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Abstract 

Humans form social coalitions in every society, yet we know little about how we learn and 

represent social group boundaries. Here we derive predictions from a computational model of 

latent structure learning to move beyond explicit category labels and interpersonal, or dyadic 

similarity as the sole inputs to social group representations. Using a model-based analysis of 

functional neuroimaging data, we find that separate areas correlate with dyadic similarity and 

latent structure learning. Trial-by-trial estimates of ‘allyship’ based on dyadic similarity between 

participants and each agent recruited medial prefrontal cortex/pregenual anterior cingulate 

(pgACC). Latent social group structure-based allyship estimates, in contrast, recruited right 

anterior insula (rAI). Variability in the brain signal from rAI improved prediction of variability 

in ally-choice behavior, whereas variability from the pgACC did not. These results provide novel 

insights into the psychological and neural mechanisms by which people learn to distinguish “us” 

from “them.” 

 

Introduction 

Being able to distinguish “us” from “them” is a core social capacity (Brown, 1991). In an 

increasingly interconnected world where people have multiple intersecting identities that guide 

their thoughts, feelings, and behaviors, being able to differentiate friend from foe is of paramount 

importance. Yet we know surprisingly little about how social group boundaries are learned and 

represented in the brain—particularly in the absence of overt cues to individuals’ group 

membership.  

 

One dominant account is that people use judgments of similarity to one’s self on some 

contextually relevant feature (e.g., skin tone). Accordingly, neuroimaging studies have attempted 

to identify an overlap between brain regions associated with self-referential processes and 

categorization of others as in-group members (Molenberghs & Morrison, 2012; Morrison, 

Decety, & Molenberghs, 2012) A ventral region of medial prefrontal cortex (vmPFC), including 

pregenual anterior cingulate cortex (pgACC), is reliably associated with thinking about one’s 

own and similar others’ traits, mental states, and characteristics (Cikara, Jenkins, Dufour, Saxe, 

2014; Heleven & Van Overwalle, 2015; Jenkins, Macrae, & Mitchell, 2008). But are similarity-

based estimates sufficient for categorizing others as in-group versus out-group members and 

informing subsequent behavior?  

 

Classic social psychological theories of intergroup relations indicate that there are other 

dimensions by which groups are defined (Sherif, 1966). Rather than prioritizing similarity to 

oneself, people may rely on functional relations between one’s self and a target (e.g., “are you 

with me or against me?”; Cikara & Fiske, 2013). 
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After repeating this for eight political issues, participants were shown pictures of two of the three 

agents and asked to indicate with which of two agents, Agent A or Agent B, they would align on 

an unknown political issue (Fig. 2B; Lau, Pouncy, Gershman, & Cikara, 2018). We focused on 

political issues because recent evidence suggests that implicit bias and behavioral discrimination 

along political party lines is now as potent as bias against racial out-groups (Iyengar, Sood, & 

Lelkes, 2012; Iyengar & Westwood, 2015). 

 

This design allowed us to i) investigate participants’ trial-by-trial alignment signals based on 

dyadic similarity (with each respective agent), similarity-over-agents, and latent group structures, 

and ii) identify which brain regions tracked each of these representations. We then tested 

whether variability in the neural signal associated with these representations improved prediction 

of variability in participants’ ally-choice behavior. 

 

Results 

We scanned 42 participants using functional magnetic resonance imaging (fMRI) as they 

completed our structure-learning task. Each participant completed six runs; each run comprised 

learning about three novel agents across eight political issues and then choosing to ally with one 

of two agents on an unknown, “mystery” issue. Each participant saw 48 political issues and 

learned about 18 novel agents in total. 

 

Learning about other agents’ policy preferences and ally-choice trials  
To model the probability of choosing Agent B’s choice in the ally-choice trial as a function of 

latent group structure, we used a logistic regression predicting whether our participants in the 

scanner (N = 42) chose Agent B’s choice during the ally-choice choice trial as a function of 

Agent B’s agreement and Agent C’s agreement with the participant. (See Materials and Methods 

for analysis of full N = 333 sample.) Because Agent A’s preferences were always the inverse of 

Agent B’s, including Agent A’s agreement would have created a multicollinearity problem 

(recall also that participants could only choose either Agent B or Agent A). Including random 

slopes to account for subject-level effects resulted in a singular fit of the model (i.e., overfitting), 

so we removed them. We compared the full model including both main effects and the 

interaction with simpler models (including only main effects or a third including only Agent B’s 

agreement with the participant). Likelihood-ratio tests indicated that the fully saturated model 

with both main effects and the interaction term fit the data better than without the interaction 

term (c2(1) = 7.246, p = 0.007). 

 

Replicating previous behavioral results (Lau et al., 2018), we found that increasing Agent C’s 

alignment with the participant made respondents more likely to choose Agent B on the ally-

choice trial, above and beyond the participant’s similarity with Agents A and B (Fig. 3). As a 

simple dyadic similarity account would predict, the model indicated a significant positive effect 

of Agent B’s agreement in predicting the likelihood of choosing Agent B in the ally-choice trial, 

b = 2.325, Wald’s z = 4.099, 95% CI [1.284, 3.519], p < 0.001. However, as predicted by the 

latent structure learning account, the model also indicated a significant positive effect of Agent 

C’s agreement in predicting the likelihood of choosing Agent B in the ally-choice trial, b = 

1.322, Wald’s z = 2.633, 95% CI [0.371, 2.349], p = 0.008 (Fig. 3). This was qualified by a 

significant negative interaction between the agreements of Agent B and Agent C, b = -0.307, 

Wald’s z = -2.588, 95% CI [-0.550, -0.082], p = 0.010.  
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Computational models and neuroimaging data  
We developed three models to capture participants’ trial-by-trial estimates of i) dyadic similarity 

with each agent, ii) similarity-over-agents, and iii) latent group structure. 

 

We calculated dyadic similarity Sd as a function of the number of previous agreement instances 

between the agent under consideration and the participant divided by the number of trials 

elapsed, initialized at 0.50 for each agent (see Methods for model details). For example, if an 

agent agreed with the participant on the first political issue, Sd would be calculated as 0.66 for 

the second issue; if the agent did not agree with the participant on the first political issue, Sd 

would be calculated as 0.33 for the second issue. 

 

Unlike the latent structure learning model described below, the dyadic similarity model did not 

account for the feedback of other agents when calculating Sd. In other words, for the third trial, 

the dyadic similarity model would calculate a similarity for an agent who had agreed twice with 

the participant on the previous two trials as 0.75, regardless of how the other two agents had 

responded. On each new run, the similarities for all agents was set to 0.50 given that participants 

had no information for those three new agents. As such, this value reflected how likely each 
agent was to agree with the participant on a new issue given that agent’s agreement with the 
participant on previous issues. 
 
The person-as-feature similarity model calculated Sf as the correlation between rows of a 

similarity matrix constructed from all possible dyadic similarities (i.e., Sd between the participant 

and each agent as well as Sd between each pair of agents). In other words, Sf could be considered 

a second-order dyadic similarity in that it captures similarity over people rather than over 

choices. As such, this value reflected how likely each agent was to agree with the participant 
given that the agent and the participant’s political preferences similarly resembled those of other 
agents. 
 
In contrast, the latent group structure learning model (Gershman et al., 2017) assumes that 

participants infer latent group assignments (a partition of agents into groups) on the basis of the 

agents’ choice data (see Methods for model details). This model uses the Chinese restaurant 

process (Aldous, 1985) as a prior over group assignments, which effectively “infers” the most 

probable number of clusters in the environment given the existing data, therefore bypassing the 

need to a priori set an expected number of clusters (e.g., one rarely walks into a room expecting 

there to be n number of groups). Through the observations of agents’ choices, the posterior is 

inferred using Bayes’ rule, and the likelihood, derived from analytically marginalizing the latent 

parameters, will favor groupings where individuals in the same group exhibit similar choice 

patterns. Parametric modulator values for the latent group structure learning model were 

calculated as the marginal posterior probabilities of relevant partitions (i.e., partitions wherein 

the participant and the respective agent were grouped together). To generate values, we did not 

fit any free parameters to participant behavior. Unlike our other two models, information about 

all three agents contributed on each trial to the prior for guessing about each particular agent. In 

other words, the prior for the second agent during the third trial took into account the feedback 

for the first agent in the third trial as well as the feedback given for all three agents during the 

first and second trials. As such, this value reflected how likely each agent was to belong to the 
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In contrast, the latent structure model parametric modulator identified only a cluster in right 

anterior insula (rAI) that extended into the inferior frontal gyrus (IFG pars orbitalis; Fig. 4, red). 

This rAI cluster did not overlap with any of the clusters identified by the previous two models. 

Of note, this rAI cluster overlapped with a separately identified rAI cluster associated with non-

social cluster assignment updating (Tomov, Dorfman, & Gershman, 2018). To provide a 

description of the similarity: our rAI overlapped with 44.7% of that rAI result (i.e., number of 

common voxels across both ROIs divided by total number of rAI voxels in (Tomov et al., 2018); 

Fig. 4-figure supplement 1). Activity in this independently defined ROI correlated significantly 

with our latent group model, cluster-level FDR-corrected q = 0.014. 

 

Testing the specificity of the rAI result 
We conducted a k-fold cross validation (leave one out procedure) and tested whether the latent 

group model (compared to the other models) explained more variance in the rAI. To do this, we 

iteratively generated rAI and pgACC clusters by conducting second-level analyses using all 

participants but one and tested the fit of the models in each cluster on the left-out participant. For 

each iteration, we computed a Bayesian information criterion for each model as that particular 

model score and multiplied it by -0.5 to convert it into log model evidence. We used this 

calculated log model evidence (one for each model for each fold) for Bayesian model selection 

and calculated protected exceedance probabilities (PXP) and Bayesian omnibus risk (BOR; 

Rigoux, Stephan, Friston, Daunizeau, 2014). A PXP reflects the probability that a model is more 

frequent in the population compared to other models considered (beyond what would be 

expected by chance), while BORs reflect the probability that all model frequencies are equal to 

one another. To put these results into context, a previous ROC analysis found the disambiguation 

threshold, or the point at which we can best discriminate between H0 (that both models are 

equally represented) and H1 (that one model is represented more than another), to exist 

somewhere around 0.50 for PXPs and around 0.25 for BORs (Rigoux et al., 2014). The PXP in 

the rAI was 82.34% for the latent structure model, but only 6.44% for the dyadic similarity 

model and 11.23% for the similarity-over-agents model. The BOR was 0.190. In sum, the latent 

structure model explained significant variance only in the rAI.  

 

On the other hand, using the same method for testing the specificity of the dyadic similarity 

model in the pgACC, we found that the protected exceedance probabilities were 51.58% for the 

latent structure model, 23.31% for the dyadic similarity model, and 25.11% for the similarity-

over-agents model. The BOR was 0.675. In other words, for the pgACC, no single model was 

especially frequent over the other two. 

 

Predicting ally-choice behavior from neural activity  
We also tested whether variability in the brain signal from our resulting ROIs would help predict 

variability in participants’ ally-choice behavior during the ally-choice trial. In other words, we 

asked whether the neural “noise” from our clusters improved prediction of participant choice 

above and beyond mere model predictions. 

 

We first decoded the neural signal in each ROI—pgACC and rAI—corresponding to the 

parametric modulator by removing the variance corresponding to other regressors in our model 

(see Methods). We then isolated the signal corresponding to the temporal onsets of the photos of 

Agents A and B, which appeared right before each ally-choice trial. For each agent, we averaged 
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the signal of interest across voxels within each ROI, respectively (i.e., to calculate the signals 

corresponding to Agent A and Agent B for the pgACC and the signals corresponding to Agent A 

and Agent B for the rAI). For each ROI, we then calculated the log difference between the 

signals corresponding to each agent.  

 

We then tested whether this signal would improve the fit of a logistic regression that modelled 

ally-choice behavior against model predictions from each of our two models. Model predictions 

were calculated as the log difference between either the similarity with A and the similarity with 

B (in this case of dyadic similarity model) at the end of the eight regular trials or the probability 

of the participant being grouped with A and the probability of the participant being grouped with 

B (in the case of the latent grouping model) at the end of the eight regular trials. Log difference 

of the signals was orthogonalized with respect to the log difference of corresponding model 

predictions. Note that our parametric modulator ROIs were identified by fitting the signal during 

the learning phase of each run, whereas in the behavior prediction analyses here, we used signal 

from the ally-choice phase. As such, there is no circularity in this analysis. 

 

While a likelihood ratio test showed that adding the signal from the rAI cluster helped to better 

predict variability in choice behavior for the latent grouping model (c2(1) = 5.312, p = 0.021), 

neither the addition of the signal from the pgACC to the dyadic similarity model (c2(1) = 1.526, 

p = 0.217), nor the addition of signal from any of the clusters associated with the similarity-over-

agents model helped improve predictions of choice variability (c2(1)s < 2.112, ps > .250). 

 

Discussion  

Here, we used a model-based analysis to compare different accounts by which people may 

differentiate “us” from “them” and found evidence for separable neural areas tracking each 

concurrently. While social alignment estimates based on dyadic similarity and similarity-over-

agents recruited the pgACC, allyship estimates via latent structure learning recruited the rAI. 

Additionally, signal variability in the rAI cluster, but not any other cluster identified by the two 

other models, during the ally-choice trials helped predict ally-choice above and beyond model 

predictions. Furthermore, a cross-validation demonstrated that the variability explained in the 

rAI by our latent structure learning model was much higher than the competing models. 

 

Several aspects of these results merit further discussion. First, this is the only evidence of which 

we are aware that pgACC supports incremental revisions of representations of similarity between 

oneself and others, both directly and across third agents. In contrast to research that relies on 

preexisting knowledge about specific groups or individuals, using novel agents allowed us to 

examine how participants’ degree of alignment changed as they learned agents’ preferences over 

time. 

 

Second, our rAI result is consistent with previous work on updating of non-social latent structure 

(Tomov et al., 2018). Note, though, that social categorization is distinct from other forms of 

categorization because it requires participants to categorize themselves (Turner, Hogg, Oakes, & 

Reicher, 1987). Thus, our results demonstrate that rAI is capable of learning egocentrically 

defined latent group structures.  
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Anterior insula is topographically well-situated to relay social information related to coalition 

structure. Connectivity of the anterior insula with the anterior cingulate cortex, amygdala, and 

ventral tegmental area (a “salience detection” network; Seeley et al., 2007) and the dorsolateral 

prefrontal cortex (associated with cognitive control; Chang, Yarkoni, Khaw, & Sanfey, 2012) 

likely affords the flexibility required to represent context-specific coalition members—someone 

who may be a coalition member at a debate may not be a fellow coalition member at a sports 

event. AI is also heavily involved in socially-relevant computations, including but not limited to 

self-awareness tasks, such as awareness of emotions and subjective pain, and hypoactivity in 

persons with autism spectrum disorder on a variety of tasks, such as face processing and theory 

of mind (Uddin & Menon, 2009).  

 

The rAI region we identified included a part of the IFG (specifically, pars orbitalis). In studies of 

hierarchical processing in music and language processing, this area has been associated with 

sentence comprehension (Silbert, Honey, Simony, Poeppel, & Hasson, 2014) and found to 

exhibit sensitivity to violations of hierarchical regularities (Cheung, Meyer, Friederici, & 

Koelsch, 2018). This area is also involved in building up sentence structure and meaning as 

semantic information is processed (Jeon & Friederici, 2013). Additionally, the IFG has been 

hypothesized to represent individual episodes for later recombination (Preston & Eichenbaum, 

2013). Just as this area may be recruited to build up the structures of sentences and tonal 

patterns, it may also be building up social group structures as participants learn more about other 

agents’ preferences. 

 

Finally, it is worth noting that while the brain tracks both of these alignment signals, variability 

in the signal from only one of the regions, rAI, helped improve model predictions of behavioral 

choices. It is possible that had participants been asked to make a different choice (e.g., identify 

which agent better represented a particular trait), the pgACC signal may have been more 

relevant. Nonetheless, this result underscores the need to further understand how social group 

structures and coalitions feature in shaping people’s social choices.  

 

Accurately distinguishing “us” from “them” is crucial to navigating our social lives. To do so, 

we could rely on computing dyadic similarity with each individual agent or across agents; 

however, a more sophisticated approach would be to incorporate information about how agents 

relate to one another in order to infer latent groups in the environment through Bayesian 

inference. Our approach moves beyond explicit category labels and mere similarity as the sole 

inputs to social group representations, appealing instead to a domain-general structure learning 

mechanism, which we demonstrate predicts ally-choice. Furthermore, we provide evidence for 

separable neural areas tracking each of these processes; not only do we demonstrate that the rAI 

tracks estimates of any agent being a fellow coalition member, but we also show that the pgACC 

can track the fluctuations in similarity between oneself and agents (both with individual agents 

and over agents) in the environment. These findings advance our understanding of the complex 

processes underlying social group inference and ally selection in humans and potentially other 

species. 

 

 

 

 



 11 

Materials and Methods 

Participant Selection 
We first recruited participants (N = 333) under the pretense of playing a game in lab in which 

they would tell us about their political issue preferences and learn about others’ preferences. All 

participants first completed this behavioral version of the scanner task to familiarize themselves 

with the task and the individual policies prior to scanning them. Participants completed all six 

runs of the task as described in the scanner procedure in the following section. The main 

differences between the behavioral version and the scanner version in the scanner were that (i) 

the behavioral version allowed participants to spend as much time reading the prompt as needed 

before proceeding, while the scanner version limited the reading time to 6s, (ii) the behavioral 

version did not allow for participants to acquaint themselves with the policy prompts before 

beginning the main task, and (iii) the response buttons differed (i.e., the behavioral version 

involved pushing “E” and “I” on a keyboard rather than “1” and “2” on a button box). We could 

then ensure that we were only recruiting participants who could successfully make responses 

within the time limit. Analysis of behavioral data from this phase can be found in the 

supplementary materials.  

 

Upon completion of the behavioral task, participants were asked if they were interested in 

completing a similar fMRI study for pay and asked to confirm or disconfirm a series of 

statements relating qualifications for participating in an fMRI study (e.g., whether they had metal 

in their body, being able to lie still for over an hour, etc.). Interested participants who reported no 

contra-indicators were then invited to participate in the scanner task. 

 

Behavioral Data Analyses for Sample N = 333 
In the task for the participant selection phase, we fixed Agent A’s and Agent B’s agreement with 

the participant such that each agent agreed with the participant on only four of the eight trials. 

Additionally, Agent C always agreed with Agent B and Agent A on five trials and three trials, 

respectively. To create our conditions, we varied Agent C’s agreement with the participant such 

that Agent C agreed with the participant on either seven trials (high-C) or only one trial (low-C). 

Given that participants had to respond within 6s, some participants missed ally-choice trials, and 

only trials where data was recorded were analyzed (high-C: 906 trials, low-C: 918 trials). We 

used a logistic regression to model the probability of choosing Agent B’s choice in the ally-

choice trial as a function of condition (high-C or low-C). Including random slopes to account for 

subject-level effects resulted in a singular fit of the model (i.e., overfitting), so we removed them. 

We did not find a significant difference between our two conditions in the probability for 

choosing Agent B, b = 0.023, Wald’s z = 0.246, 95% CI = [-0.161, 0.207], p > .250.  

 

Nonetheless, we have stated before this is a small behavioral effect when previously 

demonstrating it across a set of other experiments (Lau et al., 2018). Our sample size here may 

have been too small to detect a difference. Additionally, because participants were inexperienced 

and had only 6s to respond (whereas our previous participants had an unlimited time to respond), 

they may have responded differently. When we limit the analysis to only the final, sixth trial, we 

see a small effect of condition on the probability of choosing Agent B, b = 0.454, Wald’s z = 

2.00, 95% CI = [0.010, 0.901], p = 0.046.  
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Finally, our two conditions, which drastically varied Agent C’s level of agreement (i.e., Agent C 

either mostly agreed or mostly disagreed with the participant), may have been too obvious for a 

version of the task that was not self-paced. One participant reported as much in the debriefing. In 

the actual scanner version of the study, we varied the degree to which Agents A, B, and C agreed 

with the participant while maintaining the same agreement relationships between the agents as 

found in the behavioral portion to avoid this limitation. 

 

fMRI Participants and Exclusions 
From our 333 participants, we recruited 61 right-handed participants (48 female, Mage = 21.74 

years, SD = 4.17) in order to achieve a sample size of at least 40 participants after exclusions. 

This sample size was determined based on sample sizes used in other fMRI experiments (e.g., 

Tomov et al., 2018; Cheung et al., 2018). Two participants requested to be removed from the 

scanner prior to the end of the study, and two participants were also excluded due to a computer 

crash, resulting in unrecorded responses. Prior to any data analysis, we excluded five participants 

who fell asleep in the scanner, eight participants for excessive head movements of 4mm or more, 

one participant who correctly deduced the hypothesis of the study, and one participant for 

missing at least one self-response per run. This left us with a sample size of 42 participants (32 

female, Mage = 22.07 years, SD = 4.82). Participants provided informed consent to participate and 

consent to publish; all procedures complied with Harvard University’s Committee on the Use of 

Human Subjects’ guidelines (Protocol #IRB15-2048). 

 

Materials 
To develop stimuli, we used ISideWith.com, a website that helps people determine the political 

party and/or candidate with which their positions best align based on yes and no responses to 

nationally relevant, political issues (e.g., “Do you support the death penalty?”). The website also 

aggregates survey responses and makes this data publicly available (https://isidewith.com/polls). 

We selected issues that had accumulated at least 500,000 votes and had the greatest 

agreement/disagreement discrepancies, as described in Experiment 2 in (Lau et al., 2018). We 

included the 48 issues with the lowest yes-no differences as of May 2017 in the main task (see 

OSF for complete materials).  

 

On each trial, we displayed the issue as text at the top of the screen. Underneath, we signified a 

“yes” or “no” response to the issue by superimposing a green check mark or a red “X,” 

respectively, atop an image representing the issue. To avoid confusion, we also displayed the 

words, “YES” and “NO”, underneath the corresponding images. The order of presentation of the 

48 issues as well as the sides on which the agreement positions appeared on the screen were 

randomized for each participant.  

 
Face Selection 
For agent pictures, we selected a total of 36 photos from the Chicago Face Database (CFD; Ma, 

Correll, Wittenbrink, 2015) and gender-matched agents to the participant. We extracted the pool 

of “White” faces (based on CFD designations) and eliminated faces based on the norming data 

provided by the CFD until 18 female and 18 male faces were left. 

 

Given that the pool of faces varies for male and female faces, face selection processes varied 

slightly. For female faces, at least half of the respondents had to rate the face as looking “white”, 
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and then we eliminated any face that respondents rated as unusual compared to other white 

females (i.e., above the midpoint of a 7-point Likert scale ranging from 1, not at all unusual, to 7, 

very unusual). Using the ratings of how prototypical the faces looked compared to other white 

females (5-point Likert scale ranging from 1, not at all prototypical, to 5, very prototypical), we 

then removed the faces scoring less than one standard deviation from the average of this pool to 

remove non-prototypical faces. We also then removed the faces that scored one standard 

deviation below the mean in terms of femininity (1, not at all feminine, to 7, extremely 

feminine). To norm for attractiveness, we eliminated anyone who was rated as one standard 

deviation above and below the mean of attractiveness ratings, leaving us with 38 faces. Anyone 

two standard deviations above or below the mean age was then removed, leaving us with 37 

faces, and the youngest face was then removed to generate a set of 36 faces with an average age 

of 27.01 years (SD = 3.81). 

 

For male faces, we followed the same initial five steps, except we eliminated any face that scored 

one standard deviation above the mean in femininity ratings in order to retain the more 

masculine-looking faces. Of the remaining 43 faces, we then eliminated anyone who was one 

and a half standard deviations above or below the mean age, which left us with 38 faces. For the 

final step, we removed the two youngest faces in the set of faces to generate a set of 36 male 

faces with an average age of 28.58 years (SD = 5.23). 

 

Pre-task instructions 
After being consented, participants first completed a round of instructions guiding them through 

a trial. They expressed their own opinion on a topic (e.g., “Should cartoons include plotlines 

involving duck-hunting?”) by selecting “Yes” or “No” and then guessed and received feedback 

on the opinions of Bugs and Daffy. Participants were guided through an ally-choice trial. We 

told participants that for these trials, grey boxes with question marks on them would represent 

two different policy positions. The only information participants had about the boxes was the 

choices of other agents—the same ones about whose preferences they had just learned. We told 

participants to select the box they would prefer based on the other agents’ choices. Participants 

were then introduced to the timing of the task (see below) and completed four practice trials 

(“Should cartoon characters conquer Mars?”, “Should cartoon characters be allowed to pilot 

planes?”, “Should cartoon plotlines feature day jobs?”, “Should cartoon characters be allowed to 

do yoga?”) with these timings in place with Bugs and Daffy again. An ally-choice trial followed 

these four practice trials in which participants were asked to choose between Bugs and Daffy’s 

mystery policy positions. After this, the computer displayed how many responses they 

successfully made within the time limit, and participants were prompted to notify the 

experimenter. The experimenter checked that all participants made at least 11 of the 13 responses 

within the time limits and probed for any remaining questions about the task. Given that 

participants had limited time to think about the issue on hand and because their responses were 

important to the feedback they received from the other agents, we then gave participants a list of 

all of the policies they would be seeing in the scanner prior to being scanned and were asked to 

review all the policies. 

 

Task  
Each run consisted of two phases: (i) eight learning trials during which participants expressed 

their own policy preferences and learned about three others’ policy preferences; (ii) an ally-
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choice trial. Each learning trial began with the participant seeing a policy prompt for 6s. They 

then had 4.5s to choose whether they would support that policy; a grey rectangle appeared 

around their selection when they had made their choice. A grey arrow pointing to their choice 

appeared for 3s to confirm their choice. Each participant then learned about the preferences of 

the other three individuals (Agents A, B, and C) via feedback. 

 

To avoid participants weighting information from agents who looked more similar to them, we 

gender-matched the agents to participants’ self-reported gender and only used White faces. 

Participants first saw a picture of one of the agents alongside his/her name and were asked to 

predict the preference of that agent with regards to the policy position (e.g., “Which do you think 

Annie chose?”); each participant had 4.5s to guess, and a grey rectangle appeared around their 

selection after they made a choice. They then learned of the agent’s choice when a grey arrow 

pointing to one of the preferences (“Yes” or “No”) appeared for 3s (Fig. 2A). Participants then 

repeated this guess and feedback process for the other two individuals. Between each screen, a 

fixation cross appeared for 3s-16s (jittered). Jitter was generated using the optseq algorithm 

(http://www.surfer.nmr.mgh.harvard.edu/optseq). Once this process (policy prompt, self-choice, 

confirmation of self-choice, guess and feedback for A, guess and feedback for B, and guess and 

feedback for C) was completed for one policy position, participants started a new regular trial by 

repeating the process for a new policy position with the same three Agents. A table consisting of 

eight rows and four columns displayed on the right-hand side of the screen recorded the 

participant’s and each Agent’s responses on each trial. The order of the policy positions and 

individuals was randomized; every participant saw each of the 48 policies and 18 individuals 

only once during the experiment. The order of the agents was also randomized across runs. 

Agents were randomly assigned names from a preset list of names of five-letter length.  

 

Following the eight learning trials, participants then saw one “mystery” ally-choice trial. On 

these trials, participants saw pictures of Agents A and B sequentially in a random order, each of 

which was followed by a fixation cross that appeared for 3s-16s (jittered), prior to reaching the 

decision screen. On the decision screen, participants saw two boxes with question marks 

representing two unknown policy positions. Underneath the two boxes were photos of Agents A 

and B and grey arrows pointing to their respective choices (Fig. 2B). We told participants that 

the mystery boxes contained Agent-A’s and Agent-B’s preferred policy positions. Participants 

had to indicate which one of the two unknown policy positions they would rather choose (e.g., 

“Which would you choose? Remember, Annie and Betsy know what’s inside the boxes.”). A 

grey rectangle appeared around the selection after they indicated their choice. Thus, participants 

had to align themselves with one of the two agents. The response table summarizing participants’ 

and all agents’ preferences during the block was visible during the ally-choice trial. After the 

ally-choice trial, participants started a new run with a new set of three agents and a new set of 

eight policy positions. 

 

Participants completed six runs in total. For each run, Agents B and C agreed on five issues; 

Agents A and C agreed on three issues, and Agents A and B never agreed with each other. This 

agreement structure made it more likely that participants would cluster Agents B and C together 

and that Agent C’s agreement with the participant would increase the selection of Agent B on the 

ally-choice trial. However, agreement counts between the participant and each agent varied 

across blocks and participants. All agent positions were entirely randomly assigned (within the 
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constraints of the agreement/disagreement structure). Thus, across all runs and participants, some 

agents expressed a mixture of highly partisan left and right beliefs. In our previous behavioral 

studies (Lau et al., 2018, Experiment 2), we found that participants still exhibited the behavior 

predicted by the latent structure learning model despite learning about agents with less 

ideologically incoherent profiles (i.e. agents with preference profiles constructed from a mix of 

left and right partisan topics). 

 

fMRI data acquisition and analyses 
We collected data using a 32-channel head coil in a 3.0-tesla Prisma MRI scanner (Siemens) 

located at the university. At the beginning of each scan session, we acquired a high-resolution T-

1 weighted anatomical image (T1-MPRAGE, 1 × 1 × 1 mm, parallel to the anterior commissure-

posterior commissure plane) for use in registering activity to each participant’s anatomy and 

spatially normalizing data across participants. Functional images were then acquired through six 

echo-planar imaging (EPI) sessions each lasting 12 minutes. For whole brain coverage, we 

acquired 69 interleaved 2.0mm slices (repetition time = 1.5s; echo time = 30 ms; flip angle = 75 

degrees; field of view = 208 mm; matrix = 104 × 104; in-plane acceleration (GRAPPA) = 2; 

multi-band acceleration factor = 3). The multi-band EPI sequence was provided by the 

University of Minnesota Center for Magnetic Resonance Research (Moeller et al., 2010; 

Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2013). 

 

We conducted preprocessing and statistical analyses using SPM12 (Wellcome Trust Centre for 

Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). We realigned functional images 

to the first volume, unwarped the functional images, segmented the structural image into its 

respective tissue types, and normalized the gray matter of the structural to the gray matter of a 

standard Montreal Neurological Institute (MNI) reference brain. The mean functional images 

were co-registered to the structural image, and functional images were normalized to the MNI 

template, resliced to 2 mm × 2 mm × 2 mm voxels, and smoothed using an 8 mm FWHM 

Gaussian kernel. 

 

fMRI Analyses 
We modeled data with an event-related design using a general linear model. For each of the six 

runs, one regressor modelling the onset of self-choice (8 onsets), a second regressor modelling 

the onset of guesses for each of the three agents across the eight issues (24 onsets) and a 

parametric modulator for the second regressor, were convolved with the canonical hemodynamic 

response function. The parametric modulator values indexed the specific model output (the 

dyadic similarity, feature similarity-over-agents, or the latent structure learning model; see 

Computational models below) of either the similarity with the target or the prior probability of 

the participant belonging to the same group as the target of the decision (i.e., Agents A, B, or C). 

For example, when the participant was making a guess for Agent-A on the seventh trial in a 

block, the latent group parametric modulator took on the value of the probability that Agent A 

was in the same group as the participant given previous feedback. No clusters survived 

correction when all three models were included as parametric modulators. 

 

We did not orthogonalize parametric modulators with respect to the second regressor (the onsets 

of guesses) given that we were interested in which voxels tracked our parametric modulator 

values rather than the mean-centered values (Mumford, Poline, & Poldrack, 2015). In addition, 
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we included six nuisance regressors containing the temporal and spatial derivatives for the main 

regressor and six run regressors. Alignment values from the latent structure learning model and 

the dyadic similarity model were modeled in separate models given that each represented a 

different hypothesis about processes in the brain. To determine which areas of the brain tracked 

each these models, we then entered the images resulting from contrasting the parametric 

modulator against baseline into a second-level analysis treating participants as a random effect. 

We used a voxelwise threshold of p < 0.001 and corrected for multiple comparisons using whole-

brain cluster-wise family-wise error (FWE) correction from bspmview 

(http://www.bobspunt.com/bspmview) at the α = 0.05 level.  

 

Parametric Modulator Correlations 
Given that all three model outputs were derived from similar inputs, the correlations among the 

different parametric modulators were moderate to large. The average correlation between dyadic 

similarity and latent structure modulators was 0.8627, with values ranging from 0.5592 to 

0.9704. The average correlation between the latent structure and similarity-over-agents 

parametric modulators was 0.7889 (ranging from 0.3778 to 0.9496). Finally, the average 

correlation between the dyadic similarity and similarity-over-agents parametric modulators was 

0.9614 (ranging from 0.9023 to 0.9874).  

 

To measure collinearity between the dyadic similarity and latent structure modulators, we 

calculated the VIF (1/(1-R2), where R2 is the r-squared from regressing one parametric 

modulator on the other). The VIF between dyadic similarity and latent structure modulators was 

5.063 (generally regarded as low collinearity), while the VIF between dyadic similarity and 

feature similarity-over-agents parametric modulators was 13.786. 

 

Computational Models 
Dyadic similarity Sd is calculated as a function of the number of previous agreement instances 

between the agent and participant divided by the number of trials elapsed, where priors for the 

first trial were 0.50 for each agent: 

 

𝑆"(𝑎𝑔𝑒𝑛𝑡, 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) = ∑ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡34567689:;< + 1𝑛 + 1 (1) 
 

Similarity-over-agents, Sf, used output from the dyadic similarity model to construct a similarity 

matrix whose values were Sd between the participant and each agent as well as Sd between 

agents. Feature similarity between a participant and a particular agent would be computed as the 

correlation between the row of the similarity matrix representing the dyadic similarity between 

the participant and each agent and the row of the similarity matrix representing the dyadic 

similarity between that particular agent and everyone else (i.e., the participant and the other two 

agents; Equation 2). To transform these correlations to an interpretable probabilities, the values 

were rescaled to a 0 to 1 range, and a log odds transformation (i.e., log(Sf) – log(1- Sf)) was 

applied. 
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1 𝑆"(𝐴, 𝑝) 𝑆"(𝐵, 𝑝) 𝑆"(𝐶, 𝑝)𝑆"(𝐴, 𝑝) 1 𝑆"(𝐴, 𝐵) 𝑆"(𝐴, 𝐶)𝑆"(𝐵, 𝑝)𝑆"(𝐶, 𝑝) 𝑆"(𝐵, 𝐴)𝑆"(𝐶, 𝐴) 1𝑆"(𝐶, 𝐵) 𝑆"(𝐵, 𝐶)1 ⎦⎥
⎥⎤  

 𝑆J(𝑎𝑔𝑒𝑛𝑡, 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) = 𝑐𝑜𝑟𝑟L𝑆"?@AM34567,N3O7:P:N367 (2) 
 

 

The latent group structure learning model assumes that participants infer latent group 

assignments (a partition of agents into groups) based on agents’ choice data. The prior 

distribution over group assignments is a Chinese restaurant process (Aldous, 1985), where the 

probability of partition z = [z1, …, zM] given M individuals is our prior:  

 

𝑃(𝑧|𝛼) = 𝛼VΓ(𝛼)ΠY(ΤY)Γ(𝑀 + 𝛼) (3) 
 

where α ≥ 0 serves as the dispersion parameter (as α approaches infinity, each individual is 

assigned to a unique group), Tk is the number of individuals assigned to group k and Γ(∙) is the 

gamma function. In our modeling, we used α = 2, though the results are relatively robust to 

variation in this parameter. An infinite number of groups can be generated, but a “rich get richer” 

dynamic favoring more popular clusters will produce more parsimonious groupings (see 

Gershman & Blei, 2012). We can derive the posterior using Bayes’ rule with observed choices C 

= [c1,…,cM]: 

 

𝑃(𝑧|𝐶) = 𝑃(𝐶|𝑧)𝑃(𝑧)∑ 𝑃(𝐶|𝑧])𝑃(𝑧])^_ (4) 
 

The likelihood is obtained by analytically marginalizing the latent parameters under a Dirichlet-

Multinomial model: 

 

𝑃(𝐶|𝑧) = a𝑃(𝐶|𝜃, 𝑧)𝑃(𝜃)𝑑𝜃	
e =ff Γ(|𝜒6|𝛾)Γ(𝑇Y + |𝜒6|𝛾)f

Γ(𝐿Y6P + 𝛾)Γ(𝛾)PY6
(5) 

 

Where θ is a set of multinomial parameters, |𝜒6| is the number of options on problem n and 𝐿Y6P  

is the number of individuals assigned to group k who choose stance c on issue n. The likelihood 

favors groupings for which choice patterns are similar between individuals assigned to the same 

group. 

 

Parametric modulator values used the probability that the agent under consideration was in the 

same group as the participant and were derived as the marginal posterior probability of the 

relevant partitions: 

 

𝑃L𝑧3 = 𝑧Nl𝐶M =m𝑃(𝑧3 = 𝑘|𝐶)𝑃(𝑧N = 𝑘|𝐶
Y

) (6) 



 18 

Neural Signal Decoding 
The neural signal of interest can be algebraically derived from the standard GLM with L2-norm 

regularization: 

 

𝑆𝚤𝑔𝑛𝑎𝑙r :675O5s7 = t𝑌 − m 𝛽x:𝑋:
:z:675O5s7

{ 𝛽x:675O5s7𝛽x:675O5s7| + 𝜆𝐼 (7) 
 

where Y is the overall signal from the voxel and X is the corresponding vector from the original 

design matrix. For these analyses, we set our regularization parameter, λ, to a value of 1 

following Tomov et al. (2018). 
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Table 1. Results from parametric modulator contrasts 

Model Region 
Cluster 

Size 
X Y Z 

Dyadic Similarity Pregenual Anterior Cingulate 327 18 48 0 

Feature Similarity 

Pregenual Anterior Cingulate 1079 16 44 2 

Left Supplementary Motor Area 762 -28 8 40 

Right Superior Temporal Sulcus 558 58 -44 -6 

Left Temporoparietal Junction 465 -58 -52 40 

Right Temporoparietal Junction 298 54 -48 34 

Latent Grouping Right Anterior Insula/Inferior 

Frontal Gyrus 

696 34 16 -10 

Cluster size reported in voxels (2mm3). Coordinates refer to peak voxel in Montreal 

Neurological Institute space. 

  




