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Summary

e Many plant phenological events are sensitive to temperature, leading to changes in the sea-
sonal cycle of ecosystem function as the climate warms. To evaluate the current and future
implications of temperature changes for plant phenology, researchers commonly use a metric
of temperature sensitivity, which quantifies the change in phenology per degree change in
temperature.

e Here, we examine the temperature sensitivity of phenology, and highlight conditions under
which the widely used days-per-degree sensitivity approach is subject to methodological issues
that can generate misleading results. We identify several factors, in particular the length of the
period over which temperature is integrated, and changes in the statistical characteristics of the
integrated temperature, that can affect the estimated apparent sensitivity to temperature.

e We show how the resulting artifacts can lead to spurious differences in apparent tempera-
ture sensitivity and artificial spatial gradients. Such issues are rarely considered in analyses of
the temperature sensitivity of phenology.

e Given the issues identified, we advocate for process-oriented modelling approaches,
informed by observations and with fully characterised uncertainties, as a more robust alterna-
tive to the simple days-per-degree temperature sensitivity metric. We also suggest

approaches to minimise and assess spurious influences in the days-per-degree metric.

Introduction

Changes in the timing of plant phenological events have long held
the fascination of ecologists (de Reaumur, 1735; Leopold & Jones,
1947). Events such as bud-burst, flowering and leaf senescence
play an important role in global ecosystems, affecting multiple
aspects of ecosystem function in addition to feedbacks to the
atmosphere and climate system (Richardson etal, 2013). Pheno-
logical events are inherently sensitive to changes in weather, and
recent climate warming has caused an appreciable extension of the
growing season (Linderholm, 2006). Accurately characterising the
controls of phenology is therefore a necessity in order to predict
phenological responses to climate variability and future change.
Temperature is widely recognised as the dominant control of
spring phenology (P) in temperate and boreal ecosystems (de
Reaumur, 1735; Leopold & Jones, 1947; Leith, 1974). The
nature of the temperature response (Parmesan, 2007; Morin
et al., 2010; Hanninen et al., 2011; Clark et al., 2014) is known
with less certainty, however. There is indeed no known global
response, with large differences apparent between species,
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locations and populations (Parmesan, 2007; Zohner & Renner,
2014). The response to temperature is also modulated by a host
of factors such as photoperiod, latitude, humidity, chilling and
dormancy requirements, and the timing of warming (Murray
etal., 1989; Myking & Heide, 1995; Morin ez al., 2009; Basler
& Korner, 2012; Friedl et al., 2014; Laube ez al., 2014).

In order to study the response of phenology to spatial and tem-
poral changes in temperature, researchers have used a metric
referred to as the temperature sensitivity (e.g. Wolkovich ezal,
2012; Chapman, 2013; Wang ez al., 2014, 2018; Fu et al., 2015;
Keenan, 2015; Thackeray ezal, 2016; Gusewell ezal., 2017),
defined simply as the change in the date of a phenological event
per change in temperature over a given period:

AP
AT

where AP is the anomaly in the date of a specific phenological tran-
sition, and A7'is the anomaly in temperature over some integrating

St Eqn 1

period (e.g. mean spring temperatures). The S7-metric is convenient
and intuitive, and widely used due to its simplicity and apparent
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tractability. The simplicity of Sz allows it to be applied to any
dataset for which a metric of temperature change exists, for example
for large datasets for which only highly temporally aggregated
weather data have been historically available (e.g. Miller-Rushing &
Primack, 2008; Primack ez 4/, 2009). It is tractable in the sense that
more detailed analytical methods such as process-oriented models
(e.g. Chuine eral, 1999; Migliavacca etal, 2012; Melaas ezal,
2013) require muldple parameters to be estimated, and often
involve multiple interacting processes. Despite the appeal of the S
metric, however, its simplicity could potentally hide important
caveats. Here we examine potential statistical and methodological
issues, and show how they can lead to biased results.

S is estimated as the slope of the linear regression between
observed phenology dates () and some metric of temperature
(7), most commonly mean temperature calculated across differ-
ent years, along spatial gradients or between experimental treat-
ments. Mathematically, S7-can therefore be expressed as:

cov(P, T)
=N L) Eqn 2
r var(7T) an
corr(P, T) - sd(P) Ean 3
= q

sd(T)

S7is therefore determined by the covariance between Pand 7,
and by the variance of 7 (Eqn 2), or alternatively expressed, by
the correlation between Pand 7, the standard deviation of 7, and
the standard deviation of 7" (Eqn 3). In this paper we examine
issues affecting the estimation of a temporal and spatial S7-metric
using both ground and remote sensing observations, and simu-
lated data. We show that var(7") can and does change indepen-
dently of P, an observation that has implications for the derived
S values. Temporally, we show that var(7"), and therefore Sy,
are highly dependent on the length of the integration period, due
to the nature of year-to-year variability in weather patterns, which
tends to be lower over longer time periods. Spatially, we show
that var(7") can vary over latitudinal gradients due to a relation-
ship with mean temperature. This means that any investigation
into the nature of variation in S7in relation to both temperature
variance and mean temperatures could be subject to the common
statistical fallacy of spurious ratio, or ‘part of whole’, correlations
(Pearson, 1897; Chayes, 1971), so termed because var(7") is a
function of mean temperature, leading to S7-being examined as a
function of the part (viz. 7). This implies that all terms in Eqn 3
must be examined in order to properly interpret spatial changes.
In addition, we examine how another common statistical issue,
termed ‘error in variables’, due to unaccounted for uncertainty in
T, can affect estimates of S7. Each of these issues can lead to
biases in the estimated temporal and spatial changes in apparent
S7: Finally, we suggest methods to more accurately quantify the
sensitivity of phenological events to environmental drivers.

Materials and Methods

We use ground observations of phenology, obtained from the
Hubbard Brook Experimental Forest long-term measurement site
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in the northeastern USA, where ongoing meteorological and phe-
nological observations have been made for the past two decades
(1989-2012, http://hubbardbrook.org/data/dataset.php?xml:id=
51)). We used data from the three dominant tree species (Sugar
Maple, American Beech and Yellow Birch). Each year, individual
trees were visited every 3—5 d throughout spring, and their phe-
nological status recorded. We estimated the mean date of spring
phenology as the date at which leaves reach % of final length
(database flag > 3).

The temporal sensitivity of spring phenology to changes in
mean integrated temperature (S7) was quantified (Eqn 1), by
comparing the anomalies in observed spring phenology dates (rel-
ative to the mean phenology date over the examined period),
with the corresponding anomalies in mean temperature (77) for
different temperature integration periods.

To illustrate the potentdal influence of latitudinal gradients
in temperature variance, we used global gridded temperature
data obtained from the European Center for Medium Range
Weather Forecasting reanalysis product ERA- Interim, a global
four-dimensional reanalysis product that provides daily 2m
air temperature to the present day at a resolution of 79 km
((Dee eral., 2011) htep://www.ecmwi.int/). We selected pixels
identified as deciduous broadleaved forest, according to satel-
lite observations from the MODIS (Moderate Resolution
Imaging Spectroradiometer) Land Cover Dynamics phenology
product (MCD12Q2 Collection 5 (Ganguly eral, 2010)).
The product, which is based on nadir bidirectional reflectance
distribution  function-corrected MODIS  surface reflectance
data (MCD43A4 (Schaaf etal, 2002)) with an 8-d temporal
resolution and a 500-m spatial resolution, estimates phenolog-
ical transitions based on temporal changes in surface vegeta-
tion as characterised by the enhanced vegetation index and a
logistic model approach (Ganguly eral, 2010). We selected
all MODIS Land Cover (MCD12Q1) pixels that were classi-
fied consistently as International Geosphere-Biosphere Pro-
gram type deciduous broadleaved forest (MCDI12Q1 class 4)
between 2001 and 2012 (Supporting Information Fig. SI).
To merge the two datasets (ERA, MODIS), we scaled the
MODIS phenology pixels to the coarser resolution of the
gridded climate cells by taking the median spring onset date
over all pixels within a cell, for each year. Cells that con-
tained fewer than 100 MODIS pixels (0.5% of potential)
were discarded. We use the ERA and MODIS data in an
illustrative analysis focused on the winter deciduous forests of
Europe (42°:55°N, 10°W:60°E). We used the ERA and
MODIS data to calculate the relationship between tempera-
ture variance and latitude, and between latitude and the
covariance of temperature and spring phenology.

Results and Discussion
The influence of the length of the period of temperature
integration

Examining the temperature sensitivity of phenology via Sr
(Eqn 1) requires specifying a period of time over which to
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integrate temperatures. Some studies relate observed variabil-
ity in phenology to the mean annual temperature (e.g.
Wolkovich eral, 2012) or mean meteorological spring tem-
perature (i.e. March, April, May in the northern hemisphere)
(e.g. Keenan eral, 2014), whilst others use an optimisation
approach to identify the period of time that is most corre-
lated to the observed variability in phenology (e.g. Fu etal,
2015). The period over which temperatures are integrated
invariably has a defined length. The length of the integration
period is of crucial importance, due to the fact that longer
integration periods tend to have lower interannual variability
in aggregated temperature. For example, year-to-year variabil-
ity on a particular day or week of the year is typically much
higher than year-to-year variability of monthly, seasonal or
annual temperatures. In addition, the covariance between P
and 7 is dependent on the length of the integration period
used, and inversely related to the relevance of the integration
period to the phenological event. The timing and length of
the chosen integration period affect the relevance of the inte-
gration period to the phenological event, and could therefore
affect the derived apparent S7; through its influence on both
var(7") and cov(7, P) (Eqn2).

To illustrate the potential impact of varying integration
lengths on the derived S7; we use 20 yr of phenological and mete-
orological observations from the Hubbard Brook Experimental
Forest, for three deciduous forest species. For each species, we use
temperatures from all periods of length >2 wk within the first
150d of each year that show a significant correlation with
observed bud-burst (2<0.01), and examine how the derived S+
varies in dependence of the effect of integration length on var
(T). As expected, var(7") declined with increasing integration
period length, from 9°C? for integration periods of 2 wk (as used
in, e.g. Gunderson ez al., 2012; Shen ez al., 2014; Fu ez al., 2015;
Zhang etal., 2015b; Gusewell etal., 2017), to between 1-2°C?
for integration periods of over 2 months (Fig. 1a). Over the same
range of period lengths, the covariance between temperature and
bud-burst also declined, but much less than the variance in tem-
perature (Fig. 1a). The combined changes in temperature vari-
ance and temperature—phenology covariance resulted in a large
change in the derived apparent S7; which increased from c.
—1.5d per °C when using a temperature integration period of
2wk, to a range of —3.2 to —6d °C™! over longer time periods
(Fig. 1a,b), representing a greater than three-fold difference in
the apparent sensitivity of spring bud-burst to temperature
change. Although the derived S7 was least sensitive to period
length for longer period lengths, the correlation between phenol-
ogy dates and integrated temperature was distributed across a
range of period lengths, start dates and S7 values (Figs 1c, S2).
Studies often use the period with the highest correlation between
phenology and integrated temperature as reference period, but
these results suggest that a high correlation (Fig. 1c) can be
obtained across a range of period start date—length combination,
and therefore Sz values (Fig. 1b). The influence of the integration
period on the derived S7complicates the interpretation of results
across studies, across sites, or even within a site for species that
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Fig. 1 The effect of temperature integration length on the derived
temperature sensitivity (S7) of spring bud-burst at the Hubbard Brook
Experimental Forest. (a) Temperature sensitivities calculated for a range of
temperature integration periods (period length), binned by the period start
day of year, for three tree species (American Beech, Sugar Maple, and
Yellow Birch), along with the associated temperature variance (°C?) and
the covariance (d°C~") between integrated temperature (7) and observed
phenology dates (P). (b) A map of the derived apparent temperature
sensitivity for Sugar Maple, and (c) the associated correlation (R) between
observed phenological dates for this species and interannual changes in
integrated temperature. Error bars in a represent the standard deviation
within a period length bin. Horizontal lines on (b, c) represent the earliest
(dotted) and mean (dashed) of observed phenology dates across years.
See Supporting Information Fig. S1 for comparable figures (b, c) for
American Beech and Yellow Birch. Sris derived from Eqn 2 using linear
regression for 22 yr (1992-2013) of observed phenological records. Only
significant St values (P <0.01) are shown.
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may be sensitive to temperatures during different periods (Friedl
etal,2014).

The potential for spurious correlations due to changes in
temperature variance

The S7 metric is often used to examine spatial and temporal
changes in the temperature sensitivity of phenology (e.g. Shen
etal., 2014; Fu et al., 2015; Zhang et al., 2015a). There are, how-
ever, potential spatial and temporal changes in var(7") that could
lead to the identification of spurious relationships. For example,
spring (March, April, May) temperature variance is a strong func-
tion of latitude, and varies from 4.3 to 2.2°C? over the extent of
the deciduous forests of northern Europe (Fig. S3). Examining
changes in S7in space or time therefore potentially constitutes a
special case of a well studied statistical phenomenon known as
‘ratio correlations’ (Pearson, 1897; Chayes, 1971). Ratio correla-
tions arise when a ratio (in this case Eqn 2) is compared with the
denominator of the ratio, or to some quantity of which the
denominator is a function. As we have shown above, Ovar(7")
can be much larger than dcov(7; P). In addition, as phenology is
not responding exactly to the integrated temperature being used,
there can be variance in 7 that is unrelated to P. Although the
covariance will also be influenced, the fact that P is not an exact
function of 7 implies that dvar(7") > dcov(T,P). Strong correla-
tions (e.g. between S7 and var(7") (Wang eral, 2014)) could
therefore potentially emerge due to the large changes in tempera-
ture variance even in the absence of any causal relationship. Ladi-
tudinal changes in var(7") could also result in changes in cov(7,
D), however. This implies that changes in all terms of Eqn 3 need
to be assessed in order to interpret derived changes in S7.

To illustrate this point, we consider the scenario in which the
covariance between phenology and spring temperature is indepen-
dent of latitude, but where spring temperature variance increases
with increasing laticude (Fig. 2), based on observed spatial patterns
for winter deciduous forests over a European latitudinal gradient
from 42.5° to 55°N (Figs S2, S3). We generate 10 000 covariance
values from a normal distribution, randomly distributed along the
European latitudinal gradient (Fig. 2a). The increasing tempera-
ture variance (Fig. 2b) and constant covariance (Fig. 2a) across the
latitudinal gradient inevitably leads (Eqn3) to a decline in the
apparent Sz with increasing latitude (Fig. 2¢). A logical conclusion
would be that forest phenology is less sensitive to temperature
where temperature variance is high, as has been reported (Wang
etal, 2014). S is a function of corr(7, P) and sd(P), however
(Eqn 3), so S7 could be declining due to a change in either, with
important implications for the interpretation of the apparent
change in S7. For instance, in this example, we know that var(7")
increases with latitude, and cov(7; P) is constant (Figs 2, S3). As
cov(7, P)=corr(T, Px(var(T).var(P)"?, a constant cov(7, P)
and increasing var(7") implies a decrease in var(P) and/or a
decrease in corr(7; P). This is important, as a latitudinal gradient
in corr(7; P) could be indicative that the chosen integrated tem-
perature is not equally relevant to the observed phenology dates
across latitudes, and that the change in S7-might be an artifact of a
spatial gradient in the appropriateness of the chosen reference
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Fig. 2 Anillustration of the potential effect of spatial changes in the variance
of an integrated temperature metric (T) on the derived temperature
sensitivity (S7). Given (a) a synthetic covariance distribution, cov(Xy,T) ~N
(5,0.5), thatis uncorrelated with latitude, and (b) a temperature variance,
var(T), (°C?), that is correlated with latitude, leads to (c) an apparent Sy
(days °C™") that has a strong relationship with latitude. The relationship of
temperature variance to latitude (var(T) = N(—6 + 0.19xLatitude, 10%)),
Supporting Information Figs S2, S3), and the relationship of the covariance
of temperature and phenology to latitude, were extracted from the ERA
global meteorological observations and MODIS satellite observations (see
the ‘Materials and Methods' section) over the range of European winter
deciduous broadleaf forests (42.5°:55°N).
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temperature. The relationship between S7-and var(7") should only
be considered valid if there is no spatial gradient in corr(7, P).
Spatial and temporal changes in S7-are commonly reported in the
literature (Shen eral, 2014; Fu eral, 2015; Wang etal., 2018),
without consideration for how changes in the different terms of
Eqn 3 could affect the derived sensitivity of phenology to tempera-
ture independently of changes in phenology. This illustration does
not aim to claim that all reported latitudinal differences in Sy-are
due to independent changes in var(7"), as sd(?) and cov(7, P)
may also vary, depending on the study region in question, reflect-
ing real changes in phenological sensitivity. It does however show
that the relative change in each term of S (Eqn3) needs to be
assessed to fully understand the implied spatial changes in the
response of phenology to temperature.

The temperature on which phenology depends is not
known with accuracy

Although it is a widely accepted fact that phenology responds to
temperature, there is no broad consensus how exactly that depen-
dence manifests. For example, the timing of warming matters
(Clark eral., 2014; Friedl eral., 2014), as do other moderating
factors such as winter chilling, dormancy requirements, photope-
riod, humidity and leaf longevity (Murray ez al., 1989; Myking
& Heide, 1995; Morin etal, 2009; Basler & Korner, 2012;
Laube ez al., 2014). The representativeness of the chosen temper-
ature metric is therefore difficult to quantify. In addition, studies
commonly include temperatures that happen after the phenologi-
cal event, such as when using annual or even spring integrals, or
when trends or interannual variability lead to an encroachment
of phenological dates into the period of temperature integration.
Co-located meteorological and phenological observations are also
often lacking, with researchers forced to use gridded meteorologi-
cal data or observations from the nearest station (e.g. Olsson &
Jonsson, 2014). There are also potential nonlinear relationships
between temperature and phenology. The integrated temperature
used is therefore always only a proxy to the real integrated tem-
perature to which plants respond.

The fact that the integrated temperature being used is often a
rough estimate is important, as it means that the predictor used
to define S7inherently has an associated but unquantified uncer-
tainty. Unacknowledged uncertainty in predictors represents a
common ‘error in variables’ scenario that unequivocally leads to a
phenomenon known as regression dilution or attenuation bias
(Pindyck & Rubinfeld, 1991). This implies a likely underestima-
tion of S7 in the presence of unaccounted for error in 7. We
demonstrate this by considering the hypothetical case of a 1:1
relationship between the date of leaf phenology (P) and an
unknown temperature metric (7), with an arbitrary ‘true’ Sz of
5d per degree change in temperature. To this relationship we
add varying degrees of random error (e ~ M0)). Adding random
error to the integrated temperature metric leads to an underesti-
mation of the true S7; with the bias increasing as random error in
T increases (Fig. 3). The effect of the unknown error in 7 can be
reduced by estimating S7 using regression approaches that
account for unknown errors in both axes, such as reduced major
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axis (or Type-2) regression (e.g. White eral, 2009; Fu etal.,
2015; Yang eral., 2018). Even with such approaches, however,
sensitivity to the error in variables problem remains. The fact that
the true temperature signal to which phenology is sensitive is not
known therefore complicates the interpretation of between-
species differences in S7values at a given site, or between individ-
uals of the same species at different sites.

Implications and solutions

The issues raised above have implications for the detection and
attribution of spatial and temporal changes in S7. Temporally, S
has been reported to have changed over the past few decades (Fu
eral., 2015). Spatially, S7has been reported to change in depen-
dence of latitude (Shen ezal, 2014), altitude (Piao eral, 2011;
Zohner & Renner, 2014), and in response to the temperature
variance of a region (Wang eral, 2014). Differences between
species are commonly reported (Marchin ezal., 2015), between
populations (Parmesan, 2007), and between experiments and
natural observations (Wolkovich ezal., 2012). But such changes
in S are difficult to assess without consideration of the issues
highlighted above. For example, a recent study reported that
experiments underpredict the sensitivity of spring phenology to
warming, when compared with natural observations (Wolkovich
etal., 2012). But the observation-based sensitivity was calculated
using annual temperatures, which have a much lower variance
than, say, spring temperatures. Due to this lower variance, the
temperature sensitivity derived from observations using annual
temperatures would be over-estimated, and also poorly estimated
because annual A 7'is a poor proxy for the actual temperature sig-
nal to which plant phenology responds. Using spring temperature
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instead could lead to a lower apparent S7in observations, but no
change in the apparent S7of experiments (due to the fact that the
experimental change in temperature is typically applied evenly
throughout the year), and greatly reduce the difference between
the two. Similarly, studies using S7to compare differences in the
response of co-located species to temperature would have diffi-
culty discerning whether the differences between the species” S
values were due to an inherently different temperature sensitivity,
or a difference in the representativeness of the chosen integration
period for a particular species. Unfortunately, analyses rarely con-
trol for such effects, or test the statistical characteristics and repre-
sentativeness of the integrated temperature metric used.

Fundamentally, the above issues exist because the representa-
tiveness of an integrated temperature metric to the observed phe-
nological event can rarely be quantified (e.g. integration lengths
from 2 wk to 2 months can have a statistically equivalent relation-
ship with the observed dates (Fig. 1)). In reality, 7 is a noisy
proxy for the true temperature signal to which P responds, and
can contain significant variation that is not associated with
changes in P. As the true integrated temperature signal is
unknown, the derived S7can be assumed to always be inaccurate,
and can lead to results that are influenced by statistical artifacts.

We advocate for improvements in the application and report-
ing of the S7 metric. Statistical methods such as Type-II regres-
sion should be used (as in, e.g. White eral, 2009; Fu eral.,
2015) to help minimise the influence of unaccounted for uncer-
tainty in 7 (Fig. 3). Studies should also incorporate analyses of
the potential effect of changes in temperature variance due to
integration length, or spatial/temporal differences. This will help
attribute the apparent differences in S7; and inform the interpre-
tation of results. In addition, clearly reporting integration periods
would improve reproducibility, and using multiple integration
periods would help assess the robustness of results.

One promising alternative to the S7 metric lies in the use of
data-informed process-oriented models to characterise the
response of phenology to temperature change along with other
potential modifiers such as photoperiod (e.g. Migliavacca ezal.,
2012). Such an approach could be used, based on both natural
and experimental observations (Hinninen etal, 2019), in
tandem with a range of climate scenarios to rigorously charac-
terise the potential response to climate variability and long-term
change. A key strength of a model-based analysis is that model
projection uncertainty can be directly quantified, and used to
inform the interpretation of results. A model, parameterised from
the data, could also be used in ‘experiment mode’, in which
warming is applied (either uniformly or following climate projec-
tions) throughout the year to quantify the model’s implicit tem-
perature sensitivity. Not only can the combination of models
with observations aid researchers better interpret the observa-
tions, it will also inevitably lead to the development of new state-
of-the-art models and fundamental theory. Although models too
have their pitfalls (Hanninen ez al., 2019), and can be subject to
structural error, ensembles can be used to quantify uncertainties
and test competing hypotheses (Hufkens ez /., 2018). A full con-
sideration and propagation of measurements and their associated
uncertainties, for example through using model-data fusion
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techniques, would both allow for the identification of weak
model components and the design of more effective experimental
strategies (Keenan eral., 2011).

The S7 metric is subject to multiple issues that undermine its
credibility, in particular for natural observations, and can gener-
ate misleading results. Although we focus here on the tempera-
ture sensitivity of phenology, some of the issues raised could also
apply to the temperature sensitivity of other ecological phenom-
ena, or indeed the sensitivity of phenology to other factors, such
as precipitation in water limited regions (Moore ¢z al., 2016). We
therefore advocate for more rigorous statistical assessments of
potential underlying biases, and the use of data-informed mod-
elling approaches for the interpretation and projection of pheno-
logical changes.
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