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Abstract

1. A long-standing goal of invasion biology is to identify factors driving highly vari-
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able impacts of non-native species. Although hypotheses exist that emphasize the
role of evolutionary history (e.g., enemy release hypothesis & defense-free space
hypothesis), predicting the impact of non-native herbivorous insects has eluded

scientists for over a century.

. Using a census of all 58 non-native conifer-specialist insects in North America, we

quantified the contribution of over 25 factors that could affect the impact they
have on their novel hosts, including insect traits (fecundity, voltinism, native range,
etc.), host traits (shade tolerance, growth rate, wood density, etc.), and evolution-

ary relationships (between native and novel hosts and insects).

. We discovered that divergence times between native and novel hosts, the

shade and drought tolerance of the novel host, and the presence of a coevolved
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rous insects.
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1 | INTRODUCTION

Expansion of global trade has increased establishment of non-na-
tive herbivorous insects (Aukema et al., 2010), most of which cause
a little impact in their invaded range (Williamson & Fitter, 1996). A
small minority of invaders, however, cause high impacts that exceed
US$70 billion annually just in North America (Bradshaw et al., 2016),
making it imperative to predict which species pose the greatest
risk. We define high-impact species as those that cause mortality of
their host plants at population or regional scales, disrupting ecolog-
ical systems, and causing serious environmental or socioeconomic
harm (Figure 1). Although there have been advances in the ability to
predict the establishment of non-native invaders (Gallien, Thornhill,
Zurell, Miller, & Richardson, 2019), identifying predictors of impact
once they have established has proven difficult (Kolar & Lodge,
2001).

A long-held assumption regarding the success of non-native in-
vaders relates to the absence of their coevolved natural enemies in
the introduced range (enemy release hypothesis; Keane & Crawley,
2002), which has motivated classical biological control programs
against non-native herbivorous insects for 130 years (Burgess &
Crossman, 1929; Caltagirone, 1981). Similarly, the defense-free
space hypothesis invokes lack of coevolved host defenses as a
factor responsible for high-impact herbivore invasions (Gandhi &
Herms, 2010). Although the success of some classical biological
control programs provides empirical support for the enemy re-
lease hypothesis (DeBach & Rosen, 1991), and a lack of coevolved
defenses against some invasive herbivorous insects has been doc-
umented (Brooks, Ervin, Varone, & Logarzo, 2012; Desurmont,
Donoghue, Clement, & Agrawal, 2011; Woodard, Ervin, & Marsico,
2012), these hypotheses have not been applied to predict the im-
pact of non-native insects. Recent frameworks have integrated

congener on a shared host, were more predictive of impact than the traits of the
invading insect. These factors built upon each other to strengthen our ability to
predict the risk of a non-native insect becoming invasive. This research is the
first to empirically support historically assumed hypotheses about the impor-

tance of evolutionary history as a major driver of impact of non-native herbivo-

4. Our novel, integrated model predicts whether a non-native insect not yet present
in North America will have a one in 6.5 to a one in 2,858 chance of causing wide-
spread mortality of a conifer species if established (R? = 0.91)

5. Synthesis and applications. With this advancement, the risk to other conifer host
species and regions can be assessed, and regulatory and pest management efforts

can be more efficiently prioritized.

evolutionary history, herbivore, invasive insect, non-native species, risk assessment

multiple, single-factor hypotheses into synthetic theories of in-
vasion success (e.g., Barney & Whitlow, 2008; Catford, Jansson,
& Nilsson, 2009), but these are too general for making specific
predictions and may mask important mechanisms driving the im-
pact of invasions. Simultaneous consideration of multiple traits of
non-native insects and their hosts may better predict the probabil-
ity of high-impact invasions (e.g., Gurevitch, Fox, Wardle, Inderjit,
& Taub, 2011).

We tested the hypothesis that multiple traits better predict
high-impact invasions by focusing on non-native insect herbivores
in North America that specialize on coniferous (Order Pinales) trees
(hereafter, conifer specialists), which are widely distributed across
latitude and elevation, dominate multiple biomes, are well studied,
and have great ecological and economic value (Eckenwalder, 2009).
Specifically, we tested if the probability of a non-native conifer spe-

cialist causing high impact on a North American (novel) conifer host

FIGURE 1 Example of high-impact damage caused by a
non-native insect: Red pines (Pinus resinosa) killed by the red pine
scale (Matsucoccus matsumurae) near Myles Standish State Forest,
Massachusetts. Photograph by Jeff Garnas, University of New
Hampshire
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is a function of the following: (a) evolutionary divergence time be-
tween the native and novel hosts, (b) life history traits of its novel
host, especially those traits related to herbivore resistance and toler-
ance, (c) the evolutionary relationship of the non-native conifer spe-
cialist to native insects that have coevolved with the shared North
American host, and/or (d) the life history traits of the non-native in-
sect. We quantified the contributions of these factors, individually
and in combination, to assess the magnitude of impact and provide a
model framework for predicting which introduced insect herbivores
are likely to be high-impact invaders. We also demonstrate that a
composite model substantially increases predictability relative to in-
dividual submodels. Our research is the first to generate quantitative
evidence for the role of evolutionary history as a predictor of the

impact of non-native insect herbivores on their host plants.

2 | MATERIALS AND METHODS

2.1 | Insect traits

We censused non-native insects, using published lists (Aukema et
al., 2010; Yamanaka et al., 2015), and identified 58 conifer special-
ists currently established in North America that feed on hosts in
Cupressaceae, Pinaceae, and/or Taxaceae (Table A1). For each coni-
fer specialist, literature and online searches were conducted (March
2016-July 2017) to find: (a) values of 15 potentially relevant insect
life history traits including fecundity and voltinism, (b) the highest level
of plant damage described in published literature, (c) all documented
North American host trees (excluding conifers outside their native
range in North America), and (d) all host trees from the insect's native
range. High-impact insects were defined as those reported to cause

tree mortality at the population or regional level (Figure 1), whereas

TABLE 1 Description of documented
non-native insect impacts on naive hosts,
independent of management programs 1

Impact number

9
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species that directly or indirectly caused only individual tree mortality
or minor damage were not considered to be high impact (Table 1). A
binary impact response variable was considered useful for decision-
making (high impact or not), avoided the subjectivity of multiple impact
levels, and eliminated the potential effect of time since introduction.
For example, a recently introduced species with a limited distribution
would qualify as high impact if it had caused mortality in its localized
host population, recognizing that it could potentially spread over time.
Information available about non-native conifer specialists in
North America is concentrated on species causing the most damage.
Hence, some insect traits, such as fecundity, were unavailable for
many species and were not included in the analyses. Further, there
were strong associations between insect order and feeding guild, as
well as between the number of native host genera and degree of
host specificity in the native range; thus, these pairs were reduced to
a single trait (feeding guild and number of native host genera, respec-
tively) for analyses. Eight insect traits were ultimately evaluated as
predictors of impact (Table 2). We used multimodel inference within
an information theoretic framework (Burnham & Anderson, 2003) to
rank 12 unique generalized linear models (GLM; Table 2). Candidate
models included the null (no predictors) and global (all predictors).
Models were ranked based on Akaike's Information Criteria adjusted
for small sample size (AICc). AlCc scores and weights were calculated
with the GLM and AICTAB functions in the stats and AlCcmodavg
packages for R, respectively (Mazerolle, 2019; R Core Team, 2017).

2.2 | Host traits

Our literature review revealed 49 North American conifer species
that were fed upon by the 58 conifer specialists (Table A2). Six traits

(foliage texture, growth rate, drought tolerance, fire tolerance, shade

High impact Description

0 No damage documented in the literature.

0 Minor damage; examples: leaf/needle loss, leaf/
needle discoloration, twig dieback, or fruit drop.

Mortality of individual stressed plants.
0 Weakening of an individual plant that suffers
mortality from another agent.
0 Mortality of individual healthy plants.
Isolated or sporadic mortality within an affected
plant population?; examples: occasional out-
breaks that yield > 10% mortality, 90% mortality

with regeneration, or sustained mortality of 5%
per year in multiple populations.

1 Extensive or persistent mortality within a popula-
tion; example: more than 25% mortality over
10 years.

1 Wave of plant mortality with regional spread of
the insect.

1 Functional extinction of the host plant.

Note: Binomial high-impact value: 1 = yes; O = no.
2A population is defined as a spatially continuous group of interbreeding individuals.
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TABLE 2 Ranking of alternative models explaining variability
in high-impact insect invasions on North American conifers as a
function of non-native insect traits

Model K AlCc AAICc w
Voltinism 2 43.308 0.000 0.27
Voltinism + Reproductive 5 43.911 0.603 0.20
Strategy + Dispersal
Reproductive Strategy 2 44.475 1.168 0.15
Null Model 1 44.794 1.486 0.13
Congener 2 46.073 2.765 0.07
Number of Genera 2 46.305 2.997 0.06
Pest Status 2 46.733 3.426 0.05
Dispersal 2 46.791 3.483 0.05
Native Range 3 48.339 5.031 0.02
Guild 4 50.651 7.343 0.01
Native Range + Pest 5 51.935 8.627 <0.01
Status + Number Genera
Global model 11 64.639 21.331 <0.01

Note: Lower Akaike's Information Criterion adjusted for small sample
size (AlCc) scores and higher AlCc weights (w) indicate a greater relative
degree of support for the model from the data. K indicates the number
of parameters in each model, and AAICc is used to facilitate com-
parisons between the best-supported model (AlCc = 0.00) and other
models. All models with AAICc scores < 2.00 (bold font) were included
in the confidence set.

tolerance, and wood density) conceptually relevant to host quality
were extracted for each conifer species from three sources: the
United States Department of Agriculture Plants Database (USDA &
NRCS, 2016); the TRY Database (Kattge et al., 2011); and Miles and
Smith (2009); foliar carbon-nitrogen ratio and specific leaf area data
were unavailable for many conifers and were therefore not included.
As with insect traits, we used multimodel inference to evaluate 10
candidate models (Table 3) that related host traits with the probabil-
ity of high impact for each novel insect-host pair (n = 221).

2.3 | Host evolutionary history

Each insect-host pair was matched with each coevolved (native)
host of the insect in its native range (n = 1,271 triplets). Divergence
time (millions of years ago; mya) between the novel and native host
was assigned for each triplet using the nearly comprehensive dated
phylogeny of conifers by Leslie et al. (2012). For three species not
represented in this phylogeny (Abies balsamea (L.) Miller, Pinus cem-
bra L., and P. banksiana Lambert), divergence times were inferred
using dates among clades in Leslie et al. (2012) and their positions
in other published phylogenies (Gernandt, Lopez, Garcia, & Liston,
2005; Parks, Cronn, & Liston, 2012; Xiang et al., 2015). For each tri-
plet, the distance to the most recently diverged host in the insect's
native range was extracted for analyses, which minimized the im-
pact of incomplete host records and ensured independence among
observations. Three pairs were excluded because the globally dis-

tributed Juniperus communis L. was both the North American and

TABLE 3 Ranking of alternative models explaining variability in
high-impact insect invasions as a function of host tree traits

Model K AlCc AAICc w
Shade toler- 6 109.547 0.000 0.79
ance + Drought
tolerance
Growth rate 114.765 5.218 0.06
Wood density + Growth 4 114.929 5.382 0.05
rate
Wood density 2 115.567 6.020 0.04
Null model 1 116.849 7.302 0.02
Foliage texture + Growth 5 116.863 7.317 0.02
rate
Foliage texture 118.605 9.058 <0.01
Drought tolerance 4 119.142 9.595 <0.01
Global model 14 121.842 12.295 <0.01
Fire tolerance + Drought 7 124.834 15.287 <0.01
tolerance

Note: Lower Akaike's Information Criterion adjusted for small sample
size (AlICc) scores and higher AICc weights (w) indicate a greater relative
degree of support for the model from the data. K indicates the number
of parameters in each model, and AAICc is used to facilitate com-
parisons between the best-supported model (AICc = 0.00) and other
models. All models with AAICc scores < 2.00 (bold font) were included
in the confidence set.

closest native Eurasian host, leaving 218 pairs. Using logistic regres-
sion and the chi-squared likelihood ratio (G?), we tested for effects
of divergence time between the closest native and novel host plants,
feeding guild of the insect, and interaction between the two, on the
probability of high impact. Since there was a strong interaction term,
we tested separate models for each feeding guild. Visual examina-
tion of the data suggested nonlinearities between divergence time
and impact; thus, we also considered models that included a squared

term for divergence time (RMS package; Harrell, 2017).

2.4 | Insect evolutionary history

Sharing a host with a closely related herbivore native to North America
could influence the impact of an invading non-native insect. To test
this hypothesis, we compiled a list of North American insect genera
associated with each North American conifer in our analyses using the
following sources: Blackman and Eastop (1994), Burns and Honkala
(1990), Drooz (1985), Furniss and Carolin (1977), Johnson and Lyon
(1991), Pickering (2011), Robinson, Ackery, Kitching, Baccaloni, and
Hernandez (2010), and Wood and Bright (1992). To account for false
negatives generated by any undocumented native insect genera, we
excluded the 10% of conifers (n = 8) with the fewest documented in-
sect genera. For the remaining 203 insect-host pairs, we evaluated
models predicting the probability of high impact based on the pres-
ence or absence, on the same host, of a co-occurring native insect in
the same genus or family as the non-native conifer specialist (Table 4).
However, we did not evaluate the global model because insects in the

same genus are also in the same family.
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TABLE 4 Ranking of alternative models explaining variability
in high-impact insect invasions as a function of the taxonomic
relationship between non-native conifer specialists and their
closest North American insect relative on the same host tree
species

Model K AlCc AAICc w

Shared genus 2 98.778 0.000 0.89
Null model 1 103.908 5.129 0.07
Shared family 2 104.958 6.179 0.04

Note: Lower Akaike's Information Criterion adjusted for small sample
size (AlCc) scores and higher AlCc weights (w) indicate a greater relative
degree of support for the model from the data. K indicates the number
of parameters in each model, and AAICc is used to facilitate com-
parisons between the best-supported model (AICc = 0.00) and other
models. All models with AAICc scores < 2.00 (bold font) were included
in the confidence set.

2.5 | Composite model

We explored whether the host trait values and evolutionary history
represent independent factors for composite model construction
by calculating Blomberg's K index of phylogenetic signal (Blomberg,
Garland, & Ives, 2003). A K value of zero indicates random distribu-
tion of trait values on the phylogeny, a value of one indicates that trait
values are correlated with divergence time according to a Brownian
motion model of evolution, and a value greater than one indicates
that related species have trait values that are even more similar than
expected under Brownian motion (Blomberg et al., 2003). We used
the R package Picante (Kembel et al., 2010) to calculate K values for
each trait and to test against the null hypothesis of random distribu-
tion on the phylogeny using 1,000 randomizations of trait values.
Ordinal categorical traits (none, low, medium, high) were coded as
integers (0, 1, 2, 3) for calculating K. We used the same host phylo-
genetic tree as above, but it was trimmed to include only the species
for which trait values were available. Trait values were plotted on the
phylogeny using the R package Phylosignal (Keck, Rimet, Bouchez, &
Franc, 2016).

We combined the strongly supported submodels (native-novel
host divergence time, novel host traits, and native-non-native
insect relatedness; m = 1 to 3) predicting risks of high-impact
invasions to estimate the composite risk (R) for each of the 221
combinations of conifer hosts (t) and conifer specialists (i) accord-
ing to:

—

o1 10git (P ) ~logit (P, W
Rii= N +logit (P._)

m

whereR;;is the estimated probability of high impact (logit units) for the
combination of host tree t and conifer specialist i, an\t, is the predicted
probability of high impact from model m for tree t and insect i, P,,, is
the proportion of high-impact incidences for the tree-insect combina-
tions used to parameterize model m, N,,, is the number of models (1-3
depending upon the insect-host combination) yielding predictions for
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that insect-host pair, and P_is the overall proportion of high-impact
incidences among all 221 insect-host combinations (P. = 0.072).

To evaluate the fit of the predictive model to the observed in-
cidences of high impact, we ranked the predicted probabilities of
high impact and allocated them to 10 bins (22 probabilities per bin
with 23 in the final bin). The mean probability of each bin was calcu-
lated and compared to the observed proportion of high-impact pairs
within the bin.

2.6 | Model goodness of fit and validation

We calculated R? goodness-of-fit metrics to assess the proportion of
variability in our dataset explained by each submodel and the com-
posite model. For each submodel, we calculated the Nagelkerke R?
(Nagelkerke, 1991) using the fmsb package in R (Nakazawa, 2018).
Rather than evaluating predictive ability with data used to train the
model, we conducted 10-fold cross-validation tests of the submodel
on independent data by randomly subsetting the dataset into train-
ing (90%) and testing (10%) sets, refitting the model with the train-
ing set, making predictions with the testing set, comparing testing
set predictions with their known values, replacing the observations,
repeating the process nine more times, and averaging the error rate
over the 10 iterations (Fushiki, 2011).

Ten-fold cross-validation results for each submodel were eval-
uated using receiver operator characteristic (ROC) plots and area
under the curve (AUC) statistics. The AUC score indicates the ability
of each submodel to assign a greater likelihood of high impact to an
insect-host pair that was actually high impact compared to one that
was not (Fielding & Bell, 1997). AUC scores are bounded between
0.00 and 1.00, with a score of 0.50 indicating a model with predic-
tive performance equivalent to random chance and a score of 1.00
indicating perfect predictive ability. Notably, the AUC score for the
composite model was not generated with 10-fold cross-validation,

but with the data used to parameterize it.

3 | RESULTS

Of the approximately 450 non-native herbivorous insects cur-
rently established in North American forests (Aukema et al., 2010),
58 are conifer specialists, with six historically or currently causing
high impacts (Table A1). Only conifer specialists in the insect orders
Hymenoptera (i.e., sawflies) and Hemiptera (i.e., adelgids, aphids,
and scales) have caused high impact. Conifer hosts were attacked
by 1 to 21 non-native conifer specialists (Table A2), and each insect
attacked 1 to 16 novel hosts.

3.1 | Host phylogeny and insect-feeding guild
predict impact

Divergence time to the most recent common ancestor between the
insect's native and novel conifer hosts had strong quadratic relation-
ships to predict the impact for folivores and sap-feeders. Divergence
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time was not tested for wood borers, root feeders, and gall makers
as none caused high impact.

The greatest probability of high impact for a folivore conifer spe-
cialist was on a novel conifer that diverged from the native conifer
host recently (~1.5-5 mya; Figure 2a; Table 5; p = .112 and p = .072
for divergence time and divergence time?, respectively), with prob-
abilities of high impact ranging from .000 to .765 across host diver-
gence times, with the 10th and 90th percentiles encompassing a
12,000-fold range in probabilities. For native and novel hosts that
diverged 2-3 mya, there is a ~76% chance the folivore will cause high
impact, but that risk decreases to nearly 0% for hosts more distantly
or extremely closely related (Table 6, Figure 2a). Overall, the host
evolutionary history model for folivores had moderate predictive
performance; R? = 0.43 (Figure 2a) and AUC = 0.77 (Figure 3).

Among sap-feeders, evolutionary divergence time between
native and novel hosts had greater predictive power. As with fo-
livores, there was a quadratic relationship between divergence
time and impact, but the probability of peak impact occurred at
longer divergence times for sap-feeders (~12-17 mya; Figure 2b;

Table 5; p = .014 and p = .012 for divergence time and divergence

1+ . . ® o
0.9;
0.8;
0.7;

0.6
0.5+
0.4+
0.3 ]
0.2 ]
041+

0-

T T T T T T T T T

0.3

Observed and predicted high impact

0.2+

0.1+

[ e T T T

0.5 1 10

Divergence time from nearest native host (MYA)

(b) Sap-feeding

time?, respectively). The host phylogeny evolutionary submodel
for sap-feeders had an R? value of 0.36 and an AUC score of 0.81
(Figure 3). Predicted probabilities of high impact ranged from in-
finitesimal (2.85 x 1072%) to 0.30 across the range of divergence
times for sap-feeders. The 10th to 90th percentiles had an approx-
imate 257 million-fold range in probabilities, with a 30% chance
that a sap-feeder will cause high impact on a novel conifer that
diverged from the insect's native host about 16 mya; the probabil-
ity drops to one in over 500 million if the hosts are either closely
or distantly related (Figure 2b; Table 6).

3.2 | Host shade and drought tolerance
predict impact

Of the nearly 100 conifer species native to North America, 49 were
colonized by a non-native conifer specialist, with 76% colonized by
more than one (x = 4.44; Table A2). The confidence set predicting high
impact as a function of host traits consisted of a single model: shade
tolerance + drought tolerance (Tables 3 and 7). Other traits examined

that did not influence impact included tree growth rate, wood density,

(a) Folivores

T T

100 350

FIGURE 2 Predicted probability of
high impact based on divergence time
between native and novel coniferous
hosts. For the 49 cases involving folivores
(a), the risk of high-impact invasions

was higher [P(high impact) = 0.75] with
divergence times of 1.5 to 5 mya. For the
131 cases involving sap-feeding conifer
specialists (b), the risk of high impact was
greatest [P(High Impact) = 0.30] when
the North American host tree was of
intermediate relatedness to the native
host tree (estimated last common ancestor
at 10 to 30 mya, zenith at 16 mya). Dots
represent observed impact (1 = high
impact), and the lines represent predicted
impacts based on models. Points have
been jittered such that all observations
are visible

100 350
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TABLE 5 Parameter estimates for explaining variability in
folivores and sap-feeders for high-impact insect invasions as a
function of time since last common ancestor of the novel North
American host and the most closely related native host

Parameter Estimate SE p-Value
Folivores
Intercept -0.515 1.120 646
Log10(DivergeTime) 8.073 5.086 112
Log10(DivergeTime?) -9.495 5.271 .072°
Sap-feeders
Intercept -51.824 21.149 .0142
Log10(DivergeTime) 84.472 34.739 .014°
Log10(DivergeTime?) -35.803 14.182 .012?

Significant at the a = 0.05 level
bSignificant at the a = 0.10 level.

foliage texture, and fire tolerance. The time-independent (i.e., regard-
less of time since introduction) predicted probabilities of high impact
ranged from 0.014 to 0.259 across hosts. If the novel host was both
highly tolerant of shade and had low drought tolerance, life history
traits that are highly associated in conifers resulting from fundamental
physiological trade-offs (Rueda, Godoy, & Hawkins, 2017), there was a
20%-26% chance it would experience high impact from a non-native
insect (Figure 4); this included most species of Abies, Picea, and Tsuga.
In comparison, novel hosts without high shade and low drought toler-
ance had as low as a 1.4% chance of experiencing a high-impact inva-
sion (Figure 4). Independently, the host traits model had a moderate
predictive performance with an R? value of 0.19. In addition, a 10-fold
cross-validation analysis determined an AUC of 0.58 (Figure 3).

3.3 | Coevolved native insects predict impact

We evaluated the evolutionary relationship between the non-native co-
nifer specialist and native North American insects that coevolved with
the shared novel conifer host by determining whether they belong to the
same genus or family. The presence of a congener feeding on the host
significantly decreased the probability that the conifer specialist causes
high impact (p = .043; Figure 5, Tables 4 and 8). However, the insect
evolutionary history model in isolation had relatively poor predictive

performance, with an R? value of 0.09 and AUC score of 0.51 (Figure 3).
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3.4 | Insect life history traits do not predict impact

None of the insect life history traits examined, singly or in com-
bination (Table 2), had predictive value including feeding guild,
native region, native pest status, number of native host genera,
voltinism, reproductive strategy, fecundity, and/or mechanism of
dispersal. Although feeding guild was not a significant predictor
of impact directly, we did report quantitatively different models
for guilds with respect to the divergence times of the host spe-
cies. The historical challenge predicting impacts based on insect
traits could reflect the lack of variation in traits among high- and
low-impact invaders (i.e., univoltinism observed in both groups),
further highlighting the importance of factors previously not
considered.

3.5 | Composite model

The magnitude of correlation between host traits values and diver-
gence time was low for all traits (Blomberg's K ranged from 0.008 to
0.053; Figure A1), indicating that the independent host traits and host
phylogeny models are not likely to compromise the predictive power
of our composite model. The composite model (Equation 1) describes
variation in the probability of high impact by non-native conifer spe-
cialists that spans an approximate 443-fold variation in risk: 0.0003 to
0.1549 for the 10th and 90th percentile of the 221 novel insect-host
pairs (Table 6). There was high goodness of fit between predictions
of the composite model and observed impacts (R = 0.91; Figure 6).
In addition, the AUC score of 0.91 (Figure 3) indicates that combining
submodels increases predictive power. For more than half of the 221
pairs, the predicted risk of high impact was <0.04, with no observed
cases of high impact among the 130 pairs with the lowest predicted
risks. In contrast, 87.5% of the observed high-impact cases had a pre-
dicted risk above the baseline probability (p = .072), providing further
support for model fit. The remaining observed high-impact insect-
hosts pairs (n = 2) had predicted probabilities above the overall median
with an average predicted risk of .048.

Our composite model predicts whether a non-native conifer spe-
cialist will have a one in 6.5 to a one in 2,858 chance of causing high
impact on a North American conifer. Although all three submodels con-
tribute to these predictions, the strength of influence varied. By far, the

strongest source of variation was the effect of evolutionary divergence

TABLE 6 Comparison of the contributions to risk of high-impact invasions from individual models and the overall composite model

Number of insect-

Predictor model of high-impact risk host tree pairs

Host Traits 218
Host Evolutionary History—Folivores 49
Host Evolutionary History—Sap-feeder 131
Insect Evolutionary History 203
Composite 221

Variation in risk of high-impact

Standard deviation

10th-90th percentile 10th-90th percentile

(logits) (logits) (probabilities)
1.03 -4.24to -1.33 0.014 to 0.209
5.36 -10.71 to -0.96 0.000 to 0.277

12.02 -20.64 to -0.95 0.000 to 0.279
1.03 -4.30to -2.18 0.013 to 0.102
3.36 -7.96 to -1.70 0.000 to 0.155
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FIGURE 3 Receiving operator characteristic plot with area
under the curve (AUC) statistics for assessing the ability of the
model to differentiate high-impact novel insect-host pairs from
non-high-impact pairs at different probability thresholds. AUC
curves for the four submodels were generated on independent data
via 10-fold cross-validation, while the AUC curve for the composite
model was produced with the full dataset used to parameterize it

time between novel and native hosts on the impact of sap-feeders and
folivores (Figure 2, Table 1). This is particularly insightful as sap-feeders
accounted for a disproportionate share of the non-native species (57%
of conifer specialists and 69% of insect-host pairs). The other submod-
els had smaller effects on the composite risk of high impact (standard
deviation of predicted risk = 1 and changes in relative risk from the 10th
to the 90th percentile of 7-fold to 15-fold; Table 1).

4 | DISCUSSION

Only six of the 58 non-native conifer specialists established in North
America historically or currently are causing high impacts: (1) Adelges
piceae—Balsam woolly adelgid, (2) Adelges tsugae—Hemlock woolly
adelgid, (3) Elatobium abietinum—Green spruce aphid, (4) Gilpinia her-
cyniae—European spruce sawfly, (5) Matsucoccus matsumurae—Red
pine scale, and (6) Pristiphora erichsonii—Larch sawfly. All high-im-
pact, non-native conifer specialists in North America belong to the
orders Hemiptera or Hymenoptera.

The greatest power of our composite model for predicting high im-
pact came from the submodels related to evolutionary history between
native and novel hosts. Intimacy of host association has been proposed
as a significant factor affecting evolutionary responses of plants to her-
bivory (Mattson, Lawrence, Haack, Herms, & Charles, 1988; Walling,
2000). This may help explain why the evolutionary divergence time
between native and novel hosts at which peak impact occurred was
greater for sap-feeders than for folivores. Sap-feeders are considered
to have a more intimate association with their hosts than folivores be-
cause they feed with their mouthparts embedded within specific plant

TABLE 7 Parameter estimates for the best-supported model for
explaining variability in high-impact insect invasions as a function of
host tree traits

Parameter Estimate  SE z-Value  p-Value

Intercept -3.656 1423 -2.571 .010°

Shade tolerance 0.634 1.013 0.626 .531
(moderate)

Shade tolerance (high) 2.434 0.816 2.984 .003?

Drought tolerance (low) -0.108 1.297 -0.083 934

Drought tolerance 0.171 1.354 0.126 .899
(moderate)

Drought tolerance (high) -0.582 1.504 -0.387 .699

Note: In addition to parameter estimates, standard errors (SE), z-values,
and p-values of the estimates are provided.
Significant at the a = 0.05 level.

tissues and cells, often for long periods of time (Walling, 2000). This can
create a greater opportunity for the exchange of highly specific cues
and molecular signals that can elicit precisely targeted host defenses
and insect responses (Stuart, 2015; Walling, 2000; Yates & Michel,
2018; Zust & Agrawal, 2016). Indeed, examples of coevolutionary deme
selection in which insects adapt to individual host plants derive almost
exclusively from sap-feeders (Hanks & Denno, 1993).

A meta-analysis found that sap-feeders can decrease the growth,
photosynthesis, and reproduction of conifers (Zvereva, Lanta, & Kozlov,
2010), which should select for targeted defenses. Novel conifer hosts
that recently diverged from the native host of a non-native conifer
specialist may retain defenses evolved during past interaction with the
herbivore, thus contributing to lower impact of non-native sap-feeders
on the novel host. As host divergence times increase, herbivore resis-
tance and/or tolerance of the novel host may relax, especially if there
are costly physiological and ecological trade-offs associated with main-
taining these traits (Herms & Mattson, 1992). This would increase the
probability that an invading sap-feeder will have high impact on a novel
host. As evolutionary divergence time between the native and novel
hosts continues to increase, the conifers may have diverged genetically
and physiologically to the point that sap-feeders have limited ability to
recognize and subsequently impact the novel host.

Conversely, it has been hypothesized that folivores are less likely
than sap-feeders to select for highly specific host recognition and
defense responses because they generally have a less intimate rela-
tionship with their host (Mattson et al., 1988; Walling, 2000). Host
pairs that diverged very recently (<1 mya) may retain effective de-
fenses in the absence of herbivory until they are selected against
because their costs outweigh their benefits in the absence of her-
bivory (Herms & Mattson, 1992). Consequently, non-native folivores
may recognize, consume, and thus severely impact poorly defended
novel hosts as they continue to diverge from the native host if they
retain enough similarity traits that facilitate host finding and accep-
tance. As the time of evolutionary divergence between the native
and novel hosts becomes more distant, traits affecting host utiliza-
tion should increasingly diverge, decreasing the ability of non-native

folivores to impact or even recognize novel hosts.
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FIGURE 4 Predicted probability of high impact based on the shade and drought tolerance of the novel host. Comparison of host trait
models using multimodel inference indicated that a shade tolerance + drought tolerance model (solid line) received ~ 79% of data support
(Table 3). Each point represents one of 49 conifer species that had been challenged by 1 to 21 non-native conifer-specialist insects. The
y-axis indicates the proportion of non-native conifer specialists that had high impact on that host species. The x-axis indicates increasing
predicted risk from the supported host traits model. Across the range of host traits, the probability of high impact ranged from 0.014 to
0.259, with the cluster of conifer species with the highest risk (open circles) having high shade tolerance (100% of species) and low drought

tolerance (88% of species)

Shade and drought tolerance were the only host traits we ex-
amined that predicted degree of host impact. Availability of light
and water are major selection pressures shaping the life history of
conifers (Rueda et al., 2017) and optimal evolution of plant defense
strategies (Coley, Bryant, & Chapin, 1985; Herms & Mattson, 1992).
Shade tolerance is predicted to be associated with strong defense
because it may be more difficult to compensate for tissues lost to
herbivory in light-limited environments due to low rates of net pho-
tosynthesis (Coley et al., 1985; Strauss & Agrawal, 1999). Indeed,

0.1+

Probability of high impact (£ 95% Cl)

Y I S —

[
Yes No
North American congeneric insect on
North American host tree?

FIGURE 5 Predicted probability of high impact based on the
presence of a North American congener insect on the same conifer
species. Model comparisons found that the risk of a non-native
conifer specialist producing high impacts is higher when there is no
native (North American) congener that feeds on the shared host
[P(high impact) = 0.102 vs. 0.013]. This model received ~ 89% of
the data support (Table 4). Of the 203 insect-tree pairs, 75 had a
congener present on the tree and 128 did not

shade-tolerant plants have been found to be better defended and
experience less herbivory than shade-intolerant plants (Coley,
1983). Yet, our results found that novel shade-tolerant/drought-in-
tolerant conifers were more likely to experience high impacts from
non-native insects (Figure 4). This could indicate that if shade-toler-
ant conifers have limited ability to tolerate herbivory, then the im-
pact of non-native specialist insects preadapted to overcoming host
defenses may be high. We are not aware of studies of interspecific
variation in herbivore tolerance of conifers as it relates to their shade
tolerance. Within a species, however, shade has been shown to de-
crease the ability of conifers to compensate for herbivory (Baraza,
Zamora, & Hodar, 2010; Saunders & Puettmann, 1999).

The presence of a native congener feeding on the novel host de-
creased the probability that a conifer specialist caused high impact,
perhaps due to biotic resistance resulting from one or a combination
of factors (Nunez-Mir et al., 2017). For example, host defense and
tolerance traits selected in response to the native congener could be
effective against the closely related non-native conifer specialist (al-
lopatric resistance; Harris, 1975). In addition, the non-native conifer

specialist could be susceptible to specialist and/or generalist natural

TABLE 8 Parameter estimates for the best-supported model for
explaining variability in high-impact insect invasions as a function of
the taxonomic relationship between non-native conifer specialists
and their closest North American insect relative on the same host
tree species

Parameter Estimate SE z-Value p-Value
Intercept -2.180 0.293 -7.450 <.001?
Shared Genus -2.124 1.048 -2.026 .043%

Note: In addition to parameter estimates, standard errors (SE), z-values,
and p-values of the estimates are provided.
2Significant at the a = 0.05.
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combinations ordered by predicted risk. Dashes indicate the line

of equality between observed and predicted cases of high-impact
invasions. R? refers to least squares regression

enemies of the congener (Carlsson, Sarnelle, & Strayer, 2009). Finally,
the native congener could be better adapted to a shared niche and
thus be a stronger competitor than the evolutionarily naive non-na-
tive conifer specialist (Paini, Funderburk, & Reitz, 2008).

5 | CONCLUSIONS

Understanding what factors drive the impact of non-native species
is a central goal in invasion biology, yet hypotheses have remained
largely untested. Our work offers quantitative insight into the role
that evolutionary history plays in predicting which non-native in-
sects will cause high impacts. Specifically, we have demonstrated
that the probability of high impact can be predicted from host plant
traits, the divergence time between the insect's native and novel
hosts, and the presence or absence of a coevolved congener feeding
on the same host. Importantly, we concluded that traits of the invad-
ing insect that we examined, except for the indirect effect of feeding
guild, cannot be used to predict the insect's impact in its non-native
range. Rather, the three categories of factors important in determin-
ing the host impact of non-native conifer specialists all directly, or
through an interaction, involve the novel host. These findings sug-
gest that the invaded host or invaded community, including the his-
tory of evolutionary relationships among community members, is
more important for predicting impact than life history traits of the
invading insect.

This model can also be used to quantify, with assigned statisti-
cal confidence, the probability that conifer specialists will cause high
impacts should they establish in North America. From a practical per-
spective, the model can be used to assess risk posed by non-native
insects and allocate scarce management resources. It is worth noting
that the model created is only as strong as the data available, which are
reasonably complete for the most economically significant insect-host
pairs. However, false positives or negatives will impact the probability

of risk for variables where data are incomplete, which, for example, is

probable for insect-host lists in both the native and introduced range
(e.g., Wagner & Todd, 2016). A positive attribute of the structure of the
composite model (Equation 1) is that it is an adaptive model that lends
itself to continuing evaluation and improvement as data accumulate.
It is an unfortunate certainty that non-native conifer specialists will
continue to establish in North America, with each new introduction in-
creasing the pool of novel insect-host interactions that can be evalu-
ated. Furthermore, advances in the understanding of invasion ecology
and plant-herbivore interactions will inform hypotheses about causes
of high-impact invasions that we did not evaluate. Given our findings,
evolutionary history is central to understanding and predicting interac-
tions between non-native insects and their novel hosts.
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TABLE A1 (Continued)

Conifer-specialist species

Callidiellum rufipenne
Camptozygum aequale
Carulaspis juniperi
Carulaspis minima
Cinara cupressi

Cinara pilicornis

Cinara pinea

Cinara tujafilina
Coleophora laricella
Contarinia baeri
Crypturgus pusillus
Dichomeris marginella
Dichrooscytus rufipennis
Diprion similis
Dynaspidiotus pseudomeyeri
Dynaspidiotus tsugae
Elatobium abietinum
Epinotia nanana
Eulachnus agilis
Eulachnus brevipilosus
Eulachnus rileyi
Exoteleia dodecella
Fiorinia externa
Gilpinia frutetorum
Gilpinia hercyniae
Grypotes puncticollis
Hylastes opacus
Hylurgops palliatus
Hylurgus ligniperda
Matsucoccus matsumurae
Neodiprion sertifer
Ocnerostoma piniariella
Orthotomicus erosus
Phoenicocoris dissimilis
Phyllobius intrusus
Physokermes hemicryphus
Pinalitus rubricatus
Pineus boerneri

Pineus pineoides

Pineus pini

Pityogenes bidentatus
Plagiognathus vitellinus
Pristiphora erichsonii
Rhyacionia buoliana
Schizolachnus pineti
Sirex noctilio

Spilonota lariciana
Thera juniperata

Tomicus piniperda

Insect order

Coleoptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Lepidoptera
Diptera
Coleoptera
Lepidoptera
Hemiptera
Hymenoptera
Hemiptera
Hemiptera
Hemiptera
Lepidoptera
Hemiptera
Hemiptera
Hemiptera
Lepidoptera
Hemiptera
Hymenoptera
Hymenoptera
Hemiptera
Coleoptera
Coleoptera
Coleoptera
Hemiptera
Hymenoptera
Lepidoptera
Coleoptera
Hemiptera
Coleoptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Coleoptera
Hemiptera
Hymenoptera
Lepidoptera
Hemiptera
Hymenoptera
Lepidoptera
Lepidoptera

Coleoptera

Note: High-impact binomial value: 1 = yes, O = no.

Insect family

Cerambycidae
Miridae
Diaspididae
Diaspididae
Aphididae
Aphididae
Aphididae
Aphididae
Coleophoridae
Cecidomyiidae
Curculionidae
Gelechiidae
Miridae
Diprionidae
Diaspididae
Diaspididae
Aphididae
Tortricidae
Aphididae
Aphididae
Aphididae
Gelechiidae
Diaspididae
Diprionidae
Diprionidae
Cicadellidae
Curculionidae
Curculionidae
Curculionidae
Matsucoccidae
Diprionidae
Yponomeutidae
Curculionidae
Miridae
Curculionidae
Coccidae
Miridae
Adelgidae
Adelgidae
Adelgidae
Curculionidae
Miridae
Tenthredinidae
Tortricidae
Aphididae
Siricidae
Tortricidae
Geometridae

Curculionidae

Native range
Asia
Europe
Europe
Europe
Europe
Eurasia
Eurasia
Asia
Europe
Europe
Eurasia
Europe
Europe
Eurasia
Asia
Asia
Europe
Europe
Europe
Europe
Europe
Europe
Asia
Eurasia
Europe
Europe
Eurasia
Eurasia
Eurasia
Asia
Eurasia
Europe
Eurasia
Europe
Asia
Europe
Europe
Asia
Europe
Europe
Eurasia
Eurasia
Eurasia
Europe
Europe
Eurasia
Europe
Europe

Eurasia
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Feeding guild

Wood
Sap

Sap

Sap

Sap

Sap

Sap

Sap
Folivore
Folivore
Wood
Folivore
Sap
Folivore
Sap

Sap

Sap
Folivore
Sap

Sap

Sap
Folivore
Sap
Folivore
Folivore
Sap
Wood
Wood
Wood
Sap
Folivore
Folivore
Wood
Sap
Root
Sap

Sap

Sap

Sap

Sap
Wood
Sap
Folivore
Folivore
Sap
Wood
Folivore
Folivore
Wood

Impact number
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TABLE A2 North American conifer hosts fed on by non-native conifer-specialist insects

North American conifer host species Number of non-native conifer specialists Highest impact number High impact

[N

Abies amabilis

Abies balsamea

Abies fraseri

Abies grandis

Abies lasiocarpa
Calocedrus decurrens
Chamaecyparis lawsoniana
Chamaecyparis thyoides
Cupressus arizonica
Hesperocyparis goveniana
Hesperocyparis macrocarpa
Juniperus communis
Juniperus horizontalis
Juniperus scopulorum
Juniperus virginiana

Larix laricina

Larix lyalii

Larix occidentalis

Picea breweriana

A NN P © 0O FP NONRPFPF R BPAMNDMDNPRPR PR DNMNO

Picea engelmanni

[N
o

Picea glauca

w

Picea mariana
Picea pungens
Picea rubens

Picea sitchensis

[N
[N

Pinus banksiana
Pinus contorta
Pinus coulteri
Pinus echinata
Pinus elliotti
Pinus glabra
Pinus monticola
Pinus palustris
Pinus ponderosa

Pinus pungens

NN O R, N R PR W NN

Pinus radiata

N
e

Pinus resinosa

~

Pinus rigida

[N

Pinus serotina

=
N

Pinus strobus

Pinus taeda

Pinus virginiana
Pseudotsuga menziesii
Sequoia sempervirens
Taxodium distichum
Thuja occidentalis
Tsuga canadensis

Tsuga caroliniana

o~
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Tsuga heterophylla

Note: High-impact binomial value: 1 = yes; 0 = no.
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Wood density
K=0.041, P=0.002

Drought tolerance
K=0.008, P=0.641

Fire tolerance
K=0.053,P=0.002 K=0.020,P=0.033 K=0.025P=0.047 K=0.010, P=0.436
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Sequoia sempervirens
Taxodium distichum
Thuja occidentalis
Chamaecyparis thyoides
Chamaecyparis lawsoniana
Calocedrus decurrens
Platycladus orientalis
Hesperocyparis arizonica
Juniperus communis
Juniperus chinensis
Juniperus virginiana
Juniperus horizontalis
Juniperus scopulorum
Tsuga caroliniana
Tsuga heterophylla
Tsuga canadensis
Abies amabilis

Abies grandis

Abies alba

Abies lasiocarpa
Abies fraseri
Pseudotsuga menziesii
Larix laricina

Larix decidua

Larix occidentalis
Picea breweriana
Picea sitchensis
Picea glauca

Picea engelmannii
Picea pungens

Picea abies

Picea mariana

Picea rubens

Pinus monticola
Pinus strobus

Pinus resinosa

Pinus mugo

Pinus sylvestris

Pinus nigra

Pinus virginiana
Pinus contorta

Pinus ponderosa
Pinus coulteri

Pinus radiata

Pinus serotina

Pinus rigida

Pinus taeda

Pinus pungens

Pinus glabra

Pinus elliottii

Pinus echinata

Pinus palustris

FIGURE A1 Phylogenetic signal for conifer host traits. Trait values are plotted on the conifer phylogeny that includes only species for
which trait values were available. A Blomberg's K value of zero indicates random distribution of trait values on the phylogeny, a value of one
indicates that trait values are correlated with divergence time. p-Values result from significance tests against the null hypothesis of random

distribution of each trait on the phylogeny



