FUTURE INTERNET: ARCHITECTURES AND PROTOCOLS

Low-Power Wireless Multlhop Network
Architecture for the Internet of Things

Hyung-Sin Kim, Sam Kumar, and David E. Culler

ABSTRACT

Extending an Internet subnet by connecting
resource-constrained nodes (e.g., embedded sen-
sors and actuators) over multiple wireless hops is
necessary to support the future Internet of Things
(IoT). RPL, the IPv6 routing standard for low-pow-
er and lossy networks, tried to achieve this goal
but has not seen wide adoption in practice. As
an alternative, Thread is a recently standardized
low-power network protocol for loT, driven by
the Thread group, an industry consortium led by
Google/Nest. We provide a comparative analysis
of the technical aspects of RPL and Thread based
on their specifications, explaining why using
Thread, as opposed to RPL, may make sense for
the future Internet. Specifically, the fundamen-
tal differences between RPL and Thread are their
respective scopes and multihop network architec-
tures, which result in Thread’s unique design and
advantages over RPL. Lastly, we evaluate Thread
in an indoor multihop wireless testbed using
OpenThread, an official open source implementa-
tion of Thread. This work serves as the first analy-
sis of the Thread protocol in academia.

INTRODUCTION

The scope of the Internet has continuously
expanded. It is now common to form a subnet
with smart things, such as wearables and speak-
ers; the Internet of Things (IoT) is happening. The
current scope of loT, however, is mostly about
wirelessly connecting powerful devices, located
near border routers (e.g., smartphones or WiFi
access points). The natural next step for the future
loT is to extend the wireless subnet further, to
include various embedded/battery-powered sen-
sors and actuators, flexibly deployed apart from a
border router.

Enabling this vision requires an interdisciplin-
ary effort between two regimes: low-power/
lossy networks (LLNs, or wireless sensor net-
works, WSNs) and the Internet. This effort, which
actually started more than a decade ago, has
extended Internet connectivity to resource-con-
strained embedded devices by enabling IPv6
communication over IEEE 802.15.4 low-power
wireless links in 2008 (6LoWPAN) [1]. Going
further, RPL, the IPv6 routing protocol for LLNSs,
was standardized in 2012 [2]. RPL aims to build

an IPv6 subnet of thousands of resource-con-
strained, battery-powered devices by connecting
them over multiple wireless hops. Although RPL
has received substantial attention and spawned
numerous research works for the last six years,
it has many unresolved issues that preclude its
widespread adoption (except for Cisco’s Con-
nected-Grid Mesh) [3, 4]. Still, practical loT appli-
cations mostly use high-power/single-hop WiFi
for “Things” or even replace Internet connectiv-
ity with another low-power/single-hop wireless
connectivity, such as Bluetooth Low Energy.

In contrast, when LLN first took off two
decades ago [5], researchers expected to see
practical/scalable multihop wireless systems soon.
Building a reliable multihop network with unat-
tended, duty-cycling nodes, however, has been
notoriously difficult. Low-power wireless network-
ing started to receive attention again with the
megatrend of loT, but industry still has a strong
perception that multihop low-power wireless net-
works are unreliable and do not provide enough
battery lifetime [6]. The only way to make a break-
through is to show practical evidence that it really
works.

To this end, an industrial consortium, called
the Thread Group, recently standardized Thread
[71, a new IPv6-based low-power mesh network,
with the following ideas:

1. Given that the Internet core is already glob-
ally scalable, building a low-power subnet
with thousands of embedded devices is not
only hard but also overkill.

2. In an embedded network, specifying multi-
ple layers together makes more sense than
each layer being independent.

Therefore, unlike RPL, Thread specifies phys-
ical through network layers and targets modest
scalability with hundreds of embedded devices.
While relying on existing standards for other lay-
ers, Thread has its own routing protocol with
a clear architectural restriction: a network par-
tition can have at most 32 routers, all of which
must be always on (i.e., no radio duty cycling).
Other nodes in the partition, called leaves, may
be duty cycled, but are always one wireless hop
away from an always-on router. This architectur-
al restriction decouples routing from low-pow-
er operation, enabling Thread to build a reliable
mesh among routers and simultaneously provide

The authors are with UC Berkeley.

Thread is a recently
standardized low-power
network protocol for loT,
driven by the Thread
group, an industry con-
sortium led by Google/
Nest. The authors provide
a comparative analysis of
the technical aspects of
RPL and Thread based
on their specifications,
explaining why using
Thread, as opposed to
RPL, may make sense for
the future Internet.

Digital Object Identifier:
10.1109/MCOM.2019.1800788

IEEE Communications Magazine o July 2019

0163-6804/19/$25.00 © 2019 IEEE

55

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

significant attention and

research papers. It has

the specification docu-
ment and related work

Since RPL first came
on the scene six years
ago, it has received

spawned numerous

seen little adoption,
however, except for
CISCO's CGmesh.
What's wrong? We
unveil the underlying
reasons in the light of

in the literature.

low-power operation for battery-powered leaf
nodes. To avoid incompatibilities due to differing
implementation choices, Google/Nest, a leading
member of the Thread Group, has released an
official open source implementation of Thread,
called OpenThread.

With its open source implementation, focus
on practical usage, and considerable driving force
from industry, Thread is worth investigating and
has the potential to be applied in practice. As a
recent standard, however, its technical aspects
have not yet been investigated in the research
community. As a stepping stone, this article
explores Thread'’s routing aspects through a com-
parative analysis with RPL to demonstrate why it
may make sense for the future loT. We also dis-
cuss future steps to put the Internet in the Internet
of Things. In doing so, our goal is not to conclude
which protocol is better, but to introduce Thread
as a new low-power loT protocol that is interest-
ing enough to investigate for the future loT.

THE RPL STANDARD

This section presents a brief overview of RPL’s
design goals and features.

DESIGN GOAL AND ARCHITECTURE

The RPL routing protocol was designed to accom-
plish three challenging goals together: scalability,
reliability, and resource/energy efficiency. Spe-
cifically, it aims to construct an IPv6 subnet with
thousands of resource-constrained nodes over
multiple low-power wireless hops that simultane-
ously provides reliable data delivery and several
years of battery lifetime. In addition, RPL focuses
on being solely a routing protocol, without limit-
ing other node characteristics; any node can be a
router and/or battery-powered (i.e., easy deploy-
ment). The high goal and the flexible architec-
ture, however, result in a strict requirement for
protocol design: RPL routing should provide both
reliability and energy efficiency for all of numer-
ous nodes in the case that they are all routers
and battery-powered (the typical setting in WSN
research).

DESIGN CHOICES AND FEATURES

To satisfy the requirements, RPL made two
important assumptions and design choices in light
of prior work on WSNs [8].

Upward-Focused Routing: “Multipoint-to-point
(MP2P) is a dominant traffic flow in many LLN
applications.” — Internet Engineering Task Force
(IETF) RFC 6550 [2]

The first assumption is that traffic in LLNs
mostly goes upward, such as data gathering
from embedded sensors through border routers.
Therefore, while it provides bidirectional (both
up/downward) routes, RPL focuses on reliable
upward routes. To this end, it builds a quasi-for-
est routing topology, called destination-oriented
directed acyclic graph (DODAQG), rooted at a bor-
der router. Each node selects a parent node as
the next hop of its upward route, based on the
distance vector from the border router, while set-
ting the downward route simply as the reverse
of the upward route. The distance vector-based
path cost for the upward route, called RANK, is
propagated by broadcasting DODAG Information
Object (DIO) messages.

Data-Reactive Route Update: “Data traffic
can be infrequent” and “Typical LLNs exhibit varia-
tions in physical connectivity that are transient and
innocuous to traffic.” — IETF RFC 6550 [2]

With this assumption, making the control plane
maintain a routing topology that is constantly up
to date with the physical topology can waste ener-
gy. Therefore, RPL detects physical connectivity
changes, which are supposed to be transient and
infrequent, reactive to data transmissions while
minimizing control packet transmissions (by using
Trickle Timers [9]). Although the path cost design
is decoupled from the RPL standard, the concept
of data-traffic-reactive route update naturally ends
up with the use of ETX (expected transmission
count) as the path cost (RANK). ETX increases
when more link layer retransmissions are required
to deliver a data packet, indicating that the wire-
less link becomes unstable.

Additional Features and Not-Included
Aspects: In addition to the above design choices,
RPL includes the multi-instance feature to sup-
port heterogeneous traffic. Given that each RPL
instance builds a separate routing topology with
its own quality of service (QoS) and routing met-
ric, the multi-instance feature enables different
traffic to go through different routes to reach the
same destination. As a result, a routing table can
have multiple entries for a single node depending
on the number of instances the node joins.

However, as a routing protocol in the lay-
ered Internet architecture, RPL does not specify
neighbor management (a list of directly reachable
nodes) but instead relies on an external mecha-
nism (e.g., the IPv6 standard Neighbor Discovery,
ND). RPL does not require anything for other net-
work layers.

SHORTCOMINGS OF RPL

Since RPL first came on the scene six years ago,
it has received significant attention and spawned
numerous research papers. It has seen little adop-
tion, however, except for Cisco’s CGmesh. What's
wrong? We unveil the underlying reasons in light
of the specification document and related work
in the literature. For more details, we strongly rec-
ommend reading recent surveys of RPL, such as
[3, 41.

THE FLIP SIDE OF THE DESIGN CHOICES

First of all, the two fundamental design choices of
RPL turn out to be inappropriate for real loT use
cases.

Upward-Focused Routing: Although upward
traffic is dominant in LLNs, the need for down-
ward traffic delivery in loT use cases is nontrivi-
al. Downward traffic is needed, for example, for
actuation commands, firmware updates, acknowl-
edgment (ACK)-based transport layer protocols
like TCP, and application-layer ACKs. In addition,
some applications, such as electronic shelf label-
ing, generate more downward traffic than upward
traffic [10].

However, the upward-focused design of RPL
makes downward routing unreliable and unscal-
able [4]. Specifically, when physical wireless con-
nectivity changes, the downward route is very
slowly updated, after upward data transmission
failures (ETX increase), the upward route update,
and a successful control message (Destination

56

IEEE Communications Magazine e July 2019

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

Advertisement Object, DAO) transmission toward
the new upward route. Meanwhile, many down-
ward data packets can be lost. Furthermore,
RPL’s downward routing should select either of
two modes of operation (MOP): storing mode
(table-driven routing) or non-storing mode (source
routing), which suffer from memory overhead or
routing header overhead, respectively. The over-
head prevents RPL from constructing downward
routes with thousands of resource-constrained
nodes.

Data-Reactive Route Update: Although using
data traffic for route updates significantly reduces
control overhead, this incurs stability and reliabil-
ity problems. Note that data packets are not for
assisting the network maintenance but mainly for
delivering important information to a destination.
When connectivity changes, however, RPL cannot
detect it before a number of data packets are sac-
rificed, degrading reliability.

In addition, RPL’s representative routing met-
ric, ETX, has shown many problems when wireless
link conditions become challenging. In contrast
to the standard’s assumption, data traffic in LLNs
is not necessarily infrequent. Some applications,
such as structural monitoring and anemome-
try [11], do require frequent data reporting for
meaningful analysis. In a large-scale network
with thousands of nodes, nodes near the border
routers should relay heavy traffic. Heavy traffic
causes data packet loss due to congestion and
hidden terminals. Wireless interference such as
WiFi also causes nontrivial packet loss. In this
case, RPL’s routing topology severely churns [12].
This is because RPL tries to change routes since
ETX becomes bad, but changing routes does not
resolve the wireless link problems caused by wire-
less interference and traffic load.

Although the above design choices have clear
weaknesses, there have been no outstanding
alternatives that provide scalability, reliability, and
energy efficiency within a flexible network archi-
tecture where all nodes can be routers and bat-
tery-powered.

SIMULTANEOUS COMPLEXITY AND AMBIGUITY

The key idea of having a protocol standard is that
all implementations following the standard should
be interoperable with each other and provide rea-
sonable performance. A standard should have
fine-grained guidelines for all necessary features
while excluding any redundant feature.

The RPL standard, however, has unnecessary
features, such as a multi-instance/QoS metric
(never investigated on embedded devices) and
routing messages overlapping IPv6 ND features.
This only increases implementation complexity
and memory overhead without a clear benefit.
A protocol for resource-constrained embedded
devices should avoid such over-specified features.

Simultaneously, RPL under-specifies many nec-
essary features. Specifically, although an embed-
ded network implementation should be vertically
integrated, RPL has few guidelines for inter-layer
operation. Although it makes sense that a routing
standard excludes ND functionality, RPL unfor-
tunately does not have a complete suggestion
for an external ND mechanism or interoperability
with IPv6 ND.

The complexity and ambiguity of RPL result in
various different implementations with different
implementation choices and different features,
degrading interoperability and performance.

THREAD: A MULTI-LAYER STANDARD WITH
RESTRICTED ARCHITECTURE

This section introduces Thread, an alternative to
RPL as a low-power multihop loT network proto-
col. Thread does not share RPL’s design goals and
architecture. Rather, compared to RPL, Thread
loosens the design goals and promotes a compro-
mise network architecture, as follows.

Energy Efficiency. “Routers are not designed
to sleep” and “Sleepy end Devices (SEDs) are host
devices. They communicate only through their par-
ent router and cannot forward messages for other
devices.” — Thread 1.1.1 Specification [7]

Scalability. “It is designed specifically for Con-
nected Home applications,” “Home networks vary
from several devices to hundreds of devices com-
municating seamlessly,” and “There can be a maxi-
mum of 32 Routers in a thread Network partition.”
— Thread 1.1.1 Specification

Compared to RPL, the targeted subnet size
is reduced from thousands to hundreds (includ-
ing leaf nodes), and there is a clear bound on the
number of routers. The goal of modest scalability
is not just a compromise, however, but avoids
overkill for a subnet. In addition, routers should
be powered enough to be always on; duty-cy-
cled (low-power) nodes are explicitly decoupled
from routing and focus on energy efficiency. This
allows routers to focus on the reliability aspect
and battery-powered leaf nodes to focus on the
low-power aspect. The “always-on router” restric-
tion is reasonable in indoor environments, which
have abundant outlets, as well as outdoor settings
with solar power, for example.

Furthermore, considering the nature of an
embedded network as a vertical silo, Thread
specifies multiple layers (physical to network);
while proposing its own routing design, Thread
also specifies other networking aspects, such as
duty-cycling medium access control (MAC) (L2),
addressing, and commissioning. This resolves both
complexity and ambiguity problems. Specifically,
Thread’s design choices are different from those
of RPL, as shown in Table 1.

RouTING ToPoLOGY: TWO-TIER, ASYMMETRIC, FULL MESH

In contrast to RPL, Thread provides a two-tier
routing topology considering the heterogeneous
power capabilities of nodes.

The topology among routers is not a forest but
a full mesh, given that the routers are always on.
That is, each router has path cost (distance vec-
tor) not just to the border router but to all routers.
Each router can reach any destination by selecting
a next hop among multiple candidates by itself.
In contrast to RPL, for which a downward route
is passively determined by an upward route (as
its reverse), Thread sets each path independently,
which can cause a bidirectional route to be asym-
metric in various cases. In this way, Thread pro-
vides reliable routes not only for upward traffic,
but also for any-to-any traffic.

In contrast, a battery-powered leaf node selects
a single router as its parent and focuses only on

RPL uses Trickle for
DIO transmission to
provide both minimal
control overhead and
fast route recovery,
setting the steady-state
interval between DIO
transmissions to several
minutes. Thread also
uses Trickle to set the
advertisement message
interval.

IEEE Communications Magazine o July 2019

57

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

RPL[2]

Thread [7]

Scalability
Radio duty cycling
Routing topology
Upward route selection
Downward route selection
Bidirectional route symmetry
Link cost
Link cost in a control packet
Path cost
Path cost in a control packet
Physical connectivity tracking
Routing table
Multi-border router support
Addressing
Neighbor discovery
Commission

Open implementation

Thousands of nodes
Out of scope
DODAG (quasi-forest)
Direct
Indirect (passive)
Symmetric
Out of scope (typically ETX)
Not included
Out of scope (typically accumulated ETX)
Upward path only
Slow (> several minutes), mainly relying on the data plane
Upward or all up/downward entries
Multiple DODAGs (one DODAG per border router)
Out of scope
Out of scope
Out of scope

TinyRPL, ContikiRPL, RIOT-RPL (academia-driven)

Table 1. Detailed comparison between RPL and Thread.

maintaining connectivity with the parent. Without
any neighbor/routing information, its routing strat-
egy is to simply rely on its parent: it sends/receives
all packets to/from the parent. This design choice,
decoupling battery-powered nodes from route
management, can improve battery lifetime for leaf
nodes by reducing control overhead.

ROUTING PACKET: ALL-IN-ONE

A Thread router broadcasts advertisement mes-
sages to update the routing metric at other nodes.
In contrast to RPL’s DIO message containing
only one path cost to the border router, Thread’s
advertisement message has link costs and path
costs to all 32 routers, which significantly restricts
control packet overhead while forming a full
mesh. Furthermore, given that the advertisement
message provides link cost (not only path cost),
the message supports both routing and neigh-
bor management; Thread tightly integrates routing
with ND, in contrast to RPL, which focuses on
routing. To contain all 32 entries in one packet,
Thread represents bidirectional link cost, each
of incoming and outgoing link costs with 2 bits
and path costs with 4 bits, resulting in a 1-byte
payload for each entry. In addition, Thread rec-
ognizes each entry’s address with its location in
the advertisement message payload (i.e., address
is its index), resulting in no additional space for
addressing.

In contrast, a battery-powered leaf node does
not send/receive advertisement messages, focus-
ing solely on low-power operation.

RouTe UPDATE: BACK TO CONTROL PLANE

RPL uses Trickle [9] for DIO transmission to
provide both minimal control overhead and fast
route recovery, setting the steady-state interval

Hundreds of nodes (up to 32 routers)
Always-on routers, duty-cycling leaf nodes (listen-after-send)
Two-tiered mesh
Direct
Direct
Asymmetric
Quantized SNR
Both incoming/outgoing link costs, from/to each router (up to 32)
Accumulated quantized SNR
Path toward each router (up to 32)
Fast (< 1 minute), mainly relying on the control plane
To any router, up to 32 entries
A single network partition including all border routers
16-bit address, encoding parent/child relationship
As in the specification
As in the specification

OpenThread (industry-driven)

between DIO transmissions to several minutes.
Thread also uses Trickle to set the advertisement
message interval. Given that routers in Thread
are not low-power, however, it sets the interval
to 32 s in steady state, much shorter than RPL.
With such frequent advertisements, Thread can
periodically refresh the entire mesh route relying
on control packets rather than (infrequent) data
transmissions. By using control packets to detect
changes in physical connectivity, Thread is closer
to classic routing than RPL.

Each (low-power) leaf node periodically wakes
up and checks the reachability of its parent by
sending data request (keepalive) messages.

PATH CoST: ACCUMULATED SNR

Although ETX, the inverse of packet reception
ratio (PRR), is a very intuitive metric that can be
obtained from data transmission experience with-
out any additional overhead, it is subject to the
issues described earlier, and is additionally unre-
liable in LLNs. Given that PRR does not decrease
linearly with received signal strength indicator
(RSSI) but suddenly drops from > 90 percent to
< 10 percent at a certain RSSI threshold (e.g., -87
dBm) [13], ETX can finely distinguish link quality
around that threshold. However, it cannot distin-
guish a very robust link from possibly fragile links.
For example, when choosing an upward route,
two candidate links may both have a current ETX
of one 1 (the best quality), but one link may have
an RSSI of -50 dBm and the other -80 dBm.
Although the -80 dBm candidate link currently
has good PRR, it is likely to become bad (below
-87 dBm) in the future due to fluctuations in link
quality. The =50 dBm candidate link is substantial-
ly more reliable, but the ETX information cannot
tell the difference.

58

IEEE Communications Magazine e July 2019

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

In contrast, Thread uses signal-to-noise ration
(SNR) (link margin) for path cost one-way link
quality and link cost. Given that SNR is well known
to highly fluctuate, it is averaged and quantized
for stability, as shown in Table 2. Thread takes
the maximum of incoming/outgoing link cost to
represent the cost of a bidirectional link, resolv-
ing link asymmetry. The path cost is the link cost
accumulated along a route, increasing with hop
count. This SNR metric-based routing provides
robustness while possibly increasing hop count
(forwarding overhead), for example, by selecting
a -50 dBm node rather than a -80 dBm node,
which is a reasonable trade-off since routers are
free from energy constraints. Another advantage
is that the routing topology can be stable even
when the link layer suffers from data packet loss
due to wireless congestion and/or interference.

A leaf node only holds the link cost for its
parent, with no routing metric; it focuses on the
direct link, not route length.

NEXT HOP SELECTION: TABLE- AND ADDRESS-DRIVEN

RPL provides non-storing and storing modes for
next hop selection of downward traffic, both of
which have scalability issues: packet and memory
overhead, respectively.

In contrast, Thread uses the routing table to
find a route only among routers, which bounds
memory overhead to at most 32 entries. To pro-
vide a route to a leaf node, Thread uses both the
routing table and an addressing technique. Given
that a leaf node exchanges packets with others
only through its parent router, the goal is to find a
route from the source to the parent router. To this
end, Thread encodes the parent router’s address
in a leaf node’s address: among the 16-bit IEEE
802.15.4 short address field, the first 6 bits are
used for the parent router’s address and the other
10 bits are used for a leaf node’s identifier. In this
way, when a node is willing to send a packet to a
leaf node, it extracts the parent router information
from the leaf node’s address and finds a route
toward the parent router based on the routing
table.

DUTY-CYCLING: LISTEN-AFTER-SEND

As a multi-layer standard, Thread specifies a
duty-cycling MAC: listen-after-send in the IEEE
802.15.4 standard. Taking advantage of always-on
routers, the duty-cycling protocol focuses on com-
munication between duty-cycled leaf nodes and
always-on routers; there is no direct communica-
tion between leaf nodes. Unlike most duty-cycling
protocols, which assume all nodes are duty-cy-
cled, Thread’s leaf node does not have to check if
the parent router is awake, enabling simple oper-
ation. Specifically, when a leaf node has a packet
to send to the parent, it simply wakes up, sends,
and sleeps. Downstream packets destined to a
leaf node are queued at that node’s parent. To
receive packets, the leaf node periodically wakes
up, sends a data request packet to its parent, and
listens for a short interval. Upon receiving the data
request packet, the parent node sends queued
packets to the leaf node. This data request pack-
et is also used for checking connectivity with
the parent. The duty-cycling mechanism enables
control of leaf node energy consumption via the
sleep interval [14].

Link margin (SNR) Link quality Link cost
>20dB 3 1
>10dB 2 2
>2dB 1 4
<2dB 0 Infinite

Table 2. Link margin conversion to one-way link
quality in Thread.

Given that RPL can be combined with any
link layer protocol, such as Time-Synchronized
Channel Hopping (TSCH) in the IEEE 802.15.4e
standard, it should be investigated whether the
specific link-layer protocol of Thread is good
enough in real environments.

MULTIPLE BORDER ROUTERS

In practical use cases, any node can fail for vari-
ous reasons; LLNs should avoid relying heavily on
a single node. Therefore, even when a single bor-
der router can connect all nodes, deploying mul-
tiple border routers is necessary to avoid a single
point of failure. Given that RPL’'s DODAG is root-
ed at one border router, however, RPL needs to
form multiple DODAG:s to include multiple border
routers. In addition, RPL allows a node to join only
one DODAG (per instance), resulting in two disjoint
DODAG:s rather than a single topology fully utilizing
all potential connectivity. Although the RPL standard
allows multiple border routers to coordinate to form
one DODAG with a single “virtual” root, it provides
no specific guidelines to realize this feature, so no
RPL implementation actually supports it.

Because Thread forms a full mesh instead of
DODAG:s, it can include all nodes and multiple
border routers in a single routing topology. This
significantly reduces the practical management
burden.

OPENTHREAD: A COMPLETE, OFFICIAL, AND

OPEN IMPLEMENTATION OF THREAD

By design, Thread solves many problems in RPL.
In LLNs, however, the devil has always been in
the implementation details. In particular, RPL
has suffered from incomplete implementations
[4]. To address the issue, Google/Nest, a lead-
ing member of the Thread Group, has open-
sourced an official/complete implementation of
Thread, called OpenThread (https://openthread.
io). OpenThread is a complete network imple-
mentation including all network layers. It has an
event-driven kernel to run by itself, but can also
be ported on an embedded operating system.

To evaluate OpenThread’s performance, we
ported OpenThread on RIOT-OS, an open source
embedded operating system, and used the Ham-
ilton embedded platform [15]. We first confirm
energy consumption of leaf nodes in two cases:
1. Periodic sensing and sending to the parent
2. Periodic reception from the parent, each

with 10 s between packets and good link

quality
In each case, a Hamilton device acting as a leaf
node consumes 30 pA and 21 pA, respectively,
resulting in lifetimes of 5.3 and 7.6 years, respec-
tively, with a 1400 mAh battery.

Unlike most duty-cycling
protocols, which assume
all nodes are duty-cy-
cled, Thread's leaf node
does not have to check
if the parent router is
awake, enabling simple
operation. Specifically,
when a leaf node has
a packet to send to the
parent, it simply wakes
up, sends, and sleeps.

IEEE Communications Magazine o July 2019

59

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Testbed topology with a snapshot of 5-hop upward routing paths
chosen by OpenThread when using transmission power of -8 dBm. Nodes
with the same hop count have the same color.

100

g 80t
E 60
T 40} -
& 20} T
O n n n
48 64 96
Traffic load [kbps]
(a)
20

N
()]

(¢)]

Route Changes
S

|
*
:I:L%
48 64 96

Traffic load [kbps]
(b)

o

Figure 2. Performance of OpenThread in the test-
bed as traffic load increases.

Reliability (%)

100 u i v 7
f 1} v v r\I/V\, v K \\/‘,\Il‘ \NFJ\,V\/“\/
751 I !
\J
50 A
254 —— TCP
—— UDP
0 T T T T T T T
0 5 10 15 20 25 30 35 40
Hour

Figure 3. Reliability of TCP and UDP over OpenThread for 40 hours.

To evaluate routing, we constructed a multi-
hop testbed with 15 Hamiltons (including the bor-
der router) in an office (Fig. 1). Each Hamilton
acts as a router and sends packets periodically
to the border router using its IEEE 802.15.4 radio
supporting a data rate of 250 kb/s. Figure 2 plots
OpenThread performance according to the total
input traffic load across all nodes. Figure 2a shows
that OpenThread does experience more packet
loss as traffic load increases. Figure 2b, however,
shows that even with severe packet loss, Open-
Thread maintains the routing topology and does
not intensify the problem. OpenThread provides
the opportunity to systematically investigate many
aspects of Thread, such as link/path cost, load

balancing, commissioning, and timely propagation
of network information.

WHAT ELSE Is MISSING?

Neither Thread nor RPL explicitly specifies the
transport- or application-layer protocols used on
top of IPv6. RPL, with its focus on upward routes,
favors protocols that require a unidirectional flow
of packets leaving the LLN, such as UDP-based
protocols. In contrast, Thread provides good
support for both upward and downward routes.
Therefore, it has promise to support protocols
with bidirectional packet flow. For example, TCP
could be used to collect data from sensor read-
ings, with data packets sent in one direction and
TCP ACKs in the other direction. Using TCP in
LLNs is interesting because it would improve
interoperability with the existing Internet services,
which primarily use TCP/IP [11].

As a proof of concept, we ran TCP and UDP
over OpenThread in the same testbed (Fig. 1)
simultaneously for 40 hours. Nodes 11, 12, 13,
and 14 generate a message every 10 s. Nodes 11
and 14 send the reading over UDP, and nodes 12
and 13 use TCP. Note that in our testbed envi-
ronment, human activities with various wireless
devices during daytime incur significant wire-
less interference. Figure 3 depicts the reliability
of each protocol for the duration of the experi-
ment, as the average of both nodes running each
protocol (TCP or UDP). Our results demonstrate
that whereas UDP does not provide reliable data
transport, TCP increases reliability to nearly 100
percent over multihop, lossy wireless links. TCP’s
reliability drops to 50 percent briefly at Hour 35
because Node 13 lost connectivity. This may have
been due to a routing failure in OpenThread; the
current OpenThread implementation does occa-
sionally experience disconnection in harsh wire-
less environments.

In addition, although Thread provides a fairly
stable routing topology in the presence of link
errors, it should also reduce these errors as a
multi-layer standard. Given that wireless interfer-
ence, such as Bluetooth and WiFi, is significant,
Thread’s link layer protocol should be more
robust. Applying TSCH could be an option.

CONCLUSION

We introduce Thread, showing its potential to
expand Internet connectivity to resource-con-
strained embedded devices over multiple
wireless hops. We do so via a comparative anal-
ysis with RPL, the de facto oT routing standard.
Thread has significant driving force, with an
active industrial consortium of more than 100
members (the Thread Group), and with com-
mercial Thread-enabled products on the market
from companies such as Google/Nest and NXP.
OpenThread opens the door for researchers to
investigate and even improve Thread'’s technical
design. Although we have shown the potential
of Thread, thorough experimental studies are
needed to reveal its behavior and performance
in detail. We ask the research community to
actively participate in this exciting move toward
the future loT.

Importantly, the RPL “standard” is flexible
(ambiguous at the same time) and leaves many
things for “implementation” choices. Many spe-

60

IEEE Communications Magazine e July 2019

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

cific design choices of Thread, such as its two-ti-
er architecture, control message-based route
update, path cost, and multiple border routers,
can possibly be implemented in the context
of RPL without violating its standard, although
implementation complexity could be problem-
atic. Investigation of Thread and OpenThread
may uncover the best choices for a RPL imple-
mentation.

ACKNOWLEDGMENT

This research is partly supported by the Depart-
ment of Energy Grant No. DE-EE0007685, Cal-
ifornia Energy Commission, Intel Corporation,
and the National Science Foundation Graduate
Research Fellowship Program under Grant No.
DGE-1752814. Any opinions, findings, and con-
clusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of the National Science
Foundation. We are thankful to Jonathan Hui,
principal software engineer at Google/Nest, for
his valuable feedback.

REFERENCES

[11). W. Hui and D. E. Culler, “Extending IP to Low-Power, Wire-
less Personal Area Networks,” IEEE Internet Computing, no.
4,2008, pp. 37-45.

[2] T. Winter et al., “RPL: IPv6 Routing Protocol for Low-Power
and Lossy Networks,” IETF RFC 6550, Mar. 2012.

[3] O. lova et al., “Rpl: The Routing Standard for the Internet of
Things... or Is It?” IEEE Commun. Mag., vol. 54, no. 12, Dec.
2016, pp. 16-22.

[4] H.-S. Kim et al., “Challenging the ipv6 Routing Protocol for
Low-Power and Lossy Networks (RPL): A Survey,” IEEE Com-
mun. Surveys & Tutorials, vol. 19, no. 4, 2017.

[5] D. Estrin et al., “Next Century Challenges: Scalable Coor-
dination in Sensor Networks,” Proc. 5th Annual ACM/IEEE
Int’l. Conf. Mobile Computing and Networking, 1999, pp.
263-70.

[6] C. A. Boano et al., “loTbench: Towards A Benchmark for
Low-Power Wireless Networking,” 1st Wksp. Benchmarking
Cyber-Physical Networks and Systems, 2018.

[71 1. Thread Group, “Thread 1.1.1 Specification,” Feb. 2017.

[8] O. Gnawali et al., “Collection Tree Protocol,” Proc. 7th ACM
Conf. Embedded Networked Sensor Systems, 2009, pp.
1-14.

[91 P. Levis et al., “Trickle: A Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Net-
works,” Proc. USENIX/ACM NSDI, 2004.

[10] H.-S. Kim, J. Ko, and S. Bahk, “Smarter Markets for Smart-
er Life: Applications, Challenges, and Deployment Experi-
ences,” IEEE Commun. Mag., vol. 55, no. 5, May 2017, pp.
34-41.

[11]1 S. Kumar et al., “Tcplp: System Design and Analysis of
Full-Scale TCP in Low-Power Networks.” arXiv preprint
arXiv:1811.02721, 2018.

[12] D. Han and O. Gnawali, “Performance of RPL Under Wire-
less Interference,” IEEE Commun. Mag., vol. 51, no. 12, Dec.
2013, pp. 137-43.

[13] K. Srinivasan et al., “An Empirical Study of Low-Power Wire-
less,” ACM Trans. Sensor Networks, vol. 6, no. 2, 2010, p. 16.

[14] T. Schmid et al., “Disentangling Wireless Sensing from
Mesh Networking,” Proc. 6th ACM Wksp. Hot Topics in
Embedded Networked Sensors, 2010, p. 3.

[15] H.-S. Kim et al., “System Architecture Directions for Post-
soc/32-Bit Networked Sensors,” Proc. ACM SenSys, 2018.

BIOGRAPHIES

HYUNG-SIN KM (hs.kim@berkeley.edu) is a postdoctoral
researcher of electrical engineering and computer science
(EECS) at the University of California (UC) Berkeley and part
of the RISE Lab and the Building Energy Transportation Systems
(BETS) group. His research interests include development of net-
worked embedded systems for the Internet of Things.

SAM KUMAR (samkumar@berkeley.edu) is a Ph.D. student in
EECS at UC Berkeley. He is part of the RISE Lab, and also part of
the BETS group. His research interests include systems, network-
ing, 10T, and security.

DAVID E. CULLER [F] (culler@berkeley.edu) is the Friesen Profes-
sor of EECS at UC Berkeley. He is a member of the National
Academy of Engineering and a Fellow of the ACM. He was
co-founder and CTO of Arch Rock Corporation and serves on
several corporate technical advisory boards.

OpenThread opens the
door for researchers to
investigate and even
improve Thread's tech-
nical design. Although
we have shown the
potential of Thread,
thorough experimental
studies are needed to
reveal its behavior and
performance in detail.
We ask the research
community to actively
participate in this excit-
ing move toward the
future loT.

IEEE Communications Magazine o July 2019

61

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 24,2020 at 23:04:34 UTC from IEEE Xplore. Restrictions apply.

