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ARTICLE INFO ABSTRACT

We assessed the use of §'°C, TOC and C/N values of bulk sedimentary organic matter (OM) to reconstruct
paleoenvironmental and relative sea-level change from mangrove environments in Puerto Rico. The modern
distribution of §'C, TOC and C/N values was described from 63 vegetation and 59 surface sediment samples
collected from three sites containing basin and riverine mangrove stands, and was compared to microfossil
(foraminiferal and thecamoebian) assemblages. Four vertically-zoned environments were identified: tidal flat
(8"°C: —18.6 + 2.8%0; TOC: 10.2 £ 5.7%; C/N: 12.7 + 3.1), mangrove (8'°C: —26.4 + 1.0%0; TOC:
Stable carbon isotopes 33.9 + 13.4%; C/N: 24.3 + 6.2), brackish transition (§'°C: —28.8 + 0.7%o; TOC: 40.8 =+ 11.7%; C/N:
Elementl ratios 21.7 + 3.7), and freshwater swamp (5'°C: —28.4 + 0.4%o; TOC: 42.8 = 4.8%; C/N: 17.0 = 1.1). These
environments had distinct 8'*C, TOC and C/N values, with the exception of the brackish transition and fresh-
water swamp zones that were difficult to distinguish on a geochemical basis alone. The foraminiferal assem-
blages were complicated by a group that did not show a relationship to elevation due to the presence of cal-
careous foraminifera occurring above mean higher high water (MHHW), likely resulting from washover or
transport by storms. However, the ratio of foraminifera to thecamoebians (F/T) along with §'*C, TOC and C/N
values refines the distinction between brackish and freshwater environments. Using linear discriminant analysis,
we applied the 8'*C, TOC, C/N and F/T distributions to a 1.7 m core containing a continuous sequence of
Rhizophora mangle peat, which began accumulating at ~1650-1930 CE. Together, microfossils, §'>C, TOC, and
C/N values, and the core chronology from **’Cs and radiocarbon dating revealed that sediments in the core
likely accumulated in response to anthropogenic sediment delivery, making it unsuitable for relative sea-level
reconstruction. We caution that in the absence of detailed litho-, bio-, chemo-, or chrono-stratigraphic analyses
as presented here, care should be taken in interpreting sea-level histories derived from single dates on mangrove
peats.
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1. Introduction

Holocene records of relative sea level (RSL) from low-latitude lo-
cations are important for constraining changes in ocean volume due to
meltwater from continental ice sheets (Milne and Mitrovica, 2008), yet
there is little data from these regions due to inherent difficulties in
producing accurate and precise RSL records in tropical environments.
Changes in RSL are reconstructed using sea-level indicators, features
that possess a systematic and quantifiable relationship to elevation with
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respect to the tidal frame (van de Plassche, 1986). Acropora palmata
corals have commonly been used to reconstruct deglacial changes in
RSL in low latitudes (Fairbanks, 1989; Bard et al., 1996; Peltier and
Fairbanks, 2006), but the current resolution provided by this indicator
( = 5m) exceeds the magnitude of changes observed in RSL during
much of the Holocene (Lighty et al., 1982; Milne and Peros, 2013; Khan
et al., 2017). Mangroves are forested intertidal wetlands, which in
tropical regions occupy a similar environmental niche to salt marshes,
and may provide an alternative means to corals to reconstruct Holocene

Received 1 January 2019; Received in revised form 6 June 2019; Accepted 7 June 2019

Available online 11 June 2019

0025-3227/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).



N.S. Khan, et al.

RSL change (Ellison, 2002; Toscano and Macintyre, 2003; Woodroffe
and Horton, 2005; Krauss et al., 2008; Scott et al., 2014; Saintilan et al.,
2014; Khan et al., 2017). However, in the absence of identifiable plant
macrofossils, which may be poorly preserved in tropical settings, it may
be difficult to distinguish between a peat formed by a mangrove or
freshwater vegetation community. Therefore, an additional method is
needed to confirm deposition within a mangrove setting. Microfossils
(e.g., foraminifera, thecomebians) preserved in buried sequences of salt
marsh sediments are employed as sea-level indicators because they
provide precise (< = 0.5m) estimates of Holocene RSLs (Charman
et al., 1998, 2002; Roe et al., 2002; Horton and Edwards, 2006; Kemp
et al., 2013; Barnett et al., 2017a), although in mangrove sedimentary
archives, microfossils are often absent or poorly preserved due to dis-
solution or degradation of test material (Goldstein and Watkins, 1999;
Wang and Chappell, 2001; Woodroffe et al., 2005; Berkeley et al., 2007,
2009). In addition, their distribution may be controlled by other en-
vironmental parameters (e.g., canopy cover, organic content of sedi-
ment, salinity, pH, calcium concentration, or wave climate/sediment
transport during storms) (Collins et al., 1999; Hippensteel and Martin,
1999; Scott et al., 2001; Debenay et al., 2002, 2004; Murray, 2003).
Pollen can also be used to reconstruct RSL from mangrove archives
(e.g., Engelhart et al., 2007), although it is an allochthonous indicator
and may be subject to similar preservation issues as foraminifera and
thecamoebians.

To provide an alternative to microfossil sea-level indicators, recent
studies have explored the use of stable carbon isotopes (8'3C), total
organic carbon (TOC) and total organic carbon to total nitrogen (C/N)
ratios of sedimentary organic matter (OM) in salt marsh environments
(Wilson et al., 2005a, 2005b; Lamb et al., 2007; Da Cruz Miranda et al.,
2009; Kemp et al., 2010, 2012b, 2017b, 2017a; Engelhart et al., 2013;
Craven et al., 2013, 2017; Goslin et al., 2013, 2017; Franca et al., 2015;
Milker et al., 2015; Khan et al., 2015a, 2015b; Wilson, 2017; Sen and
Bhadury, 2017). §'3C and C/N distinguish among different sources of
OM (Haines, 1977; Chmura and Aharon, 1995; Goii and Thomas, 2000;
Vane et al., 2013), in particular between C; and C, vegetation (Emery
et al., 1967; Malamud-Roam and Ingram, 2001) and freshwater and
marine OM (Fry et al., 1977; Fogel et al., 1992). TOC values provide a
direct measurement of the amount of organic carbon contained in se-
diments (Veres, 2002; Ostrowska and Porebska, 2012), and offer a more
accurate method than loss-on-ignition (LOI) (Ball, 1964), which may
over- or underestimate the total OM and carbon content (Schumacher,
2002; Boyle, 2004).

Recent studies investigating the use of §'3C, TOC, and C/N as a sea-
level indicator have mostly been confined to saltmarshes in temperate
regions of northwest Europe and the USA (Lamb et al., 2007; Wilson
et al,, 2005a, 2005b; Kemp et al., 2010, 2012b, 2017b, 2017a;
Engelhart et al., 2013; Craven et al., 2013, 2017; Goslin et al., 2013,
2017; Milker et al., 2015; Khan et al., 2015b, 2015a; Wilson, 2017).
Although mangroves are considered to be the low-latitude counterpart
of temperate marshes, they differ in vegetation type, environmental
conditions and relation to the tidal frame, which may affect the use of
§'3C, TOC, and C/N in paleoenvironmental and RSL reconstructions.
Herbaceous vegetation such as grasses, rushes, and sedges are found in
temperate marshes, while trees (and ferns) predominate in tropical
mangroves (Robertson and Alongi, 1992). §'3C, and to a much greater
extent C/N, varies between herbaceous and woody materials, and fur-
ther these vegetation types may differ in resistance to microbial attack
(Benner et al.,, 1987). In the tropics, higher temperatures and pre-
cipitation promote faster rates of organic matter breakdown and may
alter organic matter stability in the surface and subsurface (Cofiteaux
et al., 1995; Malhi et al., 1999; Franzluebbers et al., 2001; Upton et al.,
2018; Girkin et al., 2018). Furthermore, mangroves can colonize ele-
vations down to mean low water (MLW) (Dawes, 1998), whereas low
marsh vegetation found in temperate regions only grows above mean
tide level (MTL) (Davis and Fitzgerald, 2003). Due to the greater in-
undation period by tides and stronger bottom friction effects created by
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aerial roots, mangroves may therefore incorporate greater amounts of
allochthonous marine organic material into their sediments (Wolanski
et al., 1992). To date, no comprehensive study has examined the stable
carbon isotope geochemistry of mangrove environments for the purpose
of quantitative sea-level reconstruction.

Here, we describe the contemporary distribution of §'3C, TOC and
C/N alongside foraminifera and thecamoebians in mangrove environ-
ments from study sites in northeastern Puerto Rico and discuss its use in
Holocene palecenvironmental and RSL reconstruction. We examine the
vertical distribution of 8'3C, TOC and G/N, which we compare to that of
microfossil assemblages from sediment samples from four transects
extending through tidal flat, mangrove, and freshwater swamp en-
vironments. We use the §'*C, TOC and C/N values to interpret a 1.7 m
sediment core. We find that there is a relationship between §'3C, TOC
and C/N composition and depositional environment and that this sig-
nature is identifiable in the sedimentary record. Therefore, §'C and C/
N can be used to produce paleoenvironmental records in low-latitude
locations, where such records are scarce.

2. Study area

The geomorphology and vegetation of Puerto Rico's coastline varies
between the northern and southern coasts (Kaye, 1959; Lugo and
Cintron, 1975) The northern coast contains mangrove and freshwater
swamps indented by small bays and lagoons, and in places, sand bea-
ches, cemented dunes and Pleistocene reef rock (Kaye, 1959). The
southern coast consists of a broad alluvial plain where narrow beaches
alternate with mangrove swamps (Kaye, 1959). Puerto Rico is micro-
tidal, with great diurnal range greater along the northern coast
(0.46-0.54 m) than the southern (0.20-0.22m) (NOAA, 2017). Tide
gauges have recorded changes in RSL along the northern
(2.08 + 0.43mm/yr from 1962 to 2016 at San Juan station) and
southern (1.75 *= 0.32 mm/yr from 1955 to 2016 at Magueyes Island
station) coasts for over 50 years (NOAA, 2017). Salinity along the
northern and southern coasts is comparable, ranging between 31 and
37 (Caribbean Coastal Ocean Observing System, 2013), despite varying
orographic patterns of precipitation and runoff inland.

Of the hydrogeomorphic mangrove settings described by Lugo and
Snedaker (1974) for the Caribbean, three of these types have a sig-
nificant presence in Puerto Rico: fringe, riverine, and basin (Lugo and
Cintron, 1975). Mangrove fringe forests occur along sheltered coast-
lines with exposure to open water and are dominated by Rhizophora
mangle (Lugo and Snedaker, 1974). Riverine mangroves are often
fronted by a fringe forest occupying the slope of the drainage way and
are dominated by R. mangle and varying combinations of Avicennia
germinans and Laguncularia racemosa (Lugo and Snedaker, 1974). Basin
mangroves exist inland from fringe or riverine environments, often in
topographic depressions, which are not tidally flushed by all high tides
(Lugo and Snedaker, 1974). Depending on the stand location, relative
tidal activity and freshwater runoff, basin habitats may experience
seasonal periods of hypersaline soil porewater, which can limit man-
grove growth or induce mortality (Cintron et al., 1978). Due to such
extreme situations, the basin environment may contain patches of
succulent herbaceous halophytes (e.g., Batis maritima or Sesuvium por-
tulcastrum) that vary in size. A. germinans typically dominates forested
mangrove basins, although R. mangle and L. racemosa may also be
present (Lugo and Snedaker, 1974). In brackish to freshwater basin
environments, Pterocarpus officianalis and the fern Acrostichum aureum
have been observed to grow in association with this mangrove en-
vironment in Puerto Rico (Rivera-Ocasio et al., 2007). We selected
three study sites (Sabana Seca, Espiritu Santo and Puerto del Mar) along
the northeastern coast of Puerto Rico (Fig. 1) for the modern survey to
incorporate these three distinct hydrogeomorphic mangrove settings
(Table 1) and establish sampling transects that captured changes in
environmental zones. Vegetation and tidal flat sediment samples (ran-
ging in elevation from —0.4 to 0.1 m MTL) were collected from two
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Fig. 1. Map of (A) the Caribbean region showing the location of Puerto Rico and (B) the location of tide gauges (white stars), three study sites (black circles) sampled
for vegetation and §'>C, TOC, C/N values and foraminifera of modern bulk sediment and two study sites (open circles) where additional mangrove vegetation and
tidal flat sediments were sampled to account for physiographic variability in 8'C, TOC, C/N values in eastern Puerto Rico. (C, D, E) Location of modern transects
(thick dotted line) sampled at Sabana Seca (PCS), Espiritu Santo (BC), and Puerto del Mar (PDM) study sites. At Espiritu Santo (B) two coring transects are
demarcated by thin dotted black lines and the location of core BC7 is indicated by a white star.

additional study sites on the southern coast in Naguabo and Jobos Bay
(Fig. 1; 2) to account for spatial variability in these sample types.

At Sabana Seca, brackish to freshwater riverine mangrove and ex-
tensive stands of coastal P. officinalis are present (Eusse and Aide, 1999;
Rivera-Ocasio et al., 2007; Vane et al.,, 2013). One transect (A-A)
~750 m long was sampled that extended through a brackish (salinity of
~0.5 to 4%o; Rivera-Ocasio et al., 2007) zone occupied by A. germinans
and L. racemosa, which ranged in elevation from 0.0 to 0.3 m mean tide
level (MTL), to a freshwater zone occupied by P. officinalis and A.

aureum, which ranged in elevation from 0.5 to 0.8 m MTL (Fig. 1;
Fig. 3).

Espiritu Santo, an open-coast site located east of San Juan, contains
fringe, basin, and riverine mangroves (Fig. 1). Two transects ~300 m in
combined length were established at the site. The first transect (B-B')
extended from a tidal flat zone, where samples were collected at ele-
vations below MTL, to a monospecific A. germinans zone in the basin
mangrove located behind a supra-tidal storm berm, which ranged in
elevation from 0.3 to 0.6m MTL. The second transect (C-C)
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Table 1
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Summary of environment types present at our study sites. Environments were recognized on the basis of their salinity, hydrogeomorphic setting (e.g., Lugo and
Snedaker, 1974), and dominant vegetation. Note that salinity values are derived from surface waters measured when each environment type was inundated, which
are likely not representative of porewater salinity, and are only meant to support the qualitative salinity categories listed.

Environment Description

Tidal flat
Mangrove
Avicennia basin
Mixed species riverine
moving away from the channel
Brackish transition
Freshwater swamp

High-salinity (26-32), open coast, low intertidal sediments unvegetated or colonized by seagrasses

High-salinity (26-32), basin mangrove stand occupied by A. germinans and patches of B. maritima
Intermediate-salinity (6-26), riverine mangrove stand occupied by R. mangle at the channel edge and R. mangle with A. germinans and L. racemosa

Low-salinity(< 4), basin mangrove stands occupied by A. germinans, L. racemosa, and A. aureum
Low- to freshwater salinity basin stand occupied P. officinalis and A. aureum

encompassed riverine mangrove stands dominated by Rhizophora
mangle closest to a tidal creek (—0.1 to 0.1 m MTL) with additional
species A. germinans and L. racemosa along with R. mangle appearing
further inland higher in elevation (0.1 to 0.4m MTL). We also con-
ducted stratigraphic analyses at Espiritu Santo. Core BC7 was re-
presentative of site stratigraphy and collected from the riverine R.
mangle zone.

A final transect (D-D') was collected from Puerto del Mar, a site
nearby (~2 km) to Espiritu Santo that contains basin-type mangrove.
The transect, ranging in elevation from 0.4 to 0.6 m MTL, extends
through an environmental zone dominated by R. mangle with some
upland vegetation and transitions into a brackish zone dominated by A.
germinans, L. racemosa, and A. aureum. A summary of the mangrove
(sub)environments sampled across all transects and their elevation
ranges appears in Table 1 and Fig. 6.

3. Methods

Vegetation and surface sediment samples were collected and ana-
lyzed for §'3C, TOC and C/N composition and microfossil (foraminiferal
and thecamoebians) identification from five study sites (Fig. 1). The
modern data set was used to interpret the sediment core collected from
Espiritu Santo, which was dated by '*C ages and a '*’Cs marker, using
the statistical methods described below.

3.1. Sample collection

3.1.1. Vegetation samples

At all sites, the dominant vegetation from each environmental zone
was collected to relate its 8'3C and C/N to surface sediments (Chmura
and Aharon, 1995; Malamud-Roam and Ingram, 2004). Thalassia spp-
and algae were collected from tidal flat environments. Leaves, terminal
stems, bark, and roots of R. mangle, A. germinans, L. racemosa, and P.
officinalis, along with herbaceous vegetation dominating disturbance
patches (Batis maritima, Salicornia spp.) were collected from mangrove
and freshwater swamp environments (Table 2). In all cases, green
leaves (still attached to trees) were sampled from ‘mature’ trees
(meaning no seedlings or saplings were sampled). We also made note of
whether large ‘woody’ roots (pneumatophores) and fine to medium
(< 0.5cm diameter) roots were sampled. Woody end-members from
hereon in are referred to as wood and include propagules, stem, branch,
or bark material (see Appendix 1 for full description of each plant
sample).

3.1.2. Surface sediment samples

At each sampling station along the modern transects, duplicate
samples from a 10 cm? x 1 c¢m plot were collected for 8'3C, TOC and C/
N analysis and identification of foraminifera (Horton and Edwards,
2006). Following Wright et al. (2011), the sampling stations were po-
sitioned to maintain consistent spacing along an elevation gradient
(~3-5 cm between each station). Salinity measurements were taken in
surface waters from select sampling stations using a refractometer. A

Table 2
8'3C and C/N of vegetation samples. See Appendix 1 for the details of in-
dividual measurements.

Vegetation type 8'3c C/N n

Rhizophora mangle —32.2to0 —29.8 20.1 to 52.4 5
leaves %o

Rhizophora mangle —28.51t0 —25.2 73.0 to 203.8 4
wood %o

Rhizophora mangle —24.5to0 —24.6 48.6 to 64.7 2
prop and fine roots %o

Avicennia germinans leaves —31.6 to —28.5 23.1 to 39.0 5
%0

Avicennia germinans —28.7 to —24.6 114.5 to 3

wood %o 195.1

Avicennia germinans pneumatophores —27.4t0 —26.6 45.3 to 61.8 2
%0

Laguncularia racemosa leaves —-31.7 to —27.9 27.9 to 46.7 5
%60

Laguncularia racemosa wood —26.1 to —24.1 95.6 to 483.6 3
%0

Laguncularia racemosa pneumatophores —28.5t0 —24.2 3
%o 89.1

to 96.5

Acrostichum aureum —30.8 to —26.2%0 24.0 to 162.9 3

leaves and stems

Typha domingensis —28.6 %o 25.7 1
leaves and stems
P. officinalis leaves —31.5 %o 14.5 1
P. officinalis wood —28.1 to —27.5%0 29.3 to 40.5 2
Herbaceous taxa —29.7 to 26.1 %o 23.6 to 43.9 7
Marine algae —189to —17.4 10.2 to 32.2 2
%0

—11.1 to —9.0 %o 18.4 to 21.1

[~

Seagrass

total station was used to level sampling stations and core locations to a
common reference datum (mean sea level; MSL), which was determined
using a Trimble differential geographic positioning system (precision
of = 0.15-0.2 m). At all sites, tidal datums were interpolated from the
nearest National Oceanic and Atmospheric Administration (NOAA) tide
gauges in San Juan and Fajardo (Fig. 1), and were cross-checked with
tidal datums estimated from water-level data collected using a Solinst
Levelogger deployed at Sabana Seca for ~3 months. The logger data
suggested that tidal range at the study site was dampened by 0.1-0.2m
relative to the San Juan tide gauge, although this difference falls within
the uncertainty of the dGPS measurements and uncertainties of the
reconstructed paleomangrove elevations. Given that the logger was not
deployed long enough (i.e., over the 18.6-year tidal cycle) to accurately
estimate HAT at the site, and the lower boundary of the Pterocarpus
zone (which generally grows in supratidal settings) occurs at HAT from
the San Juan tide gauge, we relate sample elevations to datums esti-
mated from the tide, and acknowledge the uncertainty in tidal datums
inferred for the Sabana Seca site.

3.1.3. Sediment coring
The stratigraphy of the Espiritu Santo study area (Fig. 1) was in-
vestigated by collecting cores along two shore-normal transects, each
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extending ~250 m inward from the shore. Sediments were described
using Troels-Smith notation (Troels-Smith, 1955). Core BC7 was se-
lected for sampling because it was representative of the site strati-
graphy and contained the deepest accumulation of continuous peat.
Core BC7 was sampled in triplicate to allow sufficient material for all
analyses. An Eijkelkamp peat sampler was used to minimize sediment
compaction during sampling. Upon recovery, all samples were kept on
ice in the field and moved to cold storage to minimize sample decom-
position while awaiting further analysis.

3.2. Sample analysis

3.2.1. §"c, TOC and C/N

Surface and core sediment were analyzed for '3C, TOC and C/N
composition. For measurement of §'3c, TOC and C/N, sediment sam-
ples were treated with 5% HCI overnight to remove inorganic carbon,
rinsed with deionized water, dried in an oven at 50 °C and milled to a
fine powder using a pestle and mortar. Plant samples were treated with
5% HCI for 2 h, rinsed with deionized water, dried in an oven at 50 °C
and freezer-milled to a fine powder. '>C/'?C analyses were performed
by combustion in a Costech Elemental Analyzer coupled online to an
Optima dual-inlet mass spectrometer at the NERC Isotope Geosciences
Laboratory, Nottingham, UK. The values were calibrated to the Vienna
Pee Dee Belemnite (VPDB) scale using within-run cellulose standard
Sigma Chemical C-6413 calibrated against NBS19 and NBS 22 (Vane
et al., 2013). Sample total organic C and total N were measured on the
same instrument. C/N ratios were calibrated with an acetanilide stan-
dard and are given as a weight percentage (Vane et al., 2013). Multiple
sample replicates (n > 4) from each environment type were in-
dividually pretreated and analyzed for 8'3C and C/N composition to
estimate analytical error. The root mean square of the standard de-
viation of sample replicates and in-run standards was used to construct
error bars for §'C, TOC, and G/N values in Figs. 2-5. Core sediment
was sampled and analyzed every 1-5 cm downcore.

3.2.2. Microfossil analysis

The modern, surface sediment samples collected for microfossil
(foraminiferal and thecamoebians) analysis were immediately treated
in the field with a buffered ethanol solution to ensure preservation
(Horton and Edwards, 2006) and were stained with rose Bengal
(Walton, 1952) to enable counts of dead populations (Berkeley et al.,
2008). One replicate core was also sampled for foraminiferal and the-
camoebians immediately in the field to enable better potential for their
preservation. Core sediment was analyzed for absence/presence at 5-cm
intervals and full counts were performed every 10-15 cm in the core.

To prepare surface and core sediment for foraminiferal and theca-
moebian analysis, samples were passed through 63 pum and 500 um
sieves, isolating this fraction for further analysis (Horton and Edwards,
2006). Foraminifera were picked from this size fraction and identified
under a binocular microscope until at least 100 individuals had been
enumerated (Fatela and Taborda, 2002). Initial identifications were
based on the following publications of modern and Holocene for-
aminifera from mangroves and/or the Caribbean region: Cushman and
Bronnimann, 1948; Todd and Bronnimann, 1957; Cebulski, 1969;
Wantland, 1975; Bronnimann et al., 1992; Javaux and Scott, 2003;
Gomez and Bernal, 2013; Culver et al., 2013, 2015. Identifications of
foraminifera were confirmed by comparison with type and figured
specimens lodged at the Smithsonian Institution, Washington, D.C. We
follow the taxonomy of Culver et al. (2015) and use the taxon Tro-
chammina laevigata in place of Trochammina inflata. Due to difficulties in
identifying broken individuals (e.g., Culver and Horton, 2005; Kemp
et al., 2009a, 2009b, 2009¢), we have combined all species of Ammo-
baculites and Ammotium (including Ammobaculites exiguus, Ammotium
morenoi, Ammotium psuedocassis, and Ammotium angulatum) into a single
group Ammotium spp. Calcareous forms were identified to genus level
and grouped according to habitat preference (Horton and Edwards,
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2006). Only the dead (unstained) foraminiferal counts were included in
the analysis because they most accurately reflect sub-surface assem-
blages (Murray, 1982; Horton et al., 1999; Culver and Horton, 2005).
Thecamoebians from the > 63 pm size fraction were counted alongside
foraminifera (Hawkes et al., 2010). Thecamoebians from the genera
Arcella, Centropyxis, Circapatella, and Difflugia were combined into a
single taxon (‘thecamoebians’) to be included with foraminiferal counts.
Although thecamoebians are normally sampled between 15 and 300 pm
(e.g., Charman et al., 1998), the > 63 um size fraction has been ana-
lyzed in some studies (e.g., Scott and Martini, 1982; Riveiros et al.,
2007) and has been shown to retain value in ecologic interpretation.

3.2.3. Core chronology

The chronology of core BC7 was developed from three radiocarbon
dates and '*’Cs accumulation history (Table 3). We used Tomlinson,
1986 to aid in identification of three macrofossils (leaf, bark, wood)
from the base of the mangrove peat unit, which were selected for
radiocarbon dating. The macrofossils were examined and cleaned under
a binocular microscope to remove any adhering older sediments or
younger ingrown rootlets (Kemp et al., 2013). Samples were sent to the
National Ocean Science Accelerator Mass Spectrometer (NOSAMS) la-
boratory for radiocarbon dating following standard acid-base-acid
pretreatment. Radiocarbon ages were calibrated using OxCal version
4.3 and the IntCall3 calibration curve (Reimer et al., 2013).

137Cs activities were determined by gamma spectroscopy following
Corbett et al. (2007). Samples were dried at 60 °C, homogenized by
grinding, packed into standardized vessels, and sealed before counting
for at least 24 h. '®Cs activities were measured using the net counts at
the 661.7 keV photopeak.

3.3. Statistical analysis

Our approach to statistical analysis is based on the assumption that
the factors — salinity, hydrogeomorphic setting (a surrogate for a
number of different environmental variables including distance to
shoreline or channel, inundation frequency and duration, sediment
supply, and porewater chemistry), and dominant vegetation — driving
differences in the environmental zones we recognize (Table 1) should
also result in distinct differences in the sediment geochemistry among
environments because in situ vegetation and sources of organic matter
transported by tides or downstream by rivers that accumulate in each
environment have a direct control on the 813C, TOC, and C/N of its
sediments (e.g., Lamb et al., 2006; Khan et al., 2015a). One-way Ana-
lysis of Variance (ANOVA) was performed on modern sediments from
all transects to detect significant differences in mean 8'%c, TOC, and C/
N values among depositional environments (Khan et al., 2015b). Ana-
lysis was performed in JMP 10.0 with “environment” designated as the
grouping factor (Table 4). Two tests were performed in which “en-
vironment” was defined in two ways: one in which environmental zones
were grouped broadly (tidal flat, mangrove, brackish transition, fresh-
water) and a second in which variations in vegetation composition,
hydrogeomorphic setting, and salinity sub-divided the mangrove zone
(monospecific A. germinans, riverine mixed species stand). The F ratio
(the ratio of the sum of squares of (a) the differences between each
value and its group mean to (b) the differences between the group
means and the mean of all values in all groups) and p-values (prob-
ability > F) were computed to determine whether differences (i.e., a
significant effect) occur among environment in the modern transects
(Sokal and Rohlf, 1969). The null hypothesis (i.e., there are no differ-
ences between environments/sites) can be rejected for high F values
(> 1) and low p-values.

The post-hoc test Tukey's Honestly Significant Difference (HSD) was
applied to identify differences among multiple means when a sig-
nificant effect was found. Significant differences among environments
are identified in Table 4 by different letters. For example, in terms of
the C/N ratio, tidal flat environments (A) are statistically indistinct
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Fig. 3. Transect A-A' at Sabana Seca. (A) Flevation profile of the transect and dominant plant species present in environmental zones; 8'3C values (B), total organic
carbon (TOC) (C), C/N ratios (C), and dominant foraminifera taxa and > 63 pm thecamoebians (D, E, F, G) from bulk surface sediment samples. See Section 3.2 for
details of calculation of measurement uncertainty.

from mangrove environments (AB), but statistically different from Partitioning Around Medoids (PAM) cluster analysis was used to
brackish transition (BC) and freshwater swamp (C) environments. Data identify distinct groups of modern foraminiferal and thecamoebian
were log-transformed where necessary to meet assumptions of ANOVA assemblages in the statistical program R (Kaufman and Rousseeuw,
(equal variance, normality). 1990; Kemp et al., 2012a; Engelhart et al., 2013) using the ‘CLUSTER’



N.S. Khan, et al.

Marine Geology 415 (2019) 105963

B B'C c
0.6 4
Avicennia ; )
0.5 4 ——Mixed Rhizophora,
0.4 ] Avicennia, Laguncularia

Elevation (m MTL)

Rhizophora

&3¢

TOC' Corg/Ntotai

1 Ammotium spp.
1 —@— Relative abundance (%)

--~C--- Total count

Glomospira fijiensis

Miliammina fusca

Relative abundance (%)

107

S1UNo> |10

1 Miliolids

e OO

200 250 300

Distance (m)

Fig. 4. Espiritu Santo transects 1 and 2 (B-B' and C-C"). (A) Elevation profile of the transect and dominant plant species present in environmental zones; 8'2C values
(B), total organic carbon (TOC) (C), C/N ratios (C), and dominant foraminifera taxa (D, E, F, G) from bulk surface sediment samples. See Section 3.2 for details of

calculation of measurement uncertainty.

package (Maechler et al., 2012). The highest average silhouette width
of all environments was used to objectively define the appropriate
number of microfossil groups (Engelhart et al., 2013; Kemp et al.,
2012a). The analysis was performed on the combined modern dataset
from all transects (Fig. 8). Foraminifera taxa representing < 5% of any
assemblage were excluded from analysis (Patterson and Fishbein, 1989;
Fatela and Taborda, 2002; Horton and Edwards, 2006).

Linear discriminant analysis was applied to 8'3C, TOC, and C/N
values along with the ratio of foraminifera to thecamoebians to re-
cognize changes in paleomangrove elevation in sediment core BC7
(Kemp et al., 2012a). Linear discriminant functions assign observations
to one of n pre-specified classes (Venables and Ripley, 2002). Linear
discriminant functions were applied to core samples to estimate the
probability that each sample belonged to each of the specified

environmental zones. Following Kemp et al. (2012a), samples were
allocated to a single environment type when its probability exceeded
0.95. A benefit to using linear discriminant functions is that they pro-
vide a more robust approach to assess correspondence between modern
and core §'3C, TOC and C/N values than by simple qualitative com-
parison of the modern ranges to core values (e.g., Fig. 7a,b; Wilson
et al., 2005a, 2005b; Khan et al., 2015b).

4. Results
4.1. Characteristics of modern vegetation

The §'3C and C/N composition of modern mangrove and freshwater
swamp vegetation was measured in 47 samples and the range of values
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details of calculation of measurement uncertainty.

for each vegetation type are shown in Fig. 2a and Table 2 (see Appendix
1 for individual measurements). R. mangle leaves had §'°C and C/N
values ranging from —32.2 to —29.8%o and 20.1 to 52.4, respectively.
8'3C and C/N values of R. mangle wood ranged from —28.5 to —25.2%o

and 73.0 to 203.8. R. mangle prop roots and fine roots had similar §'3C
and C/N values of —24.5 to —24.6%o and 48.6 to 64.7. A. germinans
leaves had §'°C and C/N values of —31.6 to —28.5%o and 23.1 to 39.0.
Wood of A. germinans fell within the range of —28.7 to —24.6%o and
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Table 3

Chronology of core BC7.
Sample ID Depth  'C age 20 calibrated age Material 8t

(cm) range (CE) dated

Cesium peak 12 - 1959-1969
08-85876 120 50 + 35 1691-1923 Leaf —29.94
0S8-85877 120 195 = 30 1648-1925 Bark —26.25
08-96380 130 110 = 25 1682-1930 Wood —26.86

114.5 to 195.1, and its sub-aerial roots and pneumatophores (aerial
roots) ranged from —27.4 to —26.6%o and 45.3 to 61.8. L. racemosa
leaves gave 8'3C and C/N values between —31.7 to —27.9%o and 27.9
to 46.7. L. racemosa wood ranged from —26.1 to —24.1%o and 95.6 to
150.8, and its pneumatophores varied from —24.2 to —28.5%0 and
89.1 to 96.5. P. officinalis leaves gave 8'°C and C/N values of —31.5%o
and 14.5, and its wood ranged between —28.1 to —27.5%0 and 29.3
and 40.5.

Mangrove associates (vegetation growing in association with man-
grove plant communities) A. aureum, Batis maritima, Sesuvium portula-
castrum, and a vine plant had 8'°C and C/N values comparable to
mangrove leaf and wood material. The herbaceous vegetation B. mar-
itima (8'3C: —29.1 to —27.4%o; C/N: 27.8 to 30.0) and S. portulacas-
trum (8'°C: —26.1 + 0.1%o; C/N: 23.6 + 0.8; Vane et al., 2013) had
similar §'3C and C/N values to mangrove leaves, as did A. aureum 83
—26.4 to —26.2%0; C/N: 34.0 to 43.9) and vine leaf material (5'3C:
—32.2%0; C/N: 31.0). A. aureum (8'3C: —30.8%0; C/N: 162.9) and vine
stems (8'3C: —29.2%o0; C/N: 121.6) fell within the range of mangrove
wood.

Marine end-members (seagrass and marine algae), which were
collected in situ in the nearshore as well as from the sediment surface of
the fringing mangrove (representing transported specimens), had
measured §'>C and C/N values that differed from that of mangrove
vegetation or associates (Fig. 2a). Seagrasses, including Thalassia tes-
tudium, had §'3C and C/N values between —11.1 and —9.0%o and 18.4
and 21.1, and marine algae, including Sargassum sp., had §'3C and C/N
values that ranged from —18.9 to —16.3%0 and 5.5 to 32.2.

4.2. Characteristics of modern sediments
The &'*C, TOC and C/N composition of modern mangrove

Table 4
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sediments was measured in 70 surface sediment samples collected along
four transects from the three study sites (Fig. 2b; Appendix 1). Among
the 59 surface samples analyzed for §'*C, TOC and C/N composition, a
total of 80 taxa (foraminifera and thecamoebians) were identified, and
foraminifera were present in 42 of the samples. The samples devoid of
foraminifera were collected from a freshwater swamp environment.

4.2.1. Sabana Seca Transect

Sabana Seca Transect 1 (A-A’, Fig. 1) encompassed two zones: a
brackish zone occupied by A. germinans, L. racemosa and A. aureum and
a freshwater swamp zone occupied by P. officinalis and A. aureum
(Fig. 3). The brackish zone had 8'3C values ranging from —30.0 to
—27.3%o0, TOC values ranging from 19.7 to 50.1% and C/N values
ranging from 16.5 to 24.4. Agglutinated foraminifera (46%), dominated
by Haplophragmoides spp. (0-23%), Jadammina macrescens (0-26%),
and Miliammina spp. (0-21%), and thecamoebians (54%) were equally
abundant in this zone. The freshwater swamp had similar §'>C (—28.9
to —27.5%0), TOC (34.9 to 49.1) and C/N (15.3 to 21.1) values to the
brackish zone; however, these two zones are distinguished by the ratio
of total foraminifera to > 63 pm thecamoebians (Table 4).

4.2.2. Espiritu Santo Transects

Four dominant environmental zones were sampled along Espiritu
Santo Transects 1 and 2 (B-B', C-C!, Fig. 1; Fig. 4): The unvegetated
tidal flat zone was associated with high sediment §'3C values between
—17.2 to —16.1%o0, low TOC between 4.0 and 5.4, and low C/N ratios
between 8.0 and 8.9. Calcareous foraminiferal species (100%) com-
prised the assemblages in the tidal flat zone and were dominated by
Miliolids (predominantly Quinqueloculina spp.; 37-43%).

A monospecific A. germinans zone located behind a storm berm had
&'3C values ranging from —25.5 to — 24.4%o, TOC values ranging from
5.1 to 9.1 and C/N values ranging from 10.7 to 13.9. Calcareous taxa
were dominant in the monospecific A. germinans zone, including
Miliolids (17-34%) and Ammonia spp. (5-15%).

The riverine R. mangle zone fringing an inland creek had low §'3C
values of —27.2 = 0.4 (range: —27.8 to —26.5%0) and high TOC
(43.9 = 1.9; range: 41.5 to 47.9%) and C/N values (28.3 = 2.8;
range: 25.1 to 34.5). Agglutinated foraminifera such as Ammotium spp.
(9-70%), Glomospira fijiensis (4-37%), and M. fusca (0-32%) dominated
this environmental zone.

The riverine mixed mangrove stand, occupied by a mix of R. mangle,

Summary of statistical analyses of bulk sedimentary organic matter from four modern transects. One-way Analysis of Variance (ANOVA) with environmental zone as
the grouping factor was used to analyze §'*C, TOC, C/N and the ratio of foraminifera to thecamoebians (F/T). Environmental zone was defined in two ways: using
broad classification (tidal flat, mangrove, brackish, and freshwater zones) and further subdivided mangrove floral zones (monospecific Avicennia and riverine mixed
stand). Significant differences among means for the main effect of floral zone (Tukey's Honestly Significant Difference) are indicated by different letters (A, B, C, D).

Environment n s3c TOC C/N E/T Elevation range (m MTL) Indicative meaning
Mean * 1s.d. Mean = 1s.d. Mean * 1s.d. Mean * 1s.d. Mean = 1s.d. Range

Tidal flat 11 —186 + 2.8 A 10.2 = 5.7 A 127 = 31 A 1.0 = 0.0 A -0.15 + 019  -0.49 t0 0.10 < MTL
Mangrove 24 —-264 1.0 B 339 £ 134 A 243 *+ 6.2 AB 1.0 £ 0.0 A 0.16 = 0.12 —0.06 to 0.46 MLW to HAT
Brackish transition 16 —288 = 0.7 C 40.8 £ 11.7 A 21.7 = 3.7 BC 0.4 = 0.3 B 0.36 = 0.22 —0.02 to 0.66 > MHW
Freshwater swamp 8 —284 + 0.4 C 42.8 + 48 B 17.0 = 1.1 C 0.0 = 0.0 C 0.69 = 0.06 0.60 to 0.77 > HAT
ANOVA

F Ratio 130 20.7 17.4 175.1

Prob > F < 0.0001 < 0.0001 < 0.0001 < 0.0001
Tidal flat 11 —18.6 = 2.8 A 10.2 £ 5.7 A 127 = 3.1 A 1.0 £ 0.0 A —0.15 = 0.19 —0.49 t0 0.10 < MTL
Mangrove

Avicennia basin 7 —25.1 = 04 B 147 £ 6.5 A 16.0 = 3.9 AB 1.0 £ 0.0 A 0.31 = 0.08 0.23 to 0.46 MHW to HAT

Mixed-species 17 —-269 + 0.5 C 41.7 + 3.8 B 277 = 26 B 1.0 + 0.0 A 0.19 + 0.04 —0.06 to 0.24 MLW to MHW

riverine

Brackish transition 16  —28.8 * 0.7 D 40.8 + 11.7 B 21.7 £ 3.7 C 0.4 + 0.3 B 0.36 * 0.22 —0.02 to 0.66 > MHW
Freshwater swamp 8 —284 04 CD 42.8 £ 4.8 B 17.0 £ 1.1 D 0.0 £ 0.0 Cc 0.69 = 0.06 0.60 to 0.77 > HAT
ANOVA

F ratio 115.9 50.2 47.5 128.8

Prob > F < 0.0001 < 0.0001 < 0.0001 < 0.0001
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A. germinans, L. racemosa had slightly higher §'*C values (—26.9 to
— 25.2%0) and lower TOC (23.0 to 43.5) and C/N values (20.2 to 30.2)
than the R. mangle environment. Agglutinated foraminifera typical of
mangrove environments decrease in relative abundance in this zone.
The dominant agglutinated taxa are Ammotium spp. (0-72%) and M.
fusca (0-31%). Because the two riverine mangrove zones of the transect
had similar 8'2C, TOC, and C/N characteristics, they were combined as
one environmental zone for further statistical analysis.

4.2.3. Puerto del Mar Transect

Two environmental zones were sampled in the basin mangrove of
Puerto del Mar Transect 1 (D-DY, Fig. 1): the first occupied pre-
dominantly by R. mangle and a minor upland vegetation component,
including Coccoloba uvifera (Sea grape), and the second occupied by a
mixed floral assemblage typical of brackish environments including A.
germinans, L. racemosa, and A. aureum (Fig. 5). The R. mangle/upland
zone had §'3C values of —28.1 to — 27.4%o, TOC values of 29.2 to 36.0
and C/N values of 17.1 to 24.1. Foraminifera in this zone were pre-
dominantly calcareous (80%) with dominant taxa including Miliolids
(36-50%), Ammonia spp. (10-12%) and Trichohyalus aguayoi (5-11%).
This zone was excluded from further analysis due to small sample size
(n = 2) and the presence of upland vegetation, which was likely related
to disturbance from nearby construction.

The brackish zone had §'3C of —29.2 to —28.6%0, TOC of 48.5 to
50.3 and C/N values of 21.8 to 28.5. In this environment, thecamoe-
bians were found abundantly (63%) along with an agglutinated for-
aminiferal assemblage (e.g., T. laevigata: 0-43% and Trochamminita
salsa: 0-20%).

4.3. Characteristics of core sediments

Four lithostratigraphic units are identified at the Espiritu Santo (BC)
study area. A basal sand sheet composed of fine sand is found, overlain
by a ~1.5m thick mud unit. Above the mud unit, a 0.1 m transitional
unit composed of organic-rich mud with wood fragments and shells
appears in some core locations, which changes into a mangrove peat
unit ranging in thickness from 0.5 to 1.3 m.

4.3.1. Core BC7 §"3C, TOC, C/N and microfossils

Core BC7 was collected at Espiritu Santo in the riverine R. mangle
zone (Fig. 1). The core contains a regressive sequence of four lithologic
units (Fig. 9). Above the basal contact with the sand sheet, from 1.70 to
1.40 m in the core is a mud unit composed primarily of clay and silt-
sized particles with shells and fine roots, indicative of a tidal flat set-
ting. This unit has §'C values ranging between —23.8 to —18.5%o,
TOC ranging from 6.9 to 18.1 and C/N ranging between 14.3 and 19.4.
The foraminifera are composed of a 100% calcareous assemblage,
and > 63 pum thecamoebians are absent.

The mid section of the core, from 1.39 to 1.24 m is composed of a
transitional organic-rich mud with large wood and shell fragments. In
this unit, §'*C sharply decreased to values between —26.5 and
—23.7%o, TOC ranged from 6.9 to 18.1, and C/N values fell between
14.3 and 19.4 (Fig. 9). Foraminifera in this unit are dominated by
calcareous taxa, including Ammonia spp. (4.8 to 14.9%), Bolivina spp.
(13 to 15%), and Miliolids (13.7 to 17.4%), with no presence of > 63
pm thecamoebians.

The upper 1.24m of the core is muddy mangrove peat derived
primarily from R. mangle detritus, identified by its coarse, fibrous tex-
ture, presence of fine and penetrating prop roots, and distinct red color
(Davis, 1940; Scholl and Stuiver, 1967). §*3C values in this unit ranged
from —27.5 to —25.6%0, TOC values varied from 28.2 to 47.4%, and
C/N ranged from 20.2 to 39.0. In contrast to §'3C, TOC, and C/N va-
lues, foraminiferal assemblages changed within the peat unit. From
1.23 to 0.67 m, a calcareous assemblage of Ammonia spp. (0 to 29.4%),
Bolivina spp. (0 to 28.8%), and Miliolids (10 to 23.5%) was present. A
shift in foraminiferal assemblages occurred around 0.66m with
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agglutinated taxa Ammotium spp. (3 to 70%), T. inflata (0 to 28.6%),
and Glomospira fijiensis (0 to 9.9%), typical of organic-rich mangrove
peats, becoming dominant. Thecamoebians > 63 pm were not found in
this unit. Absence/presence counts of calcareous and agglutinated taxa
indicate the transition in foraminiferal assemblage over a 5-cm interval.

4.3.2. Core chronology

The chronology of core BC7 was derived from three radiocarbon
dates at the base of the peat sequence and a '*’Cs peak (Table 3; Fig. 9).
Although the uncalibrated '*C ages are out of stratigraphic order, their
calibrated ages fall within a plateau on the calibration curve between
~1650 and 1930 CE (20 uncertainty) and suggest that the sequence
began accumulating during this time interval. A peak in '*’Cs activity
of 0.9 (dpm/g) is abserved at 12 ( + 4) cm, which we attribute to peak
aboveground testing of nuclear weapons occurring at 1964 + 5CE
(Robbins et al., 2000). Given the difficulties with the chronology, we
did not put further effort into producing a higher resolution chronology
from the core.

5. Discussion

5.1. Distribution of mangrove environmental zones with respect to the tidal

frame

Fringe, basin and riverine-type mangroves in the western Atlantic
exhibit distinct vertical ranges in elevation with respect to the tidal
frame (Table 4). At the lowest elevations of our study areas, tidal flat
environments are found. They occur at elevations below the threshold
for mangrove vegetation to grow (Allen, 2000; Tomlinson, 1986),
which at our study sites is between mean tide level (MTL) to mean low
water (MLW) (Table 4). Mangroves, although viviparous (i.e., germi-
nate while attached to parent tree), are susceptible to flooding effects at
the seedling stage, where high concentrations of potentially toxic ions
(Na* and Cl ™) are carried in by tides (McKee, 1995; Mendelssohn and
McKee, 2000).

Mangrove species occupy a range in elevation from mean low water
(MLW) to highest astronomical tide (HAT) (Fig. 6; Table 4). The dis-
tribution of mangrove species in our study sites exhibits similar vertical
zonation as seen elsewhere in the Atlantic (Dawes, 1998), where R.
mangle occupies lower elevations closest to shorelines or channels and
A. germinans and L. racemosa are found at higher elevations in the in-
tertidal zone (Davis, 1940; Thom, 1967; Twilley et al., 1996; Lara and
Cohen, 2006). Riverine mangroves occupied by R. mangle, A. germinans,
and L. racemosa occur at a range in elevation from MLW to mean high
water (MHW). This distribution of riverine mangroves is also observed
in study areas throughout Florida and other locations in the Caribbean,
where this forest type is often fronted by a R. mangle fringe forest oc-
cupying the slope of drainage channels and is dominated by various
combinations of R. mangle, A. germinans and L. racemosa (Lugo and
Snedaker, 1974).

We determined that basin mangroves occupied by monospecific
stands of A. germinans are present at elevations between MHHW and
HAT, and brackish basin mangroves occupied by A. germinans, L. ra-
cemosa, and A. aureum occur at elevations greater than MHHW. In the
Caribbean, basin mangrove stands exist in inland topographic depres-
sions, which are not flushed by all high tides (Lugo and Snedaker, 1974)
due to their greater elevation. Depending on the stand location, relative
tidal activity and freshwater runoff, this forest type may experience
seasonal periods of hypersaline soil water, which can limit mangrove
growth or induce mortality (Cintron et al., 1978). Under such extreme
situations, the basin environment may contain areas varying in size of
succulent herbaceous halophytes (e.g., B. maritima or S. portulcastrum).
Normally, A. germinans dominates forested mangrove basins, although
R. mangle and L. racemosa may also be present (Lugo and Snedaker,
1974). Mangroves are not obligate halophytes and can grow in fresh-
water environments when they are not outcompeted by flora better
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adapted to that niche (Twilley et al., 1996). In our study area, we ob-
served the mangroves species A. germinans and L. racemosa persisting in
brackish conditions, usually in association with the brackish to fresh-
water fern, A. aureum. This observation is consistent with the dis-
tribution of A. aureum elsewhere (e.g., Vietnam), where it is only
flooded by spring high tides (i.e., above MHHW; van Loon et al., 2007).

Freshwater swamps occupied by P. officinalis and A. aureum exist at
elevations greater than HAT in our study area. P. officinalis swamps
occur over a much smaller areal extent than before European-occupa-
tion of Puerto Rico (van der Molen, 2002). P. officinalis swamps
dominated much of the northern coastal plain, until they were ex-
tensively cleared for agricultural use (Eusse and Aide, 1999). Therefore,
P. officinalis may be better represented in sedimentary archives than
observations of their modern areal distribution would suggest. While P.
officinalis thrives in fully freshwater conditions, the species can peri-
odically tolerate low salinity levels (< 2ppm), although drastic in-
creases in salinity up to 10 ppm significantly reduces tree biomass and
increases mortality rates (Rivera-Ocasio et al., 2007). P. officinalis has
been observed growing in association with (or behind, relative to the
shoreline) basin mangrove environments in Puerto Rico (Rivera-Ocasio
et al., 2007).

5.2. 8"C, TOC and C/N characteristics of vegetation and bulk surface
sediments

5.2.1. Modemn plants

The distinct ranges of 8'%C and C/N values observed (Table 2)
among plant components (e.g., roots vs. leaves/herbaceous vegetation
vs. wood) and habitat type (e.g. emergent/terrestrial vs. aquatic/
marine) are consistent with mangrove leaves and detritus, macroalgae,
and seagrass reported elsewhere in the Caribbean (Nagelkerken and van
der Velde, 2004; Gonneea et al., 2004). Variations in the relative pro-
portions of biochemicals (e.g., lipids, lignin, cellulose, tannins) in plant
components and habitat types may account for differences in their §*C
and C/N values (Benner et al., 1990; Smallwood et al., 2003; Kristensen
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et al., 2008; Vane et al., 2013). Smallwood et al. (2003) showed that the
lipid fraction (—29.8%o) of R. mangle leaves was depleted in §'3C re-
lative to bulk leaf material (—28.7%o0). The relatively high lipid content
in leaves of all species compared to roots and wood may account for the
lower 8'3C values (Vane et al., 2013). For example, mangrove roots
ranged in 8'3C from —28.5 to —24.5%o (range of individual mea-
surements), whereas mangrove and Pterocarpus leaves had 8'°C values
ranging from —32.2 to —27.9%o. In addition, the much greater pro-
portion of N-devoid lignin in wood and pneumatophores compared to
leaves (Vane et al., 2013) may explain the much greater C/N values of
wood (C/N: 29.3 to 483.6) and roots (C/N: 45.3 to 96.5) relative to
leaves (C/N: 14.5 to 54.3). Previous work has suggested that salinity
stress may influence the 8'>C composition of terrestrial plants, in-
cluding mangroves, by altering the diffusion of CO, through leaf sto-
mata and thus, the degree of fractionation during CO, fixation (Lin and
Sternberg, 1992; Wei et al., 2008; Ladd and Sachs, 2013). We find no
systematic differences in the 8'>C of leaves among sites with different
salinity levels, although our sampling design did not contain sufficient
replication of different species across sites to robustly test this effect.
Differences in marine (seagrass and algae) and terrestrial (man-
grove, Pterocarpus, and associated herbaceous vegetation) end-member
8'2C values are related to how these plant types fix C during photo-
synthesis. Aquatic vegetation in the marine realm must utilize HCO; ™~
(0%o0) when dissolved CO,, (— 8%o) levels are low, which combined with
slower rates of CO, diffusion in water, results in higher 8§'3C values
relative to terrestrial plants. Algae and seagrasses had lower C/N values
due to a smaller proportion of structural carbohydrates and greater
amounts of protein (N-rich) (Prado and Heck, 2011; Vane et al., 2013).

5.2.2. Surface sediments

There are statistically significant differences in sediment chemistry
among groups (Table 4). Tidal flat sediments had 8'°C values of
—18.6 * 2.8%o (mean * 1s.d.), TOC values of 10.2 = 5.7, and C/N
values of 12.7 + 3.1 that were distinct from both the mangrove,
brackish, and freshwater environmental zones (Table 4). Tidal flat
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values reflect the greater amounts of marine end-member (marine algae
and seagrass) contribution to its sediments (Fig. 2) and greater mi-
nerogenic sedimentation, indicated by low TOC values. In low latitudes,
cyanobacteria or blue-green algae grow in mats in the upper part of the
tidal flat zone that protect the sediment surface from wind or wave
action (Davis and Fitzgerald, 2003), and influence sediment §'>C, TOC,
and C/N values in tidal flats at our study sites. Seagrass beds (present at
the Jobos Bay study site) may incorporate significant amounts of OM
into tidal flat sediments (Bouillon et al., 2007), contributing to the re-
latively higher TOC and C/N values than observed at the Espiritu Santo
site. Likewise, mangrove detritus may be exported to nearshore tidal
flat environments (visually observed at the Naguabo study site), causing
a similar effect in TOC and C/N values (Hemminga et al., 1994).

Mangrove environments had §'3C values of —26.4 + 1.0%o, TOC
values of 33.9 = 13.4, and C/N values of 24.3 + 6.2, which were
distinct from tidal flat, brackish, and freshwater zomes (Table 4).
Mangrove sediments fall between the range of measured marine and
terrestrial end-members (Fig. 2), due to a combination of significant
import of marine OM and/or export of mangrove litter fall (Bouillon
et al., 2007) and degradation of mangrove litter on the sediment surface
(Kristensen et al., 2008). The riverine zone dominated by R. mangle, A.
germinans, and L. racemosa had §'°C values of —26.9 + 0.5%o, TOC
values of 41.7 + 3.8, and C/N values of 27.7 *+ 2.6. §'°C values of
this environmental zone were distinct from all others, although TOC
and C/N values shared similarities to brackish and freshwater zones and
the monospecific A. germinans stand, respectively (Table 4). In riverine
mangroves, low surface water flow velocities minimize scouring and
redistribution of litterfall (Lugo and Snedaker, 1974). In addition,
freshwater runoff from land reduces salinity and carries abundant mi-
neral nutrients required for plant growth, which causes riverine man-
grove forests to represent the most productive forest type (Pool et al.,
1977; Gilmore and Snedaker, 1993). Consequently, sediment TOC va-
lues are high in this environment type, and §'3C and C/N values re-
semble a combination of litterfall and root ingrowth (particularly in
Rhizophora-dominated zones closest to rivers/creeks) from in situ
mangrove vegetation. Terrestrial runoff carried in rivers may be de-
posited in this environment, but 8'*C and C/N values from this source
(generally degraded terrestrial plant detritus; Lamb et al., 2006) would
likely not vary significantly from mangrove detritus.

Basin mangrove stands varied in their sediment geochemistry. The
monospecific A. germinans stand had 8'3C values of —25.1 = 0.4%o,
TOC values of 14.7 *+ 6.5, and C/N values of 16.0 * 3.9, while the
mixed species stand existing under brackish conditions had 8'3C values
of —28.8 *= 0.7%o, TOC values of 40.8 + 11.7, and C/N values of
21.7 + 3.7. 8'3C values of the monospecific A. germinans zone were
distinct from all other environmental zones, although its TOC and C/N
values only differed from the brackish and freshwater zones (Table 4).
The distinct geochemical signature of the A. germinans zone likely re-
sulted from allochtonous marine input. This zone occurred adjacent to a
berm separating the inland basin from the open coast that likely re-
ceived input of marine organic matter during storms or high wave en-
ergy events (Fig. 1). The brackish environmental zone had similar §13¢
and TOC values to the riverine mixed stand and freshwater zones, but
was distinct from all other environmental zones on the basis of C/N
values and the ratio of foraminifera to > 63um thecamoebians
(Table 4). At Espiritu Santo, the relatively young, high salinity,
monospecific A. germinans stand receives greater import of allochtho-
nous marine OM due to its closer proximity and connection to the
shoreline. In addition, this immature stand (smaller tree height and
basal diameter of trees, and thus overall biomass) inputs less OM via
litterfall to sediments (Pool et al., 1977; Saenger and Snedaker, 1993).
Furthermore, the litter that does accumulate on the surface may rapidly
decompose due to enhanced rates of microbial respiration promoted by
the high nutrient quality of marine OM transported to this environment
(Mitsch and Gosselink, 2011). In contrast, the mature, low salinity
(brackish), mixed species stands at Puerto del Mar and Sabana Seca
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likely introduce greater amounts of OM to sediments via litterfall, with
little marine OM import due to greater protection from the coast. Thus,
sediment 8'3C, TOC, and C/N values in these basin stands primarily
reflect in situ OM rather than a mix of marine and terrestrial sources.
The dark, tannin-stained waters present in the Puerto del Mar and Sa-
bana Seca basin forest suggest that the majority of OM is exported in
fine particulate or dissolved form composed of non-lignocellulosic
carbohydrates, tannins, and phenolic compounds (Benner et al., 1986;
Neilson and Richards, 1989; Gilmore and Snedaker, 1993; Vane et al.,
2013).

The freshwater swamp had 8'°C values of —28.4 = 0.4%o, TOC
values of 42.8 + 4.8, and C/N values of 17.0 = 1.1, values near
identical to the brackish environmental zone. Freshwater swamps are
characterized by a terrestrial OM source (with little to no marine OM
import) and minimal minerogenic sedimentation; TOC values of this
zone are similar to the value of bulk terrestrial plant matter (~40),
which suggests sediments are nearly entirely composed of this source.
Variations in microbial community structure, resulting from changes in
salinity and nutrients, likely exist between freshwater swamps and
saline to brackish mangroves (as well as within mangrove types)
(Alongi et al.,, 1993; Ikenaga et al., 2010), which can affect the bio-
chemical processing of detritus and soil OM in each environment type
and the resulting 8'°C, TOC and C/N values (Holguin et al., 2001;
Kristensen et al., 2008).

5.3. Microfossil distributions and taphonomy

Foraminifera are widely used sea-level indicators in temperate re-
gions because their distribution reflects the preference and tolerance of
different species to the frequency and duration of tidal inundation
(Scott and Medioli, 1978; Horton et al., 1999; Kemp et al., 2009). PAM
cluster analysis identified three groups in the combined dataset (Fig. 8),
but problems arise with their vertical distribution. Group PR1 (average
silhouette length of 0.40) was identified by calcareous foraminifera:
Ammonia spp. (17%), Bolivina spp. (26%) and Miliolids (42%), and the
elevation of this group ranged from —0.13 to 0.42m MTL (mean =+
s.d.: 0.20 = 0.18 m MTL). Typically, such a foraminiferal assemblage
to group PR1 would be considered marine limiting (i.e., the former
position of sea level must have been above the elevation of the sample
at the time of deposition; Engelhart et al., 2011); however, because
calcareous foraminifera were found at elevations above MHHW (likely
due to transport during storms), group PR1 had no bearing on the
former position of RSL. Transport of low intertidal to sub-tidal calcar-
eous foraminifera has been observed in temperate salt marshes; how-
ever, their tests often dissolve and are not incorporated into sediment
archives (e.g., Martin, 1999; Horton and Murray, 2006; Horton and
Edwards, 2006; Berkeley et al., 2007). Calcareous foraminifera are
present in much higher concentrations in mudflat environments than
organic-rich mangrove sediments (Culver, 1990; Wang and Chappell,
2001; Horton et al., 2003; Woodroffe et al., 2005). Given the low
production rates of agglutinated tests observed in mangroves (Debenay
et al.,, 2002, 2004; Berkeley et al., 2007), if calcareous tests were
transported to the mangrove surface in comparably high concentrations
as found in mudflat settings, the assemblage would appear to be
dominated by calcareous taxa, despite the presence of a typical agglu-
tinated mangrove assemblage (e.g., Debenay et al., 2004; Culver et al.,
2013).

Groups PR2 and PR3, however, occurred in vertically distinct zones
consistent with intertidal and transitional supratidal environments ob-
served in other locations. Group PR2 (average silhouette length of 0.38)
was dominated by Ammobaculites spp. (46%), Glomospira fijiensis, M.
fusca (16%), and T. laevigata (9%) and ranged in elevation from —0.06
to 0.24 m MTL (mean * std.: 0.08 = 0.08 m MTL) (Fig. 8). This as-
semblage is comparable to other intertidal mangrove assemblages
found in Australia (Horton et al., 2003; Woodroffe et al., 2005; Berkeley
et al., 2009), Southeast Asia (Culver et al., 2013, 2015), South America
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(Debenay et al., 2002, 2004; Gémez and Bernal, 2013), the South Pa-
cific (Bronnimann et al., 1992) and low marsh environments from
temperate locations (e.g., Vance et al.,, 2006; Wright et al., 2011).
However, with the exception of studies from Malaysia and some US
Gulf coast mangroves and marshes, Glomospira fijiensis is not commonly
observed (e.g., Phleger, 1960, 1965; Culver et al., 2015). Group PR3
(average silhouette 0.61) was identified by > 63-uym thecameocbians
(37%), J. macrescens (7%), and T. laevigata (6%). This group ranged in
elevation from 0.02 to 0.66m MTL (mean + std.: 0.43 + 0.18m
MTL). The vertical distribution of thecamoebians (from ~MHHW to
supratidal environments) observed in our low-salinity study sites is
consistent with that observed elsewhere in the North Atlantic (Barnett
et al., 2017a). Moreover, J. macrescens is often observed at the upper
intertidal boundary in tropical and temperate environments (e.g.,
Patterson, 1990; Franceschini et al., 2005; Horton and Edwards, 2006;
Vance et al., 2006; Wright et al., 2011).

Given the problems regarding Group PR1, future studies attempting
to employ mangrove foraminifera as sea-level indicators in carbonate
settings where calcareous foraminifera contribute significantly to au-
thigenic sediment production (e.g., Langer, 2008) should consider the
density of foraminiferal tests, and could potentially consider counts of
only agglutinated taxa that form in situ in mangrove environments to
overcome issues with transport of calcareous tests. The density of tests
is commonly estimated in many other (paleo)environmental applica-
tions (e.g., Schonfeld et al., 2012), although recent sea-level studies
from temperate regions have discontinued this practice.

In addition to issues regarding the vertical zonation of modern
foraminiferal groups, the ~100% calcareous assemblage below ~0.7 m
in core BC7, which implies a different paleoenvironmental interpreta-
tion than that provided by lithology, illustrates another potential
complication of the use of mangrove foraminifera in sea-level re-
construction. One explanation for this observation may be taphonomic
loss of agglutinated foraminifera. Agglutinated foraminifera may be lost
from sediments due to microbial degradation of organic cements
holding tests together (Wang and Chappell, 2001; Woodroffe et al.,
2005). Although the exact composition of organic linings and cements
may vary slightly among species, they are primarily composed of pro-
tein and mucopolysaccharides (tectin), labile compounds that are
readily degraded in sediments (Hedley, 1963;Boltovskoy and Wright,
1976; Lee, 1990; Seears, 2011). Because bulk peat material is mainly
composed of lignocellulosic compounds more resistant to decay
(Benner et al., 1987, 1991; Henrichs, 1995; Hedges and Oades, 1997),
the relative susceptibility of agglutinated tests and bulk peat substrate
to decay may explain the discrepancies in the proxies at the base of the
peat unit. This observation is in contrast to many other studies of salt
marsh and mangrove foraminifera, which find that calcareous taxa are
preferentially lost due to dissolution in acidic wetland sediments (e.g.,
Culver et al., 1996; Horton and Edwards, 2006; Vance et al., 2006;
Wang and Chappell, 2001; Berkeley et al., 2007, 2009). While organic
cements of agglutinated tests are directly oxidized, changes in pore-
water calcium carbonate saturation state affect calcareous tests
(Berkeley et al., 2007). Aerobic oxidation of organic matter promotes
dissolution due to the production of carbon dioxide, which dissolves
carbonate material, further increasing the concentration of carbonic
acid (Krauskopf and Bird, 1995). In contrast, anaerobic decomposition
of organic matter produces a greater number of bicarbonate ions
(Koretsky et al., 2005), resulting in increased alkalinity that fosters the
preservation of carbonates (Berkeley et al., 2007). Calcareous taxa may
have preserved at Espiritu Santo due to high sediment accumulation
rates (see discussion in the following paragraph and Section 5.4), which
minimized the time that buried organic carbon remained within the
oxic layer, thus promoting the preservation of calcareous foraminifera.
Moreover, Espiritu Santo's carbonate setting (and greater availability of
carbonate material) may have acted as a buffer, keeping porewaters
supersaturated with respect to calcium carbonate and increasing pre-
servation potential of calcareous foraminifera.
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An alternative explanation for the calcareous foraminiferal assem-
blage observed below 0.7 m in BC7 is that foraminifera in the core may
be more sensitive to external environmental influences, and may ac-
curately reflect a true change. The calcareous taxa found below 0.7 m
may indicate rapid infilling of accommodation space and coastal pro-
gradation in response to increased sediment delivery (see Section 5.4
for further discussion of anthropogenic factors contributing to increased
sediment delivery).

Due to these problems, we were not able to use modern for-
aminiferal distributions to interpret the fossil record. However, the
ratio of total foraminifera to > 63-um thecamoebians was able to dis-
cern between mangrove, brackish, and freshwater environmental zones.
Thecamoebians have been shown to provide precise constraints on sea
level as standalone indicators and combined with foraminifera
(Charman et al., 1998; Gehrels et al., 2001; Roe et al., 2002; Barnett
et al., 2015, 2017b; Kemp et al., 2017b, Kemp et al., 2018), although
we show their utility as a sea-level indicator for the first time outside of
the North Atlantic. Like foraminifera, thecamoebians are prone to issues
with preservation in intertidal sediment cores, although small idiosomic
(siliceous, plate forming) tests, not the large xenosomic (agglutinated,
particle cementing) tests observed in this study, tend to be most sus-
ceptible to taphonomic loss (Roe et al., 2002; Barnett et al., 2017a;
Kemp et al., 2017b). Moreover, the simple taxonomic classification
(essentially presence or absence) used in this study is unlikely to be
strongly influenced by preservation bias of idiosomic and xenosomic
tests.

5.4. The application of §'3C, TOC and C/N and microfossils in Holocene
RSL reconstruction

Patterns and rates of RSL change through time can be inferred from
regional collations of sea-level index points, which indicate the unique
position of RSL in time and space (Shennan et al., 2015). The vertical
component of an index point is related to the elevation range over
which a sea-level indicator formed relative to the past position of sea
level (van de Plassche, 1986; Shennan, 1986). Paleomangrove elevation
(PME) was estimated using the range in elevation of the environmental
zones identified at our field sites (Table 4; Fig. 9). We use linear dis-
criminant functions of 8'°C, TOC, and C/N values and total for-
aminifera to > 63-pm thecamoebians ratio to recognize changes in
paleomangrove elevation in sediment core BC7. We developed two
training sets based on the way in which we classified the data. In the
first training set, the classes used were the environment-types described
in Section 5.2.2, consisting of tidal flat, mangrove, brackish transition,
and freshwater environments. In the second training set, we further
subdivided environmental zones to include tidal flat, monospecific A.
germinans, riverine mixed stand, brackish, and freshwater zones to test
whether 8'°C, TOC, and C/N values are able to subdivide the mangrove
environmental zone. The position of modern samples on a plot of the
first two linear discriminants (Fig. 7c) confirms separation of the en-
vironment types. In the first training set, samples were correctly allo-
cated in 59 of 59 leave-one-out cross-validation tests (Venables and
Ripley, 2002) with an error rate of < 0.05. Allocation was slightly less
accurate in the second training set, although the error rate remained at
the < 0.05 level, with 57 of 59 samples assigned to the correct group.
Without supporting microfossil information from the F/T ratio, §'°C,
TOC, and C/N values are still able to differentiate among environmental
zones, but with a loss in confidence of the accuracy of the reconstruc-
tion at the transitional boundary between mangrove, brackish transi-
tion and freshwater environmental zones. To demonstrate this point, we
compiled a training set that excluded the F/T ratio from the set of
variables for analysis. A cross-validation test of the training set de-
monstrated the loss of accuracy, with the error rate increasing to 0.12
with the exclusion of the F/T data.

Linear discriminant functions developed from the two training sets
were applied to core samples to estimate the probability that each
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sample belonged to each of the specified environmental zones
(Appendix 1). Using the first training set, 56 samples were assigned to
the mangrove environment and 4 samples were assigned to the tidal flat
environment; no samples were allocated to the brackish transition or
freshwater environments (Fig. 9). From 1.6 to 1.4 m depth in the core
along the lithologic contact between mangrove peat and rooted, shelly
mud (where no analogue is found in the modern training set; Fig. 7a,b),
13 samples were associated with both tidal flat and mangrove en-
vironments. Using the second training set, 35 samples were assigned to
the riverine mixed stand, 6 samples were assigned to the monospecific
Avicennia zone, 2 samples were assigned to the tidal flat zone, 15
samples were assigned to both monospecific A. germinans and riverine
mixed stand groups, and 15 samples were assigned to both A. germinans
and tidal flat groups. Again, no samples were allocated to brackish
transition or freshwater environments (Fig. 9).

The horizontal component of an index point is related to the sam-
ple's age and uncertainty in the age measurement. Although linear
discriminant functions allowed for downcore estimation of PME, the
chronology of core BC7 suggests rapid infilling of sediments (Fig. 9),
likely following enclosure by a barrier (see berm in Fig. 1) that formed
in response to increased sediment delivery. Local land-use histories
indicate that during Puerto Rico's agricultural era beginning in the
1800s CE, the island was almost completely deforested (Birdsey and
Weaver, 1987), which introduced greater sediment loads to coastal
waters that may have supported shoreline progradation (Clark and
Wilcock, 2000; Martinuzzi et al., 2009). From 1800 to 1953, coastal
lowlands were extensively cleared and transformed for agricultural use,
and from 1940 to present marked a period of rapid urbanization on the
island; both activities would promote runoff with heavy sediment loads
from urban and/or agricultural areas to the coast (Martinuzzi et al.,
2009). Furthermore, acceleration of RSL rise due to anthropogenic
climate change (e.g., Kopp et al., 2014) would also provide increased
accommodation space to rapidly infill.

This explanation is indirectly supported by the paleoenvironmental
interpretation provided by the linear discriminant analysis and directly
by the foraminiferal assemblages (described in Section 5.3). Below
0.7 m in the core, where the 100% calcareous assemblage may indicate
rapid infilling of accommodation space and coastal progradation in
response to increased sediment delivery, linear discriminant functions
predominantly assign sediments to both the monospecific A. germinans
zone that is found directly inland from the berm separating the basin
from the open coast or the riverine mixed zone. The monospecific A.
germinans zone receives a greater amount of marine organic matter and
has a greater abundance of calcareous taxa, suggesting greater marine
influence. Above 0.7 m, linear discriminant functions assign core sedi-
ments only to the riverine mixed zone, which appears further inland
from the monospecific A. germinans zone. This paleoenvironmental
succession implies shoreline progradation and a greater distance be-
tween the core location and the open coast. The agglutinated assem-
blage also appeared above this contact, and suggests that vertical ac-
cumulation caused the paleo-sediment surface to reach the upper
intertidal zone. Although plant macrofossils and core lithology do not
suggest sediments below 0.7 m accumulated in a tidal flat or sub-tidal
environment, it is possible that as mangroves colonized the paleo-se-
diment surface, their roots may have penetrated into older strata, al-
tering the lithology and macrofossil composition (e.g., Woodroffe,
1981, 1990; McKee and Faulkner, 2000). Furthermore, bioturbation by
mangrove rhizomes may have also altered §'*C, TOC, and C/N values,
which is why linear discriminant functions indicated sediments below
0.7 m could have been assigned to the riverine mixed mangrove zone.

Together, these lines of evidence suggest that accumulation of se-
diments at the base of core BC7 was driven by an ecologic or geo-
morphic response to anthropogenic sediment delivery. Therefore, this
core is not ideal for RSL reconstructions, either for the creation of sea-
level index points or for high-resolution single-core methods. The se-
dimentation rates (~4 to 16 mm/yr assuming linear sedimentation
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from initiation of the peat unit to present) observed in core BC7 fall
within the higher end of estimates of mangrove accretion estimated by
surface elevation tables, but are not unprecedented. The vertical ac-
cretion rates reported from surface elevation tables vary among hy-
drogeomorphic setting, with fringe environments ranging from 1.6 to
8.6 mm/yr, riverine environments ranging from 6.5 to 13.0 mm/yr, and
basin/interior environments ranging from 0.7 to 20.8 mm/yr (Krauss
et al., 2014; Woodroffe et al., 2016). Moreover, rapid mudbank accre-
tion and mangrove colonization has been observed at similar rates in
the sediment-rich Fly River Delta in the Gulf of Papua at rates of several
centimeters per year (Shearman, 2010; Walsh and Nittrouer, 2004),
where mangrove ecological accommodation is controlled by dynamic
topographic changes following mud redistribution (Woodroffe et al.,
2016). RSL that would be inferred from index points derived from the
dated contact at the base of the peat sequence in core BC7 would
be > 1 m below regional sea-level histories (e.g., Khan et al., 2017) or
glacial isostatic adjustment model predictions for Puerto Rico (e.g.,
Milne and Peros, 2013; Khan, 2014). In Bermuda,Kemp et al., 2019
observed a similar disequilibrium between the rate of mangrove peat
accumulation and regional-scale RSL rise following initial mangrove
colonization of a shallow basin ~1200 to 700 years ago. It is possible
that riverine and basin mangroves may form under hydrogeomorphic
conditions that promote sediment accumulation in response to addi-
tional factors than the rate of RSL rise, although the suitability of an
individual mangrove site for the purpose of RSL reconstruction will
ultimately depend on its specific past geomorphic conditions and se-
diment availability,

These findings also have important implications for RSL re-
constructions derived from single radiocarbon dates on mangrove peats
(e.g., Toscano and Macintyre, 2003; Khan et al., 2017). Lithology or
macrofossil composition of BC7 alone would suggest core sediments
formed within an intertidal setting, and therefore provided bearing on
the past position of RSL, an interpretation in conflict with the sedi-
mentation history revealed by microfossils, 8'>C, TOC, and C/N values,
the composite core chronology, and regional sea-level data. Therefore,
we suggest that sea-level histories derived from single mangrove dates
where detailed litho-, bio-, chemo-, or chrono-stratigraphic investiga-
tions have not been performed should be treated with caution. How-
ever, our approach to interpreting mangrove 8'°C, TOC, and C/N and
microfossil indicators was able to identify mangrove paleoenviron-
mental changes in response to shoreline migration, and thus, may
provide an important tool in future paleoecological and paleoenviron-
mental applications.

6. Conclusions

We investigated the use of 8'3C, TOC, and C/N values from bulk
sedimentary OM to reconstruct mangrove depositional environment,
which is used as a proxy for tidal elevation. Modern transects at three
sites showed that sediment derived from tidal flat, mangrove, brackish,
and freshwater elevation-dependent environmental zones had distinct
8'3C, C/N, and TOC values. The ratio of foraminifera to > 63-um the-
camoebians helped to further discriminate between brackish and
freshwater swamp zones. Unlike §'*C, TOC, and G/N-defined environ-
mental zones, three foraminiferal groups recognized by PAM cluster
analysis did not display vertical zonation and therefore were not sui-
table to use to interpret PME.

Linear discriminant functions were developed from §'3C, TOC, and
C/N-defined environmental zones and applied to core BC7. This ana-
lysis, combined with downcore microfossil assemblages and chron-
ological constraints from radiocarbon dating and peak '*’Cs accumu-
lations revealed rapid accumulation in response increased
accommodation space created by enclosure by a barrier that likely
formed from increased anthropogenic sediment delivery and shoreline
progradation, making the core unsuitable for RSL reconstruction. We
demonstrate that §'®C, TOC, and C/N values can be used along with
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simple microfossil metrics to reveal the paleoenvironmental history of
mangrove archives and to indicate whether a mangrove peat sequence
can be used to reconstruct RSL. These results indicate that mangrove
sedimentary archives form in response to a complex set of processes,
and in the absence of detailed litho-, bio-, chemo-, or chronostrati-
graphic analyses, caution should be taken in interpreting RSL histories
from mangrove archives.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.margeo0.2019.105963.
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