Social Structure Learning in Human Anterior Insula

Tatiana Lau, Samuel J. Gershman, Mina Cikara
Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
*Corresponding author: Mina Cikara, mcikara@fas.harvard.edu

Abstract

Humans form social coalitions in every society, yet we know little about how we learn and
represent social group boundaries. Here we derive predictions from a computational model of
latent structure learning to move beyond explicit category labels and interpersonal, or dyadic
similarity as the sole inputs to social group representations. Using a model-based analysis of
functional neuroimaging data, we find that separate areas correlate with dyadic similarity and
latent structure learning. Trial-by-trial estimates of ‘allyship’ based on dyadic similarity between
participants and each agent recruited medial prefrontal cortex/pregenual anterior cingulate
(pgACC). Latent social group structure-based allyship estimates, in contrast, recruited right
anterior insula (rAl). Variability in the brain signal from rAl improved prediction of variability
in ally-choice behavior, whereas variability from the pgACC did not. These results provide novel
insights into the psychological and neural mechanisms by which people learn to distinguish “us”
from “them.”

Introduction

Being able to distinguish “us” from “them” is a core social capacity (Brown, 1991). In an
increasingly interconnected world where people have multiple intersecting identities that guide
their thoughts, feelings, and behaviors, being able to differentiate friend from foe is of paramount
importance. Yet we know surprisingly little about how social group boundaries are learned and
represented in the brain—particularly in the absence of overt cues to individuals’ group
membership.

One dominant account is that people use judgments of similarity to one’s self on some
contextually relevant feature (e.g., skin tone). Accordingly, neuroimaging studies have attempted
to identify an overlap between brain regions associated with self-referential processes and
categorization of others as in-group members (Molenberghs & Morrison, 2012; Morrison,
Decety, & Molenberghs, 2012) A ventral region of medial prefrontal cortex (vmPFC), including
pregenual anterior cingulate cortex (pgACC), is reliably associated with thinking about one’s
own and similar others’ traits, mental states, and characteristics (Cikara, Jenkins, Dufour, Saxe,
2014; Heleven & Van Overwalle, 2015; Jenkins, Macrae, & Mitchell, 2008). But are similarity-
based estimates sufficient for categorizing others as in-group versus out-group members and
informing subsequent behavior?

Classic social psychological theories of intergroup relations indicate that there are other
dimensions by which groups are defined (Sherif, 1966). Rather than prioritizing similarity to
oneself, people may rely on functional relations between one’s self and a target (e.g., “are you
with me or against me?”’; Cikara & Fiske, 2013).



Given that social categorization is such a flexible, dynamic process, how do people accumulate
group structure information (especially in the absence of overt cues to group membership)? On
one hand, they might try to characterize their ties with each individual (e.g., how well do I get
along with Sue, with Dan, etc.). However, social group dynamics may be better captured by a
model that integrates information about how agents relate to one another in addition to oneself
(e.g., how do Sue and Dan get along with each other, and how do I get along with either of
them?), which would allow perceivers to infer social group structure.
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Fig. 1. A formal account of social structure learning. (A) Model schematic illustrating how
choice patterns are transformed using Bayes’ rule to create a posterior over different possible
latent groupings of agents. (B) Agents are represented as letters in an abstract space (P is the
participant), where the distance between letters indicates the degree to which agents agree in
their choices (i.e., choice overlap). Red circles indicate the latent groups that have high posterior
probability. Left: the placement of Agent C creates a cluster that includes both the participant
and Agent B, which should increase estimates of Agent B as an ally. Right: placement of C
excludes participant from cluster with Agents B and C, which should decrease estimate of Agent
B as an ally.



If people represent latent group structure (Fig. 1A) in addition to dyadic similarities, then even
when two agents’ choices are equally similar to their own (Agents A and B), the presence of a
third agent (Agent C) altering the group structure should influence their decisions (Fig. 1B).
Importantly, dyadic similarity accounts would not predict differential ally-choice behavior in
these cases (because similarity is equated for the two agents in question). In other words, the key
difference between the two models is whether or not the presence of the third agent can affect
how the first two agents are perceived.
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Fig. 2. Order of events in task. (A) Learning Trials: Participants began every trial by seeing a
political issue and reporting their personal stance on it. After receiving confirmation of their
choice, they then guessed and received feedback on how the first agent responded to the same
political issue and repeated this for the other two agents before moving onto a new political
issue. (B) Ally-choice Trial: After eight learning trials, participants were shown photos of A and
B sequentially in a random order and chose to align with Agent A or B on a “mystery” (i.e.,
unknown) political issue.

To determine whether people possess different neural mechanisms for dyadic similarity and
latent group structure learning, we created a structure-learning task in which participants
reported their own political issue positions and then guessed and learned via feedback the
positions of three other agents, Agents A, B, and C, with respect to the same issue (Fig. 2A).



After repeating this for eight political issues, participants were shown pictures of two of the three
agents and asked to indicate with which of two agents, Agent A or Agent B, they would align on
an unknown political issue (Fig. 2B; Lau, Pouncy, Gershman, & Cikara, 2018). We focused on
political issues because recent evidence suggests that implicit bias and behavioral discrimination
along political party lines is now as potent as bias against racial out-groups (Iyengar, Sood, &
Lelkes, 2012; Iyengar & Westwood, 2015).

This design allowed us to 1) investigate participants’ trial-by-trial alignment signals based on
dyadic similarity (with each respective agent), similarity-over-agents, and latent group structures,
and ii) identify which brain regions tracked each of these representations. We then tested
whether variability in the neural signal associated with these representations improved prediction
of variability in participants’ ally-choice behavior.

Results

We scanned 42 participants using functional magnetic resonance imaging (fMRI) as they
completed our structure-learning task. Each participant completed six runs; each run comprised
learning about three novel agents across eight political issues and then choosing to ally with one
of two agents on an unknown, “mystery” issue. Each participant saw 48 political issues and
learned about 18 novel agents in total.

Learning about other agents’ policy preferences and ally-choice trials

To model the probability of choosing Agent B’s choice in the ally-choice trial as a function of
latent group structure, we used a logistic regression predicting whether our participants in the
scanner (N = 42) chose Agent B’s choice during the ally-choice choice trial as a function of
Agent B’s agreement and Agent C’s agreement with the participant. (See Materials and Methods
for analysis of full N = 333 sample.) Because Agent A’s preferences were always the inverse of
Agent B’s, including Agent A’s agreement would have created a multicollinearity problem
(recall also that participants could only choose either Agent B or Agent A). Including random
slopes to account for subject-level effects resulted in a singular fit of the model (i.e., overfitting),
so we removed them. We compared the full model including both main effects and the
interaction with simpler models (including only main effects or a third including only Agent B’s
agreement with the participant). Likelihood-ratio tests indicated that the fully saturated model
with both main effects and the interaction term fit the data better than without the interaction

term (y*(1) = 7.246, p = 0.007).

Replicating previous behavioral results (Lau et al., 2018), we found that increasing Agent C’s
alignment with the participant made respondents more likely to choose Agent B on the ally-
choice trial, above and beyond the participant’s similarity with Agents A and B (Fig. 3). Asa
simple dyadic similarity account would predict, the model indicated a significant positive effect
of Agent B’s agreement in predicting the likelihood of choosing Agent B in the ally-choice trial,
b=2.325,Wald’s z=4.099, 95% CI [1.284, 3.519], p < 0.001. However, as predicted by the
latent structure learning account, the model also indicated a significant positive effect of Agent
C’s agreement in predicting the likelihood of choosing Agent B in the ally-choice trial, b =
1.322, Wald’s z =2.633, 95% CI [0.371, 2.349], p = 0.008 (Fig. 3). This was qualified by a
significant negative interaction between the agreements of Agent B and Agent C, b =-0.307,
Wald’s z = -2.588, 95% CI [-0.550, -0.082], p = 0.010.
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Fig 3. Percentage choosing Agent B as a function of agreement with Agents B and C. A
smoothed level plot illustrates that as agreement with both Agents B and C increases (towards
the top-right corner), so does the probability of choosing Agent B on the ally-choice trial. If
Agent B had been the only influence on whether or not participants chose Agent B on the ally-
choice trial, then the transition from yellow to red should only occur in the horizontal direction
(as agreement with B increases). Instead, there is a radial transition from the bottom-left corner.

In other words, even when adjusting for Agent B’s agreement with the participant, increasing
Agent C’s alignment with the participant made respondents more likely to choose Agent B on
the ally-choice trial. However, this result was expectably qualified by a weak interaction: when
Agent B agreed with the participant a majority of the time, the additional variance explained by
Agent’s C agreement in choice decreased. While a dyadic similarity model would not predict
that the level of agreement with Agent C should matter for choosing on the ally-choice trial, the
latent structure model does predict that Agent C’s level of agreement with the participant should
matter in whether or not participants choose Agent B on the ally-choice trial. Indeed, any
difference in choice behavior as a result of Agent C’s level of agreement is already inconsistent
with the dyadic similarity account. Disambiguation between these two accounts of ally-choice
have been demonstrated previously with model simulations and behavioral studies (Gershman,
Pouncy, & Gweon, 2017; Lau et al., 2018).



Computational models and neuroimaging data
We developed three models to capture participants’ trial-by-trial estimates of 1) dyadic similarity
with each agent, ii) similarity-over-agents, and iii) latent group structure.

We calculated dyadic similarity Sy as a function of the number of previous agreement instances
between the agent under consideration and the participant divided by the number of trials
elapsed, initialized at 0.50 for each agent (see Methods for model details). For example, if an
agent agreed with the participant on the first political issue, S; would be calculated as 0.66 for
the second issue; if the agent did not agree with the participant on the first political issue, Su
would be calculated as 0.33 for the second issue.

Unlike the latent structure learning model described below, the dyadic similarity model did not
account for the feedback of other agents when calculating S,. In other words, for the third trial,
the dyadic similarity model would calculate a similarity for an agent who had agreed twice with
the participant on the previous two trials as 0.75, regardless of how the other two agents had
responded. On each new run, the similarities for all agents was set to 0.50 given that participants
had no information for those three new agents. As such, this value reflected how likely each
agent was to agree with the participant on a new issue given that agent’s agreement with the
participant on previous issues.

The person-as-feature similarity model calculated Sy as the correlation between rows of a
similarity matrix constructed from all possible dyadic similarities (i.e., Su between the participant
and each agent as well as Ss between each pair of agents). In other words, Sy could be considered
a second-order dyadic similarity in that it captures similarity over people rather than over
choices. As such, this value reflected how likely each agent was to agree with the participant
given that the agent and the participant’s political preferences similarly resembled those of other
agents.

In contrast, the latent group structure learning model (Gershman et al., 2017) assumes that
participants infer latent group assignments (a partition of agents into groups) on the basis of the
agents’ choice data (see Methods for model details). This model uses the Chinese restaurant
process (Aldous, 1985) as a prior over group assignments, which effectively “infers” the most
probable number of clusters in the environment given the existing data, therefore bypassing the
need to a priori set an expected number of clusters (e.g., one rarely walks into a room expecting
there to be n number of groups). Through the observations of agents’ choices, the posterior is
inferred using Bayes’ rule, and the likelihood, derived from analytically marginalizing the latent
parameters, will favor groupings where individuals in the same group exhibit similar choice
patterns. Parametric modulator values for the latent group structure learning model were
calculated as the marginal posterior probabilities of relevant partitions (i.e., partitions wherein
the participant and the respective agent were grouped together). To generate values, we did not
fit any free parameters to participant behavior. Unlike our other two models, information about
all three agents contributed on each trial to the prior for guessing about each particular agent. In
other words, the prior for the second agent during the third trial took into account the feedback
for the first agent in the third trial as well as the feedback given for all three agents during the
first and second trials. As such, this value reflected how likely each agent was to belong to the



same social group as the participant based on how all the agents related to one another on
previous issues.

We examined which voxels’ signal correlated with the dyadic similarity, similarity-over-agents,
and latent group structure parametric modulator contrasts (Table 1; no other regions other than
the ones reported here exceeded our corrected threshold.). As predicted, trial-by-trial dyadic
similarity correlated with activity in the ventral medial prefrontal cortex/pregenual anterior
cingulate (pgACC; Fig. 4, green). The similarity-over-agents modulator identified clusters in the
pgACC, bilateral temporoparietal junction, right superior temporal sulcus, and left
supplementary motor area (Fig. 4, yellow). Perhaps unsurprisingly, the pgACC cluster from this
parametric modulator encompassed the pgACC cluster found by the dyadic similarity modulator.

Fig. 4. Results from whole-brain contrast (FWE-corrected p < 0.05) of parametric
modulators. Dyadic similarity model (green), feature similarity model (yellow), and latent
grouping structure model (red). Note the overlap between the dyadic similarity and feature
similarity models in the pgACC (e.g., at x = 10).



In contrast, the latent structure model parametric modulator identified only a cluster in right
anterior insula (rAl) that extended into the inferior frontal gyrus (IFG pars orbitalis; Fig. 4, red).
This rAl cluster did not overlap with any of the clusters identified by the previous two models.
Of note, this rAl cluster overlapped with a separately identified rAl cluster associated with non-
social cluster assignment updating (Tomov, Dorfman, & Gershman, 2018). To provide a
description of the similarity: our rAl overlapped with 44.7% of that rAl result (i.e., number of
common voxels across both ROIs divided by total number of rAl voxels in (Tomov et al., 2018);
Fig. 4-figure supplement 1). Activity in this independently defined ROI correlated significantly
with our latent group model, cluster-level FDR-corrected g = 0.014.

Testing the specificity of the rAIl result

We conducted a k-fold cross validation (leave one out procedure) and tested whether the latent
group model (compared to the other models) explained more variance in the rAl. To do this, we
iteratively generated rAl and pgACC clusters by conducting second-level analyses using all
participants but one and tested the fit of the models in each cluster on the left-out participant. For
each iteration, we computed a Bayesian information criterion for each model as that particular
model score and multiplied it by -0.5 to convert it into log model evidence. We used this
calculated log model evidence (one for each model for each fold) for Bayesian model selection
and calculated protected exceedance probabilities (PXP) and Bayesian omnibus risk (BOR;
Rigoux, Stephan, Friston, Daunizeau, 2014). A PXP reflects the probability that a model is more
frequent in the population compared to other models considered (beyond what would be
expected by chance), while BORs reflect the probability that all model frequencies are equal to
one another. To put these results into context, a previous ROC analysis found the disambiguation
threshold, or the point at which we can best discriminate between Ho (that both models are
equally represented) and H; (that one model is represented more than another), to exist
somewhere around 0.50 for PXPs and around 0.25 for BORs (Rigoux et al., 2014). The PXP in
the rAl was 82.34% for the latent structure model, but only 6.44% for the dyadic similarity
model and 11.23% for the similarity-over-agents model. The BOR was 0.190. In sum, the latent
structure model explained significant variance only in the rAl.

On the other hand, using the same method for testing the specificity of the dyadic similarity
model in the pgACC, we found that the protected exceedance probabilities were 51.58% for the
latent structure model, 23.31% for the dyadic similarity model, and 25.11% for the similarity-
over-agents model. The BOR was 0.675. In other words, for the pgACC, no single model was
especially frequent over the other two.

Predicting ally-choice behavior from neural activity

We also tested whether variability in the brain signal from our resulting ROIs would help predict
variability in participants’ ally-choice behavior during the ally-choice trial. In other words, we
asked whether the neural “noise” from our clusters improved prediction of participant choice
above and beyond mere model predictions.

We first decoded the neural signal in each ROI—pgACC and rAl—corresponding to the
parametric modulator by removing the variance corresponding to other regressors in our model
(see Methods). We then isolated the signal corresponding to the temporal onsets of the photos of
Agents A and B, which appeared right before each ally-choice trial. For each agent, we averaged



the signal of interest across voxels within each ROI, respectively (i.e., to calculate the signals
corresponding to Agent A and Agent B for the pgACC and the signals corresponding to Agent A
and Agent B for the rAl). For each ROI, we then calculated the log difference between the
signals corresponding to each agent.

We then tested whether this signal would improve the fit of a logistic regression that modelled
ally-choice behavior against model predictions from each of our two models. Model predictions
were calculated as the log difference between either the similarity with A and the similarity with
B (in this case of dyadic similarity model) at the end of the eight regular trials or the probability
of the participant being grouped with A and the probability of the participant being grouped with
B (in the case of the latent grouping model) at the end of the eight regular trials. Log difference
of the signals was orthogonalized with respect to the log difference of corresponding model
predictions. Note that our parametric modulator ROIs were identified by fitting the signal during
the learning phase of each run, whereas in the behavior prediction analyses here, we used signal
from the ally-choice phase. As such, there is no circularity in this analysis.

While a likelihood ratio test showed that adding the signal from the rAl cluster helped to better
predict variability in choice behavior for the latent grouping model (y*(1) = 5.312, p = 0.021),
neither the addition of the signal from the pgACC to the dyadic similarity model (3*(1) = 1.526,
p = 0.217), nor the addition of signal from any of the clusters associated with the similarity-over-
agents model helped improve predictions of choice variability (y2(1)s < 2.112, ps > .250).

Discussion

Here, we used a model-based analysis to compare different accounts by which people may
differentiate “us” from “them” and found evidence for separable neural areas tracking each
concurrently. While social alignment estimates based on dyadic similarity and similarity-over-
agents recruited the pgACC, allyship estimates via latent structure learning recruited the rAl.
Additionally, signal variability in the rAl cluster, but not any other cluster identified by the two
other models, during the ally-choice trials helped predict ally-choice above and beyond model
predictions. Furthermore, a cross-validation demonstrated that the variability explained in the
rAl by our latent structure learning model was much higher than the competing models.

Several aspects of these results merit further discussion. First, this is the only evidence of which
we are aware that pgACC supports incremental revisions of representations of similarity between
oneself and others, both directly and across third agents. In contrast to research that relies on
preexisting knowledge about specific groups or individuals, using novel agents allowed us to
examine how participants’ degree of alignment changed as they learned agents’ preferences over
time.

Second, our rAl result is consistent with previous work on updating of non-social latent structure
(Tomov et al., 2018). Note, though, that social categorization is distinct from other forms of
categorization because it requires participants to categorize themselves (Turner, Hogg, Oakes, &
Reicher, 1987). Thus, our results demonstrate that rAl is capable of learning egocentrically
defined latent group structures.
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Anterior insula is topographically well-situated to relay social information related to coalition
structure. Connectivity of the anterior insula with the anterior cingulate cortex, amygdala, and
ventral tegmental area (a “salience detection” network; Seeley et al., 2007) and the dorsolateral
prefrontal cortex (associated with cognitive control; Chang, Yarkoni, Khaw, & Sanfey, 2012)
likely affords the flexibility required to represent context-specific coalition members—someone
who may be a coalition member at a debate may not be a fellow coalition member at a sports
event. Al is also heavily involved in socially-relevant computations, including but not limited to
self-awareness tasks, such as awareness of emotions and subjective pain, and hypoactivity in
persons with autism spectrum disorder on a variety of tasks, such as face processing and theory
of mind (Uddin & Menon, 2009).

The rAl region we identified included a part of the IFG (specifically, pars orbitalis). In studies of
hierarchical processing in music and language processing, this area has been associated with
sentence comprehension (Silbert, Honey, Simony, Poeppel, & Hasson, 2014) and found to
exhibit sensitivity to violations of hierarchical regularities (Cheung, Meyer, Friederici, &
Koelsch, 2018). This area is also involved in building up sentence structure and meaning as
semantic information is processed (Jeon & Friederici, 2013). Additionally, the IFG has been
hypothesized to represent individual episodes for later recombination (Preston & Eichenbaum,
2013). Just as this area may be recruited to build up the structures of sentences and tonal
patterns, it may also be building up social group structures as participants learn more about other
agents’ preferences.

Finally, it is worth noting that while the brain tracks both of these alignment signals, variability
in the signal from only one of the regions, rAl, helped improve model predictions of behavioral
choices. It is possible that had participants been asked to make a different choice (e.g., identify
which agent better represented a particular trait), the pgACC signal may have been more
relevant. Nonetheless, this result underscores the need to further understand how social group
structures and coalitions feature in shaping people’s social choices.

Accurately distinguishing “us” from “them” is crucial to navigating our social lives. To do so,
we could rely on computing dyadic similarity with each individual agent or across agents;
however, a more sophisticated approach would be to incorporate information about how agents
relate to one another in order to infer latent groups in the environment through Bayesian
inference. Our approach moves beyond explicit category labels and mere similarity as the sole
inputs to social group representations, appealing instead to a domain-general structure learning
mechanism, which we demonstrate predicts ally-choice. Furthermore, we provide evidence for
separable neural areas tracking each of these processes; not only do we demonstrate that the rAl
tracks estimates of any agent being a fellow coalition member, but we also show that the pgACC
can track the fluctuations in similarity between oneself and agents (both with individual agents
and over agents) in the environment. These findings advance our understanding of the complex
processes underlying social group inference and ally selection in humans and potentially other
species.
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Materials and Methods

Participant Selection

We first recruited participants (N = 333) under the pretense of playing a game in lab in which
they would tell us about their political issue preferences and learn about others’ preferences. All
participants first completed this behavioral version of the scanner task to familiarize themselves
with the task and the individual policies prior to scanning them. Participants completed all six
runs of the task as described in the scanner procedure in the following section. The main
differences between the behavioral version and the scanner version in the scanner were that (i)
the behavioral version allowed participants to spend as much time reading the prompt as needed
before proceeding, while the scanner version limited the reading time to 6s, (ii) the behavioral
version did not allow for participants to acquaint themselves with the policy prompts before
beginning the main task, and (iii) the response buttons differed (i.e., the behavioral version
involved pushing “E” and “I” on a keyboard rather than “1” and “2” on a button box). We could
then ensure that we were only recruiting participants who could successfully make responses
within the time limit. Analysis of behavioral data from this phase can be found in the
supplementary materials.

Upon completion of the behavioral task, participants were asked if they were interested in
completing a similar fMRI study for pay and asked to confirm or disconfirm a series of
statements relating qualifications for participating in an fMRI study (e.g., whether they had metal
in their body, being able to lie still for over an hour, etc.). Interested participants who reported no
contra-indicators were then invited to participate in the scanner task.

Behavioral Data Analyses for Sample N = 333

In the task for the participant selection phase, we fixed Agent A’s and Agent B’s agreement with
the participant such that each agent agreed with the participant on only four of the eight trials.
Additionally, Agent C always agreed with Agent B and Agent A on five trials and three trials,
respectively. To create our conditions, we varied Agent C’s agreement with the participant such
that Agent C agreed with the participant on either seven trials (high-C) or only one trial (low-C).
Given that participants had to respond within 6s, some participants missed ally-choice trials, and
only trials where data was recorded were analyzed (high-C: 906 trials, low-C: 918 trials). We
used a logistic regression to model the probability of choosing Agent B’s choice in the ally-
choice trial as a function of condition (high-C or low-C). Including random slopes to account for
subject-level effects resulted in a singular fit of the model (i.e., overfitting), so we removed them.
We did not find a significant difference between our two conditions in the probability for
choosing Agent B, b = 0.023, Wald’s z = 0.246, 95% CI = [-0.161, 0.207], p > .250.

Nonetheless, we have stated before this is a small behavioral effect when previously
demonstrating it across a set of other experiments (Lau et al., 2018). Our sample size here may
have been too small to detect a difference. Additionally, because participants were inexperienced
and had only 6s to respond (whereas our previous participants had an unlimited time to respond),
they may have responded differently. When we limit the analysis to only the final, sixth trial, we
see a small effect of condition on the probability of choosing Agent B, b = 0.454, Wald’s z =
2.00, 95% CI=10.010, 0.901], p = 0.046.
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Finally, our two conditions, which drastically varied Agent C’s level of agreement (i.e., Agent C
either mostly agreed or mostly disagreed with the participant), may have been too obvious for a
version of the task that was not self-paced. One participant reported as much in the debriefing. In
the actual scanner version of the study, we varied the degree to which Agents A, B, and C agreed
with the participant while maintaining the same agreement relationships between the agents as
found in the behavioral portion to avoid this limitation.

fMRI Participants and Exclusions

From our 333 participants, we recruited 61 right-handed participants (48 female, Mage = 21.74
years, SD = 4.17) in order to achieve a sample size of at least 40 participants after exclusions.
This sample size was determined based on sample sizes used in other fMRI experiments (e.g.,
Tomov et al., 2018; Cheung et al., 2018). Two participants requested to be removed from the
scanner prior to the end of the study, and two participants were also excluded due to a computer
crash, resulting in unrecorded responses. Prior to any data analysis, we excluded five participants
who fell asleep in the scanner, eight participants for excessive head movements of 4mm or more,
one participant who correctly deduced the hypothesis of the study, and one participant for
missing at least one self-response per run. This left us with a sample size of 42 participants (32
female, Mage = 22.07 years, SD = 4.82). Participants provided informed consent to participate and
consent to publish; all procedures complied with Harvard University’s Committee on the Use of
Human Subjects’ guidelines (Protocol #IRB15-2048).

Materials

To develop stimuli, we used ISideWith.com, a website that helps people determine the political
party and/or candidate with which their positions best align based on yes and no responses to
nationally relevant, political issues (e.g., “Do you support the death penalty?””). The website also
aggregates survey responses and makes this data publicly available (https://isidewith.com/polls).
We selected issues that had accumulated at least 500,000 votes and had the greatest
agreement/disagreement discrepancies, as described in Experiment 2 in (Lau et al., 2018). We
included the 48 issues with the lowest yes-no differences as of May 2017 in the main task (see
OSF for complete materials).

On each trial, we displayed the issue as text at the top of the screen. Underneath, we signified a
“yes” or “no” response to the issue by superimposing a green check mark or a red “X,”
respectively, atop an image representing the issue. To avoid confusion, we also displayed the
words, “YES” and “NO”, underneath the corresponding images. The order of presentation of the
48 issues as well as the sides on which the agreement positions appeared on the screen were
randomized for each participant.

Face Selection

For agent pictures, we selected a total of 36 photos from the Chicago Face Database (CFD; Ma,
Correll, Wittenbrink, 2015) and gender-matched agents to the participant. We extracted the pool
of “White” faces (based on CFD designations) and eliminated faces based on the norming data
provided by the CFD until 18 female and 18 male faces were left.

Given that the pool of faces varies for male and female faces, face selection processes varied
slightly. For female faces, at least half of the respondents had to rate the face as looking “white”,
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and then we eliminated any face that respondents rated as unusual compared to other white
females (i.e., above the midpoint of a 7-point Likert scale ranging from 1, not at all unusual, to 7,
very unusual). Using the ratings of how prototypical the faces looked compared to other white
females (5-point Likert scale ranging from 1, not at all prototypical, to 5, very prototypical), we
then removed the faces scoring less than one standard deviation from the average of this pool to
remove non-prototypical faces. We also then removed the faces that scored one standard
deviation below the mean in terms of femininity (1, not at all feminine, to 7, extremely
feminine). To norm for attractiveness, we eliminated anyone who was rated as one standard
deviation above and below the mean of attractiveness ratings, leaving us with 38 faces. Anyone
two standard deviations above or below the mean age was then removed, leaving us with 37
faces, and the youngest face was then removed to generate a set of 36 faces with an average age
of 27.01 years (SD = 3.81).

For male faces, we followed the same initial five steps, except we eliminated any face that scored
one standard deviation above the mean in femininity ratings in order to retain the more
masculine-looking faces. Of the remaining 43 faces, we then eliminated anyone who was one
and a half standard deviations above or below the mean age, which left us with 38 faces. For the
final step, we removed the two youngest faces in the set of faces to generate a set of 36 male
faces with an average age of 28.58 years (SD = 5.23).

Pre-task instructions

After being consented, participants first completed a round of instructions guiding them through
a trial. They expressed their own opinion on a topic (e.g., “Should cartoons include plotlines
involving duck-hunting?”) by selecting “Yes” or “No” and then guessed and received feedback
on the opinions of Bugs and Dafty. Participants were guided through an ally-choice trial. We
told participants that for these trials, grey boxes with question marks on them would represent
two different policy positions. The only information participants had about the boxes was the
choices of other agents—the same ones about whose preferences they had just learned. We told
participants to select the box they would prefer based on the other agents’ choices. Participants
were then introduced to the timing of the task (see below) and completed four practice trials
(“‘Should cartoon characters conquer Mars?”, “Should cartoon characters be allowed to pilot
planes?”, “Should cartoon plotlines feature day jobs?”, “Should cartoon characters be allowed to
do yoga?”’) with these timings in place with Bugs and Daffy again. An ally-choice trial followed
these four practice trials in which participants were asked to choose between Bugs and Dafty’s
mystery policy positions. After this, the computer displayed how many responses they
successfully made within the time limit, and participants were prompted to notify the
experimenter. The experimenter checked that all participants made at least 11 of the 13 responses
within the time limits and probed for any remaining questions about the task. Given that
participants had limited time to think about the issue on hand and because their responses were
important to the feedback they received from the other agents, we then gave participants a list of
all of the policies they would be seeing in the scanner prior to being scanned and were asked to
review all the policies.

Task
Each run consisted of two phases: (i) eight learning trials during which participants expressed
their own policy preferences and learned about three others’ policy preferences; (ii) an ally-
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choice trial. Each learning trial began with the participant seeing a policy prompt for 6s. They
then had 4.5s to choose whether they would support that policy; a grey rectangle appeared
around their selection when they had made their choice. A grey arrow pointing to their choice
appeared for 3s to confirm their choice. Each participant then learned about the preferences of
the other three individuals (Agents A, B, and C) via feedback.

To avoid participants weighting information from agents who looked more similar to them, we
gender-matched the agents to participants’ self-reported gender and only used White faces.
Participants first saw a picture of one of the agents alongside his/her name and were asked to
predict the preference of that agent with regards to the policy position (e.g., “Which do you think
Annie chose?”); each participant had 4.5s to guess, and a grey rectangle appeared around their
selection after they made a choice. They then learned of the agent’s choice when a grey arrow
pointing to one of the preferences (“Yes” or “No”) appeared for 3s (Fig. 2A). Participants then
repeated this guess and feedback process for the other two individuals. Between each screen, a
fixation cross appeared for 3s-16s (jittered). Jitter was generated using the optseq algorithm
(http://www.surfer.nmr.mgh.harvard.edu/optseq). Once this process (policy prompt, self-choice,
confirmation of self-choice, guess and feedback for A, guess and feedback for B, and guess and
feedback for C) was completed for one policy position, participants started a new regular trial by
repeating the process for a new policy position with the same three Agents. A table consisting of
eight rows and four columns displayed on the right-hand side of the screen recorded the
participant’s and each Agent’s responses on each trial. The order of the policy positions and
individuals was randomized; every participant saw each of the 48 policies and 18 individuals
only once during the experiment. The order of the agents was also randomized across runs.
Agents were randomly assigned names from a preset list of names of five-letter length.

Following the eight learning trials, participants then saw one “mystery” ally-choice trial. On
these trials, participants saw pictures of Agents A and B sequentially in a random order, each of
which was followed by a fixation cross that appeared for 3s-16s (jittered), prior to reaching the
decision screen. On the decision screen, participants saw two boxes with question marks
representing two unknown policy positions. Underneath the two boxes were photos of Agents A
and B and grey arrows pointing to their respective choices (Fig. 2B). We told participants that
the mystery boxes contained Agent-A’s and Agent-B’s preferred policy positions. Participants
had to indicate which one of the two unknown policy positions they would rather choose (e.g.,
“Which would you choose? Remember, Annie and Betsy know what’s inside the boxes.”). A
grey rectangle appeared around the selection after they indicated their choice. Thus, participants
had to align themselves with one of the two agents. The response table summarizing participants’
and all agents’ preferences during the block was visible during the ally-choice trial. After the
ally-choice trial, participants started a new run with a new set of three agents and a new set of
eight policy positions.

Participants completed six runs in total. For each run, Agents B and C agreed on five issues;
Agents A and C agreed on three issues, and Agents A and B never agreed with each other. This
agreement structure made it more likely that participants would cluster Agents B and C together
and that Agent C’s agreement with the participant would increase the selection of Agent B on the
ally-choice trial. However, agreement counts between the participant and each agent varied
across blocks and participants. All agent positions were entirely randomly assigned (within the
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constraints of the agreement/disagreement structure). Thus, across all runs and participants, some
agents expressed a mixture of highly partisan left and right beliefs. In our previous behavioral
studies (Lau et al., 2018, Experiment 2), we found that participants still exhibited the behavior
predicted by the latent structure learning model despite learning about agents with less
ideologically incoherent profiles (i.e. agents with preference profiles constructed from a mix of
left and right partisan topics).

fMRI data acquisition and analyses

We collected data using a 32-channel head coil in a 3.0-tesla Prisma MRI scanner (Siemens)
located at the university. At the beginning of each scan session, we acquired a high-resolution T-
1 weighted anatomical image (T1-MPRAGE, 1 x 1 x 1 mm, parallel to the anterior commissure-
posterior commissure plane) for use in registering activity to each participant’s anatomy and
spatially normalizing data across participants. Functional images were then acquired through six
echo-planar imaging (EPI) sessions each lasting 12 minutes. For whole brain coverage, we
acquired 69 interleaved 2.0mm slices (repetition time = 1.5s; echo time = 30 ms; flip angle =75
degrees; field of view =208 mm; matrix = 104 % 104; in-plane acceleration (GRAPPA) = 2;
multi-band acceleration factor = 3). The multi-band EPI sequence was provided by the
University of Minnesota Center for Magnetic Resonance Research (Moeller et al., 2010;
Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2013).

We conducted preprocessing and statistical analyses using SPM12 (Wellcome Trust Centre for
Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). We realigned functional images
to the first volume, unwarped the functional images, segmented the structural image into its
respective tissue types, and normalized the gray matter of the structural to the gray matter of a
standard Montreal Neurological Institute (MNI) reference brain. The mean functional images
were co-registered to the structural image, and functional images were normalized to the MNI
template, resliced to 2 mm x 2 mm x 2 mm voxels, and smoothed using an 8§ mm FWHM
Gaussian kernel.

JMRI Analyses

We modeled data with an event-related design using a general linear model. For each of the six
runs, one regressor modelling the onset of self-choice (8 onsets), a second regressor modelling
the onset of guesses for each of the three agents across the eight issues (24 onsets) and a
parametric modulator for the second regressor, were convolved with the canonical hemodynamic
response function. The parametric modulator values indexed the specific model output (the
dyadic similarity, feature similarity-over-agents, or the latent structure learning model; see
Computational models below) of either the similarity with the target or the prior probability of
the participant belonging to the same group as the target of the decision (i.e., Agents A, B, or C).
For example, when the participant was making a guess for Agent-A on the seventh trial in a
block, the latent group parametric modulator took on the value of the probability that Agent A
was in the same group as the participant given previous feedback. No clusters survived
correction when all three models were included as parametric modulators.

We did not orthogonalize parametric modulators with respect to the second regressor (the onsets
of guesses) given that we were interested in which voxels tracked our parametric modulator
values rather than the mean-centered values (Mumford, Poline, & Poldrack, 2015). In addition,
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we included six nuisance regressors containing the temporal and spatial derivatives for the main
regressor and six run regressors. Alignment values from the latent structure learning model and
the dyadic similarity model were modeled in separate models given that each represented a
different hypothesis about processes in the brain. To determine which areas of the brain tracked
each these models, we then entered the images resulting from contrasting the parametric
modulator against baseline into a second-level analysis treating participants as a random effect.
We used a voxelwise threshold of p < 0.001 and corrected for multiple comparisons using whole-
brain cluster-wise family-wise error (FWE) correction from bspmview
(http://www.bobspunt.com/bspmview) at the o = 0.05 level.

Parametric Modulator Correlations

Given that all three model outputs were derived from similar inputs, the correlations among the
different parametric modulators were moderate to large. The average correlation between dyadic
similarity and latent structure modulators was 0.8627, with values ranging from 0.5592 to
0.9704. The average correlation between the latent structure and similarity-over-agents
parametric modulators was 0.7889 (ranging from 0.3778 to 0.9496). Finally, the average
correlation between the dyadic similarity and similarity-over-agents parametric modulators was
0.9614 (ranging from 0.9023 to 0.9874).

To measure collinearity between the dyadic similarity and latent structure modulators, we
calculated the VIF (1/(1-R2), where R2 is the r-squared from regressing one parametric
modulator on the other). The VIF between dyadic similarity and latent structure modulators was
5.063 (generally regarded as low collinearity), while the VIF between dyadic similarity and
feature similarity-over-agents parametric modulators was 13.786.

Computational Models

Dyadic similarity Sq is calculated as a function of the number of previous agreement instances
between the agent and participant divided by the number of trials elapsed, where priors for the
first trial were 0.50 for each agent:

Yis Agreement,gen; + 1
n+1

(1)

Sq(agent, participant) =

Similarity-over-agents, Sz, used output from the dyadic similarity model to construct a similarity
matrix whose values were Sy between the participant and each agent as well as Ss between
agents. Feature similarity between a participant and a particular agent would be computed as the
correlation between the row of the similarity matrix representing the dyadic similarity between
the participant and each agent and the row of the similarity matrix representing the dyadic
similarity between that particular agent and everyone else (i.e., the participant and the other two
agents; Equation 2). To transform these correlations to an interpretable probabilities, the values
were rescaled to a 0 to 1 range, and a log odds transformation (i.e., log(Sy) — log(1- Sy)) was
applied.
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1 Sa(A4,p) Sa(B,p) S4(C,p)

_|Sa(4,p) 1 Sa(A,B) S4(4,0)

dsim ~S,(B,p) Sa(B,A) 1 S4(B,C)
Sa(C,p) Sq4(C,A) Sa(C,B) 1

S¢(agent, participant) = corr(Sdsim) (2)

agent,participant

The latent group structure learning model assumes that participants infer latent group
assignments (a partition of agents into groups) based on agents’ choice data. The prior
distribution over group assignments is a Chinese restaurant process (Aldous, 1985), where the

probability of partition z = [z, ..., zm] given M individuals is our prior:
a T (a) (Ty)
P = 3
(#0) = 55 ®

where o > 0 serves as the dispersion parameter (as o approaches infinity, each individual is
assigned to a unique group), Tk is the number of individuals assigned to group & and I'(*) is the
gamma function. In our modeling, we used o = 2, though the results are relatively robust to
variation in this parameter. An infinite number of groups can be generated, but a “rich get richer”
dynamic favoring more popular clusters will produce more parsimonious groupings (see
Gershman & Blei, 2012). We can derive the posterior using Bayes’ rule with observed choices C
=[c1,...,cm]:

P(C|z)P(z)
PElO) = 5 b P @) “

The likelihood is obtained by analytically marginalizing the latent parameters under a Dirichlet-
Multinomial model:

_ _ T'(xaly) I(Lin + )
pecta) = | pecio, p)ao - L] [ vl o6 )

Where 0 is a set of multinomial parameters, |y, | is the number of options on problem n and LS,
is the number of individuals assigned to group k£ who choose stance c on issue n. The likelihood
favors groupings for which choice patterns are similar between individuals assigned to the same

group.

Parametric modulator values used the probability that the agent under consideration was in the
same group as the participant and were derived as the marginal posterior probability of the
relevant partitions:

P(24 = 2,|C) = Zp(za = k|C)P(z, = kIC) 6)
k
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Neural Signal Decoding

The neural signal of interest can be algebraically derived from the standard GLM with L2-norm
regularization:

interest + Al

Slgnalinterest = (Y - z Bﬁﬂ')M (7)

i#interest

where Y is the overall signal from the voxel and X is the corresponding vector from the original
design matrix. For these analyses, we set our regularization parameter, A, to a value of 1
following Tomov et al. (2018).
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Table 1. Results from parametric modulator contrasts

Model

Cluster

Region Size X Y Z
Dyadic Similarity | Pregenual Anterior Cingulate 327 18 48 0
Pregenual Anterior Cingulate 1079 16 44 2
Left Supplementary Motor Area 762 -28 8 40
Feature Similarity | Right Superior Temporal Sulcus 558 58 44 -6
Left Temporoparietal Junction 465 -58 =52 40
Right Temporoparietal Junction 298 54 48 34
Latent Grouping Right Anterior Insula/Inferior 696 34 16 -10

Frontal Gyrus

Cluster size reported in voxels (2mm?). Coordinates refer to peak voxel in Montreal
Neurological Institute space.
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Fig. 4-figure supplement 1. Overlap between latent grouping structure model parametric
modulator and a separately derived ROI. Overlap (yellow) between our latent grouping

structure model result (red) and a separately derived ROI of cluster structure updating (blue;
Tomov et al., 2018).



