.

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 233

3 Study Subjects

As data structure subjects we select 10 subjects from the standard Korat distri-
bution [1,4]. The subjects include a variety of textbook data structures imple-
mented in Java: singly-linked lists (SLL), sorted lists (SL), binary trees (BT),
binary search trees (BST), red-black trees (RBT), binary heaps (BH), heap
arrays (HA), Fibonacci heaps (FH), disjoint sets (DS), and directed acyclic
graphs (DAG).

4 Study Methodology

In this section, we present our study methodology including generation of train-
ing and test data using Korat, selection of finitization bounds for Korat, selection
of positive and negative samples, and learning with machine learning classifiers.

4.1 Generation of Training and Test Data

For each data structure invariant, we use Korat to generate the training and
test data for the machine learning models. Inputs that satisfy the invariants are
termed positive data and inputs that violate the property are termed negative
data. The inputs generated by Korat serve as positive data and the candidates
explored by Korat but found to violate an invariant serve as a pool for selecting
negative data. Given the structural complexity of all our subjects, the number of
valid structures is much smaller than the number of invalid structures. For each
subject, we create balanced [38] pools of positive and negative data. Section 4.2
explains how we select the finitization bounds in view of the learning quality of
the ML models. Section 4.3 further describes how we select positive and negative
data.

Each data sample consists of a candidate vector whose elements serve as
features, and a binary label that specifies whether the candidate is valid or
invalid. Since different data structures have different fields and may have different
finitizations, the positive and negative data for different subjects may vary in
length. However, for one subject, each data sample has the same length. To
illustrate, for the binary tree subject, for a finitization that allows 10 nodes, the
candidate vector has length 22 where the first two fields are root and size of the
tree and each of the subsequent two fields represent left and right child of one of
the 10 nodes. Thus, each data sample has 23 entries, 22 that are features defined
by the Korat candidate vector and 1 that defines whether the candidate is valid
or invalid.

4.2 Selection of Finitization Bounds

The finitization bound chosen for each structure determines the space of input
candidates that Korat searches and the number of valid structures it creates.
Note that different data structures can have very different numbers of valid

234 M. Usman et al.

structures for the same size, e.g., the number of binary search trees with n nodes
is much greater than the number of red-black trees for n nodes due to the height-
balance property of red-black trees.

Our main criteria for setting the finitization bound for Korat was to select
the smallest bound such that there were sufficient amount of training and test
data for the application of machine learning models and at the same time if
manual tuning of parameters is needed, the amount of data does not create an
impractical problem. Specifically, we chose the bound of at least 10,000 positive
data, i.e., valid structures, for all but one of our subjects.

As we explain in Sect. 4.3, we select the same number of negative samples
as positive samples, so we have at least 20,000 samples for each data structure
invariant (except one). To illustrate, we have to set the finitization bound of
Binary-Tree property to 10 nodes, which generates 16796 positive samples.

For one of our subjects, namely red-black trees, we chose a finitization bound
of 9 nodes, which gave fewer than 10,000 valid solutions since generation for a
higher bound timed out. Specifically, we used the bound of 9,0,9,9, which specifies
the number of nodes, the minimum size of the tree, the maximum size of tree
and the number of unique integer keys in the tree respectively. For this bound,
there are 6753 positive samples and 2262280 negative samples. The positive
samples consist of all non-isomorphic red-black trees that can be formed with
up to 9 nodes where each node contains a key from a set of 9 unique integer
values. Table 1 shows for each subject, the finitization bound (as provided to the
finitization method of the subject using --args command line option), the size
of the state space for the given finitization, the number of valid structures found
by Korat, the number of invalid structures explored by Korat, and finally the
total number of structures explored by Korat.

Table 1. Candidate structures explored by Korat for each data structure subject.

Subject | Finitization | State | Valid Invalid | Total
bound space | explored | explored | explored

SLL 0,9,10,10 |27 26443 | 500868 | 527311
BST 18,0,8,0,7 281 12235 | 3613742 | 3625977

BH 7 2109 1107416 | 154372 | 261788
BT 10 272 16796 | 798304 | 815100
SL 0,8,9,9 296 24310 | 150962 | 175272
HA 6 223 13139 51394 | 64533
DS 5 239 41546 | 372309 | 413855
RBT]9,0,9,9 2135 6753 | 2262280 | 2269033
FH 5 282 52281 | 112084 | 164365

DAG |6 2108 19696 | 185197 | 204893

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 235

4.3 Selection of Positive and Negative Samples

The positive samples consist of every (non-isomorphic) valid structure generated
by Korat for the chosen finitization bound. To balance the dataset, we randomly
select the same amount of negative samples as the positive ones from the full
negative dataset that consists of each candidate Korat explored but found to
be invalid. To illustrate, the Disjoint-Set invariant had 41546 positive samples
and 372309 negative samples. We kept all of the 41546 positive samples and
randomly selected 41546 samples from 372309 negative samples.

4.4 Learning with Machine Learning Classifiers

A key factor in applications of machine learning models is the ratio of training
and test data. Traditionally, ratios of 80:20 or 75:25 for training:test are com-
monly used. We use 4 different ratios in our study. Specifically, we performed
experiments using each of the following training:test ratios — 75:25, 50:50, 25:75,
and 10:90. Thus, on one extreme, we explore the more traditional setting where
75% of data are used for training and 25% are used for evaluation, and on the
other extreme, we explore the unconventional setting of using just 10% data
for training and 90% for evaluation. As is common practice in evaluating ML
models, our training and test data had no overlap. Moreover, due to the use of
Korat, not only is there no intersection in the training and test datasets but also
the two datasets don’t contain isomorphic structures.

We ran experiments using base ML models taken off-the-shelf, and also using
manually tuned models. The tuned models performed only slightly better than
base models but the overhead in finding tuned hyper-parameters outweighed
the increase in accuracy. Therefore, we report the results of base models only in
Tables 2 and 3.

We report counts of True Negatives (TN), False Positives (FP), False Neg-
atives (FN) and True Positives (TP) in Tables2 and 3. True Negative is when
the ground truth label is 0 and the classifier correctly predicted label 0. False
Positive is when the ground truth label is 0 but the classifier wrongly predicted
label 1. False Negative is when the ground truth label is 1 but the classifier
wrongly predicted label 0. True Positive is when the ground truth label is 1
and the classifier correctly predicted label 1. In addition, we use four metrics to
report the results of the classification: Precision, Recall, Accuracy and F1 score.
Precision is calculated as sz_ippp. Recall is calculated as TPT_F%. Accuracy is

. TP+TN
calculated as 75 -

2% PrecisionxRecall
TN+FP+FN "

F1 score is calculated as Precisiomt Becall -

5 Experimental Results

Experiments were performed with training data percentage of 10%, 25%, 50%,
and 75%, and in each case the rest of the data was used for testing, i.e., evaluation
of accuracy. In this section, we included detailed results obtained using 10%
training data (Tables 2 and 3) and the remaining detailed results are included in

236 M. Usman et al.

Table 2. Classification results for 10:90 training:test ratio

Property | Model | TN Fp |FN | TP Accuracy | Precision | Recall | F1

SLL DT 23728 | 37 39 23794 |0.9984 0.9984 0.9984 |0.9984
RFT 23659 | 106 25 | 23808 |0.9972 0.9956 0.9990 | 0.9973
GBDT |23729| 36 24 123809 |0.9987 |0.9985 | 0.9990 0.9987
ABT 224021363 | 396 |23437|0.9630 0.9450 0.9834 |0.9638
SVM | 23196 | 569 24 23809 |0.9875 0.9767 0.9990 | 0.9877
MLP |23691| 74 24 23809 |0.9979 0.9969 0.9990 | 0.9979
BST DT 10092 | 921 | 865 | 10145 |0.9189 0.9168 0.9214 |0.9191
RFT 10258 | 755 | 580 | 10430 0.9394 0.9325 0.9473 |0.9399
GBDT | 10149 | 864 | 192 10818 |0.9521 |0.9260 0.9826 | 0.9535
ABT |10030| 983 | 324 | 10686 | 0.9407 0.9158 0.9706 |0.9424
SVM | 10325 | 688 | 1630 | 9380 |0.8947 0.9317 0.8520 |0.8900
MLP |10337| 676 | 380 10630 0.9521 |0.9402 | 0.9655 |0.9527
BH DT 96447 | 211 | 155 | 96536 | 0.9981 0.9978 0.9984 |0.9981
RFT 96258 | 400 | 215 | 96476 | 0.9968 0.9959 0.9978 |0.9968
GBDT | 95902 | 756 | 382 | 96309 | 0.9941 0.9922 0.9960 |0.9941
ABT |93536 | 3122 | 1958 | 94733 |0.9737 0.9681 0.9797 |0.9739
SVM 96391 | 267 50 | 96641 | 0.9984 0.9972 0.9995 | 0.9984
MLP 96523 | 135 | 123 96568 | 0.9987 |0.9986 | 0.9987 | 0.9987
BT DT 14979 | 180 51 115023 /0.9924 |0.9882 |0.9966 |0.9924
RFT |14520| 639 | 607 | 14467 | 0.9588 0.9577 0.9597 |0.9587
GBDT | 14774 | 385 | 194 | 14880 |0.9808 0.9748 0.9871 |0.9809
ABT |13369 | 1790 0 | 15074 0.9408 0.8939 1.0000 | 0.9440
SVM | 10467 | 4692 | 4996 | 10078 | 0.6796 0.6823 0.6686 | 0.6754
MLP | 14323 | 836 | 499 | 14575 0.9558 0.9458 0.9669 | 0.9562
SL DT 21687 | 154 83 121834 /0.9946 |0.9930 |0.9962 |0.9946
RFT |21306| 535 | 216 | 21701 |0.9828 0.9759 0.9901 |0.9830
GBDT | 21262 | 579 | 160 | 21757 |0.9831 0.9741 0.9927 |0.9833
ABT | 182123629 |3476 | 18441 |0.8376 0.8356 0.8414 |0.8385
SVM | 21345| 496 12 21905 | 0.9884 0.9779 0.9995 | 0.9885
MLP |21537| 304 15 121902 | 0.9927 0.9863 0.9993 |0.9928

the GitHub repository and summarized here due to space limitation. We choose
to include 10% here because it is the most interesting case as we train on a
relatively small percentage of data and still are able to classify the data structure
invariants with surprisingly high accuracy. The key results are as follows.

For 10% training data ratio (i.e., 90% test data), the maximum accuracy for
the subject invariants was 99.87%, which was achieved for the binomial heap
invariant using multi-layer perceptrons (MLPs). The minimum accuracy was

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 237

Table 3. Classification results for 10:90 training:test ratio

Property | Model | TN FP |FN |TP Accuracy | Precision | Recall |F1

HA DT 11735 99 46 [11771 |0.9939 |0.9917 0.9961|0.9939
RFT [11523 | 311 | 351 |11466 [0.9720 0.9736 |0.9703 |0.9719
GBDT 11218 | 616 95 11722 |0.9699 0.9501 |0.9920 |0.9706
ABT 8852 |2982 2812 | 9005 |0.7550 0.7512 |0.7620 |0.7566
SVM | 9993 |1841 | 536 | 11281 0.8995 0.8597 |0.9546 0.9047
MLP 10439 [1395 | 576 |11241 |0.9167 0.8896 |0.9513 |0.9194

DS DT 33595 3700 {3053 34435 |0.9097 0.9030 |0.9186 0.9107
RFT [33730 |3565 |2820 | 34668 |0.9146 |0.9068 0.9248 |0.9157
GBDT 31978 |5317 2623 | 34865 |0.8938 0.8677 0.9300 |0.8978
ABT [30079 |7216 |8561 |28927 |0.7890 0.8003 |0.7716 0.7857
SVM [30595 |6700 (2352 35136 |0.8790 0.8399 0.93730.8859
MLP 32849 4446 2350 |35138 |0.9091 0.8877 0.9373/0.9118

RBT DT 5807 | 276 | 107 | 5966 |0.9685 0.9558 0.9824 0.9689
RFT 5865 | 218 65 | 6008 |0.9767 0.9650 |0.9893 0.9770
GBDT | 5826 | 257 17 | 6056 |0.9775 |0.9593 |0.9972|0.9779
ABT 5836 | 247 | 32| 6041 |0.9770 0.9607 0.9947 0.9774
SVM 5849 | 234 | 155 | 5918 0.9680 0.9620 0.9745 |0.9682
MLP 5848 | 235 84 | 5989 |0.9738 0.9622 |0.9862 |0.9741

FH DT 45893 1063 |1217 145933 |0.9758 0.9774 |0.9742 |0.9758
RFT 44078 |2878 |3489 |43661 |0.9323 0.9382 0.9260 |0.9320
GBDT 42326 [4630 [2913 {44237 |0.9198 0.9053 0.9382 |0.9214
ABT |37152 |9804 |9024 |38126 |0.7999 0.7955 |0.8086 |0.8020
SVM 40973 |5983 |2187 {44963 |0.9132 0.8826 |0.9536 0.9167
MLP 45885 1071 |1100 |46050 {0.9769 |0.9773 0.9767|0.9770

DAG DT 16162 |1579 | 966 |16746 |0.9282 0.9138 |0.9455/0.9294
RFT 15708 [2033 |1852 | 15860 |0.8904 0.8864 |0.8954 |0.8909
GBDT 15000 |2741 |1638 |16074 |0.8765 0.8543 0.9075 |0.8801
ABT |14560 |3181 |3266 14446 0.8182 0.8195 |0.8156 |0.8176
SVM 14296 |3445 |2013 | 15699 | 0.8460 0.8200 |0.8863 |0.8519
MLP 15677 |2064 |2010 |15702 |0.8851 0.8838 |0.8865 |0.8852

75.50% for the heap array invariant using Adaboost trees. Overall, decision trees
(DTs) performed the best on data structure invariants whereas Adaboost trees
(ABTs) performed the worst for the invariants studied. DT average accuracy is
96.79%; random forest (RFT) average accuracy is 95.61%); gradient boosting tree
(GBDT) average accuracy is 95.46%; ABT average accuracy is 87.95%; support
vector machine (SVM) average accuracy for Korat is 90.54%; and MLP average
accuracy is 95.59%.

238 M. Usman et al.

For 25% training data ratio (i.e., 75% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.99%, which was
achieved for the Singly-linked list invariant using MLP. The minimum accuracy
was 71.60% for the sorted list invariant using SVM. Overall, decision trees per-
formed the best on data structure invariants whereas Adaboost Trees performed
the worst of the models studied. DT average accuracy is 98.33%; RFT average
accuracy is 97.34%; GBDT average accuracy is 95.55%; ABT average accuracy is
88.14%; SVM average accuracy is 92.30%; and MLP average accuracy is 97.87%.

For 50% training data ratio (i.e., 50% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.98%, which was
achieved for the heap array invariant using DT and binomial heap invariant using
MLP. The minimum accuracy was 75.13% for the binary tree invariant using
SVM. Overall, decision trees performed the best on data structure invariants
whereas Adaboost trees performed the worst of the models studied. DT average
accuracy is 98.96%; RFT average accuracy is 98.16%; GBDT average accuracy
is 95.78%; ABT average accuracy is 88.16%; SVM average accuracy is 93.64%;
and MLP average accuracy is 98.92%.

For 75% training data ratio (i.e., 25% test data), results observed as follows.
The maximum accuracy for the subject invariant was 100%, which was achieved
for the heap array invariant using DT and sorted list using MLP. The minimum
accuracy was 78.08% for the binary tree invariant using Adaboost Tree. Overall,
decision trees performed the best on data structure invariants whereas Adaboost
Trees performed the worst of the models studied. DT average accuracy is 99.27%;
RFT average accuracy is 98.58%; GBDT average accuracy is 95.65 %; ABT
average accuracy is 88.28%; SVM average accuracy is 94.45%; and MLP average
accuracy is 99.24%.

Overall, from the study we conclude that decision trees are quite good in
predicting structurally complex properties whereas Adaboost trees have the least
accuracy. We also observe that overall the accuracy ranges from a low of 71.60%
to a high of 100.00%.

All experiments were performed on an Intel i7-4700MQ (2.40 GHz) processor
with 8 GB of RAM.

6 Threats to Validity

In our experiments, we use a fixed size for each subject. The ML classifiers may
perform worse for smaller sizes of subjects due to less available training data
and better for larger sizes of subjects due to more available training data.

The negative examples generated by Korat makes the irrelevant fields their
default values because setting those fields to any value does not change the false
result of repOk. So those examples are canonical compared to the entire negative
example space. As a consequence, our results may not hold for other negative
examples.

As explained in Sect. 2.1, the training data from Korat was always correctly
labeled.Thus, this data had no noise. However, in practical situations, the train-

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 239

ing data does not have this quality. Normally, training data has some samples
which are labeled wrong or have missing values. This situation did not occur
here and this is one of the main reason behind high accuracy values observed
during the course of this study.

Another threat to validity is the undersampling technique used in this study.
We can see that the negative cases had a much larger state space and we have to
do undersampling to make the classes balanced. Also it is impossible to generate
all the negatives in some cases. For example, the structures explored for the Red-
Black Tree invariant were 2269033. We tried to randomly sample the negative
samples but more work should be done in future to find a better way of dealing
with imbalanced classes and dealing with large state space.

7 Related Work

A number of research projects introduced the use of machine learning meth-
ods in learning properties of software systems [5,7,16,19,30,44]. In the specific
context of structural properties of data structures, to our knowledge, Malik [30]
first introduced the use of a machine learning method, namely support vector
machines, for characterizing the properties, specifically by utilizing graph spec-
tra [6]. Most recently, Molina et al. [16] introduced the first use of feed-forward
artificial neural networks as binary classifiers for data structure properties and
showed their trained networks had high accuracy and worked better than an
approach [14] for using dynamic analysis for detecting likely program invariants.

Our study is closest to Molina et al.’s work and extends it in three important
directions. One, we evaluate 6 machine learning models, including decision trees
and support vector machines, that were not studied in their work that only used
neural networks. Two, we use 4 data structure subjects that were not in their
study as well as 6 subjects that were in their study. Three, we study several
different ratios of test/training data whereas their study did not consider any
specific test/training ratio, rather the ratio in their study was driven by the
training data generated by the test generation tool Randoop [37]. Moreover, we
have no overlap between test and training data whereas in their study there
was up to >50% overlap for positive cases (e.g., for binary search trees and
red-black trees) and for each subject the test data contained all of the training
data. Overall, the results of our study generally corroborate their findings, but
in addition, enhance them along new dimensions.

There is a rich body of work on using dynamic analysis and static analysis in
detecting and generating (likely) program invariants [12,14,26,32,35,40,42,43,
48]. Ernst [14,15] is a widely studied tool for generating likely program invariants.
The key idea in Daikon is to use a collection of pre-defined property templates
and observe program states at control points of interest to check which of the
properties consistently hold at those points, and then to consider those as likely
invariants. While Daikon is quite effective at properties over integers and arrays,
its effectiveness is relatively low for structural properties. Deryaft [29] followed
Daikon’s spirit to introduce a technique for generating likely structural invariants

240 M. Usman et al.

and can handle complex data structures. However, a key issue with the Daikon
family of techniques is that they require a collection of property templates and
can only create invariants based on those properties (and boolean connections
among them).

There is a large body of work on program synthesis [3,21,31] and sketch-
ing [46] that is applicable to invariant generation in principle. We believe machine
learning methods can also be helpful in improving some of these techniques, e.g.,
by guiding the search in the space of candidate programs [25,45].

8 Conclusion

This paper presented a controlled experiment on applying a suite of off-the-
shelf machine learning (ML) tools to learn properties of dynamically allocated
data structures that reside on the program heap. Specifically, we used 10 data
structure subjects, and systematically created training and test data for 6 ML
methods, which include decision trees, support vector machines, and neural net-
works, for binary classification, e.g., to classify input structures as valid binary
search trees. The study had two key findings. One, most of ML methods — with
off-the-shelf parameter settings and without fine tuning — achieves at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the
size of the training data is significantly smaller than the size of the test data.
We believe machine learning models offer a promising approach to characterize
data structure invariants.

Acknowledgments. This research was partially supported by the US National Sci-
ence Foundation under Grant Nos. CCF-1704790 and CCF-1718903.

References

1. Korat GitHub repository. https://github.com/korattest /korat

2. Scikit-Learn Library. https://scikit-learn.org/stable/. Accessed 18 Aug 2019

3. Bodik, R.: Program synthesis: opportunities for the next decade. In: 20th ACM
SIGPLAN International Conference on Functional Programming, p. 1 (2015)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 123-133 (2002)

5. Briand, L.C., Labiche, Y., Liu, X.: Using machine learning to support debugging
with tarantula. In: 18th IEEE International Symposium on Software Reliability,
pp. 137-146 (2007)

6. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-1939-6

7. Chen, Y.-F., Hong, C.-D., Lin, A.W., Riimmer, P.: Learning to prove safety over
parameterised concurrent systems. In: Formal Methods in Computer Aided Design
(FMCAD), pp. 76-83 (2017)

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog
programs using bounded model checking. In: 40th Design Automation Conference,
(DAC), pp. 368-371 (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 241

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297
(1995)

Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: dynamic symbolic execution
for invariant inference. In: 30th International Conference on Software Engineering,
pp- 281-290 (2008)

Demsky, B., Rinard, M.C.: Automatic detection and repair of errors in data struc-
tures. In: Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA, pp. 78-95 (2003)
Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abduc-
tive inference. In: ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, pp. 443-456 (2013)
Elkarablieh, B., Garcia, I., Suen, Y.L., Khurshid, S.: Assertion-based repair of
complex data structures. In: IEEE/ACM International Conference on Automated
Software Engineering, pp. 6473 (2007)

Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: International Conference on Software Engineering, pp. 449—
458 (2000)

Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1-3), 35-45 (2007)

Molina, F., Degiovanni, R., Ponzio, P., Regis, G., Aguirre, N., Frias, M.F.: Train-
ing binary classifiers as data structure invariants. In: International Conference on
Software Engineering (ICSE), May 2019

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189-1232 (2001)

Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 499-512 (2016)
Godefroid, P.: Model checking for programming languages using VeriSoft. In: 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 174-186 (1997)

Gulwani, S., Dimensions in program synthesis. In: 12th International ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming, pp.
13-24 (2010)

Ho, T.K.: Random decision forests. In: Third International Conference on Docu-
ment Analysis and Recognition, vol. 1 (1995)

Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2011)

Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis (ISSTA), pp. 14-25 (2000)

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: 32nd ACM/IEEE International Conference on Software
Engineering, vol. 1, pp. 215-224 (2010)

Jump, M., McKinley, K.S.: Dynamic shape analysis via degree metrics. In: 8th
International Symposium on Memory Management (ISMM), pp. 119-128 (2009)
Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng.
16(8), 870-879 (1990)

Liskov, B., Guttag, J.V.: Program Development in Java - Abstraction, Specifica-
tion, and Object-Oriented Design. Addison-Wesley, Boston (2001)

242

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

M. Usman et al.

Malik, M., Pervaiz, A., Uzuncaova, E., Khurshid, S.: Deryaft: a tool for generat-
ing representation invariants of structurally complex data. In: ACM/IEEE 30th
International Conference on Software Engineering (2008)

Malik, M.Z.: Dynamic shape analysis of program heap using graph spectra: NIER
track. In: 33rd International Conference on Software Engineering (ICSE), pp. 952—
955 (2011)

Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90-121 (1980)

McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
413-427. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-
3.31

Mera, E., Lopez-Garcia, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281-295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5_25

Meyer, B.: Class invariants: concepts, problems, solutions. CoRR, abs/1608.07637
(2016)

Mgller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 221-231 (2001)

Murtagh, F.: Multilayer perceptrons for classification and regression. Neurocom-
puting 2(5), 183-197 (1991)

Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: 29th International Conference on Software Engineering, pp. 75-84
(2007)

Provost, F.: Machine learning from imbalanced data sets 101. In: Proceedings of
the AAAT 2000 Workshop on Imbalanced Data Sets, vol. 68, pp. 1-3. AAAI Press
(2000)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science (2002)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat.
22(3), 400-407 (1951)

Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 105-118 (1999)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant gen-
eration using grobner bases. In: 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 318-329 (2004)

Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31, pp. 7751-7762 (2018)

Singh, S., Zhang, M., Khurshid, S.: Learning guided enumerative synthesis for
superoptimization (2019, under submission)

46.
47.

48.

A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 243

Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis (2008)

Visser, W., Havelund, K., Brat, G.P., Park, S.: Model checking programs. In: Fif-
teenth IEEE International Conference on Automated Software Engineering (ASE),
pp- 3-12 (2000)

Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data
structures. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 349-361 (2008)

