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Abstract—Autonomous vehicles are gaining increased attention
but surveys have shown that a large percentage of people are wary
of adopting the new technology. One possible explanation for the
hesitancy is that the occupant would not be comfortable with the
driving style as a result of the control models and their parame-
ters as set by the manufacture. Comfort level is subjective in na-
ture and therefore varies between individuals. To combat this is-
sue, autonomous vehicles must be able to adapt to the driving style
preference of the user. If we assume drivers are more comfortable
with their own driving style, we can choose to have the vehicle learn
and incorporate the driver’s style into the control models. However,
there is still no widely accepted “best” model. One model may prove
to better represent a particular driver than other models though
a driver may choose unsafe driving conditions, the replication of
which should not take precedence over the safety of the occupant. In
this paper, we propose a multimodel approach to find the best driver
model for describing an individual’s longitudinal driving style on
highway. A method for extracting the indicators of an individual’s
driving style is proposed first. Then, a multimodel-based evaluation
method is described in detail. Chandler, Herman, & Montroll, Gen-
eral Motors Nonlinear, Tampère, Addison & Low, Optimal Veloc-
ity Model, and Neural Network models are trained and compared
in this paper. The model with the best performance in replicating
driving style is further coupled with a model predictive controller
to include safety constraints for safer driving. Finally, the proposed
multimodel approach is tested with driving data collected from five
different drivers. The test results show that our multimodel-based
approach is showing advantage over a single model approach in
imitating an individual’s longitudinal driving style.

Index Terms—Autonomous vehicles, driver modeling, adaptive
cruise control, model predictive control.

I. INTRODUCTION

AMAJOR reason for studying longitudinal driving behavior
of drivers is to aid in the development autonomous driving

systems such as adaptive cruise control [2]. Because drivers are
skeptical of autonomous vehicles taking over the vehicle control
task [3], [4], drivers need to be comfortable with the driving style
produced by the Adaptive Cruise Control (ACC) system. A sur-
vey conducted by the American Automobile Association (AAA)
found that 75% of the 1,832 respondents are afraid to ride in an
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autonomous vehicle with 84% who do not want an autonomous
vehicle trust their skills more than the vehicle [3]. Similarly,
reference [4] found that 66.8% of 1,533 respondents were mod-
erately to very concerned autonomous vehicles would not drive
as well as humans. People are having those feelings because
of two major concerns, the first is that the autonomous vehicle
may not actually drive safely in terms of technical standards; the
second is while the vehicle is technically driving safely, the pas-
senger may not have a safe feeling since the autonomous driving
style is different from the human’s driving style. To help alle-
viate the second concern, thorough insights into human driving
behavior are needed to ensure the autonomous control is able to
reproduce the driving style the driver is accustomed.

A. Related Work

ACC differs from conventional cruise control systems by con-
tinual adjustment of the vehicle speed in response to a change in
distance to the vehicle in front. Many studies have investigated
mathematical models that mimic human drivers to provide a
more personalized ACC [2], [5], [6]. These ACC controllers
typically are designed to represent an average human driving
style and certainly do not reflect individual driving preference.
There has been increasing research to study how to better repre-
sent the individual driving style mostly through use of machine
learning methods [7]–[11].

Vaitkus et al. [7] propose a k-nearest neighbors (KNN) based
method for classifying driving styles into aggressive or normal
by using acceleration information. This method is showing its
effectiveness on the same route. However, although using only
acceleration information can be effective on a fixed route, it will
not work under real driving scenario. Moreover, classification is
not enough for mimicking an individual’s unique driving style.

Nvidia [8] proposes an NN based end-to-end learning method
for autonomous driving. The CNN architecture in this literature
is very effective in adapting to different driving styles, but since
it is an end-to-end method, a huge amount of training data is re-
quired to train the NN as compared to traditional, model-based
methods. Once it is trained to one style, it is extremely diffi-
cult to tailor it to fit other driving styles, which makes it almost
impossible to be applied to different drivers. Kuderer et al. [9]
propose an inverse reinforcement learning (IRL) method to learn
individual driving styles using extracted features. Like the NN
based end-to-end learning method, this method is effective when
the amount of training data is large, but is difficult to be trans-
ferred to a different driver. Macadam et al. [10] propose an NN
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based architecture for identifying driving style and classifying
headway control behaviors of individual drivers. Compared to
the method in [8] and [9], it does not require as much data to
train the NN since it is a classification application, but it is not
able to produce continuous vehicle control command, thus not
suitable for being used as vehicle controller directly.

In [11] a fuzzy logic neural net was constructed for car-
following and safety-critical events using “naturalistic” driving
data. The authors proposed a model that behaves like one driver
under certain events and like another under other events. The
concept is for the controller to behave like the individual driver
unless a safety-critical scenario unfolds, under which the safer
driver model takes control. However, this blending of driving
models still relies on having multiple models derived from data
which at least one must be assumed to be safe under many pos-
sible events. There is no guarantee that either model properly
handles safety-critical events appropriately.

Lefèvre, Carvalho, and Borrelli [12] used a learning by
demonstration approach to generate a driver model from real
driving data. Their singular model was a combination of Hid-
den Markov Model and Gaussian Mixture Regression with an
output of desired acceleration given as a reference for an MPC
controller to impose constrains to actuators, speed, and follow-
ing distance while minimizing jerk. However, their evaluation
procedure was limited to inverse Time-To-Collision (TTCi) and
Vehicle Specific Power (VSP), the instantaneous engine load of
the vehicle [13], as driving style indicators.

Many other mathematical models have been offered over the
past decades to quantitatively describe driver behavior with vary-
ing success [14]. However, no one model is widely accepted as
the best at replicating individual driver behavior [15]. This may
be due to one model being able to represent an individual driver
while another better representing a different driver. Addition-
ally, driver representation may not necessarily mean producing
the identical control response, but rather, reproducing the driv-
ing style (i.e., desired following distance, approaching behavior,
preferred acceleration levels, etc.) [16]. Furthermore, the control
output of the driver model does not guarantee safe operation.

MPC has long been used over other conventional techniques
for complex dynamical systems due to the inherent ability to
predict future conditions and apply preemptive control while re-
maining within desired constraints. Many studies have explored
the use of MPC for adaptive cruise control and demonstrated its
ability to handle conditions not accounted for in the reference
control model [17]–[21].

B. Contribution

In this paper, we list key driving style indicators and propose a
method of indicator extraction from driving data that can be ob-
tained from sensors commonly used in vehicles equipped with
ACC. We then propose an adaptive multi-model approach that
utilizes this data to adapt control model parameters of multiple
models and to train a neural network. Each model is validated
through car-following simulation over highway speeds and the
driving style indicators of each model are compared to those
of the driver. We believe reproducing driving style indicators

is more representative of the driver’s desired behavior, on av-
erage, rather than mimicking the driver’s acceleration at each
time instant. Finally, Model Predictive Control is constructed
and simulated to track the reference trajectory of the model that
best represents the driver’s style. Safety constraints are imposed
on our MPC to handle situations where the driver model would
fail to prevent occupant harm. A short comparison of the MPC
and the driver model performance is discussed.

Therefore, the major contributions of the paper can be sum-
marized as:
� Propose and validate an approach to characterize the in-

dividual’s ACC driving style by defining and extracting
measurable parameters.

� Propose and validate a multi-model approach to synthe-
size the best ACC driver model to replicate an individual’s
driving style.

� Propose and validate an approach to execute the best driver
model to achieve personalized adaptive cruise control driv-
ing by using model predictive control and imposing safety
constraints onto the best model which is unable to handle
safety concerns alone.

This paper is arranged in the following manner. Driving style
indicators and safety criteria are defined in Section II. Section III
describes the method for extracting the style indicator from hu-
man driving data. The framework for the proposed multi-model
approach is given in Section IV. The controller for implement-
ing the driver model is presented in Section V. Experimental
results are shown in Section VI and the paper concludes with
Section VII.

II. DRIVING STYLE AND SAFETY

A. Style

The car-following scenario includes a lead vehicle and at least
one following vehicle traveling in the same lane. The driver of
the following car applies acceleration or deceleration to main-
tain a preferred distance and keep pace. During these conditions,
identifiable habits can be observed. Driving style indicators are
these measurable habits the individual driver exhibits in the op-
eration of the vehicle and reveal how the driver drives on average
and how that operation fluctuates [16]. Style indicators can also
be extracted from a driver model and used to determine how
well the model represents the style an individual driver. In this
study, we focus solely on indicators of longitudinal driving style
which are summarized in the Table I.

B. Safety

Regarding longitudinal safety parameters, two main safety
criteria often appear in literature and are commonly used in
driver assistance functions, time headway (THW) and time to
collision (TTC). In this paper, we apply these metrics to deter-
mine whether the driver or controller behavior is unsafe. Too
short of a time headway when following a vehicle, known as
tailgating, is a leading cause of rear-end crashes [22]. The Na-
tional Highway Traffic Safety Administration (NHTSA) found
that rear-end crashes ranked the highest (∼2.1 million cases or
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TABLE I
DRIVING STYLE INDICATORS

33.4%) in police-reported automobile accidents in the US in
2015. These accidents resulted in more than 2,200 fatalities and
approximately 500,000 injuries [23]. Tailgating is the major con-
tributing cause for rear-end crashes with a deadly consequence
[22]. Drivers regularly tailgate by maintaining headways of one
second or less [24], however, driver training programs in the US
recommend THW should follow the 2-second rule to remain
outside the tailgating region.

A TTC threshold of 4 seconds (TCCi of 0.25 s−1) is usually
chosen for safety braking systems and has been used to differen-
tiate between cases where the driver is in a dangerous state from
cases where the driver is in control [25]. In [26], a minimum
TTC value, where safety is a concern, of 3.5 s was determined
for the non-supported drivers, and 2.6 s for supported drivers.

III. DRIVER CHARACTERIZATION

The proposed method of determining style indicators requires
collecting pedal operation, vehicle speed and acceleration, and
inter-vehicle distance and speed.

During periods of accelerator and brake operation, the max-
imum value is recorded. The maximums of all segments are
averaged and are considered as preferred acceleration and de-
celeration levels of the driver. Acceleration values for Driver 1
through 3 are shown as examples in Fig. 1 with points indicat-
ing maximum acceleration and deceleration for each segment
of pedal operation. The dashed line represents mean at approxi-
mately .5, 1.2, and .4 m/s2 for preferred acceleration and −1.6,
−2.2, and −2.2 m/s2 for preferred braking level for Drivers 1,
2, and 3, respective. Fluctuation in acceleration is minor for
Drivers 1 and 3 but is most prominent in the results for Driver
2. The high variance can be explained by driver inattention or
poor motion cuing in the simulation. It is worth reiterating that

Fig. 1. Maximum acceleration and deceleration for each period of pedal op-
eration for Driver 1 through 3, in descending order. Mean shown with dashed
line.

the driver’s desired acceleration lies in the average of his or her
peak accelerations.

The steady following condition occurs when THW is below 6
seconds [27] and TTCi is below 0.05 s−1 for 5 seconds or more
[16]. During each segment of steady following, the average time
headway is recorded as the desired THW. The average of all
the segment averages is taken as preferred time headway and
the standard deviation of all the segment averages gives THW
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Fig. 2. Mean THW of each steady following segment, preferred THW, and
THW fluctuation for Driver 1.

Fig. 3. THW fluctuation represented by Average of Std. Dev.s for Driver 1.

fluctuation level. THW Indicators for Driver 1 are represented
in Fig. 2 with the average of each segment illustrated by points,
preferred THW shown by a dashed line, and THW fluctuation
by the shaded grey area.

The driver’s following stability is determined by calculating
the standard deviation in each steady following segment and
taking an average of all the standard deviations (THWs). Driver
1 has scored 0.237 in THWs as shown in Fig. 3 with points
representing the standard deviation of each following segment
and the mean shown with a dashed line. Driver 2 and 3 has 0.604
and 0.128 in THWs respectively. When combined with Fig. 1,
it can be seen that driver 2 has the least following stability and
is having scattered acceleration, thus his THWs value is the
highest among these 3 drivers. Driver 3 is a stable driver during
most of the time. Although he has made a few large accelerations,
he still has the lowest THWs value.

In data segments when the driver is approaching the lead vehi-
cle (positive segments of TTCi), the maximum value is recorded.
The average of all the maximum values gives driver’s preferred
danger level when approaching. Similarly, the average of all the
minimums in negative segments of TTCi givers driver’s pre-
ferred falling behind level. Preferred TTCi for Driver 1 is shown
in Fig. 4 where maximum and minimum are represented with
points and the preferred level with dashed lines.

IV. MULTI-MODEL APPROACH

A. Framework

Our multi-model framework for adaptive cruise control in-
cludes multiple model parameter fitting using driving data gen-
erated by a human driver, driver and driver model style iden-
tification and comparison to provide a control reference that
the driver recognizes as familiar, and model execution by MPC

Fig. 4. Mean maximum and minimum TTCi levels. Preferred approaching
danger and falling behind levels.

Fig. 5. Proposed framework for multi-model approach to ACC.

which uses model predictions to provide control. The proposed
framework is illustrated in Fig. 5 and is described from top down
below.
� For the car-following scenario, sensor data includes fol-

lowing vehicle acceleration, speed, inter-vehicle speed and
distance which can be collected via on-board sensors com-
monly available on vehicles equipped with ACC.

� In the multi-model adaption phase, sensor data is used to fit
control model parameters, train a neural network, etc. for
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the purpose of mimicking the driver’s style. Each model is
validated through simulation over further driving data.

� The ACC and driver style extraction computes the indica-
tors from the validation phase and compared to another by
absolute relative error between indicators.

� The driver model that best replicates the style of the driver
is used as a reference for a MPC controller with safety
constraints added. The MPC is then deployed to control
the vehicle.

B. Driver Models

There have been multiple attempts to model the longitudinal
behavior of the human driver. The authors intend to evaluate
multiple such models that have been selected based on a review
of the most commonly accepted. These models include Chan-
dler, Herman, & Montroll (CHM) [1], General Motors Nonlinear
(GM) [28], Tampère (TMP) [29], Addison & Low (AL) [30], and
the Optimal Velocity Model (OVM) [31]. Each of these models
assumes the driver is able to perceive relative speed and dis-
tance between their vehicle and the vehicle which they follow
and react by applying braking or acceleration.

CHM and GM driver models both assume the driver reacts to
a change in relative velocity. CHM takes the form

af (t+ τ) = c1
∗Δv(t) (1)

where

Δv (t) =
(
vl (t)− vf (t)

)
(2)

af (t+ τ) and vf (t) is the acceleration and velocity of the
following vehicle and vl(t) is the velocity of the lead vehicle. t
is the current moment in time and τ is time is takes the driver to
accelerate after a change in stimulus, or reaction time. cn is the
sensitivity constant.

GM adds an additional sensitivity term 1/Δd(t)whereΔd(t)
is the inter-vehicle distance. The sensitivity term increases the
magnitude of response as inter-vehicle distance decreases.

af (t+ τ) = c2
∗ 1

Δd (t)
Δv (t) (3)

CHM and GM have been shown to mimic velocity tracking
behavior with moderate success however neither account for the
driver’s behavior in maintaining a desired headway distance.
Both allow the following vehicle to follow arbitrarily close to
lead vehicle when velocities are matched. TMP and AL add an
additional term in an attempt to model distance tracking. The
TMP model is given by

af (t+ τ) = c3
∗Δv (t) + c4

∗ (Δd (t)− dd (t)
)

(4)

Here ddt is the desired distance of the driver at a given speed.

dd (t) = d0 + λvf (t) (5)

where d0 is the minimum distance. AL adds the sensitivity term
and distance tracking becomes a cubic function.

af (t+ τ) = c5
∗ 1

Δd (t)
Δv (t) + c6

∗(Δx (t)− dd (t)
)3

(6)

The OVM model was proposed in [31] and states that the
driver chooses an optimal velocity based on the current following
distance and adjusts his or her speed. The model is given by the
following equations

af (t+ τ) = c7
∗ (V opt (Δd (t))− vf (t)

)
(7)

V opt(Δd(t)) is the optimal velocity function of the following
distance which was proposed in [32] and is determined by the
monotonically increasing exponential function

V opt (Δd (t)) = Vmax ·
[
1− e−α(Δd(t)−d0)

]
(8)

where α and slope of the exponential function and Vmax is the
maximum velocity of the following vehicle [33], [34].

Lastly, we train a neural network for each driver with the avail-
able kinematic states from simulated car-following trials using
MATLAB Neural Network toolbox. This toolbox uses a two-
layer feed-forward network with sigmoid hidden neuron and
linear output neurons and is trained using Levenberg-Marquardt
optimization algorithm with Bayesian regularization backprop-
agation, to prevent overfitting. Bayesian regularization was cho-
sen due to its good generalization qualities for small, noisy
datasets [35], [36]. Input for this neural network consists of fol-
lowing vehicle speed and inter-vehicle distance and speed data.
As in the case of the previous driver models, driver acceleration
was chosen as output.

V. PERSONALIZED CONTROL EXECUTION

MPC solves a constrained finite-time optimal control prob-
lem at each sampling instance which gives a sequence of con-
trol inputs, the first of which is applied to the system. At the
next sampling instance, new measurements are taken and the
computation repeats itself.

After the best model has been determined, the model output
acceleration generates a velocity at each time step, using a point-
mass vehicle model, as reference for our MPC whose goal is to
follow this reference. Additionally, limits to controller output
and safety level are added to prevent dangerous conditions, such
as a rear-end collision or loss of vehicle stability, from arising.
The MPC assumes the lead vehicle maintains constant speed
and acceleration and the prediction of the following vehicle po-
sitions and velocities formulate constraints on THW, TTC, and
minimum distance. Our MPC solves the constrained optimiza-
tion problem over a prediction horizon and gives a sequence
of torque, which ultimately results in acceleration. A similar
framework for our MPC is described in detail in [25] and [26].

A. Vehicle Model

To update the states, the MPC uses a point-mass kinematic
model for the following vehicle specified by the following equa-
tions

d(t+ k + 1| t) = d(t+ k| t) + vf (t+ k| t) ·Δtd

+
1

2
af (t+ k| t) ·Δt2d (9)

vf (t+ k + 1| t) = vf (t+ k| t) + af (t+ k| t) ·Δtd (10)
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where x(t+ k + 1|t) denotes the expected value of x(t+ k)
with available information at instant t, and Δtd is the time in
discretized form. The lead vehicle’s future behavior cannot be
determined; therefore, its states are assumed not to change.

B. Propagation Model

As in the vehicle model, the propagation model also includes
a kinematic point mass model. The driver model provides the
controller with a reference velocity computed using past driving
states and output acceleration from the selected driver model,
which is assumed constant. The propagation model assumes the
lead vehicle does not change velocity.

vref (t) = vref (t− 1) + aref (t− 1) ·Δtd (11)

Δd (t+ 1) = Δd (t) + Δv (t) ·Δtd − 1

2
af (t) ·Δt2d (12)

Δv (t+ 1) = Δv (t)− af (t) ·Δtd (13)

vf (t+ 1) = vf (t) + af (t) ·Δtd (14)

where vref (t) is the reference velocity of the following vehicle
the controller tracks and is calculated from the driver model
generated acceleration aref (t− 1) at the previous time step.

C. MPC Implementation

The controller seeks to minimize the cost function within
safety constraints.

min
at

Nc−1∑

k=0

[
vf (t+ k| t)− vref (t+ k)

]2
(15)

s.t.

Tmin ≤ T (t+ k + 1| t) ≤ Tmax (16)

THWmin ≤ THW (t+ k + 1| t) (17)

TTCmin ≤ TTC(t+ k + 1| t) (18)

0 ≤ vf (t+ k + 1| t) (19)

dmin ≤ Δd(t+ k + 1| t) (20)

where Nc is the predicted horizon and Tmin and Tmax are
the torque limits at the wheel for braking and acceleration.
THWmin is the minimum time headway (1 sec.) to prevent tail-
gating and TTCmin is the minimum time to collision (4 sec.) to
prevent a dangerous approaching conditions. Additionally, the
controlled vehicle is not allowed to reverse and must not exceed
a minimum following distance (dmin) of 10 meters.

In the simulator, the driver’s chosen following distance may
be shorter than what may be seen real-world driving, especially
at higher speeds. This phenomenon can be explained by the over-
estimation of distance in the simulator and the lack of motion
cuing, life-threatening risk, and full dynamics of the simulated
vehicle in the simulator as compared to the real world [38], [39].
Therefore, we arbitrarily chose a shorter “safe” THW of 1 sec-
ond to better represent the driver intentions.

Fig. 6. View of the driver participant in the simulator.

Fig. 7. Velocity profile of lead vehicle.

VI. EXPERIMENTAL RESULTS

A 3D environment was constructed in Simulink and included
two vehicles, one automated leader car and one controlled by
the human subject. Vehicle models were built with longitudinal
dynamics and the human subject had real-time control of the fol-
lowing car via throttle and brake to simulate realistic conditions.
The driver’s view is shown in Fig. 6.

Participants were asked to follow a lead vehicle whose ve-
locity profile was a combination of two commonly used drive
cycles, HWFET, EUDC, and JP15 Mode. The HWFET and JP15
cycles are commonly used for emissions tests and represent a re-
alistic highway driving scenario. For the latter reason, these two
cycles were used for driver identification and control model con-
struction. The EUDC cycle was chosen for model verification
as it includes a wide range of speeds, including at magnitudes
greater than those seen in other two. Lead vehicle velocity profile
for the combined cycles is shown in Fig. 7.

Driver data was collected from five participants who had con-
trol of the throttle and brake of a following vehicle. The derived
indicators of each trial, seen in Table II, show Driver 3 was the
most relatively aggressive in terms of preferred acceleration and
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TABLE II
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

TABLE III
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

second most aggressive in preferred deceleration. Driver 1 pre-
ferred the most dangerous approaching level at 0.127 s−1. Driver
2 had the longest headway at 3.197 seconds while Driver 5 was
following dangerously close at 0.791 seconds.

Control model parameters were estimated by least squares
fitting which follows the form:

x =
(
ATA

)−1
ATaf (21)

where x is the column vector of model gains (cn), A is a matrix
containing all the model states for the given model, such as vl

and Δd, and af is a vector containing each acceleration value
from the driver.

After the model construction, each control model was simu-
lated over the EUDC drive cycle for highway speeds (+56 km/h)
and indicators were extracted using the same process as with
human driver data. To compare and evaluate style indicator re-
production we assume each indicator is of equal weight and take
the mean of the absolute relative error between indicators of the
driver and driver model given by the formula

1

n

∑∣
∣
∣
∣
Idr − Im

Idr

∣
∣
∣
∣ (22)

where Idr and Im represent the indicator for the driver and model
and n is the number of indicators. The results of this method are
summarized in the Table III through Table VI. At least one model
per driver failed to perform the steady following driving task,

TABLE IV
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

TABLE V
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

TABLE VI
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

denoted by (−). This may be due to poor parameter fitting or
the inability to keep a minimum distance. The models that were
able to replicate driving style of Driver’s 1 through 5 are TMP,
AL, NN, AL, and AL, respectively.

The performance of one model for all drivers was compared
to our multi-model approach by calculating the mean absolute
relative error for indicators of all drivers for which the model
does not fail. For example, CHM is a viable choice for three
of the drivers so the mean absolute relative error is calculated
using all the indicators from each viable driver with n = 21 (7
indicators times three drivers). Fig. 8 shows the results of this
comparison with our multi-model (MM) approach having the
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TABLE VII
DERIVED DRIVING STYLE INDICATORS FOR PARTICIPANTS

Fig. 8. Driver model performance. Multi-model (MM) approach is to the far
right.

TABLE VIII
SUCCESS/FAILURE RATE

least mean absolute relative error of 0.4187 (n = 35) followed
by AL at 0.4190 (n= 28), TMP at 0.4757 (n= 28), NN at 0.4938
(n = 21), CHM at 0.5847 (n = 21), GM at 0.8805 (n = 21), and
OVM at 1.5445 (n = 7). Table VIII shows the number of drivers
for which the models were successful at performing the steady
following task and the number that failed. While most models
did not fail for most of our drivers, our multi-model approach
was the only that never fails in addition to having the highest
accuracy in terms of style replication.

Next, we utilized the HFWET cycle once more to evaluate
the ability of our MPC to track desired velocity while staying
within our imposed constraints. Without loss of generality, we
use the best model for Driver 1 as an example. Acceleration, ve-
locity, and inter-vehicle distance are shown in Fig. 10. The driver
model in this case was shown to become unstable at the end of
the cycle, when the lead vehicle comes to a stop. This would

Fig. 9. Acceleration, velocity, and following distance for Driver 1 TMP model
simulated over HWFET cycle.

Fig. 10. THW and TTCi for Driver 1 TMP model for the simulated HWFET
cycle.

result in the vehicle violently accelerating and braking without
further control measures in place. The middle plot shows our
MPC tracks the desired velocity, hence acceleration was also
closely followed (shown in the upper plot), throughout the cycle
but deviated and came to a stop at near the end of the cycle.
This phenomenon occurred due to the constraint on minimum
distance which is shown at the end of the lower plot, following
distance. This constraint naturally improved velocity and accel-
eration by forcing it to zero when the vehicle was approaching
the stopped lead vehicle. However, performance of velocity and
acceleration throughout the entire cycle was not necessarily im-
proved, nor was it intended.

The following distance increased over the majority of the cy-
cle due the constraint on THW. The upper plot illustrates that our
controller also followed desired acceleration but braked slightly
harder to ensure minimum THW was not exceeded. The upper
plot of Fig. 9 further proves the MPC did not allow THW below
the threshold. THW for the simulation can be seen to not cross
below 1 second in Fig. 10. TTCi is also shown in the lower plot,
however, the driver only exceeded the limitations at the end of
the cycle while the MPC did not.
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VII. CONCLUSIONS

We presented a driver data based structure for driver style
estimation, model selection via driving style indicator replica-
tion, and desired trajectory execution using MPC. Our proposed
framework was applied and verified by driver style indicator
extraction from data collected through a simulated highway car-
following scenario. Utilizing the same data, a neural network
was implemented and multiple models were constructed using
least-squares regression to fit existing model parameters. The
models were simulated using a separate highway driving cycle
and driving style indicators were compared to that of the driver
over the same driving cycle. The “best” model was selected
based on the model’s ability to reproduce the driver’s style, rather
than mimicking driver response directly. The “best” model was
chosen to produce a reference velocity for our MPC and safety
constraints were added to ensure potentially dangerous states
did not occur.

Our data-driven approach illustrated, through simulation,
driver style can be more closely replicated by one model better
than others and is dependent on the individual driver. We showed
MPC can accurately replicate the reference velocity generated
from the driver model while guaranteeing safe operation of
the vehicle during highway speeds and stopping. Our results
showed MPC was able to handle situations where the driver
model alone failed.

It is worth mentioning that we take the means of the indicators
without any filtering because we would like to take all possible
driver behaviors into consideration. For instance, without a fur-
ther investigation, it is difficult to decide whether some high
accelerations/decelerations are intentional or misoperations. In
this work, as a first step, we consider the mean of all indicator
data. As a further extension of the work in the future, we will
investigate the context-dependent means to refine the means in
different situations, e.g., situations for high maximum accelera-
tions and situations for moderate maximum accelerations. With
this investigation, we expect to better discover and represent the
driving behaviors of human drivers. In addition, we will also
extend our focus to lateral control such as lane keeping and lane
switching. We have shown that MPC can appropriately handle
some situations which the driver model cannot and would like
to apply this knowledge to the full range of autonomous vehicle
control functions.

REFERENCES

[1] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics: Studies
in car following,” Oper. Res., vol. 6, no. 2, pp. 165–184, 1958.

[2] J. Bengtsson, Adaptive Cruise Control and Driver Modeling. Lund, Swe-
den: Lund Inst. Technol., 2001.

[3] Vehicle Technology Survey, Amer. Autom. Assoc., Heathrow, FL, USA,
2016.

[4] B. Schoettle and M. Sivak, “A survey of public opinion about connected
vehicles in the U.S., the U.K., and Australia,” in Proc. 2014 Int. Conf.
Connected Veh. Expo., 2014, pp. 687–692.

[5] T. Al-Shihabi and R. Mourant, “Toward more realistic driving behavior
models for autonomous vehicles in driving simulators,” Transp. Res. Rec.
J. Transp. Res. Board, vol. 1843, no. 3, pp. 41–49, 2003.

[6] T. Al-Shaihabi and R. R. Mourant, “A framework for modeling human-
like driving behaviors for autonomous vehicles in driving simulators,” in
Proc. 5th Int. Conf. Auton. Agents, 2001, pp. 286–291.

[7] V. Vaitkus, P. Lengvenis, and G. Žylius, “Driving style classification us-
ing long-term accelerometer information,” in Proc. 2014 19th Int. Conf.
Methods Model. Autom. Robot., 2014, pp. 641–644.

[8] M. Bojarski et al., “End to end learning for self-driving cars,” CoRR, 2016,
arXiv:1604.07316.

[9] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for au-
tonomous vehicles from demonstration,” in Proc. IEEE Int. Conf. Robot.
Autom., 2015, pp. 2641–2646.

[10] C. MacAdam, Z. Bareket, P. Fancher, and R. Ervin, “Using neural networks
to identify driving style and headway control behavior of drivers,” Veh.
Syst. Dyn., vol. 29, no. sup1, pp. 143–160, 1998.

[11] L. Chong, M. M. Abbas, A. Medina Flintsch, and B. Higgs, “A rule-
based neural network approach to model driver naturalistic behavior
in traffic,” Transp. Res. Part C Emerg. Technol., vol. 32, pp. 207–223,
2013.

[12] S. Lefèvre, A. Carvalho, and F. Borrelli, “A learning-based framework for
velocity control in autonomous driving,” IEEE Trans. Autom. Sci. Eng.,
vol. 13, no. 1, pp. 32—42, Jan. 2016.

[13] H. Christopher Frey, N. M. Rouphail, and H. Zhai, “Speed- and facility-
specific emission estimates for on-road light-duty vehicles on the basis
of real-world speed profiles,” Transp. Res. Rec., vol. 1987, pp. 128–137,
2006.

[14] M. Brackstone and M. McDonald, “Car-following: A historical review,”
Transp. Res. Part F Traffic Psychol. Behav., vol. 2, no. 4, pp. 181–196,
1999.

[15] M. Treiber and A. Kesting, “Microscopic calibration and validation of car-
following models—A systematic approach,” Procedia, Soc. Behav. Sci.,
vol. 80, pp. 922–939, 2014.

[16] M. Lu, J. Wang, and K. Li, “Characterisation of longitudinal driving
behaviour using measurable parameters,” Transp. Res. Board, vol. 154,
pp. 1–20, 2010.

[17] V. L. Bageshwar, W. L. Garrard, and R. Rajamani, “Model predictive
control of transitional maneuvers for adaptive cruise control vehicles,”
IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1573–1585, Sep. 2004.

[18] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive
control of autonomous vehicles in uncertain environments,” in Proc. 12th
Int. Symp. Adv. Veh. Control, 2014, pp. 712–719.

[19] S. Lefevre, A. Carvalho, and F. Borrelli, “Autonomous car following: A
learning-based approach,” in Proc. IEEE Intell. Veh. Symp., 2015, pp. 920–
926.

[20] A. Carvalho, A. Williams, S. Lefèvre, and F. Borrelli, “Autonomous
cruise control with cut-in target vehicle detection,” Adv. Vehicle Control
AVEC’16, pp. 93–98, 2016.

[21] S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-objective
vehicular adaptive cruise control,” IEEE Trans. Control Syst. Technol., vol.
19, no. 3, pp. 556–566, May 2011.

[22] J.-H. Wang and M. Song, “Assessing drivers’ tailgating behavior and
the effect of advisory signs in mitigating tailgating,” in Proc. 6th Int.
Driving Symp. Human Factors Driver Assessment Train. Veh. Des.,
2011, pp. 583–589.

[23] Traffic Safety Facts 2015, National Highway Traffic Safety Administration,
Washington, DC, USA, DOT HS 812 384, 2016.

[24] P. G. Michael, F. C. Leeming, and W. O. Dwyer, “Headway on urban
streets: Observational data and an intervention to decrease tailgating,”
Transp. Res. Part F Traffic Psychol. Behav., vol. 3, no. 2, pp. 55–64,
2000.

[25] S. Hirst and R. Graham, “The format and presentation of collision warn-
ings,” in Ergonomics and Safety of Intelligent Driver Interfaces. Boca
Raton, FL, USA: CRC Press, 1997, pp. 203–219.

[26] R. Van der horst and J. Hogema, “Times to collision and collision avoidance
systems,” in Proc. 6th ICTCT Workshop, 1993, pp. 129–143.

[27] K. Vogel, “A comparison of headway and time to collision as
safety indicators,” Accident Anal. Prev., vol. 35, no. 3, pp. 427–433,
2003.

[28] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear follow-the-leader
models of traffic flow,” Oper. Res., vol. 9, no. 4, pp. 545–567, 1961.

[29] C. M. J. Tampere, “Human-kinetic multiclass traffic flow theory and mod-
elling with application to advanced driver assistance systems in conges-
tion,” doctoral thesis, Faculty Civil Eng. Geosci., Transportation and Plan-
ning Section, Delft Univ. Technol., Delft, Netherlands, 2004.

[30] P. S. Addison and D. J. Low, “A novel nonlinear car-following model,”
Chaos, vol. 8, no. 1998, pp. 791–799, 1998.

[31] Y. S. M Bando, K Hasebe, A. Nakayama, and A. Shibata, “Dynamical
model of traffic congestion and numerical simulation,” Phys. Rev. E, Statist.
Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 51, no. 2, pp. 1035–
1042, 1995.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 24,2020 at 21:05:57 UTC from IEEE Xplore.  Restrictions apply. 



330 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 4, NO. 2, JUNE 2019

[32] C. Miyajima et al., “Driver modeling based on driving behavior and its
evaluation in driver identification,” Proc. IEEE, vol. 95, no. 2, pp. 427–437,
Feb. 2007.

[33] M. Ali, F. Al Machot, A. H. Mosa, and K. Kyamakya, “CNN based subject-
independent driver emotion recognition system involving physiological
signals for ADAS BT,” in Advanced Microsystems for Automotive Appli-
cations 2016: Smart Systems for the Automobile of the Future, T. Schulze,
B. Müller, and G. Meyer, Eds. Berlin, Germany: Springer Int. Publishing,
2016, pp. 125–138.

[34] Y. Lin, P. Tang, W. J. Zhang, and Q. Yu, “Artificial neural network mod-
elling of driver handling behaviour in a driver ± vehicle ± environment
system,” Int. J. Veh. Des., vol. 37, no. 1, pp. 1–22, 2004.

[35] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4, no. 3,
pp. 415–447, 1992.

[36] F. D. Foresee and M. T. Hagan, “Gauss-Newton approximation to Bayesian
learning,” in Proc. 1997 Int. Conf. Neural Netw., vol. 3, 1997, pp. 1930–
1935.

[37] S. Lefevre, A. Carvalho, and F. Borrelli, “Autonomous car following: A
learning-based approach,” in Proc. IEEE Intell. Veh. Symp., 2015, pp. 920–
926.

[38] T. Hirata, T. Yai, and T. Takagawa, “Development of the driving simulation
system MOVIC-T4 and its validation using field driving data,” Tsinghua
Sci. Technol., vol. 12, no. 2, pp. 141–150, 2007.

[39] G. H. Bham, M. C. Leu, M. Vallati, and D. R. Mathur, “Driving simulator
validation of driver behavior with limited safe vantage points for data
collection in work zones,” J. Safety Res., vol. 49, pp. 53–60, 2014.

Andrew Phillip Bolduc received the Bachelor’s de-
gree in mechanical engineering from the Georgia In-
stitute of Technology, Atlanta, GA, USA, in 2012, and
the Master’s degree in automotive engineering from
Clemson University International Center for Auto-
motive Research in 2018. His research interests in-
clude driver modeling and model predictive control
and their application in autonomous driving.

Longxiang Guo received the Bachelor’s degree from
Tsinghua University, Beijing, China, in 2012, and
the Master of Engineering degree from the Chinese
Academy of Sciences, Shenzhen, China, in 2015. He
is currently working toward the Ph.D. degree in au-
tomotive engineering at Clemson University Interna-
tional Center for Automotive Research. He is cur-
rently involved in research related to autonomous
driving and sensing systems.

Yunyi Jia (M’10) received his Ph.D. degree from
Michigan State University, East Lansing, MI, USA,
in 2014. He is currently an assistant professor in the
Department of Automotive Engineering at Clemson
University International Center for Automotive Re-
search (CU-ICAR). His research focuses on collab-
orative robotics, autonomous vehicles, and advanced
sensing systems. He is a member of the IEEE, ASME
and SAE.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 24,2020 at 21:05:57 UTC from IEEE Xplore.  Restrictions apply. 


