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Abstract—Most pollination of commercial blueberries is car-
ried out by honeybees from hundreds of hives. An activity
sensor for monitoring the health and productivity of beehives is
presented. Honeybees flying near the entrance of a beehive were
observed with a low-powered 5.8 GHz Doppler radar. Spectral
moments, entropy, diversity, and root-mean-square (rms) power
were evaluated to identify foraging bees and to quantify the level
of foraging activity.
Theoretical and experimental results are presented to demon-

strate that entropy, diversity, and rms power are correlated and
are equally valid indicators of bee activity. In particular, the
rms power of the Doppler signal can be measured without a
coherent receiver and without signal processing. This type of
measurement lends itself to a second, considerably less expensive,
implementation of a bee activity sensor.
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I. INTRODUCTION
Honeybees are not only a source of honey, but they also act

as important ecological and commercial pollinators [1], [2]. An
experienced beekeeper can assess the productivity and health
of a bee colony by watching foraging bees entering and leaving
the hive and by listening to the sounds coming from the hive
[3]. However, this assessment is quite subjective. A formal
inspection usually requires opening up the hive, which can
become very time-consuming. More than 500 beehives may
have to be checked on a 100-acre blueberry farm. Since it is
impractical to inspect that many hives manually, an automated
monitoring system is of interest.
In this paper a metric and sensor are proposed that attempt

to quantify the above observations by a beekeeper. In Section
II, sensor options will be considered. The best metric will
be derived in Section III. A baseline sensor and experimental
results will be presented in Section IV and V. An inexpen-
sive implementation of the sensor and its validation will be
presented in Section VI.

II. SENSOR OPTIONS
A. Acoustic Sensors
Several patents have been granted for determining the

health of a hive by analyzing bee sounds [4]-[6]. Systems
for automatically reporting the average sound level inside a
hive have been developed [7]-[9]. All of these systems require
inserting a microphone into the beehive which is disruptive to

the colony. Acoustic signals external to a hive are too often
corrupted by environmental noise.

B. Optical Sensors
Other honeybee monitoring systems [10], [11] use photo-

electric counters to collect bee traffic data at the entrance to the
hive. Such counters, however, may report erroneously high lev-
els of foraging activity when the bees are actually just milling
around the entrance. Video surveillance methods have been
considered to count and classify bees at the hive entrance [12],
[13]. They require sophisticated image processing. Infrared
imaging of beehives is limited by background radiation.

C. Doppler Motion Sensor
Passive infrared sensors are commonly used for motion

detection. These are threshold detectors, e. g., when motion
is detected a light is turned on. A Doppler radar can not only
detect motion, but more importantly, it can also quantify the
level of activity.
In a typical, high-powered Doppler weather radar, insect

detections are considered a nuisance [14], [15]. However, these
very detections can be exploited for entomological research.
For example, a low-powered Doppler radar has been able to
detect vibrations coming from bees inside a beehive [16]. In
this paper, a similar radar will be used to observe bees flying
outside the hive.
Bee foraging activity will be deduced from Doppler spectra.

The top flying speed of bees has been reported to be about
15 mph [17]. If the sensor operates at a frequency of 5.8
GHz, Doppler frequencies between ± 260 Hz can be expected.
This is well within the frequency response of digital audio
recorders. No significant interference has been observed from
bee wings beating at 250 Hz.
Since many Doppler spectra need to be examined, a single

parameter describing each spectrum is desirable. The mean
Doppler frequency, the Doppler frequency spread, the entropy,
the diversity, and the root-mean-square power of the Doppler
radar signal have been considered. All of these indices are
shown to be correlated, and equally valid indicators of bee
activity.
The above conclusion will be experimentally verified with

a coherent Doppler radar. Since rms power measurements
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require the least computational effort, the conclusion will
be confirmed with a considerably simpler noncoherent bee
activity sensor containing a logarithmic square-law detector.

III. BEE ACTIVITY INDICES
The concept for measuring bee activity with a Doppler

sensor is based on the following observations: At times, bees
appear to be just randomly flying about the hive entrance.
At other times, foraging bees launch themselves quite pur-
posefully from the hive entrance and rapidly accelerate along
a straight path to a traveling speed of about 10 mph. When
bees are observed by a Doppler sensor, a uniform, noise-like
Doppler spectrum would be expected in the former case and a
much narrower Doppler frequency response in the latter case.
The power in the spectrum would be an indicator of the level
of flying activity.
A comparative lack of flying activity or frenzied flying

activity would indicate that the colony has a problem, requiring
intervention by the beekeeper.
The different metrics for quantifying the Doppler spectra

will now be considered.

A. Doppler Moments
In a weather radar, precipitation spectra are typically charac-

terized by their spectral moments [18]. Let { ( )} denote the
power spectral densities (PSD) at discrete frequency { ( )} ,
= 1 2 . The average Doppler frequency is then given

by
h i =

P
( ) ( )

P
(1)

where P =
P

( ) is the power in the spectrum. The spectral
variance is defined by the second moment

2 =

P
( ( ) h i)2 ( )

P
(2)

and the spectral width by 2 .

B. Entropy and Diversity
"Entropy" is an intriguing index for characterizing the ap-

parently random flight patterns of bees. Entropy has been used,
almost synonymously with diversity, as a measure of either
homogeneity and order, or randomness and disorder [19]. It
has been applied to communications [20], agriculture [21],
biology [22], ecology, medicine and even music. It has also
been used to detect moving targets with a Doppler radar [23].
Most often, the formula for "information entropy" introduced
by Shannon [20] is applied

H =
X

( ) log ( ) (3)

where { ( )} is a probability density function (PDF). By
definition, ( ) 0 and

P
( ) = 1.

We will not attempt to link our use of the term "entropy"
to the concept of entropy in thermodynamics [24]. Instead we
consider (3) as a weighted geometric mean of the PDF

H = 1
Y

( ) ( ). (4)

Unfortunately, if one value of the PDF is zero, (4) becomes
meaningless [25].
A more generalized measure of entropy can be defined by

a weighted arithmetic mean of the PDF [19]

D = [
X

( ) ]1 (1 ) (5)

where is the diversity order. When = 2, (5) is referred to
as Simpson’s diversity [26]. For a uniform PDF it is easy to
show that

log(2D) = H. (6)

For other probability density functions (6) is approximately
valid. Evidently, Simpson’s diversity and Shannon’s entropy
are related.

C. RMS Power
Determination of a Doppler spectrum starts with a set of

temporal radar observations { ( )}, = 1 2 . The
root-mean-square power in the observations is

P =
1 X | ( )|2 . (7)

By Parseval’s theorem [27] the power in a function is the same
as the power in its Fourier transform, that is

P =
1
2

X
| ( )|2 =

X
( ) (8)

where { ( )} = 1 2 are the components of a
Discrete Fourier Transform (DFT) of { ( )}. A formally
equivalent probability density ( ) is defined by the normal-
ized power spectral density

( ) = ( ) P. (9)

Substituting (9) into (5) with = 2 yields

log(2D) = 2 log(P) log
hX

2( )
i
. (10)

Thus, (10) relates the root-mean-square power in the observa-
tions to diversity, which in turn is related by (6) to entropy.
Experiments will now be carried out to verify that entropy

and diversity can be derived from the rms power in the
observations without calculating a Doppler spectrum. The
power could be measured directly with a true rms reading
analog voltmeter.

IV. DOPPLER SENSOR
A Doppler radar for detecting the sound and vibrations from

stationary bees inside a beehive was described in [16]. In
contrast to the radar in [16], the radar in Fig. 1 observed flying
bees outside the beehive, measuring their speed as a positive
or negative Doppler frequency shift. As such, it required in-
phase and quadrature (I/Q) receiver channels which are more
expensive, but necessary to establish a Doppler performance
baseline and to prove the above metric relations. The sensor
operated in the unlicensed 5.8 GHz Industrial, Scientific and
Medical (ISM) band with a effective radiated power of 18



dBm. This power level was sufficient to detect individual bees
at a distance of six feet.

Fig. 1. Bee Doppler sensor (Version I)

The output of the Doppler sensor is a dual-channel au-
dio signal that was recorded in 9-sec blocks with a laptop
computer. Each block was stored as a *.wav file consisting
of 16-bit in-phase and quadrature data sampled at 8,000
samples/second.

A. Sensor Calibration
An unambiguous resolution of positive and negative

Doppler frequencies requires that the I/Q data are in perfect
quadrature. Numerous techniques have been proposed to cor-
rect for the I/Q channel imbalance [28]. Since the sensor is un-
likely to observe bees with exactly equal and opposite Doppler
frequencies at the same time, the correction is particularly
simple: A rotation is applied to the I/Q data that minimizes the
off-diagonal terms in their covariance matrix while preserving
the total power. An example of an uncalibrated and calibrated
I/Q data block is shown in Fig. 2.

Fig. 2. Uncalibrated and calibrated I/Q data

B. Signal Processing
The analysis of the bee sensor data is based on Doppler-

Time-Intensity (DTI) plots obtained by correcting each 9-sec
block (72,000 complex samples) for I/Q imbalance and by
applying Short Time Fourier Transforms (STFT). I.e., each
block is broken up into 0.125 sec (1000 samples) frames
overlapping by 0.05 sec (400 samples). A Hamming window
is applied to each frame, an FFT is taken, and the results are
plotted in dB. Each DTI is then time-averaged and reduced to
a single metric by calculating (1), (2), (3), (5) and (7).

V. EXPERIMENTAL RESULTS
The relative location of the sensor antennas and beehive

entrance are shown in Fig. 3. Examples of typical DTI plots
collected over the course of a day are shown in Fig. 4. The
unique Doppler signatures of individual bees flying out (Fig.
4a) and flying back (Fig. 4c), are clearly evident. There is a

lot of Doppler activity in the afternoon (Fig. 4b) and very little
at night (Fig. 4d). The corresponding time-averaged Doppler
spectra are shown in Fig. 5. All bee activity indices were
derived from such data.

Fig. 3. Beehive and sensor antennas

(a) 6:45 AM

OUTGOING

(b) 3:05 PM

(c) 6:50 PM INCOMING

(d) 9:10 PM

SEPT. 4, 2016

OUTGOING

(a) 6:45 AM

OUTGOINGOUTGOING

(b) 3:05 PM

(c) 6:50 PM INCOMING

(d) 9:10 PM

SEPT. 4, 2016

OUTGOING

Fig. 4. Typical DTI plots

The mean Doppler frequency and spectral width recorded
over a 24-hour period are shown in Fig. 6. The mean Doppler
frequency is negative in the morning (departing forager bees)
and positive in the evening (returning forager bees). Bees seem



to get a late start in the morning and all come home by
sunset. Between sunrise and sunset the spectral width becomes
considerably narrower.

Fig. 5. Corresponding time-average Doppler spectra

Fig. 6. Mean Doppler spectrum frequency and width

Fig. 7. Temporal variation of diversity and rms power

Fig. 8. Temporal variation of entropy

The entropy, diversity and rms power were also calculated
for the same 24-hour period. As predicted by (10), Fig. 7

illustrates that the temporal behavior of diversity and rms
power are substantially the same. Similarly, the spectral width
in Fig. 6 and the entropy in Fig. 8 appear to be correlated.
The high correlation coefficients in Table 1 prove that spectral
width, entropy and diversity are highly correlated with the rms
power. This means that those indices could be deduced from
the rms power in the Doppler signal without coherent receiver
channels, without receiver calibrations or a great deal of signal
processing.

Table 1.
Correlation between bee activity indices

VI. BEE ACTIVITY SENSOR IMPLEMENTATION
The I/Q channels will not be required in the final bee activity

sensor (Version II). The above result suggests a considerable
simplification of the bee activity sensor by replacing the
coherent heterodyne receiver with a logarithmic square-law
detector [29]. This detector was originally intended to detect
bee vibrations and cannot distinguish between incoming and
outgoing Doppler. However, in the absence of vibrations, the
DC voltage of such a detector is proportional to the logarithm
of the Doppler signal power, exactly as required by (10).

Fig. 9. Bee Doppler sensor (Version II)

Fig. 10. RMS power measured by bee sensor (Version II)

A block diagram of the simplified bee activity sensor (Ver-
sion II), which also operated at 5.8 GHz, is shown in Fig. 9.
The audio frequency output of that system was digitized with a
10-bit A/D converter at 8000 samples/sec on an Arduino Nano
board. The rms power was calculated and averaged over one
minute every 15 minutes for several days. The observations
in Fig. 10 are substantially similar to those obtained with the
original Doppler sensor in Fig. 7. During that time, the weather



was uniformly sunny, with lows of 50 F at night and highs
of 80 F during the day. Further studies will be required to
explain differences in the daily observations.

VII. CONCLUSIONS

A low-powered Doppler radar operating at 5.8 GHz was
shown to be capable of detecting flights of individual honey
bees. Conventional signal processing techniques were applied
to calculate mean frequency, spectral width, entropy, diver-
sity, and rms power of the Doppler spectrum. Bee activity
information obtained from spectral width, entropy, or diversity
calculations was substantially the same as that obtained with
considerably less effort from the rms power measurements.
This result led to the construction of an inexpensive bee
activity sensor based on the rms power in the Doppler signal.
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