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Abstract The integrated forest ecosystem model
ForSAFE-Veg was used to simulate soil processes and
understory vegetation composition at three—sugar ma-
ple, beech, yellow birch—hardwood forest sites in the
Northeastern United States (one at Hubbard Brook, NH,

and two at Bear Brook, ME). Input data were pooled
from a variety of sources and proved coherent and
consistent. While the biogeochemical component
ForSAFE was used with limited calibration, the ground
vegetation composition module Veg was calibrated to
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field relevés. Evaluating different simulated ecosystem
indicators (soil solution chemistry, tree biomass, ground
vegetation composition) showed that the model per-
formed comparably well regardless of the site’s soil
condition, climate, and amounts of nitrogen (N) and
sulfur (S) deposition, with the exception of failing to
capture tree biomass decline at Hubbard Brook. The
model performed better when compared with annual
observation than monthly data. The results support the
assumption that the biogeochemical model ForSAFE
can be used with limited calibration and provide reason-
able confidence, while the vegetation community com-
position module Veg requires calibration if the individ-
ual plant species are of interest. The study welcomes
recent advances in empirically explaining the responses
of hardwood forests to nutrient imbalances and points to
the need for more research.

Keywords Ecosystemmodeling .HubbardBrook .Bear
Brook . ForSAFE-Veg . Vegetationmodeling . Plant
biodiversity

1 Introduction

Atmospheric deposition of nitrogen (N) and sulfur (S)
and climate change are two of the most prominent
global change drivers induced by human activity
(Rockström et al. 2009). Together, the individual and
interactive effects from these two global change factors
influence many aspects of ecosystem structure and func-
tion, including plant community diversity and composi-
tion, as well as soil processes such as carbon (C) se-
questration and nutrient cycling (Porter et al. 2013).

Nitrogen limits the productivity of many ecosystems
(Aerts and Chapin 2000; Aber et al. 1998; Vitousek
et al. 1997; Vitousek and Howarth 1991), and human
population growth and industries have increased N de-
position in many regions by nearly an order of magni-
tude over historic levels (Galloway et al. 2004; Vitousek
et al. 1997). Increased N deposition leading to eutrophi-
cation can cause a decline in species richness or even-
ness in vulnerable ecosystems (Pardo et al. 2011;
Bobbink et al. 2010; Bowman et al. 2010; Emmett
2007; McDonnell et al. 2018a), and declines in tree
growth and increases in mortality have also been noted
(Thomas et al. 2010; Wallace et al. 2007). Once N
availability exceeds combined plant and microbial de-
mands, terrestrial ecosystems can become N saturated,

resulting in nitrate (NO3
−) leaching from soils to nearby

aquatic systems (Emmett 2007; Aber et al. 1998; Aber,
and P.,, and Melillo, J.M. 1989; Stoddard 1994). In
addition to eutrophying effects, N and S deposition
can also have acidifying effects on terrestrial ecosystems
through damage to foliage and altered soil chemistry
(Bobbink et al. 2010; Bobbink and Hettelingh 2011;
Pardo et al. 2011). Lesions, chlorosis, and necrosis can
develop in foliage, base cations can leach from the soil
and cause nutrient imbalances, and reductions in soil pH
may increase the solubility of phytotoxic aluminum (Al)
(Bobbink et al. 2010). Plants vary in their sensitivity to
the edaphic stresses created by elevated N and S depo-
sition (Cronan and Grigal 1995; Sverdrup and
Warfvinge 1993), which can lead to changes in plant
species composition.

Climate change impacts plants communities and
soil processes. Changes in air temperature and pre-
cipitation patterns can influence tree and plant pro-
ductivity, distribution and ranges, and phenology
(McNulty and Boggs, McNulty and Boggs 2010;
Thuiller et al. 2008; Parmesan 2006), ultimately
impacting species composition and biodiversity in
terrestrial ecosystems (Porter et al. 2013). Higher
temperatures can result in longer growing seasons
and contribute to species migrations to higher lati-
tudes and altitudes (Parmesan 2006). Increased air
temperatures can increase evapotranspiration rates
and water stress (McDonnell et al. 2013), and altered
precipitation patterns can result in drought in some
locations and increased water availability in others
(Parmesan 2006).

Changes in climate and deposition can also be
expected to interactively impact terrestrial diversity
and soil processes. Responses may be additive,
synergistic, and/or antagonistic depending on the
ecosystem and conditions (Shaw et al. 2002;
Zavaleta et al. 2003; Dukes et al. 2005). For ex-
ample, species diversity is typically decreased by
increased N deposition, but reductions in diversity
can be offset with elevated CO2 concentrations
(Reich 2009). Similarly, increased spring tempera-
tures may allow forest species to begin growing
earlier in the season, but increased N deposition
may increase the sensitivity of species to frost and
drought (McNulty and Boggs 2010; Porter et al.
2013). With respect to soils, studies have reported
stimulation of mineralization with N additions
that is further enhanced with elevated CO2 and
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precipitation (Niboyet et al. 2011). Similar results
were reported for the influences of N additions and
soil warming on nitrification (Ma et al. 2011).

The objective of this study was to test the ability of a
dynamic modeling framework, ForSAFE-Veg
(Sverdrup and Belyazid 2014), to evaluate the interac-
tive impacts of deposition and climate change on soil
processes and understory plant diversity in hardwood
forests in the Northeastern United States (U.S.). This
study presents the model setup and evaluation used as
the basis of a further study documented in Phelan et al.
(2016) for assessing the combined effects of climate
change and air pollution on soil properties and plant
diversity at the experimental sites described here.

2 Method

2.1 Model and Site Selection

Prior to this study, a set of models were reviewed to
support the study goals, including six biogeochemical
models (DayCent, DayCent-Chem, PnET-BGC, MAG-
IC, ForSAFE, VSD) and one plant community dynam-
ics model (Veg) (RTI 2012) (see Cosby et al. (1985),
Alveteg et al. 1998a, 1998bParton et al. (1998),
Gbondo-Tugbawa et al. (2001), Hartman et al. (2007),
Posch and Reinds (2009) and Belyazid et al. (2011b) for
more information about the individual models). Al-
though other vegetation response models including
GLOBIO/IMAGE, SORTIE, ED, BERN, and
MOVE/NTM have been recently reviewed and were
initially considered (de Vries et al. 2010), only Veg
was reviewed in detail because it is able to simulate
responses at the individual plant-species level and/or is
not restricted to European plant species (Sverdrup et al.
2012; McDonnell et al. 2014). ForSAFE was selected
for this study because the model (a) has been previously
used to evaluate the impacts of deposition and climate
change on nutrient cycling and critical loads of atmo-
spheric N and S deposition (Posch et al. 2011; Zanchi
et al. 2014; Belyazid et al. 2011a, 2011b; Sverdrup and
Belyazid 2014), (b) is able to simulate soil base cation
weathering (BCw), biogeochemical indicators of critical
loads, and all parameters required for vegetation re-
sponse modeling (Veg), and (c) is fully-integrated with
Veg. Combined, ForSAFE-Veg represents a model
chain of dynamic biogeochemistry (ForSAFE,
Wallman et al. 2005) and plant responses (Veg,

Belyazid 2006) (see RTI (2012) for a more detailed
description of the models review).

The Northeastern U.S. was selected for several rea-
sons: (1) the northeast has historically received some of
the highest levels of N and S deposition in North Amer-
ica (NADP 2015), (2) northeastern forests in the USA
provide a range of ecosystem services locally and re-
gionally (USFS NSRC, 2014), and (3) high-quality data
sources are available to setup and refine the modeling
framework. The sugar maple-beech-yellow birch
(SMBYB) forest system was selected to represent hard-
wood forests in this study to test the ForSAFE-Veg
model. These forests are a dominant forest type in the
Northeastern U.S. (Lovett and Mitchell 2004; Fig. 1),
consisting of tree species including sugar maple (Acer
saccharum), and yellow birch (Betula alleghaniensis)
which are sensitive to atmospheric deposition and soil
conditions (Long et al. 2009; U.S. Forest Service, 2014).
Within the SMBYB forest type, two sites were selected
that had detailed enough soil and plant community data
required for model development—the Hubbard Brook
Experimental Forest (HBEF) in NewHampshire and the
Bear Brook Watershed in Maine (BBWM).

2.2 Description of Sites

2.2.1 Hubbard Brook Experimental Forest

The Hubbard Brook Experimental Forest (HBEF)
covers 3120 ha in the southern White Mountain Region
in central New Hampshire, USA (43° 56′ N, 71° 45′W)
(Johnson et al. 2000). The climate is humid continental,
receiving an average of 1310 mm of precipitation annu-
ally, with 25–30% occurring as snow (Lovett et al.
1996). Average January and July temperatures are −
9 °C and 19 °C, respectively, and the growing season
spans approximately May 15 to October 1. The Exper-
imental Forest includes several watersheds, all of which
were logged in 1920 (Johnson et al. 2000; Likens et al.
1994; Whittacker et al. 1974). HBEF also experienced a
hurricane in 1938, during which approximately 20% of
the standing biomass was wind-thrown and salvaged
(Aber and Driscoll 1997). Current forests are predomi-
nantly composed of northern hardwoods, sugar maple,
American beech (Fagus grandifolia), and yellow birch,
with red spruce (Picea rubens), balsam fir (Abies
balsamea) and white birch (Betula papyrifera) also
abundant at higher elevations and on rock outcrops
(Johnson et al. 2000; Whittacker et al. 1974). The soils
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of HBEF are well-drained heterogeneous Spodosols
(Haplorthod), which developed from glacial till from the
Wisconsinian glacial period (Johnson et al. 2000). The
average depth of the soil to the C horizon is approximately
60 cm (Johnson et al. 1991b). The soils are relatively base-
poor, with low effective base saturation (around 9% in the
mineral soil) and pH between 4.1 and 4.7. The organic
layer is relatively thick (7 cm) and acidic (pH 3.9) yet with
50% base saturation, with a moderate C to N ratio (22.9)
(Johnson et al. 1991b).

This current study was conducted using data from a
10 m × 50 m plot in the lower elevation mature hard-
wood forest (572 m of altitude) just west of watershed
(W6), the biogeochemical control watershed of HBEF
(Johnson et al. 2000; Likens et al. 1994). This plot was
selected because it was the only location for which both
plant community and soil biogeochemistry data were
available. This plot and the immediate surrounds are
similar to W6 and have been used to characterize
throughfall (Lovett et al. 1996; Likens et al. 1998;
Likens et al. 1994) and soil solution chemistry
(Johnson et al. 2000; Dahlgren and Driscoll 1994;
Driscoll et al. 1998) for W6.

2.2.2 Bear Brook Watershed Maine

The BBWM watershed is a long-term paired watershed
experiment located in eastern Maine (44° 52′ N, 68° 06′
W), approximately 60 km from the Atlantic Ocean
(SanClements et al. 2010; Rustad et al. 1994). It consists
of two watersheds, East Bear (EB) andWest Bear (WB).

EB is 11 ha and serves as the reference watershed
(Fernandez et al. 2010). West Bear is 10.3 ha and has
been treated bimonthly since November 1989 with
28.8 kg S/ha per year and 25.2 kg N/ha per year as
ammonium sulfate ((NH4)2SO4) (Navrátil et al. 2010;
Fernandez et al. 2003). Both watersheds are headwater,
first-order streams, and are located on the southeastern
slope of Lead Mountain, spanning an elevation range of
265–475 m (Rustad et al. 1994; Cosby et al. 1996). The
mean annual precipitation at BBWM is 1160 mm
(Navrátil et al. 2010), with 25% falling as snow
(Cosby et al. 1996). The mean annual temperature is
4.9 °C (Fernandez et al. 2010). Vegetation in EB and
WB consists of predominantly second-growth forests
that established following the harvesting of the water-
sheds around 1945 (Norton et al. 1999), although the
stand age of BBWM is uneven due to selective harvest-
ing over the past century (Rustad et al. 1994). Forests in
the lower portions of the catchments consist predomi-
nantly of northern hardwoods (sugar maple, beech, yel-
low birch, and red maple (Acer rubrum) (Rustad et al.
1994). Vegetation at higher elevations and on steeper
slopes is mainly dominated by red spruce, balsam fir,
and white pine (Pinus strobus). Hardwood, softwood,
and mixed hardwood-softwood vegetation are found on
approximately 34, 25, and 40% of the catchment area,
respectively (Elvir et al. 2010). Soils in EB and WB
consist mainly of coarse-loamy, mixed, frigid Typic
Haplorthods formed fromWisconsinan till that averages
0.9-m thick (range of 0–5 m; Fernandez et al. 2003;
Norton et al. 1999). The bedrock in BBWM consists of

Fig. 1 Geographical spread of
the sugar maple (Acer
saccharum), beech (Fagus
grandifolia), and yellow birch
(Betula alleghaniensis)
(SMBYB) forests in the
Northeastern U.S., including the
locations of the two sites modeled
in this study
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quartzite and gneiss with granitic intrusions (Norton et al.
1999). The untreated soils within the watershed are acidic
and generally base-poor with effective base saturation
ranging from 5 to 16.8% and pH values from 3.7 to 4.5,
depending on the horizon (SanClements et al. 2010). The
forest floor ranges from 2 to 20 cm in depth, with pH
between 2.9 and 3.4 and base saturation between 40 and
58% (I. Fernandez, personal communication).

This study focused on the hardwood forests within
EB andWB of BBWM. Soils (SanClements et al. 2010;
Fatemi et al. 2012) and vegetation (Eckhoff and
Wiersma 2002) have been characterized by multiple
plots and soil pits within the hardwood forest compo-
nents of the two watersheds, and data restricted to these
locations were used in this study.

2.3 Model Description

2.3.1 ForSAFE

The ForSAFE model simulates the cycles of water, C,
nutrients, and other chemical elements in a forest eco-
system (Wallman et al. 2005; Belyazid 2006; Zanchi

et al. 2014). It includes dynamic descriptions of tree
photosynthesis and growth, litter decomposition, tree
and soil hydrology, and soil and soil solution chemistry.
ForSAFE is modularly constructed. The module for tree
photosynthesis, growth, phenology, transpiration, and
uptake is based on the PnET model (Aber and Federer
1992). The module for soil and soil solution chemistry is
based on the SAFE model (Warfvinge et al. 1993,
Alveteg et al. 1998a, 1998b), which contains a module
for silicate mineral weathering based on the PROFILE
model (Warfvinge and Sverdrup 1992). Additional de-
tails on the ForSAFE model can be found in previous
publications (esp. Wallman et al. 2005, Belyazid 2006,
Belyazid et al. 2006).

2.3.2 The Ground Vegetation Composition Model Veg

The Veg model uses a set of environmental variables to
simulate the composition of a plant community at the
herbaceous layer (up to a height of 1.8 m) in response to
soil moisture, soil solution N and pH, light, temperature,
and competition through root depth and shading height
(Sverdrup et al. 2007). Details on the Veg model can be

Fig. 2 Modeled and measured soil solution concentrations of
chloride (Cl−) and sulfate (SO4

2−) at three depths at Hubbard
Brook Experimental Forest (HBEF). In the first and third columns,
the dark lines show modeled 12-month moving averages, the gray

lines show modeled monthly values, and the points are field
measurements. The second and fourth columns show 1:1 correla-
tions of yearly medians and standard deviations of modeled and
field measured concentrations
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found in previous publications (esp. Belyazid 2006,
Sverdrup et al. 2007). While keeping the concept and
main structure of Veg unchanged, both the parameteri-
zation of the plant niches and their numerical descrip-
tions were modified for this study. This was done to
harmonize the description of the different niches and to
make the units of the niche parameters consistent with
the units of the environmental drivers.

The modified version of Veg characterizes each
plant species by a set of fundamental niches
(Sverdrup et al. 2007). The temperature niche within
which a plant can exist is defined by a minimum and
a maximum temperature window. Soil N, pH, and
moisture and shade tolerance niches are described by
an optimum class ranking with tolerance tails. These
niches are numerically described using normalized
Gaussian distributions (Eq. 1):

Resp driver; opt; varð Þ ¼ e−
driver−optð Þ2

var ð1Þ

where driver can be soil solution pH, soil solution N
(mg/l), soil moisture saturation (given as the fraction
of total saturation), or the fraction of above canopy

light reaching the forest floor vegetation. opt refers to the
optimal value of a given driver at which a plant’s specific
response curve is maximal, and var denotes the tolerance
(i.e., the degree to which plant responds to changes in a
driver as it deviates from the optimal value) of a plant to
variations in the driver (see the “GroundVegetationData”
section below for a description of how the plant funda-
mental niches were determined for this study). This mod-
ified version of Veg differs from the original version of
the model in that all environmental responses are consis-
tently described with Gaussian responses, and each set of
niche parameters is given in the units of its respective
environmental driver. The suitability of a site for a given
species is obtained by multiplying the four specific re-
sponses (pH, N, soil moisture, and light). Each plant is
given a rooting depth that gives it access to different soil
layers, and thereby response to different values of the soil
drivers (pH, N, and moisture). The plants also compete
for light, with the taller plants shading the shorter ones,
thereby gaining an advantage. The suitability of the
drivers together with the shading height give each plant
a specific strength that is compared with all the other
plants to assign a relative surface cover to each.

Fig. 3 Modeled and measured soil solution concentrations of
sodium (Na+) and base cations (Bc2+; Ca2+, Mg2+ + K+) at three
depths at Hubbard Brook Experimental Forest (HBEF). In the first
and third columns, the dark lines showmodeled 12-month moving

averages, the gray lines show modeled monthly values, and the
points are field measurements. The second and fourth columns
show 1:1 correlations of yearly medians and standard deviations of
modeled and field measured concentrations
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2.4 Model Inputs

ForSAFE-Veg requires data pertaining to soil physical,
chemical, and hydrological properties as well as time
series of atmospheric deposition and climatic data. The
model also uses parameters specific to canopy vegeta-
tion, herbaceous layer vegetation, soil minerals stoichi-
ometry, and organic matter decomposition. Appendix 1
and 2 contains a detailed description of model inputs for
ForSAFE and Veg, respectively.

2.4.1 Atmospheric Deposition and Climatic Data

The ForSAFE model requires monthly climate and de-
position data. For lack of long-term monthly resolution
of deposition data over the entire simulation period
(1900–2100), the model distributes yearly values evenly
over the year. Total deposition (wet plus dry deposition)
was estimated by concatenating data for the historical
(1900–1993) and contemporary (1994–2009) time pe-
riods. Historical total N, S, base cation (calcium (Ca2+),
magnesium (Mg2+), potassium (K+), sodium (Na+)), and
chloride (Cl−) deposition at both sites was developed

from hindcasted wet deposition for the Northeastern
U.S. based on Gbondo-Tugbawa and Driscoll (2003)
and the Community Multi-scale Air Quality (CMAQ)
model dry to wet ratios (R. Dennis, personal communi-
cation). The historical wet deposition estimates were
scaled to 3-year average (1994–1996) National Atmo-
spheric Deposition Program (NADP) National Trends
Network (NTN) wet deposition at each site (NADP
2015). Historical deposition estimates for BBWM could
not account for observed soil solution sulfate (SO4

2−)
concentrations. Therefore, BBWM wet S deposition
drawn from Fernandez et al. (2003) and wet-dry ratios
from Cosby et al. (1996) replaced the total S deposition
estimates derived from the hindcasted values. In addi-
tion, to account for the experimental additions of N and
S in WB (Kahl et al. 1993), 28.8 kg S/ha per year and
25.2 kg N/ha per year (as NH4

+) were added to the
annual deposition estimates from 1989 to 2009. The
total pre-industrial deposition (average of 1850–1852)
for both sites was also estimated using the combination
of hindcasted wet deposition and dry to wet ratios scaled
to each site. Contemporary total N, S, base cation, and
Cl− deposition at both sites were estimated using the

Fig. 4 Modeled and measured soil solution concentrations of
inorganic nitrogen (NO3

− +NH4
+) and pH at three depths at Hub-

bard Brook Experimental Forest (HBEF). In the first and third
columns, the dark lines show modeled 12-month moving

averages, the gray lines show modeled monthly values, and the
points are field measurements. The second and fourth columns
show 1:1 correlations of yearly medians and standard deviations of
modeled and field measured concentrations
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1994–2009 wet deposition data from NADP NTN
(NADP 2015) and CMAQ dry to wet ratios (R. Dennis,
personal communication).

For climate, total monthly precipitation and monthly
average minimum and maximum temperatures from 1900
to 2009 were derived from the PRISM historic (PRISM
2013a) and recent years (PRISM 2013b) climate datasets.
Annual atmospheric CO2 concentrations were from the
Representative Concentration Pathways (RCP) database
version 2.0.5 for 1900 to 2009 (RCP Database 2013).

2.4.2 Soil Data

The soil at HBEF was represented by eight layers (O, A,
E, Bhs, Bs1, Bs2, Bs3, and Cd), which were described
from soil column samples collected in 1997. Soil texture
was estimated by laser diffraction with Partica LA 950
(J. Aherne, personal communication) and combined
with literature data (Federer 1992; Balland et al. 2008;
Phelan et al. 2014; Warfvinge and Sverdrup 1992;
Johnson et al. 1991a, 1991b; Yanai et al. 2006) to
provide the numerical inputs used by the model; these
are given in Tables 2 and 3 in Appendix 1.

Soil samples for EB were collected in 2010 from 3
hardwood forest locations and served, together with
data from SanClements et al. (2010), as the basis to
describe the soil with five layers (O, B1, B2, B3, and
C). The soil at WB was assumed to be generally
similar to EB, with differences in texture, cation
exchange capacity (CEC), and base saturation (BS).
A detailed description of the soil parameters is given
in Tables 4, 5, and 6 in Appendix 1.

2.4.3 Tree Data

Parametric data for photosynthesis, evapotranspira-
tion, allocation, and phenology were derived from
earlier studies of northern hardwood forests (Aber
and Driscoll 1997). Tree species composition was
used to parameterize tissue nutrient requirements
using weighted averages according to the proportion
of the respective trees (Tables 7 and 8, Appendix 1).
At HBEF, the forest biomass was composed of 32%
sugar maple, 29% American beech, and 39% yellow
birch (2007 values). At EB and WB, the forest was
dominated by American beech, red spruce, sugar

Fig. 5 Modeled and measured soil solution concentrations of
chloride (Cl−) and sulfate (SO4

2−) at three depths at East Bear
(EB) watershed. In the first and third columns, the dark lines show
modeled 12-month moving averages, the gray lines showmodeled

monthly values, and the points are fieldmeasurements. The second
and fourth columns show 1:1 correlations of yearly medians and
standard deviations of modeled and field measured concentrations
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maple, and yellow birch, with occurrences of other
tree species (Eckhoff and Wiersma 2002).

2.4.4 Ground Vegetation Data

Parameterization of the plant species’ physiological
traits and environmental niches was carried out during
a two-day Expert Plant Ecologist Workshop involving
the authors, seven of whom are professional botanists
familiar with the local flora. Parameterization involves,
first, identifying which species are to be included in the
simulation and, second, assigning niche values (i.e.,
central tendency and distribution tails) along six niche
axes presented above. Understory plant species were
identified based on presence in the hardwood forest
component of EB or WB, the HBEF plot, or in the
understory of U.S. Forest Service Forest Inventory and
Analysis (FIA) SMBYB forest plots (restricted to plants
that were present in at least 5% of plots and/or
representing greater than 5% of plant cover in a single
plot). Twenty-two additional SMBYB plant species
were added to the list by consensus of the plant ecolo-
gists. These species were identified based on their

occurrence in unique edaphic conditions and/or cultural
significance. The final list of SMBYB understory plant
species considered for this study consisted of 181 spe-
cies. During the workshop, each species on this list was
reviewed and parameterized by the ecologists, with the
parametrization focusing on the six separate niches axes.
The physiological and environmental niche parameters
were categorized by classes (see Table 9 in Appendix 2
for a key to how the classes relate to actual field param-
eters). The resulting plant species parameter table was
then trimmed down to the 45 plants present at the HBEF
plot or the hardwood forests of BBWM, and these 45
species were used for the uncalibrated (also referred to
here as blind) simulations and calibration of the vegeta-
tion traits and niches. The final Veg plant species pa-
rameter table is presented in Table 10 in Appendix 2.

2.5 Model Calibration Procedure

Model calibration was conducted in two steps, cali-
bration of the biogeochemical part of the model
(ForSAFE) followed by calibration of the vegetation
response model (Veg).

Fig. 6 Measured and modeled soil solution concentrations of
sodium (Na+) and base cations (Bc2+; Ca2+, Mg2+,+ K+) at three
depths at the East Bear (EB) watershed. In the first and third
columns, the dark lines show modeled 12-month moving

averages, the gray lines show modeled monthly values, and the
points are field measurements. The second and fourth columns
show 1:1 correlations of yearly medians and standard deviations of
modeled and field measured concentrations

Water Air Soil Pollut         (2019) 230:106 Page 9 of 33   106 



The calibration of ForSAFE consisted of back-
calculating the historical levels of exchangeable base
cations and soil organic matter (including C and N)
required for the model to simulate currently observed
values of base saturation and soil organic matter
(Belyazid 2006). An iterative dynamic routine is used
to set the level of base saturation, soil organic C, and soil
total N at the year 1900 (the start year for the simula-
tions) so that simulated values of these variables
matched their respective current field observations. No
additional parameters were calibrated in ForSAFE.

Calibration of Veg involved the adjustment of the
niche values by modifying the optima and/or variance
to ensure the projected cover more closely resembled
observed cover on a species-by-species basis (Appendix
2). The calibration of Veg involved a three-step process
applied to plant species with a more than 5% error in
predicted cover. First, drivers that caused a sub-
dominant plant (i.e., a plant that occupied less than
10% cover) to be modeled as dominant (i.e., cover >
20%) were identified, reviewed in the literature, and
adjusted within the literature constraints to reproduce
the observed plant cover. Secondly, drivers that

suppressed the simulated cover of a measured dominant
plant were identified, reviewed in the literature, and
modified to reproduce the observed cover. Lastly, the
same procedure was repeated consecutively for sub-
dominant (i.e., plants that covered 10–20% of the
area). Out of the 45 plants modeled, 12 light classes
were revised, 7 N classes, 4 pH classes, 2 shading
heights, and 1 moisture class were revised. The av-
erage modifications made to the expert defined clas-
ses of optimal values were 1.2, 0.6, 0.6, 1.3, and 0.5
classes for light, N, pH, shading height, and moisture,
respectively. The calibrated parameter classes are
given in Table 9, Appendix 2.

2.6 Model Performance Evaluation Metrics

A set of statistical metrics was used to evaluate
the performance of the biogeochemical components
of the model (ForSAFE) when compared with
observed field data.

To determine whether the model over- or
underestimated the observed biochemical indicators,
three metrics were used: (1) the normalized average

Fig. 7 Measured and modeled soil solution concentrations of
inorganic nitrogen (NO3

− +NH4
+) and pH at three depths at East

Bear (EB) watershed. In the first and third columns, the dark lines
show modeled 12-month moving averages, the gray lines show

modeled monthly values, and the points are field measurements.
The second and fourth columns show 1:1 correlations of yearly
medians and standard deviations of modeled and field measured
concentrations
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error (NAE, Eq. 2), which gives an estimate of bias in
the mean and requires the least data, is suitable for
comparing the limited records of tree biomass (n ≤ 20);
and (2) the slope of the relationship between predicted
(y-axis) and observed (x-axis) values with a zero inter-
cept using annual averages (i.e., the 1:1 line, a slope
value inferior to 1 indicates an underestimation by the
model), which allows for bias to change along the range
of a given value, but requires more data. The slope of the
1:1 line was used for the soil solution chemical indica-
tors and was complemented with the standard error (SE)
and the correlation factor (Cr) to quantify the spread in
the scatter. This method is preferred when sufficient data
points were available (i.e., n > 20).

NAE ¼
P−O

� �

O
ð2Þ

where P and O are the means of the predicted and
measured values (Janssen 1995).

A third measure, the normalized root mean square
error (NRMSE), was used to estimate the total error
in the simulations when data were sufficient (n > 20,

Eq. 3), and could be used to relate the temporal
changes of the observed and modeled data:

NRMSE ¼ 1

O
∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Pi−Oið Þ2
N

s
ð3Þ

where O is the mean of the observed values, and N is
the number of observed/modeled pairs O and P
(Janssen 1995). The NRMSE is a strict difference
metric, as it amplifies the larger differences within
individual observed/modeled pairs, and thus gives a
less aggregated value than other metrics (for example
the NAE which compares the means of the popula-
tions rather than the individual observed/modeled
pairs).

The metric used for evaluating the performance of
the ground vegetation composition model Veg was the
Czekanowski similarity index (CzI), given by Eq. 4
(Bray and Curtis 1957). CzI, also called the Sörensen
index or the reverse Bray-Curtis index, was selected
because it is one of the more reliable indices of similarity
as it accurately integrates the inter-community overlaps
in a symmetrical system (such as the normalized covers

Fig. 8 Modeled and measured soil solution concentrations of
chloride (Cl−) and sulfate (SO4

2−) at three depths at West Bear
(WB)watershed. In the first and third columns, the dark lines show
modeled 12-month moving averages, the gray lines showmodeled

monthly values, and the points are fieldmeasurements. The second
and fourth columns show 1:1 correlations of yearly medians and
standard deviations of modeled and field measured concentrations
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used here) and does not penalize nor overly account for
the non-dominat species (Bloom (1981), Wolda (1981),
Boesch (1977)). CzI = 1 indicates a perfect fit, and the
smaller the CzI, the lesser the similarity between the
modeled and the observed plant communities:

CzI ¼ 1−
∑ P−Oj j
∑ P þ Oð Þ ð4Þ

3 Results

3.1 Simulating Soil Solution Chemistry

The simulated soil solution concentrations of Cl−, Na+,
SO4

2−, inorganic N, and base cations (Bc2+ = Ca2++
Mg2++K+), as well as soil solution pH, are compared
with corresponding measurements both as time series
plots and corresponding statistical metrics (Figs. 2, 3,
and 4 for HBEF; Figs. 5, 6, and 7 for EB; and Figs. 8, 9,
and 10 for WB).

Model performance, evaluated through the agree-
ment between the simulated and measured soil solution
chemical indicators, varied considerably between

indicators and depths among the three sites. A general
trend is that the model performed better when evaluated
through the annual averages using the slopes of the 1:1
lines and the corresponding standard errors and correla-
tion coefficients. For the biggest majority of tested indi-
cators, the slope of the 1:1 line was within 0.7 to 1.3 (±
0.3 from the optimal value of 1). The standards errors
were generally small, while the correlation coefficients
ranged from strongly positive to weak and even negative
in exceptions. The standard deviation from the annual
averages was comparably large between the measured
and the modeled values.

Evaluated through the NRMSE (i.e., taking into ac-
count the highest temporal resolution of comparable
data), the model performed moderately well but less so
than with the previous indicator. There was no more
expressed difference between the sites, given the large
difference in observed data density, than within the sites
among the simulated soil horizon. The modeled data
showed more variability than the observations. The
model was, however, able to reproduce the observed
ranges, and in many cases, also the observed trends and
oscillations.

Fig. 9 Modeled and measured soil solution concentrations of
sodium (Na+) and base cations (Bc2+; Ca2+, Mg2+,+ K+) at three
depths at West Bear (WB) watershed. In the first and third col-
umns, the dark lines show modeled 12-month moving averages,

the gray lines show modeled monthly values, and the points are
field measurements. The second and fourth columns show 1:1
correlations of yearly medians and standard deviations of modeled
and field measured concentrations
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The concentrations of Cl− in the soil solution were
well reproduced by the model at the three sites and all
depths (Figs. 2, 5, and 8). The 1:1 slopes were within ±
0.3 at all sites and depths, except for the 60-cm depth at
WB. The standard errors were smaller at HBEF (= 0.06)
but higher at EB and WB, where data density was
markedly lower. The coefficients of correlation were
above 0.3 at all sites and depths, but the discrepancies
were due to different reasons at the different sites. The
model produced higher seasonal variation at EB and
WB, while it underestimated it at HBEF. This is
reflected in the NRMSE values that lie around 0.3 with
three exceptions (25-cm and 60-cm depth at EB, and 60-
cm depth atWB). Despite the large seasonal variation of
both the modeled and measured data, the NRMSE
values showed a relatively good agreement at the higher
time resolution. The highest recorded NRMSE occurred
at the depths with the lowest number of measurements
(60 cm at EB and WB).

Soil solution concentrations of SO4
2− showed a

distinct decline over the measurement period due to
changes in an atmospheric deposition at HBEF and
EB (Figs. 2 and 5). At WB, on the other hand, the

experimental additions of (NH4)2SO4 produced a
clear increase in SO4

2− concentrations (Fig. 8). The
model captured the SO4

2− patterns and ranges mod-
erately well at all sites, particularly when considering
the 1:1 comparison and associated standard errors.
The correlations between modeled and observed
[SO4

2−] were clearly stronger than for Cl−, except
for the 60-cm depth at EB, showing that the year-
to-year changes were well captured by the model.
However, the model exaggerated the seasonal varia-
tions at HBEF, as shown by the higher NRMSE
values.

The simulated concentrations of Na+ (Figs. 3, 6,
and 9) compared well with both the monthly and
yearly measurements. While the agreement between
observed and modeled Na+ improved with depth at
HBEF, it showed the opposite pattern at EB and WB.
At HBEF, the measured Na+ in the Oa and Bhs
horizons showed a step increase from around the year
2000 and onwards. This increase was not captured by
the model, causing an underestimation of the simu-
lated concentrations. In the Bs horizon at HBEF, the
model agreed well with the measurements (Fig. 3). At

Fig. 10 Modeled and measured soil solution concentrations of
inorganic nitrogen (NO3

− +NH4
+) and pH at three depths at West

Bear (WB) watershed. In the first and third columns, the dark lines
show modeled 12-month moving averages, the gray lines show

modeled monthly values, and the points are field measurements.
The second and fourth columns show 1:1 correlations of yearly
medians and standard deviations of modeled and field measured
concentrations
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EB and WB, the simulated concentrations of Na+ agree
well with the observations at both 5 cm and 25 cm
depths where the measured data are more dense
(Figs. 6 and 9). At 50-cm depth, where the measured
data is sparse, the model overestimated Na+.

The ranges of base cations (Bc; Ca2+, Mg2+, and K+)
concentrations in the soil solution, indicated by the 1:1
slopes, were well simulated by the model (Figs. 3, 6 and

9), with two exceptions: in the Bs horizon at HBEF (Fig.
3) and at the 25-cm depth at WB (Fig. 9). The model
predicted a faster increase in Bc following the addition
of (NH4)2SO4 at WB (Fig. 9). Looking at the higher
time resolution, the model captures the declining trend
in Bc at HBEF (Fig. 3) and at the shallower depth at EB
(Fig. 6). The simulated concentrations of Bc increased
consistently with depth, with the exception of the BS

Fig. 11 Modeled (line) and measured (squares) standing wood
biomass at the Hubbard Brook Experimental Forest (HBEF) and
East Bear (EB) and West Bear (WB) watershed sites. The sharp

declines show the effects of harvests. The normalized average
error (NAE) compares the measured values with their modeled
counterparts at the specific measurement years

Fig. 12 Comparisons of observed relative plant abundance by area cover versus blind (upper row) and calibrated (lower row) model
simulations at the Hubbard Brook Experimental Forest (HBEF) and East Bear (EB) and West Bear (WB) watershed sites
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Table 1 Observed and modeled relative cover distributions of
forest floor plants at the Hubbard Brook Experimental Forest
(HBEF) and East Bear (EB) and West Bear (WB) sites. Values
for the EB and WB watersheds are from the year 1997, and from
the year 2013 for HBEF. The Blind and Cal. columns refer,

respectively, to the simulated covers using the raw expert param-
etrization of the plant’s ecological niches and traits, and the cali-
brated parametrization. The values are rounded to the second
decimal (showing a resolution down to 1%)

HBEF EB WB

Observed Modeled Observed Modeled Observed Modeled

Plant Blind Cal. Blind Cal. Blind Cal.

Abies balsamea 0.00 0.14 0.01 0.00 0.01 0.01
Acer pensylvanicum 0.01 0.04 0.05 0.07 0.01 0.02 0.14 0.08 0.15
Acer rubrum 0.02 0.14 0.02 0.03 0.10 0.04
Acer saccharum 0.01 0.00 0.02 0.03 0.00 0.01 0.14 0.03 0.15
Aralia nudicaulis 0.03 0.00 0.04 0.03 0.01 0.01
Arisaema triphyllum 0.00 0.00 0.00
Betula alleghaniensis 0.02 0.00 0.03 0.13 0.14 0.12 0.04 0.01 0.01
Clintonia borealis 0.04 0.04 0.04 0.00 0.02 0.02
Coptis trifolia 0.01 0.00 0.00 0.00 0.00 0.00
Cornus alternifolia 0.00 0.00 0.00 0.00 0.00 0.00
Cornus canadensis 0.01 0.03 0.02 0.00 0.00 0.00
Dennstaedtia punctilobula 0.00 0.68 0.03 0.00 0.02 0.02 0.00 0.04 0.05
Diervilla lonicera 0.00 0.00 0.00
Dryopteris campyloptera 0.21 0.00 0.15 0.16 0.00 0.19
Dryopteris intermedia 0.32 0.00 0.33
Fagus grandifolia 0.07 0.00 0.05 0.25 0.01 0.22 0.18 0.08 0.18
Fragaria virginiana 0.00 0.01 0.01
Fraxinus americana 0.00 0.01 0.01 0.00 0.04 0.00
Gymnocarpium dryopteris 0.00 0.00 0.00 0.03 0.00 0.00
Huperzia lucidula 0.10 0.00 0.06
Lonicera canadensis 0.00 0.00 0.00 0.00 0.00 0.00
Maianthemum canadense 0.03 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00
Maianthemum racemosum 0.01 0.00 0.00
Medeola virginiana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Monotropa uniflora 0.00 0.00 0.00
Oclemena acuminata 0.01 0.00 0.00
Osmunda claytoniana 0.05 0.00 0.03 0.00 0.19 0.01
Oxalis montana 0.02 0.00 0.01
Phegopteris connectilis 0.00 0.00 0.00
Picea rubens 0.07 0.10 0.08 0.04 0.01 0.01
Polygonatum pubescens 0.00 0.00 0.00
Polygonum convolvulus 0.00 0.00 0.00 0.00 0.00 0.00
Polystichum acrostichoides 0.00 0.00 0.00
Prunus serotina 0.00 0.00 0.00 0.00 0.06 0.00
Quercus rubra 0.00 0.06 0.00
Ribes glandulosum 0.00 0.00 0.01
Sorbus americana 0.00 0.10 0.01 0.00 0.05 0.00
Phegopteris connectilis 0.00 0.00 0.00
Thelypteris noveboracensis 0.00 0.05 0.00 0.03 0.00 0.00
Trientalis borealis 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00
Trillium spp 0.00 0.00 0.00 0.00 0.00 0.00
Tsuga canadensis 0.02 0.14 0.01
Uvularia sessilifolia 0.04 0.00 0.05 0.05 0.00 0.01 0.07 0.02 0.04
Viburnum acerifolium 0.29 0.25 0.34 0.00 0.00 0.00 0.00 0.00 0.00
Viburnum lantanoides 0.00 0.12 0.02 0.07 0.14 0.07
Viola rotundifolia 0.00 0.00 0.00
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horizon at HBEF. As seen with the other elements
above, the exaggerated seasonal variation by the model
reduced its performance when evaluated by the
NRMSE. The correlations of the annual medians of Bc
varied greatly, from strongly positive at HBEF to weak
in the deeper soil layers inWB and even negative at EB.

The yearly median concentrations of inorganic N
were reasonably well simulated (Figs. 4, 7, and 10).
The slopes of the 1:1 curves showed a good agreement
with low standard errors at HBEF (Fig. 4), while they
indicated an overestimation at EB (Fig. 7) and underes-
timation at WB (Fig. 10). The correlations between the
observed and simulated N were stronger in the
shallower soil layers at the three sites. The NRMSE
values varied with depth with no clear pattern but indi-
cated a low performance at the higher time resolution.
The model produced wider monthly variations than the
observations at HBEF (Fig. 4), but these patterns were
less obvious at EB and WB. The model captured the
decline in N at HBEF, while no trends were apparent at
EB. At WB, the experimental addition drove a step
increase in concentrations that was more distinct at the
5-cm depth.

The simulated element concentrations and pH values
were well within the observed ranges at all sites (Figs. 4,
7, and 10), with very satisfactory 1:1 comparisons and
generally low standard errors and low NRMSE. Unlike
the individual concentrations, the simulated soil solution
pH showed small monthly variations. The model also
captured the temporal variation in pH, particularly at
HBEF with an initial decline and a later recovery, as
well as the observed initial decline at WB (Figs. 4 and
10. The model produced a lesser decline than observed
at EB (Fig. 7).

3.2 Simulating the Biomass of the Tree Cover

The model simulated the sizes of tree biomass
reasonably well at all three sites with some excep-
tions (NAE range from + 3.8 to − 11.7%). The
model underestimated tree biomass at both EB
and WB, and although it simulated tree biomass
at HBEF well from 1965 to 1990, it failed to
capture the recent decline (Fig. 11). The rates of
biomass increment were highest at EB and WB
after the clear-cuts of 1945, as seen in the steeper
slopes. While biomass leveled off at EB by the end
of the simulation period, the growth was simulated
to continue increasing at WB after the experimental

addition of NH4(SO4)2 since 1989. It was difficult
to further judge the performance of the model given
the sparseness of the tree biomass data, especially
for WB and EB, but model predictions appeared to
fit the measurements reasonably well with the
above caveats.

3.3 Simulating the Composition of the Ground
Vegetation Community

The performance of the model in reproducing the
observed composition of the understory plant com-
munities was poor before the calibration (blind run
in Fig. 12, upper row, Table 1). The community
CzI values from the blind simulations were 0.296,
0.302, and 0.362 at HBEF, EB, and WB, respec-
tively, meaning the model correctly predicted
roughly a third of the total cover. Calibrating the
niches produced a marked improvement in the pre-
dictive capacity of the model, with CzI values of
0.865, 0.83, and 0.818 at HBEF, EB, and WB,
respectively, and all species at the individual level
being within 5% of the observed abundance
(Fig. 12, lower row, Table 1). Rare species with a
cover less than 5% made up 9 out of 19 plants
reported at HBEF, 11 out of 33 at EB, and 8 of
33 at WB (19 species out of the total of the 45
plants modeled). Eleven of these 19 marginal spe-
cies were reproduced within 5% error under the
blind simulations.

The plant community at the plot in HBEF is
dominated by two plants (Viburnum lantanoides
and Dryopteris intermedia), occupying 61% of the
total area. The blind simulation reproduced the
presence of Viburnum lantanoides accurately but
missed the presence of Dryopteris intermedia. In
addition, it grossly overestimated the presence of
Dennstaedtia punctilobula, with this error in pre-
diction being due to the species’ response to the
intensity of light at the forest floor. At EB and WB,
59% of the area was shared among three plants
(Betula alleghaniensis, Dryopteris campyloptera,
and Fagus grandifolia), the last two of which were
missed by the blind simulation due to their light
response. At WB, the co-dominance was shared
among four plants (Acer pensylvanicum, Acer
saccharum, Dryopteris campyloptera, and Fagus
grandifolia), together covering 62% of the area.
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4 Discussion

4.1 Soil Solution Chemistry

The results provide confidence in the model’s abil-
ity to simulate soil solution chemistry in response
to environmental factors at the three study sites.
With no calibration of soil processes other than
the back-calculation of the historical base satura-
tion, the overall levels of analytes concentrations
and pH in the soil solution were well within the
ranges of the observations. While the modeled sea-
sonal variations were wider than observed, the
model performance on an annual basis was satis-
factory for most analytes and depths. Moreover, the
performance of the model was consistent through-
out the three sites with different geochemical and
deposition conditions. These results support the
prospect of expanding the model application to
additional sites, particularly with focus on inter-
annual rather than intra-annual dynamics.

Consistently through the soil profiles and for all the
analytes examined, the model performed better on an
annual average basis (as assessed by 1:1 comparisons)
than it did on an intra-annual basis (as assessed by
NRMSE). The reasons behind this may be found in
the temporal, spatial, and structural differences between
the model and the empirical data.

Temporally, while the model produces monthly
values, which are clearly differentiated in time, field-
collected lysimeter data are less obviously associated
with a fixed time frame (i.e., a soil solution sample can
represent a weekly or a bi-weekly average, depending
on the frequency of sampling). Moreover, the resolution
of the input data may carry further ambiguity, as is
suggested by Cl−. Chloride, an arguably conservative
ion (Svensson et al. 2012), is an appropriate indicator of
Cl− deposition. Yet, because the model uses annual
deposition fluxes, it does not capture the pronounced
intra-annual variability of Cl− deposition (Lovett et al.
2005; Rustad et al. 1994), thereby weakening the pre-
dictive accuracy of soil solution Cl− on a seasonal scale.
The same is true for other elements.

Spatially, although the model simulates different soil
layers, it assumes a hypothetical uniformity within each
soil layer. The simulated soil solution at a given soil
layer is represented by an average for the entire layer as
defined by the user (8 layers in the case of HBEF and 5
layers in BBWM). Lysimeter samples of the soil

solution, on the other hand, are taken at a specific depth
or multiple depths and can be strongly influenced by
concentration gradients in the soil solution within a soil
layer (Vetterlein and Jahn 2004; Schöttelndreier and
Falkengren-Grerup 1999). Thus, direct linkages be-
tween modeled output and field data remain difficult.

Structurally, the model is built on strict conservation
of mass balances for all elements and, for nutrients, in
particular, a balance between assimilation by the trees
and release through litterfall and mineralization. The
cycles of nutrient uptake and litterfall create an exag-
gerated seasonal variation for nutrient elements. The
results of this study clearly show that while the annual
mass balance calculations are reliable as indicated by the
1:1 comparisons, there is a clear need for improving the
seasonality of physiological processes such as uptake
(e.g., Mellander et al. 2006).

Finally, two elements stand out from the discussion
above, Na+ for its depth patterns and SO4

2− for its
temporal trends. Simulated Na+ concentrations im-
proved with depth at HBEF, while they strongly wors-
ened with depth at both EB and WB. Sodium concen-
trations reflect the combined effects of deposition, hy-
drology, and weathering, and are mainly dominated by
Na+ deposition at the shallower depths, with increasing
contribution from weathering deeper down in the soil
(Na+ concentrations are 2.5 times higher in the Bs than
in the Oa horizon at HBEF, while 1.5 times higher at EB
and only 1.1 times higher at WB). It was noted that the
model performed better where Na+ concentrations in-
creased strongly with depth (i.e., where Na+ resulting
from weathering exceeded Na+ deposition). Such cases
were likely able to dampen any potential errors associ-
ated with seasonal uncertainties in Na+ deposition.

The rate of decline of SO4
2− concentrations at HBEF

was exaggerated, due to the fact that the SO4
2− adsorp-

tion module within ForSAFE (Martinson et al. 2003)
was not activated for the lack of parameter values. The
simulated and observed values of SO4

2− do, however,
converge as deposition stabilizes and SO4

2− in the soil
solution leaves the transient stage. The discrepancy in
SO4

2− concentrations is reflected in a delay in the re-
covery of soil solution pH, apparent in the Oa and Bhs
horizons at HBEF.

The disparity in the performance of the model when
gauged on an annual versus sub-annual basis implies,
notwithstanding the caveats above, that the model is
better suited to project annual than sub-annual dynam-
ics. Some dynamics driven by N deposition are known
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to occur over annual to multi-year time scales, such as
species losses from low-level N inputs, which have been
shown to occur over decadal time periods (Clark and
Tilman 2008). Other dynamics occur over much shorter
time periods, such as changes in soil solution nitrate and
timing of leaf-out, among others. For these sub-annual
responses, we have less confidence in the skill of the
model.

4.2 Tree Biomass

The model was able to reconstruct the present
stand sizes from generic parameters and from the
known histories of the stands. Based on the con-
cept by Aber and Federer (1992), the model uses
foliar N concentrations to drive photosynthetic
rates by capturing light and water use and, specific
to ForSAFE, soil base cation and Al concentra-
tions as potentially limiting factors. The model
was also able to capture a considerable difference
in biomass between WB and EB as a result of the
experimental increase in N availability, primarily
as a result of foliar N enrichment, in line with the
explanation given by Elvir et al. (2010). However,
the model underestimated tree biomass at both EB
and WB due to the use of the non-calibrated
generic parameters. Since the aim of the modeling
was to evaluate model applicability on SMBYB
stands in the Northeastern U.S., the generic param-
eters for tree growth and allocation were not
modified.

At HBEF, the model failed to reproduce the tree
biomass decline by the end of the 1990s (Siccama
et al. 2007). Different studies have suggested that a
deficiency in Ca2+ may be behind the observed decline
of northern hardwoods (Hugget et al., 2007; Park et al.
2008; Bailey et al. 2004, Juice et al. 2006), either direct-
ly or indirectly through enhancing tree vulnerability to
pathogens. Because the reasons behind the decline re-
main unclear (Siccama et al. 2007), it is difficult to
pinpoint specific model shortcomings that may be the
source of the differences in simulated versus observed
biomass at HBEF. In a recent study, Battles et al. (2014)
showed a reversal of forest decline at HBEF following
the addition of Ca2+ silicate, which resulted in higher
photosynthetic area and above ground primary produc-
tion. These findings potentially open the way for possi-
ble improvements to the model.

4.3 Ground Vegetation Composition

The calibrated vegetation responses produced a good fit
between the observed and modeled occupancies at the
three sites. The calibration procedure required limited
modifications to the original expert parameterization
(see the “Model Calibration Procedure” section above
for a description of the modified parameters), with a
notable increase in performance. The implications of
this are twofold. First, it appears that the model is
reasonable at projecting the relative abundances of the
45 species for which it was calibrated, and that perfor-
mance is consistent across the three sites with a single
common calibrated table. However, the sensitivity of the
performance to calibrated versus non-calibrated data
suggests that the model should not be used with non-
calibrated species, and that greater ground-truthing with
compositional data is needed. Furthermore, without
temporal data that characterizes changes in plant cover,
it is unclear whether the good fit with calibrated species
will hold over time. However, based on the concept of a
species’ fundamental niche, which is independent of
local conditions and captured in the model, the corre-
spondence is not hypothesized to disappear. Further
tests of the calibrated species responses on independent
data sources are needed to test this hypothesis.

The calibration of the plant niches was successful over
the spread of community structures at the three sites. The
sites were distinctly different in that the understory at
HBEF was clearly dominated by two main species, while
plant dominance was more gradually distributed at EB
and no plant cover exceeded 20% at WB. These results
may offer a reason to strengthen confidence in the model-
ing of plant community composition, particularly when
combining this study with other findings in, for example,
Dirnbök et al. (2017). Moreover, it remains important to
note that even with satisfactory confidence, the use of a
single metric for plant community composition may limit
the efficacy of models to inform about the need for
protection from anthropogenic changes. Other indicators
and metrics are for example presented and discussed in
Rowe et al. (2017).

4.4 Implication for Integrated Forest Ecosystem
Modeling

Dynamic modeling in general, and dynamic ecosystem
modeling in particular, faces the continuous challenge of
trying to balance good performance with limited
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calibration. The reason for this is by trying to create
simulation tools that are able to reproduce ecosystem
behavior from our understanding of core processes, rather
than heavily forcing those tools to mimic observations
through opaque calibration of parameters. Only then are
we able to have confidence inmodel projections of highly
dynamic futures, where multiple drivers change simulta-
neously on top of the ecosystems’ internal feedbacks. Yet,
it is not uncommon for models to fall in the “right
behavior for the wrong reason” dilemma. This study
can be seen as an example of the potential of integrated
monitoring to help solve that dilemma. By providing
information on most key ecosystem components, empir-
ical data of the quality found at the sites simulated here
forces the models to get each component right.

The interpretation of the empirical observations is
obviously enhanced by the availability of long time
series of data. This is also enhanced by integrated
modeling that provides a platform to test how different
process descriptions fit together, and if congruous can
reproduce the overall observed behavior. It is maybe not
a surprise that many terrestrial ecosystem models orig-
inated or were refined based on the data at HBEF and
BBWM (see for example McDonnell et al. 2018a;
McDonnell et al. 2018b; Gbondo-Tugbawa et al. 2001;
Aber and Federer 1992; Cosby et al. 1996;
Pourmokhtarian et al. 2017). This study confirms the
importance and efficacy of combining integrated long-
term ecosystem monitoring and dynamic modeling, and
can only encourage more such efforts, particularly in
view of the simultaneous and increasingly major envi-
ronmental changes affecting our ecosystems.

5 Conclusions

This study shows that although the modeling exercise
made use of multiple data sources, the data were robust
and coherent. It is this coherence in input data that made
the modeling and model evaluation possible and suc-
cessful with limited calibration. The biogeochemical
model performed reasonably well with minimal calibra-
tion, supporting the prospect of using the model on sites
where data scarcity may limit the calibration.

The comparisons with field data (particularly site ob-
servations and soil solution measurements) provided a
unique and powerful opportunity to test the concepts and
assumptions of the ForSAFE-Veg model. Although the
annual ranges of the modeled data fitted well with the

observations, the seasonal variability produced by the
model exceeded the observed fluctuations. This sheds
valuable light on the shortcoming of the biogeochemical
component of the model, where seasonality is imbedded
in virtually all processes. Thus, it appears that the model
is well suited to simulate dynamics that occur over yearly
or multi-year periods (e.g., changes in soil biogeochem-
istry, and plant community composition to a lesser ex-
tent), and poorly suited at present to simulate sub-annual
dynamics (e.g., instantaneous leaching rates, intra-annual
dynamics of plant competition such as shading).

The model performed acceptably well at sites under-
going different transient changes, such as biomass clear-
ing, different climatic conditions, and different soil
amendment levels. This strengthens confidence in the
model to simulate plant and biogeochemical response to
simultaneous climatic and deposition changes. Unlike
the biogeochemical component, the vegetation compo-
sition module required calibration. Although the cali-
bration was limited, its impact on model performance
was substantial. This emphasizes both the sensitivity of
the plant community composition to the niches and the
reliability of the expert opinions on which the original
parameterization is based.
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Appendix 1

This section provides a detailed description of the model
input data introduced in the “Method” section of the
main paper.

Soil and mineralogy data

Soil data for Hubbard Brook Experimental Forest
(HBEF) were from soil samples (Bhs, Bs1, Bs2, Bs3,
and Cd horizons) collected in 1997 from a soil profile pit
in the plot west of W6 (Bailey et al. 2004, personal
communication), unless otherwise specified in Table 2.
Fine earth (< 2 mm) bulk densities and hydrological

properties were determinedwith equations fromBalland
et al. (2008), using particle size distribution and loss on
ignition from the soil samples (J. Aherne, personal
communication). At HBEF, the calculated values of
fine earth bulk density compared well with the field
measurements from Johnson et al. (1991a), and the
calculated hydrological parameters related well to the
values reported in Federer (1992). The referenced
values in Johnson et al. (1991a) and Federer (1992)
were not used because not all modeled soil layers
were represented. Soil surface areas were calculated
by applying particle size distributions to the equa-
tions outlined by Phelan et al. (2014).

Table 2 Soil parameters at Hubbard Brook Experimental Forest (HBEF)

Soil parameter Ref. Unit Soil horizon

O A E Bhs Bs1 Bs2 Bs3 Cd

Horizon thickness 1 M 0.07 0.07 0.03 0.04 0.1 0.1 0.55 0.11

Bulk density 2 kg/m3 177.0 351.6 997.3 666.3 658.7 795.3 874.4 1100.3

Soil surface area 3 106 m2/m3 0 0.13 0.59 0.22 0.32 0.48 0.72 1.10

Kgibb 4 log10(m
6/eq2) 6.5 6.5 6.5 7.6 7.6 8.6 8.6 9.2

Cation exchange capacity 5 meq/kg 175 72.5 25.4 147.2 104.3 54.6 38.8 13.9

Base saturation 5 Fraction 0.5 0.64 0.16 0.05 0.03 0.02 0.04 0.07

Field capacity 2 m3/m3 0.79 0.47 0.12 0.2 0.23 0.17 0.17 0.14

Wilting point 2 m3/m3 0.43 0.21 0.04 0.08 0.09 0.06 0.06 0.04

Field saturation 2 m3/m3 0.87 0.88 0.61 0.72 0.72 0.67 0.65 0.58

Fine root distribution 6 % of total 26 24 10 8 16 12 4 0

Minerals 7 % of total

K-feldspar – 15.70 15.70 13.82 6.31 7.11 9.37 12.10

Muscovite 0.52 0.52 3.85 13.43 13.13 10.37 8.51

Hornblende 1.50 1.50 1.85 1.82 3.09 3.16 3.16

Plagioclase 17.29 17.29 18.83 19.66 22.07 20.35 22.67

Fe-chlorite 0.79 0.79 6.08 3.69 2.21 2.09 2.02

Mg-vermiculite 0.17 0.17 0.26 0.23 0.32 0.35 0.41

Apatite 0.15 0.15 0.28 0.32 0.41 0.38 0.45

Kaolinite 0.30 0.30 2.25 5.31 5.93 6.06 4.97

Calcite 0.35 0.35 0.35 0.35 0.37 0.30 0.43

(1) Bailey (personal communication), Federer (1992)

(2) Calculated according to Balland et al. (2008) from soil texture (J. Aherne, personal communication)

(3) Calculated according to Phelan et al. (2014) from soil texture (J. Aherne, personal communication)

(4) Warfvinge and Sverdrup (1994)

(5) Bailey (personal communication), Johnson et al. (1991b)

(6)Yanai et al. (2006)

(7)J. Aherne (personal communication)
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The proportions (% weight) and stoichiometry of
each mineral (given in Table 3) were determined
through a combination of qualitative mineralogy and

total oxide analysis results (J. Aherne, personal commu-
nication) and the Analysis to Mineralogy model (A2M
version 1.3, Posch and Kurz 2007).

Table 3 Stoichiometries of mineral classes used for Hubbard Brook Experimental Forest (HBEF)

Mineral Horizon Stoichiometry (elemental content)

Si Al Fe Mn Mg Ca K Na P Ti

Apatite* A/E, B, C 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 3.00 0.00

Calcite A/E 0.00 0.00 0.00 0.00 0.35 1.65 0.00 0.00 0.00 0.00

B 0.00 0.00 0.00 0.00 0.50 1.50 0.00 0.00 0.00 0.00

C 0.00 0.00 0.00 0.00 0.56 1.44 0.00 0.00 0.00 0.00

Fe-chlorite A/E 3.00 2.00 3.82 0.46 0.72 0.00 0.00 0.00 0.00 0.00

B 3.00 2.00 4.34 0.15 0.51 0.00 0.00 0.00 0.00 0.00

C 3.00 2.00 4.06 0.28 0.67 0.00 0.00 0.00 0.00 0.00

Hornblende A/E 8.00 0.00 4.31 0.00 0.69 2.00 0.00 0.00 0.00 0.00

B 8.00 0.00 4.49 0.00 0.51 2.00 0.00 0.00 0.00 0.00

C 8.00 0.00 4.25 0.00 0.75 2.00 0.00 0.00 0.00 0.00

K-feldspar A/E, B, C 3.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Mg-vermiculite A/E, B, C 5.50 2.50 1.00 0.00 5.19 0.13 0.39 0.21 0.00 0.00

Muscovite A/E, B, C 3.00 3.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Plagioclase A/E 2.97 1.03 0.00 0.00 0.00 0.03 0.00 0.97 0.00 0.00

B 2.96 1.04 0.00 0.00 0.00 0.04 0.00 0.96 0.00 0.00

C 2.96 1.04 0.00 0.00 0.00 0.04 0.00 0.96 0.00 0.00

Si silicon, Al aluminum, Fe Iron, Mg magnesium, Ca calcium, K potassium, Na sodium, P phosphorus, Ti titanium

*Apatite was not identified by the X-ray diffraction but added to account for P in the total elemental analysis
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At East Bear (EB) and West Bear (WB) watersheds
in Bear BrookWatershedMaine (BBWM), soil samples
collected in 2010 from three hardwood forest locations
in EB served as the source of horizon thickness, soil
particle size distributions, and soil mineralogy estimates.
Samples from EB were selected to represent select soil
parameters for both watersheds because the watersheds
are small, are in close proximity, and contain soils
developed from the same parent material (well-mixed
glacial till) (I. Fernandez, personal communication).
Similar to HBEF, fine earth bulk densities were

estimated using the Balland et al. (2008) equation
and particle size distributions conducted on the
three soil samples from EB (J. Aherne, personal
communication) and loss on ignition estimates spe-
cific to each of the two plots (SanClements et al.
2010). Soil surface areas and mineralogy were de-
termined using the same methods outlined for
HBEF. Tables 4 and 5 present the soil parameters
used in the ForSAFE simulations for EB and WB,
respectively. Table 6 presents the mineral contents
data used for both sites.

Table 4 Soil parameters used in the ForSAFE simulation for East Bear (EB) watershed

Soil parameter Ref. Unit Soil horizon

O B1 B2 B3 C

Thickness 1 M 0.055 0.05 0.25 0.14 0.58

Bulk density 2 kg/m3 217.9 587.5 675.0 794.0 1017.7

Area 3 m2/m3 64,953 507,947 639,356 903,193 1,377,622

Kgibb 4 log10(m
6/eq2) 6.5 7.6 8.6 8.6 9.5

CEC 1 meq/kg 230.0 70.0 57.0 27.0 33.0

Base saturation 1 Fraction 58 9 7.9 8.5 16.2

Fc 2 m3/m3 0.69 0.36 0.32 0.29 0.26

Wp 2 m3/m3 0.35 0.12 0.10 0.09 0.06

Fs 2 m3/m3 0.86 0.74 0.71 0.68 0.60

Roots 5 Fraction of total 0.13 0.13 0.29 0.35 0.1

Minerals 6 % of total

K-feldspar 4.47 4.47 4.47 4.47 7.26

Muscovite 14.95 14.95 14.95 14.95 10.36

Hornblende 2.70 2.70 2.70 2.70 2.54

Plagioclase 14.46 14.46 14.46 14.46 15.19

Fe-chlorite 8.48 8.48 8.48 8.48 7.44

Mg-vermiculite 10.36 10.36 10.36 10.36 10.32

Apatite 0.32 0.32 0.32 0.32 0.23

Calcite 0.00 0.00 0.00 0.00 0.14

(1) SanClements et al. (2010)

(2) Calculated according to Baland et al. (2008) from soil texture (J. Aherne, personal communication)

(3) Calculated according to Phelan et al. (2014) from soil texture (J. Aherne, personal communication)

(4) Warfvinge and Sverdrup (1994)

(5) Yanai et al. (2006)

(6) J. Aherne (personal communication)
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Table 5 Soil parameters used in the simulations for West Bear (WB) watershed (only parameters differing from EB are shown)

Soil parameter Ref. Unit Soil horizon

O B1 B2 B3 C

Bulk density 1 kg/m3 190.2 491.3 701.3 830.6 1017.7

Area 2 m2/m3 34,591 390,111 672,417 955,662 1,377,622

CEC 3 meq/kg 220.0 100.0 41.0 28.0 15.0

Base saturation 3 Fraction 22 7 7.2 6.7 7.1

Fc 1 m3/m3 0.73 0.41 0.31 0.28 0.26

Wp 1 m3/m3 0.40 0.15 0.10 0.08 0.06

Fs 1 m3/m3 0.87 0.77 0.71 0.66 0.60

(1) Calculated according to Baland et al. (2008) from soil texture (J. Aherne, personal communication)

(2) Calculated according to Phelan et al. (2014) from soil texture (J. Aherne, personal communication)

(3) SanClements et al. (2010)

Table 6 Elemental contents of the mineral reported at East Bear (EB) and West Bear (WB) watersheds

Mineral class Horizon Elemental content

Si Al Fe Mn Mg Ca K Na P Ti

Apatite B, C 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 3.00 0.00

Calcite C 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Fe-chlorite B 3.00 2.00 4.64 0.04 0.31 0.00 0.00 0.00 0.00 0.00

C 3.00 2.00 4.56 0.04 0.39 0.00 0.00 0.00 0.00 0.00

Hornblende B 8.00 0.00 3.01 0.00 1.99 2.00 0.00 0.00 0.00 0.00

C 8.00 0.00 3.13 0.00 1.87 2.00 0.00 0.00 0.00 0.00

K-feldspar B, C 3.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Mg-vermiculite B 4.13 1.72 0.09 0.00 0.77 0.10 0.04 0.17 0.00 0.00

C 4.12 1.72 0.08 0.00 0.74 0.08 0.03 0.19 0.00 0.00

Muscovite B 3.14 2.86 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00

C 3.12 2.88 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00

Plagioclase B 2.94 1.06 0.00 0.00 0.00 0.06 0.00 0.94 0.00 0.00

C 2.96 1.04 0.00 0.00 0.00 0.04 0.00 0.96 0.00 0.00

Water Air Soil Pollut         (2019) 230:106 Page 23 of 33   106 



Tree Tissue Nutrient Contents

Tree species compositions at the three sites were
determined using the measurements of diameters at
breast height converted into tree biomass using the
Hubbard Brook singletree biomass program
(http,//www.hubbardbrook.org/w6_tour/biomass-

stop/single-tree-biomass.htm), which is based on the
work of Whitacker and others (1974). Using the
tissue nutrient contents of each of the tree species
together with their respective fractions of the total
biomass, it was possible to derive foliar, wood, and
root nutrient contents for the three forest stands
(Tables 7 and 8).

Table 7 Forest stand tissue nutrient concentrations at Hubbard Brook Experimental Forest (HBEF)

Tissue type Nutrient contents (mg/g) Sources

N Mg Ca K

Foliage* 24–30 1.5–2.25 7–10.5 8–16 Pham et al. (1978); Ollinger et al. (2002); Halman et al. (2008);
Wicklein et al. (2012); Park and Yanai (2009)

Wood 1.5 0.12 0.5 0.5 Park and Yanai (2009)

Fine roots 1.2 0.7 3 2.5 Park and Yanai (2009); Likens et al. (1994)

*The model internally calculates the foliar nutrient content within the given range depending on the availability of the nutrients

Table 8 Forest stand tissue nutrient contents weighted by dominant tree abundance at Bear Brook Watershed Maine (BBWM)

Tissue type Nutrient contents (mg/g) Sources

N Mg Ca K

Foliage 20 1.2 4.0 7.0 Pham et al. (1978); Ollinger et al. (2002); Halman et al. (2008);
Wicklein et al. (2012); Park and Yanai (2009)

Wood 1.5 0.10 0.80 0.45 Park and Yanai (2009)

Fine roots 8.0 0.50 2.0 0.5 Park and Yanai (2009); Likens et al. (1994)
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