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Abstract 

 
Engineered optical absorbers are of substantial interest for applications ranging from stray 
light reduction to energy conversion. We demonstrate a large-area (centimeter-scale) 
metamaterial that features near-unity frequency-selective absorption in the mid-infrared 
wavelength range. The metamaterial comprises a self-assembled porous structure known 
as an inverse opal, here made of silica. The structure’s large volume fraction of voids, 
together with the vibrational resonances of silica in the mid-infrared spectral range, 
reduce the metamaterial’s refractive index to close to that of air and introduce 
considerable optical absorption. As a result, the frequency-selective structure efficiently 
absorbs incident light of both polarizations even at very oblique incidence angles. The 
absorber remains stable at high temperatures (measured up to ~900 °C), enabling its 
operation as a frequency-selective thermal emitter. The excellent performance of this 
absorber/emitter and ease of fabrication make it a promising surface coating for passive 
radiative cooling, laser safety, and other large-area applications.  

  

 
 

 

 
 

 



2 
 

Electromagnetic-wave absorption based on metamaterials has been a rapidly growing motif in 
different research fields, including energy conversion [1] and thermoregulation [2]. At optical 
frequencies, engineered absorbers are used for stray light reduction in the visible range [3], [4], 
refractive-index sensing in the near-infrared range [5]–[7], and thermal emitters [8]–[11] in the 
mid-infrared range. To achieve high absorption, the reflection, transmission, and scattering must 
all be minimized; this can be realized by an absorbing structure or material that is impedance-
matched to the incident medium [12]. 

Since the wavelength of optical-frequency electromagnetic radiation is on the order of hundreds 
to thousands of nanometers, typical engineered optical absorbers are comprised of nanostructured 
materials [13], [14]. At the same time, many applications require inexpensive large-area absorbers 
[15], [16], motivating designs that can be fabricated without the use of top-down lithography. 
Examples of such lithography-free absorbers include carbon nanotube (CNT) forests [3], [17], and 
lossy low-index films like polydimethylsiloxane (PDMS) [18].  

Here, we demonstrate a wide-angle large-area absorber for mid-infrared light with polarization-
independent spectral selectivity, realized using a metamaterial based on inverse opals (IOs), which 
are highly porous structures obtained through assembly of colloids that serve as a sacrificial 
structuring agent for a background matrix material (here we use sol-gel silica; more information 
about the synthesis can be found in Sup. Info. 1) [19]. In IOs, the size and arrangement of the pores 
and the material composition (background matrix, as well as dopants and other inclusions) can all 
be engineered, creating a large design space. The pores are also interconnected and can be 
infiltrated with fluids [20], which may be relevant for dynamic tunability, sensing, or catalytic 
applications [21]–[25]. 

The diameter of the templating colloidal spheres used for IOs is typically on the order of a few 
hundred nanometers. After selective removal of the colloids, the corresponding volume comprises 
an interconnected array of air pockets while the surrounding volume is the glassy matrix material. 
The resulting composite material thus has an effective refractive index close to that of air (in 
particular, when using silica as the matrix material), as has been observed at visible frequencies 
[26]. In the mid-infrared range, the vibrational resonances of silica [27] introduce substantial 
optical loss, resulting in an absorbing metamaterial that is well matched to the refractive index of 
air, thus minimizing reflections at the interface between air and the IO film.  

A scanning electron microscope (SEM) image of an inverse opal film with void size of 250 nm is 
presented in Fig. 1(a), showing the highly interconnected porous structure. The high degree of 
ordering (which can be disrupted through the addition of salts in the assembly process) is 
unimportant for the functionality at mid-infrared wavelengths; however, it is convenient for the 
modeling of the effective refractive index, since the volume fraction of background matrix and 
voids is well known for a face-centered cubic (fcc) lattice, 26% and 74%, respectively [19].We 
performed infrared variable-angle spectroscopic ellipsometry (J.A. Woollam IR-VASE Mark II) 
on a 2-µm-thick IO film on silicon and extracted its optical properties (Fig. 1 (b), (c)). To convert 
the measured ellipsometric parameters, Ψ and Δ [28] (see Sup. Info. 2 for raw data), into the 
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effective refractive index and absorption coefficient, we modeled the IO thin film using the 
Bruggeman effective medium approximation (EMA, see Supp. Info. 2) [29]. We first focused on 
1.8 to 3 𝜇𝜇𝜇𝜇, a spectral range in which SiO2 is nearly dispersionless and its refractive index is well 
known [30], and fit to the fraction of air present in the film (i.e. the film porosity). The resulting 
fitted porosity is ~76%, which is very close to the theoretical value of the porosity based on the 
fcc structure of the opal assembly (√2𝜋𝜋/6 = 74%) [19]. Fixing the porosity at this value, we then 
fit the ellipsometric measurements in the wavelength range of 6 to 12 µm, in which silica has 
vibrational resonances. The resulting Kramers–Kronig-consistent fitted effective complex 
refractive index of the inverse opal film, 𝑛𝑛𝐼𝐼𝐼𝐼 + 𝑖𝑖𝜅𝜅𝐼𝐼𝐼𝐼, along with the fitted values assuming no 
porosity are shown in Fig. 1(b, c); details about the fitting parameters are provided in Sup. Info. 2. 
The void size of the IOs (~250 nm) is significantly smaller than the wavelength in the mid-infrared 
range, ensuring the validity of the effective-medium assumption [31]. For comparison, the optical 
properties of an amorphous SiO2 thin film from literature [30] are also displayed in the same figure. 
The IO film has 𝑛𝑛𝐼𝐼𝐼𝐼  very close to one (𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎  = 1), and a significantly reduced but non-zero 𝜅𝜅𝐼𝐼𝐼𝐼 
compared to the bulk amorphous SiO2.  

 
Figure 1) (a) Scanning electron microscope (SEM) image of the inverse opals (IO) used in this study, showing the 
nano-porous interconnected structure with a void diameter of 250 nm. The inset SEM image of the same sample, 

magnified 10×, shows the high porosity and interconnectivity the IO. (b) Real (𝑛𝑛) and (c) imaginary (𝜅𝜅) parts of the 

complex refractive index of the inverse opal film (solid blue lines) along with the fitted values assuming no porosity 

(dashed blue lines), and bulk sputtered amorphous SiO2 (black lines) [19], for wavelengths close to the vibrational 
resonances of SiO2. Optical properties of inverse opals are measured via variable-angle ellipsometry and fitted using 

the Bruggeman effective-medium theory [21].  

Using the extracted refractive indices in Fig. 1(b, c) and the transfer-matrix method [32], [33] (See 
Sup. Info. 3), we calculated the optical impedance, 𝑍𝑍𝐼𝐼𝐼𝐼, of 2- and 4-𝜇𝜇𝜇𝜇 thick IO film on a silicon 
substrate. Figure 2(a) shows the magnitude of the difference between 𝑍𝑍𝐼𝐼𝐼𝐼  and the free-space 
impedance, 𝑍𝑍0 . We also calculated the impedance difference, |𝑍𝑍ox − 𝑍𝑍0|,  between 𝑍𝑍0 and a 
homogeneous silica film of the same thickness on the same silicon substrate for the two thicknesses 
of 2 and 4 𝜇𝜇𝜇𝜇 (Fig. 2(a), dashed lines). In a portion of the mid-infrared spectral range, the 
combination of the large volume fraction of air inclusions and the presence of strong vibrational 
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resonances in silica results in a close match between the impedance of the IO structure and that of 
air; i.e., |𝑍𝑍𝐼𝐼𝐼𝐼 − 𝑍𝑍0| approaches zero. We observed a large contrast between the |𝑍𝑍ox − 𝑍𝑍0| and 
|𝑍𝑍𝐼𝐼𝐼𝐼 − 𝑍𝑍0|, especially near the vibrational resonances. 

 

 

Figure 2) (a) The difference between the optical impedance of free space, 𝑍𝑍0  = 377 Ω, and the calculated impedance 

(using the transfer-matrix method),  of a structure comprising a layer of IOs (𝑍𝑍𝐼𝐼𝐼𝐼, solid lines) or homogeneous SiO2 

(𝑍𝑍𝑜𝑜𝑜𝑜 , dashed lines) at two different thicknesses (2 and 4 μm), on top of a semi-infinite silicon substrate. (b) Measured 

(dotted) and calculated (solid lines) reflectance of the IO  films, as well as bulk SiO2 (calculated, dashed lines), at near-

normal incidence. The reflectance of the IO film is suppressed due to impedance matching with air for wavelengths of 

8 to 10 μm. The inset zooms in on the region of lowest reflectance.  

To confirm the absorption around the resonances, we performed reflectance measurements using 
Fourier transform spectroscopy (FTS). Figure 2(b) shows the calculated (solid lines) and measured 
(dotted lines) values for the reflectance of the IO films at two thicknesses (2 µm and 4 µm) on top 
of a doped silicon substrate. The calculation was performed via the transfer-matrix method, using 
the optical properties extracted from ellipsometry [Fig. 1(b-c)]. The measurement was made using 
a Bruker Vertex 70 coupled to a Hyperion 2000 infrared microscope, with a numerical aperture of 
0.4. As expected, the reflectance of the IO film becomes very small in the spectral region where 
the impedance is nearly matched to that of free space. In the same wavelength range, the 
reflectance of thin-film SiO2 is quite large due to the large impedance mismatch.  

We subsequently analyzed the angle-dependent reflectance of two IO films of different thicknesses 
(2 and 4 µm, as before) on silicon, for both s- and p- polarizations (Fig. 3). For both thicknesses, 
the reflectance decreases to nearly zero close to the spectral position of the vibrational resonances. 
Note that changing the film thickness affects the bandwidth of the suppressed reflectance region. 
Increasing thickness results in more light absorption in the spectral region where the IO film has a 
lower absorption coefficient. The optical impedance of the structure at oblique incidence is 
provided in Sup. Info. 3. 
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Figure 3) Calculated (solid line) and measured (dots) reflectance at oblique incidence (θ = 35°, 45°, and 55°) for p- and 

s-polarized light for two different thicknesses of the inverse opal films (d = 2 and 4 μm). 

The selective absorptivity of the IO structures implies that they can serve as a selective thermal 
emitters; this is encoded in Kirchhoff’s law of thermal radiation, which equates the absorptivity at 
every wavelength (and angle and polarization) to the object’s emissivity, assuming equilibrium 
conditions [11], [16]. Kirchhoff’s law is also often used in the characterization of thermal emission 
from non-scattering samples, because it is frequently easier to infer absorptivity from reflectance 
and transmittance measurements than to directly measure thermal emission [32], [33]. For the 
samples in this work, however, it was difficult to apply Kirchhoff’s law directly to our 
measurements because the semi-transparent silicon substrate was single-side polished, and the 
scattering from the back side is difficult to quantify.  

To obtain accurate measurements of the emissivity, we performed direct emission measurements 
using FTS, as previously described in refs. [34], [35]. We collected the thermal emission from the 
samples at 150 °C and normalized the values to the emission from a laboratory blackbody 
reference at the same temperature. A forest of vertically aligned CNTs (height = 0.5 mm) on a 
silicon wafer was used as the reference. We calibrated the emissivity of the CNT forest by 
comparing measured emission to the well-characterized thermal emission from flat wafers of fused 
silica and sapphire. Detailed information regarding this measurement is provided in Sup. Info. 4. 

Using the direct thermal-emission technique, we measured the polarized oblique-angle emissivity 
by rotating the sample and placing a polarizer directly in front of it; this was done for s- and p-
polarizations at three oblique angles [Fig. 4(a, b)]. The accuracy of angle- and polarization-
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resolved direct thermal-emission measurements were confirmed by performing similar 
measurements on flat wafers of fused silica and sapphire; see Sup. Info. 5.  

For further confirmation of the measurements, we calculated the expected emissivity of this 
structure using Kirchhoff’s law and the extracted optical properties of the IO films in Fig. 1(b-c). 
Two different emissivity spectra were calculated as presented in Fig. 4(a-b); one set of curves 
corresponds to the structure’s emissivity assuming zero transmission through the Si substrate, (i.e., 
absorptance 𝐴𝐴 =  1− 𝑅𝑅 when 𝑇𝑇Si  =  0; dotted lines), and the other assumes a lossless substrate 
(i.e., 𝐴𝐴Si = 0, 𝐴𝐴 =  1 − 𝑅𝑅 − 𝑇𝑇; dashed lines). For the spectral regions where the IO film has 
relatively low loss (𝜆𝜆 < 8 μm or > 10 μm), these calculations provide upper and lower bounds on 
the actual emissivity. 

 
Figure 4) Experimental emissivity (solid lines) via direct-emission measurements at 150 °C for 4-μm-thick IO on silicon 

wafer at different incidence angles (θ = 0°, 35°, 45°, and 55°) for (a) s-polarized light and (b) p-polarized light, along 

with calculated upper (dotted lines) and lower bounds (dashed lines) on the emissivity in the spectral range where the 
IO film is low loss (λ < 8 μm or > 10 μm).  In the spectral range where the IO film is low loss (λ <8 μm or >10 μm), we 

expect a substantial contribution to the emissivity from the lossy silicon substrate. Calculated absorption (1− 

transmission − reflection) within the film is shown versus wavelength and incident angle for (c) s polarization and (d) p 

polarization. 

The large-area near-unity absorption at oblique incidence can be readily visualized using long-
wave infrared (“thermal”) imaging. Infrared-camera images typically attribute a pixel brightness 
to the intensity of detected thermal radiation from that pixel, assuming a constant emissivity for 
all pixels of the image. In Fig. 5(a), we show such infrared images of a silica glass slide (labeled 
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“silica” in the image) next to the IO sample measured in Fig. 4. We used a FLIR A325sc camera 
with a bandwidth of 7.5 to 13.0 μm. To isolate the high-emissivity region of the IO identified in 
Fig. 4, we positioned a filter with a passband of 8.2 to 10.6 μm in front of the camera. The infrared 
images with and without the filter can be seen in the bottom and top rows of Fig. 5, respectively, 
with the images taken from the normal direction, as well as for oblique angles of 35°, 45°, and 55°. 
These images demonstrate the large and broad-angle spectral selectivity of our selective thermal 
emitter. The “lines” of high apparent temperature seen along the bottom edges of the silica samples 
are due to roughness, which creates a gradient of refractive index, and thus enhances emissivity, 
similar to the effect for other porous structures; see Sup. Info. 6. Note that since our FLIR infrared 
camera and the readout software have a fixed built-in algorithm to detect the temperature using 
measured thermal radiation in the 8 to 14 𝜇𝜇𝜇𝜇 range, it is no longer possible to directly interpret 
the infrared image as a temperature map when the object is viewed through a bandpass filter. 
Instead, in Fig. 5 we report an “Apparent temperature”, defined as the temperature reported by the 
camera software, without any adjustments made due to the presence of the filter.  

 

Figure 5) Mid-infrared images of our IO absorber and a reference silica glass slide at 150 °C, imaged at angles (AOI) 
of 0 to 55°, without (top) and with (bottom) a filter that selects the wavelength range corresponding to high 

absorptivity/emissivity of the sample (8.2 to 10.6 μm). The close-to-unity emissivity of the IO absorber results in a large 

apparent temperature.  

In conclusion, we demonstrated a large-area mid-infrared absorber/emitter based on a self-
assembled silica inverse-opal (IO) metamaterial with a thickness less than half of the free-space 
wavelength. The device shows little angular and polarization dependence across its working 
wavelength of 8 to 10 μm, maintains a greater than 80% absorption for incidence angles as large 
as 80°, and is stable up to at least ~900 °C. The broad-angle absorption is a consequence of 
impedance matching to the near-unity refractive index of the IO structure with considerable optical 
losses, resulting from the combination of mid-infrared vibrational resonance of the silica 
comprising the opal matrix and the large volume fraction of air inclusions. By utilizing alternative 
matrix materials with a different set of vibrational resonances and/or by depositing materials within 
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the IO voids, the self-assembly approach can enable large-area wide-angle absorbers and thermal 
emitters across the infrared range. Further functionality may be realized with full or partial fluid 
infiltration through the structure to achieve dynamic tunability, or for sensing or photo-thermal 
catalysis. Various applications may also benefit from the high degree of order achievable with IOs, 
including simultaneous optical effects at visible wavelengths. 
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