2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Macau, China, November 4-8, 2019

Modeling, Learning and Prediction of Longitudinal Behaviors of
Human-Driven Vehicles by Incorporating Internal Human Decision-
Making Process using Inverse Model Predictive Control

Longxiang Guo and Yunyi Jia

Abstract— Understanding the behaviors of human-driven
vehicles such as acceleration and braking are critical for the
safety of the near-future mixed transportation systems which
involve both automated and human-driven vehicles. Existing
approaches in modeling human driving behaviors including
driver-model-based approaches and heuristic approaches have
issues in either model accuracy or scalability limitation to new
situations. To address these issues, this paper proposes a new
inverse model predictive control (IMPC) based approach to
model longitudinal human driving behaviors. The approach
incorporates the internal decision making process of humans,
and achieves better predicting accuracy and improved
scalability to different situations. The modeling, learning, and
prediction of longitudinal human driving behaviors using the
proposed IMPC approach are presented. Experimental results
validate the effectiveness and advantages of the approach.

Index Terms— longitudinal human driving behaviors, inverse
model predictive control, modeling, learning and prediction

I. INTRODUCTION

Autonomous driving technology is becoming increasingly
prevalent in the automobile industry. It is widely believed that
autonomous vehicles can significantly reduce traffic accidents,
save fuel, avoid traffic congestion and increase productivity
[1]. However, autonomous vehicles need to share roads with
human-driven vehicles to form a mixed-traffic in the foreseen
future, which introduces safety challenges due to uncertainties
in human driving behaviors. If the states of human-driven
vehicles can be predicted, those autonomous vehicles can then
plan-ahead to better handle the safety challenges.

The states of human-driven vehicles are the results of
human actions and vehicle dynamics. Human actions are
underlined by the internal mechanisms of human perception,
information processing and decision making. Many general
human driver models that mimic such process have been
developed. Car following models such as the Tampére (TMP)
model [2], Optimal Velocity Model (OVM) [3], and Intelligent
Driver Model (IDM) [4] were proposed. These models can be
iterated over the prediction horizon with the vehicle dynamics
model to predict vehicle states after their parameters have been
identified from human driving demonstrations. However, their
accuracy is merely moderate when being applied to individual
drivers although they can be applied to interpret general
human driving behaviors.
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Some data-driven heuristic approaches have also been
proposed to model the behaviors of human-driven vehicles.
Artificial Neural Networks (ANN) based approaches are the
most popular among them. Radial basis function network
(RBFN) [6], recurrent neural network (RNN) [7] and Dynamic
Bayesian Networks [8] are all used to model and predict
vehicle motion states. Other heuristic approaches such as
Gaussian Mixture Models (GMM) [9], Hidden Markov
Models (HMM) [10] and Particle Filter (PF) based approaches
[11] have also been used for the same purpose. However, these
approaches usually require a large amount of data to train the
models properly. More importantly, instead of incorporating
the internal decision-making process of a human driver, these
approaches mainly aim to replicate the same driving behaviors
or trajectories of human-driven vehicles as demonstrations.
Thus, the scalability of such approaches is limited by the
scenarios covered by the training data, and they consequently
have difficulties to handle never-seen situations.

To address the issues of existing approaches, this paper
proposes an inverse model predictive control (IMPC) based
approach to model and predict the longitudinal behaviors of
human-driven vehicles. Model Predictive Control (MPC) [12]
is an optimal control method that utilizes cost function
optimization to determine the decision-making process during
controls. IMPC is based on Inverse Optimal Control (I0C)
[13] which tries to derive the optimal cost functions. Some
latest research works have tried to extend I0C to IMPC to
derive the cost functions from control behaviors [14]. The
major contribution of this paper is to leverage these attempts
and further extend them to the modeling and prediction of
longitudinal ~ behaviors of  human-driven  vehicles.
Furthermore, we evaluate different forms of cost functions in
IMPC and propose a cost function selection process to
determine the appropriate cost function in IMPC in order to
achieve the best prediction performance of longitudinal
behaviors in human-driven vehicles. With the proposed
approach, we can more accurately model and predict the
longitudinal behaviors of human-driven vehicles, and more
importantly, the proposed approach has much better scalability
in terms of handling unseen situations when compared to the
state-of-the-art existing approaches.

II. IMPC-BASED MODELING FRAMEWORK

In this paper, we propose the IMPC-based approach and its
application in modeling and predicting the longitudinal states
of human-driven vehicles. The general structure of MPC-
based driving model is very similar to the mindset of a human
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driver. The vehicle/driver combined dynamic model resembles
the human’s perception of the vehicle-road system, and the
cost function resembles the human’s preferences and
tendencies. It is intuitive that the preferences and tendencies
will vary a lot between different human drivers while the
perceived vehicle-road system would roughly be the same.
Thus, it would be effective to mimic and eventually predict a
human driver’s behavior by adjusting the cost function of the
MPC to fit the ‘preferences’ in a human’s head.
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Figure 1 Structure of proposed IMPC-based model

In existing IMPC or IOC controllers, the references of each
basic cost terms (or features) are given as priori since the tasks
are known and the targets are fixed. By adjusting the weights
of the cost terms, the IOC or IMPC can find a best weighted
cost function for that given task. However, such preset
references may not be ideal for predictors since different
human drivers may have different goals during their driving.
In this paper, we propose to train the references of the cost
function together with the weights using a high-level
optimization to make IMPC suitable for vehicle longitudinal
state prediction. Another challenge is that the basic terms to be
included in the cost function need to be selected through a trial-
and-error process, which is troublesome and inefficient. In this
paper we propose a cost function selection and evaluation
method that can be applied before running IMPC and find the
best combination of basic terms from a set of candidates
obtained from the system model. The structure of the proposed
evaluation method and IMPC are shown in Figure 1.

In the rest of the paper, the details of the MPC model we
used to describe the human driven vehicles will be introduced
in section I1I. The learning of the MPC model will be described
in detail in Section IV. Section V will show a comparison
between the proposed method and other existing methods.

III. MODELING OF LONGITUDINAL STATES OF HUMAN-
DRIVEN VEHICLES

A. Vehicle Models in Longitudinal Driving

The goal of longitudinal driving is this paper is to make an
ego vehicle safely follow a lead vehicle. The model used for
ego vehicle is given in (1):

Se] [0 1 0][Se] [O
[V'e]=[0 0 1] Ve |+ 0| ue )
dl 1o o ollal 11

where s, , v, and a, represent the predicted displacement,
speed and acceleration of the ego vehicle, u, is the input to the
system and its physical meaning is the longitudinal jerk of the
vehicle. A similar model is used for the lead vehicle. Constant
speed assumption is used:

S.l =71 (2)
where s; and v; represent the predicted displacement and
speed of the lead vehicle. The speed v; is measured at the start

of the prediction and is assumed to remain constant during
that prediction. The outputs of this two-car system are:

Ur =Ve — Vg
. Ve
THWi =

S;p — Se (3)
Uy

TTCi =

St~ Se

where v, is the relative speed between the lead and the ego
vehicles, THWi is the inverse time headway, and TTCi is the
inverse time to collision.

B. Constraints in Longitudinal Driving

In order to formulate the longitudinal control in an MPC
form, constraints need to be designed to ensure feasibility,
reasonability and safety of the solution. In this paper the
following constraints are employed:

Amin = ae < Amax

ve S vmax

“)

S;—Se =1L
TTCi < TTCipgx

where a,,;, and a,,,, define the physical limitation that is put
on the acceleration of the ego vehicle, v,,,4, is the speed limit
of the ego vehicle in a highway driving scenario and L is the
minimum allowed headway distance between the two
vehicles. Inverse time to collision is a good indicator of driving
safety based on our previous work [5]. TTCi,,q, poses the
limit on inverse time to collision. When an MPC is working as
a controller, the constraints should be set conservatively in
order to guarantee safety during driving. However, the MPC is
working as a predictor in this paper, which requires it to mimic
the human driver’s actions as close as possible, even including
some undesirable behaviors. To meet this requirement, safety
constraints should be relaxed.

C. Full Cost Function in Longitudinal Control

A quadratic full cost function considering all states, inputs,
and outputs of the two-car system is designed in the MPC
formulation as:

K
/= ;[(xe () = (el =)

() =y Nw, (k) =y + (e (k) — ug)?]
where x, is the states in (1), y is the outputs in (3), and u, is

the input to the system. x,, e, y"¢f and ugef are the references
respectively. In this paper, references are assumed to be
constants. w,, w,,, and w,, are diagonal matrices, K is the total
number of prediction steps. Notice that in some traditional
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MPC setups the reference of control input .. is set to 0 to
reduce the control cost of the controller. In this paper, a non-
zero reference for control input may reflect the preference of a
human driver better when prediction is the task. In addition,
the full cost function may not be necessary for the prediction
and some partial items can be sufficient, which will be
introduced in the cost function selection section.

D. Longitudinal Driving MPC Formulation

Based on the vehicle models, constraints and cost function,
the longitudinal driving can be modelled as an MPC process.
The states update equation (1) - (4) can be organized into a
combined generalized state space form. Then the MPC
problem is to find out the optimal input u, that can minimize
the cost function J subjecting to the vehicle models and
constraints, which can be expressed by (6), where A and B are
the matrices in (1), G(X) is the outputs in (3), and H(X,Y) is
the constraints in (4).

min |
Ue

s.t. X = AX + Bu,
Y =G6(X)
H(X,Y)<0

©)

IV. LEARNING AND PREDICTION OF LONGITUDINAL STATES
OF HUMAN-DRIVEN VEHICLES BASED ON IMPC

A. IMPC Learning from Human Demonstrations

We propose to learn the cost function of the longitudinal
driving MPC formulation from human driving demonstration
data once the form of the cost function is given. xg(7) is used
to represent the states of the vehicle system recorded during an
actual human driving demonstration. The data can be
augmented into many short trajectories X}

Xli? = [xg (&), -, Xg (t; + NgAtg)] ™

where t; is the starting time of the trajectory, Aty is the
sampling time during data recording, ny is the length of a
recorded short trajectory. By initializing the MPC’s initial
condition x, with the first element in the trajectory, xg (t;), the
MPC can predict another trajectory by iterating the OCP
problem defined in (6):

Xt = [xc(ty), o xc(t; + nelte)] ®)

where np is the length of the predicted short trajectory. At is
the control interval and is not necessarily the same as Atp, the
length of the predicted trajectory n, may also be different
from ng.

The error between the predicted trajectory and the
reference trajectory is:

Xk = [xp(ty), ., xp(t; + nphtg)] ®

where xgz(7) = |xc(t) — xg(7)| is the error between the
predicted trajectory and reference trajectory at time t. The
total error between all predicted trajectories and reference
trajectories is given by (10). w is a weight vector, M is the
total number of trajectories augmented from the whole human
driving demonstration.

L& ng

w
E =—Z—-ng(ti+nmg) (10)

M Lang

=1 n=1

The problem now is to minimize the total error E by
adjusting the parameters in the cost function. In this paper, the
adjustable parameters include weights w, , w, , w, and

references x;ef , y“’f , uzef . Since only the relative values of
weights are important, it is practical to set one weight to 1 and
optimize the others[15]. This problem can be formed into a
higher-level constrained optimization problem:
min
wx,wy,wu,x;ef,yref_uzef

Sot. Wy, Wy, wy, =0

ref < xref < xref
e e

X .
€  min

(an

max
ref ref ref
y min <y <y max

ref

U, < uzef < uzef

min max

However, the Jacobian of E is not obtainable. Thus, a
gradient-free optimization method needs to be adopted. In this
paper, the Nelder-Mead Simplex (NMS) method [17] is
adopted. The optimization process will terminate when the
standard deviation o in (12) is no larger than a threshold value
Oter - E; 1s the total error of vertex j evaluated over the

training data, E is the average error of all points.

ﬂy:ll(Ej - E)Z

N+1

(12)

B. Prediction of Longitudinal States with Optimal Cost
Function Selection in IMPC

In the longitudinal driving problem presented in this paper,
there are two states, three outputs and one input that can be
included in the full cost function, resulting in up to eleven
parameters to be optimized in (11). However, the higher-level
optimization is very likely to end with different local optima.
Due to the non-convexity of the MPC. Leaving all possible
basic terms to the full cost function and letting higher level
optimization handle too many parameters will result in a
highly inefficient learning process and may even result in
undesirable solutions. It’s necessary to evaluate the basic cost
terms and select the best ones to be included in the cost
function before performing the high-level optimization.

When a human is performing a driving task, he/she may try
to maintain some of the system states/outputs/inputs at desired
target values while leaving the rest unattended. In this paper
we propose to evaluate the basic terms by using them
independently as stand-alone cost functions, which can be
written as a simplified form of (5) as

K
J = @) - 27Ty (13)
k=1

and then learning the z™® with a simplified form of the
higher-level optimization (11) as:
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min E
zref

(14

s.it.zref <2t < 2

where z is a candidate for the basic terms in the cost function.
When the higher-level optimization finishes, a minimum E,
will be obtained for candidate z,. If the human driver is trying
to maintain z, at a specific target value during driving, then
the resultant E, should be small, which means z, can be a
‘good’ term in the cost function and vice versa. All candidates
can be ranked based on their E, values.

After each candidate term has been evaluated, the cost
function can be formed by trying different combinations of
‘good’ candidates. Since humans normally consider more than
one target during driving, it is reasonable to start with a
combination of the top two or three best candidates, then try
adding the next best candidate to the cost function in the
following attempts. This process will be repeated until the
evaluated performance of the predictor starts to decrease, then
the previous candidate combination can be determined to be
the final cost function.

Once the cost function has been selected and parameters
learnt from human demonstrations, the prediction of
longitudinal behaviors/states of the human-driven vehicle can
be realized by running the MPC with the determined cost
function. The performance of the prediction will also be
evaluated. At each time t, the MPC will be run till time t +
ncAt; and generate a series of predicted states like (8). By
comparing the difference between the predicted states with the
actual states from demonstration data, the performance of the
predictor can be evaluated. The evaluation results will be
presented in the experimental section.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment setup

A 3D simulation environment that includes two vehicles
was constructed. The lead car is autonomous and the one
behind is controlled by the human subject in real-time. Both
vehicles were built with full longitudinal dynamics that is
more complete than (1) and (2). The simulator used in this
paper is shown in Figure 2.

Figure 2 A human driver sitting in our driving simulator

The lead vehicle is following three different driving cycles.
The first one is the EPA Highway Fuel Economy Test Cycle
(HWFET), which is a 12-minute-long mild highway cycle.
The second is the Artemis Motorway 130 cycle which is an
18-minute-long aggressive motorway cycle with heavier
braking and wider open throttle. The last one is the New York
City Cycle (NYCC) with shortened stop time, which is an
eight-minute-long urban driving cycle. Human subject was
required to drive the ego vehicle in his/her preferred way and

follow the lead vehicle. Two sets of data were collected from
HWFET cycle, one set of data was collected from the Artemis
cycle and the NYCC cycle respectively. The learning process
for all approaches in the following sections is only using the
first set of HWFET cycle data. The other set of HWFET data
is used to test the prediction performance in the seen situation.
The data from Artemis and NYCC cycles are used to test the
performance in unseen situations. In this paper, the MPC
problem is solved using ACADO toolkit [16].

B. Learning of Driving Model

Ve, Ap,V, THWI, TTCi and u, are the six candidates being
evaluated using the HWFET cycle training data. The results
are shown in TABLE 1.

TABLE 1 EVALUATION RESULTS OF DIFFERENT COST CANDIDATES

Candid @, v THWI TTC o,
ref 229 0.019 —-0.977 0.5831 —0.002 0.0005

z m/s  m/s? m/s st st m/s3
Ez 1.3472 0.3291 0.8580 2.2191 0.8567 0.2017

One can see that a® and u are the two ‘good’ candidates
since their minimum total prediction error E, can be very low.
The THWi and TTCi are two ‘bad’ candidates since their
minimum E, is still quite large. We tried three different
combinations of these candidates:

e Combination 1: u, a®
e Combination 2: u, a¢, TTCi, v"
e  Combination 3: u, a®, TTCi,v", v°

In combination 2 we added both TTCi and v" at the same
time since their minimum E, values are very close. These 3
different combinations are formulated into cost functions in
the form of (5), and are trained with the method described in
IV.A. The initial guesses of the references are using the values
obtained in TABLE 1. The initial weights are all chosen to be
1 and the weight of the last term in the cost function is fixed
during the training. The termination condition is selected to be
O¢er = 3 X 107%. Other parameters are listed in TABLE 2.
Atg is the sampling time-step. At; = 0.2s means that a
predicted state trajectory is made every 0.2s in the test driving
cycles.

TABLE 2 PARAMETERS FOR THE MODEL

Variable Value Variable Value Variable Value
At 0.4s At 0.2s Vpin Om/s
Amin —-8m/s? Aax 4.5m/s? Vmax 40m/s

Avg. Acc. Error

i Avg. Spd. Error

1.
1.2 14
1 1.2 /9]
¥ #
0.8 / 1 /

—%— Comb.1 06| @A % Comba —#%— Comb.1
—&— Comb.2 7 S —B—omb.2 ' |—&—comb.2
Comb.3 Comb.3 Comb.3

0.15 0.4 0.6
@04s @24s @44s @045 @245 @44s @04s @24s @44s
Figure 3 Cost function evaluation results

Avg. Combined Error
0.25 1.6

mis?

0.2

mis

0.8 #

The performance of these three cost functions are
evaluated using the HWFET cycle test data set. The terminal
speed, acceleration and combined (speed + acceleration)
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prediction errors at 0.4s (1 prediction step), 2.4s (6 prediction
steps) and 4.4s (11 prediction steps) are compared. The
evaluation results are shown in Figure 3. One can see that the
2" terms combination is outperforming the other two
combinations in speed prediction at all 3 predict horizons byp
significant margins. In terms of acceleration prediction, the
performance of combination 2 sits between that of
combination 1 and 3. However, the performance difference in
predicting acceleration is less obvious than in predicting
speed. Moreover, predicting speed is more important than
predicting acceleration when such prediction information is
shared between vehicles for improved control since speed is
directly related to system outputs according to (3). The
combined prediction error, which is the sum of speed
prediction error and accelerating prediction error, show that
combination 2 is the best among the 3. We can organize
combination 2 according to (5) and use it as the best cost
function for the predictor. Adding the ‘bad’ basic term v° to
the cost function will weak the predictor’s performance. In fact,
during our exploration, we found that adding either
THWi or v® to any existing combination will make the
predictor perform worse.

C. Prediction Performance Comparison with Existing
Approaches

In this section, the state-of-the-art IDM and Artificial
Neural Network (ANN) models used for performance
comparison are introduced briefly. We chose these two
models since they achieved best speed prediction accuracy
among existing driver model based and heuristic approaches
according to [18].

Intelligent Driver Model is a widely used adaptive cruise
control (ACC) model that can describe accelerations and

decelerations in a satisfactory way. The acceleration function
is given by:

~afi-()- ()
appy = a o 5 — 5
v,
2+ab

where v, is the desired velocity, s, is minimum desired
spacing, T is the desired time headway, a is maximum
acceleration and b is comfort braking deceleration. These 5
parameters are tunable/trainable parameters of this model.

(15)
s* =50+ v, T+

The ANN model proposed in this paper is based on a feed-
forward structure with the hidden layer having 16 sigmoidal
neurons and the output layer having linear neurons. The
inputs to the network are the most basic system states v,, v;
and system output s; — S,. The training is done by fitting the
output of the network to the human demonstrated
accelerations ag (t). The training data set is the same one that
is used by all other 3 predictors. The training algorithm we
used is Levenberg-Marquardt method.

The trained IDM and NN are making predictions in the
same way as the IMPC based predictor. The prediction time
step and reference evaluation time step are sharing the same
settings as Table 2. The performance of all predictions is
shown in Table 3 to Table 5.

Table 3 shows that under HWFET cycle, the acceleration
prediction accuracy of IMPC, IDM and NN is very close.
That’s because this test cycle is the same as the training data.
Although IDM and NN do not catch the internal preference of
the human driver, they can still obtain a good prediction
accuracy since they are trained to reproduce state trajectories

TABLE 5 PREDICTION ERROR FOR HWFET CYCLE

Model Type IMPC Intelligent Driver Model Artificial Neural Network
Error Type Avg. Std. Max./Min. Avg. Std. Max./Min. Avg. Std. Max./Min.
Error Error Error Error Error Error Error Error Error
Predicted @0.4s 0.565 0.869 5.35/-2.83 0.604 0.903 3.96/-3.25 0.616 0.931 4.95/-3.40
Speed Error @2.4s 0.768 1.177 7.18/-5.11 0912 1.350 5.42/-5.72 0.948 1.397 6.59/-6.29
@4.4s 0.970 1.418 6.66/-6.36 1.146 1.762 7.47/-8.15 1.184 1.703 8.47/-6.27
Predicted @0.4s 0.204 0.352 1.90/-2.66 0.214 0.336 1.14/-2.99 0.269 0.446 1.87/-3.61
Acceleration  @2.4s 0.226 0.359 1.88/-2.32 0.2000 0.319 1.68/-1.74 0.260 0.393 1.73/-2.72
Error (@4.4s 0.222 0.319 2.00/-1.70 0.211 0.336 2.02/-1.48 0.244 0.359 2.07/-1.69
TABLE 5 PREDICTION ERROR FOR ARTEMIS CYCLE (NEW)
Model Type IMPC Intelligent Driver Model Artificial Neural Network
Error Type Avg. Std. Max./Min. Avg. Std. Max./Min. Avg. Std. Max./Min.
Error Error Error Error Error Error Error Error Error
Predicted @0.4s 1.585 2.280 12.56/5.74 1.775 2.439 11.17/-20 1.854 2.559 13.61/-7.97
Speed Error @2.4s 2.168 3.076 20.30/-9.16 2.938 3.419 12.77/-20 3.279 4.156 18.80/-13.98
@4.4s 2.657 3.737 24.10/-12.34 3.958 4.257 19.06/-20 4.342 5.251 18.97/-14.17
Predicted @0.4s 0.619 1.033 4.33/-5.22 1.034 1.095 2.34/-10 1.009 1.300 5.52/-8.65
Acceleration  @2.4s 0.666 1.031 4.76/-4.62 0.823 0.927 5.21/-10 1.015 1.294 5.72/-8.91
Error @4.4s 1.585 2.280 12.56/5.74 1.775 2.439 11.17/-20 1.854 2.559 13.61/-7.97
TABLE 5 PREDICTION ERROR FOR NYCC CYCLE (NEW)
Model Type IMPC Intelligent Driver Model Artificial Neural Network
Error Type Avg. Std. Max./Min. Avg. Std. Max./Min. Avg. Std. Max./Min.
Error Error Error Error Error Error Error Error Error
Predicted @0.4s 1.271 1.804 7.35/-5.01 1.482 1.946 7.55/-5.76 1.596 2.024 8.65/-5.88
Speed Error @2.4s 1.814 2.509 9.79/-7.60 2.542 2.951 9.12/-9.45 3.061 3.394 13.51/-9.84
@4.4s 2.355 3.201 11.96/-9.18 3.348 3.766 10.12/-12.29 2.677 3.372 14.37/-12.29
Predicted @0.4s 0.686 0.963 3.72/-3.69 0.906 0.923 2.54/-2.71 1.763 1.673 4.45/-4.16
Acceleration  @2.4s 0.700 0.951 3.82/-2.52 0.816 0.924 2.96/-2.89 1.070 1.244 3.64/-4.04
Error @4.4s 0.670 0.905 3.74/-2.25 0.649 0.849 3.23/-2.43 1.217 1.253 4.00/-5.90
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under HWFET cycle. However, the IMPC-based predictor is
showing noticeable advantages in speed prediction compared
to all other predictors at all 3 horizons thanks to our proposed
cost function evaluation method.

Table 4 shows that under Artemis cycle, the IDM and NN
models’ lack in scalability starts to appear. They fall behind
IMPC by quite a lot in speed prediction, and the difference
increases as the prediction horizon extends. This indicates that
IMPC based approaches can catch the internal stimulus of
human actions and perform better in unseen situations.
Moreover, the IMPC’s prediction accuracy difference
between 2.4s and 4.4s is much smaller than that of IDM and
NN, which also indicates the advantage of the proposed
approach. One interesting finding is that the IDM performs
better in maximum prediction error. That’s possibly caused
by the constant speed assumption we used in (2) for the lead
vehicle. Since IDM is inherently a conservative collision-free
model, it may not try as hard as the IMPC models to keep up
with the lead vehicle within the predicting horizon. This
situation happens when the lead vehicle is having sudden and
big acceleration changes and appropriate information is not
passed to the ego vehicle. However, when the vehicles are
connected and information about the environment is shared
between them, the IMPC model holds a lot of potential for
improvement.

Table 5 shows the results obtained from NYCC cycle. The
general observations are similar with those from Artemis
cycle. The IDM and NN are performing much worse than the
IMPC approach. It needs to be noticed that the acceleration
prediction of NN is significantly worse than other 2
predictors. That is because the training data set is not able to
provide enough information to get the NN trained properly
since these two driving cycles are almost entirely different
from each other. The NN has basically lost predicting
capability under NYCC cycle. Compared to the NN based
approach, the IMPC based approach is showing advantage by
being able to be trained properly using a small training data
set.

Overall, the IMPC based approach outperforms the other
two by providing a much higher prediction accuracy and a
much better scalability. It can adapt to never-seen situations
better than other approaches. The proposed cost function
selection process can help our proposed IMPC capture the
human driver’s driving intentions better and further improve
the prediction accuracy.

VI. CONCLUSION

In this paper a new IMPC based approach is proposed to
model and predict the longitudinal behaviors of human-driven
vehicles. A new cost function selection process is also
proposed to determine the appropriate cost function in IMPC.
The proposed approach can capture the internal decision-
making process of humans and thus result in better accuracy
and scalability which is validated by the experimental results.
The capability of predicting a human-driven vehicle’s
longitudinal states is tested under different driving scenarios,
and the performance is compared with existing approaches.
The results illustrate the effectiveness and advantages of the
proposed approaches in predicting the forthcoming

behaviors/states and handling unseen situations compared
with other existing approaches.

As for future work, we will plan to extend the proposed
framework to the prediction of other behaviors/states of
human-driving vehicles such as lane tracking and lane
switching in addition to the studied longitudinal driving.
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