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Abstract

A key advance in learning generative models is the use of
amortized inference distributions that are jointly trained with
the models. We find that existing training objectives for vari-
ational autoencoders can lead to inaccurate amortized infer-
ence distributions and, in some cases, improving the objective
provably degrades the inference quality. In addition, it has
been observed that variational autoencoders tend to ignore the
latent variables when combined with a decoding distribution
that is too flexible. We again identify the cause in existing
training criteria and propose a new class of objectives (Info-
VAE) that mitigate these problems. We show that our model
can significantly improve the quality of the variational poste-
rior and can make effective use of the latent features regard-
less of the flexibility of the decoding distribution. Through
extensive qualitative and quantitative analyses, we demon-
strate that our models outperform competing approaches on
multiple performance metrics.

Introduction

Generative models have shown great promise in modeling
complex distributions such as natural images and text (Rad-
ford, Metz, and Chintala 2015; Zhu et al. 2017; Yang et al.
2017; Li, Song, and Ermon 2017). These are directed graph-
ical models which represent the joint distribution between
the data and a set of hidden variables (features) capturing la-
tent factors of variation. The joint is factored as the product
of a prior over the latent variables and a conditional distribu-
tion of the visible variables given the latent ones. Usually a
simple prior distribution is provided for the latent variables,
while the distribution of the input conditioned on latent vari-
ables is complex and modeled with a deep network.

However, variational autoencoders have several problems.
First, the approximate inference distribution is often signif-
icantly different from the true posterior. Previous methods
have resorted to using more flexible variational families to
better approximate the true posterior distribution (Kingma,
Salimans, and Welling 2016). However we find that the
problem is rooted in the ELBO training objective itself. In
fact, we show that the ELBO objective favors fitting the
data distribution over performing correct amortized infer-
ence. When the two goals are conflicting (e.g., because of
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limited capacity), the ELBO objective tends to sacrifice cor-
rect inference to better fit (or potentially overfit) the training
data.

Another problem that has been observed is that when the
conditional distribution is sufficiently expressive, the latent
variables are often ignored (Chen et al. 2016). That is, the
model only uses a single conditional distribution component
to model the data, effectively ignoring the latent variables
and fails to take advantage of the mixture modeling capabil-
ity of the VAE. In addition, one goal of unsupervised learn-
ing is to learn meaningful latent representations, but this ob-
viously fails if the latent variables are ignored. Some so-
lutions have been proposed in (Chen et al. 2016) by limit-
ing the capacity of the conditional distribution, but this re-
quires manual and problem-specific design of the features
we would like to extract.

In this paper we propose a novel solution by framing both
problems as explicit modeling choices: we introduce new
training objectives where it is possible to weight the pref-
erence between correct inference and fitting the data distri-
bution, and specify a preference on how much the model
should rely on the latent variables. This choice is only im-
plicitly made in the traditional ELBO objective. We make
this choice explicit and generalize the ELBO objective by
adding additional terms that allow users to select their pref-
erences. Despite of the addition of seemingly intractable
terms, we find an equivalent form that can still be efficiently
optimized.

Our new family also generalizes known models including
the β-VAE (Higgins et al. 2017) and Adversarial Autoen-
coders (Makhzani et al. 2015). In addition to deriving these
models as special cases, we provide generic principles for
hyper-parameter selection that work well in all the experi-
mental settings we considered. Finally we perform extensive
experiments to evaluate our newly introduced model family,
and compare with existing models on multiple metrics of
performance such as log-likelihood, sampling quality, and
semi-supervised performance. An instantiation of our gen-
eral framework called MMD-VAE achieves better or on-par
performance on all metrics we considered. We further ob-
serve that our model can lead to better amortized inference,
and utilize the latent variables even in the presence of a very
flexible decoder.
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Variational Autoencoders
A latent variable generative model defines a joint distribu-
tion between (latent) features z ∈ Z , and inputs x ∈ X .
Usually we assume a simple prior distribution p(z) over the
features, such as Gaussian or uniform, and model the data
distribution with a complex conditional distribution pθ(x|z),
where pθ(x|z) is often parameterized with a neural network.
Suppose the true underlying distribution is pD(x) (that is
approximated by a training set), then a natural training ob-
jective is maximum (marginal) likelihood

EpD(x)[log pθ(x)] = EpD(x)[logEp(z)[pθ(x|z)]] (1)

However direct optimization of the likelihood is intractable
because computing pθ(x) =

∫
z
pθ(x|z)p(z)dz requires in-

tegration. A classic approach (Kingma and Welling 2013)
is to define an amortized inference distribution qφ(z|x) and
jointly optimize a lower bound to the log-likelihood

LELBO(x) = −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)[log pθ(x|z)]

≤ log pθ(x)

We further average this over the data distribution pD(x)
to obtain the final optimization objective

LELBO = EpD(x)[LELBO(x)] ≤ EpD(x)[log pθ(x)]

Equivalent Forms of the ELBO Objective

There are several ways to equivalently rewrite the ELBO ob-
jective that will become useful in our following analysis. We
define the joint generative distribution as

pθ(x, z) ≡ p(z)pθ(x|z)
In fact we can correspondingly define a joint “inference dis-
tribution”

qφ(x, z) ≡ pD(x)qφ(z|x)
Note that the two definitions are symmetrical. In the former
case we start from a known distribution p(z) and learn the
conditional distribution on X , in the latter we start from a
known (empirical) distribution pD(x) and learn the condi-
tional distribution on Z given x. We also correspondingly
define any conditional and marginal distributions as follows:

pθ(x) =

∫
z

pθ(x, z)dz Marginal of pθ(x, z) on x

pθ(z|x) ∝ pθ(x, z) Posterior of pθ(x|z)

qφ(z) =

∫
x

qφ(x, z)dx Marginal of qφ(x, z) on z

qφ(x|z) ∝ qφ(x, z) Posterior of qφ(z|x)
For the purposes of optimization, the ELBO objective can
be written equivalently (up to an additive constant) as

LELBO ≡ −DKL(qφ(x, z)‖pθ(x, z)) (2)

= −DKL(pD(x)‖pθ(x)) (3)

− EpD(x)[DKL(qφ(z|x)‖pθ(z|x))]
= −DKL(qφ(z)‖p(z))

− Eqφ(z)[DKL(qφ(x|z)‖pθ(x|z))] (4)

We prove the first equivalence in the appendix. The second
and third equivalence are simple applications of the addi-
tive property of KL divergence. All three forms of ELBO in
Eqns. (2),(3),(4) are useful in our analysis.

Two Problems of Variational Autoencoders

Amortized Inference Failures

Under ideal conditions, optimizing the ELBO objective us-
ing sufficiently flexible model families for pθ(x|z) and
qφ(z|x) over θ, φ will achieve both goals of correctly cap-
turing pD(x) and performing correct amortized inference.
This can be seen by examining Eq. (3). This form indicates
that the ELBO objective is minimizing the KL divergence
between the data distribution pD(x) and the (marginal)
model distribution pθ(x), as well as the KL divergence be-
tween the variational posterior qφ(z|x) and the true posterior
pθ(z|x). However, with finite model capacity the two goals
can be conflicting and subtle tradeoffs and failure modes can
emerge from optimizing the ELBO objective.

In particular, one limitation of the ELBO objective is that
it might fail to learn an amortized inference distribution
qφ(z|x) that approximates the true posterior pθ(z|x). This
can happen for two different reasons:

Inherent properties of the ELBO objective: the ELBO
objective can be maximized (even to +∞ in pathologi-
cal cases) even with a very inaccurate variational posterior
qφ(z|x).

Implicit modeling bias: common modeling choices
(such as the high dimensionality of X compared to Z) tend
to sacrifice variational inference vs. data fit when modeling
capacity is not sufficient to achieve both.

We will explain in turn why these failures happen.

Good ELBO Values Do Not Imply Accurate Inference
We first provide some intuition to this phenomena, then for-
mally prove the result for a pathological case of continuous
spaces and Gaussian distributions. Finally we justify in the
experiments section that this happens in realistic settings on
real datasets (in both continuous and discrete spaces).

The ELBO objective in original form has two compo-
nents, a log likelihood (reconstruction) term LAE and a reg-
ularization term LREG:

LELBO(x) = LAE(x) + LREG(x)

≡ Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))
Let us first consider what happens if we only optimize LAE

and not LREG. The first term maximizes the log likelihood
of observing data point x given its inferred latent variables
z ∼ qφ(z|x). Consider a finite dataset {x1, · · · , xN}. Let qφ
be such that for xi 6= xj , qφ(z|xi) and qφ(z|xj) are distri-
butions with disjoint supports. Then we can learn a pθ(x|z)
mapping the support of each qφ(z|xi) to a distribution con-
centrated on xi, leading to very large LAE (for continuous
distributions pθ(x|z) may even tend to a Dirac delta distri-
bution and LAE tends to +∞). Intuitively, the LAE compo-
nent will encourage choosing qφ(z|xi) with disjoint support
when xi 6= xj .

In almost all practical cases, the variational distribution
family for qφ is supported on the entire space Z (e.g.,
it is a Gaussian with non-zero variance, or IAF poste-
rior (Kingma, Salimans, and Welling 2016)), preventing dis-
joint supports. However, attempting to learn disjoint sup-
ports for qφ(z|xi), xi 6= xj will ”push” the mass of the
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distributions away from each other. For example, for con-
tinuous distributions, if qφ maps each xi to a Gaussian
N (µi, σi), the LAE term will encourage µi → ∞, σi → 0+.

This undesirable result may be prevented if the LREG

term can counter-balance this tendency. However, we show
that the regularization term LREG is not always sufficiently
strong to prevent this issue. We first prove this fact in the
simple case of a mixture of two Gaussians. We will then
evaluate this finding empirically on realistic datasets in the
experiments section .

Proposition 1. Let X ,Z = R, and D be a dataset with
two samples {−1, 1}; let pθ(x|z) be selected from the fam-
ily of all functions µp

θ, σ
p
θ that map z ∈ Z to a Gaussian

N (µp
θ(z), σ

p
θ (z)) on X , and qφ(z|x) be selected from the

family of all functions µq
φ, σ

q
φ that map x ∈ X to a Gaussian

N (µq
φ(z), σ

q
φ(z)) on Z . Then LELBO can be maximized to

+∞ when

µq
φ(x = 1) → +∞ µq

φ(x = −1) → −∞
σq
φ(x = 1) → 0+ σq

φ(x = −1) → 0+

and θ is optimally selected given φ. In addition the varia-
tional gap DKL(qφ(z|x)‖pθ(z|x)) → +∞ for all x ∈ D.

A proof can be found the in Appendix1. This means that
amortized inference has completely failed, even though the
ELBO objective can be made arbitrarily large. The model
learns an inference distribution qφ(z|x) that pushes all prob-
ability mass to ∞. This will become infinitely far from the
true posterior pθ(z|x) as measured by DKL.

Modeling Bias In the above example we indicated a po-
tential problem with the ELBO objective where the model
tends to push the probability mass of qφ(z|x) too far from 0.
This tendency is a property of the ELBO objective and true
for any X and Z . However this is made worse by the fact
that X is often higher dimensional compared to Z , so any
error in fitting X will be magnified compared to Z .

For example, consider fitting an n dimensional distribu-
tion N (0, I) with N (ǫ, I) using KL divergence, then

DKL(N (0, I),N (ǫ, I)) = nǫ2/2

As n increases with some fixed ǫ, the Euclidean distance be-
tween the means of the two distributions is Θ(

√
n), yet the

corresponding DKL becomes Θ(n). For natural images, the
dimensionality of X is often orders of magnitude larger than
the dimensionality of Z . Recall in Eq.(4) that ELBO is opti-
mizing both DKL(qφ(z)‖p(z)) and DKL(qφ(x|z)‖pθ(x|z)).
Because the same per-dimensional modeling error incurs a
much larger loss in X space than Z space, when the two
objectives are conflicting (e.g., because of limited modeling
capacity), the model will tend to sacrifice divergences on Z
and focus on minimizing divergences on X .

Regardless of the cause (properties of ELBO or modeling
choices), this is generally an undesirable phenomenon for
two reasons:

1) One may care about accurate inference more than gen-
erating sharp samples. For example, generative models are

1Appendix in technical report (Zhao, Song, and Ermon 2017)

often used for down stream tasks such as semi supervised
learning.

2) Overfitting: Because pD is an empirical (finite) distri-
bution in practice, matching it too closely can lead to poor
generalization (Shu et al. 2018).

Both issues are observed in the experiments section.

The Information Preference Property

Using a complex decoding distribution pθ(x|z) such as
PixelRNN/PixelCNN (van den Oord, Kalchbrenner, and
Kavukcuoglu 2016; Gulrajani et al. 2016) has been shown
to significantly improve sample quality on complex natural
image datasets. However, this approach suffers from a new
problem: it tends to neglect the latent variables z altogether,
that is, the mutual information between z and x becomes
vanishingly small. Intuitively, the reason is that the learned
pθ(x|z) is the same for all z ∈ Z , implying that the z is
not dependent on the input x. This is undesirable because a
major goal of unsupervised learning is to learn meaningful
latent features which should depend on the inputs.

This effect, which we shall refer to as the information
preference problem, was studied in (Chen et al. 2016) with a
coding efficiency argument. Here we provide an alternative
interpretation and a novel solution to this problem.

We inspect the ELBO in the form of Eq.(3), and consider
the two terms respectively. We show that both can be opti-
mized to 0 without utilizing the latent variables.

DKL(pD(x)||pθ(x)): Suppose the model family
{pθ(·|z), θ ∈ Θ} is sufficiently flexible and there ex-
ists a θ∗ such that for every z ∈ Z , pθ∗(·|z) and pD(·)
are identical. Then we select this θ∗ and the marginal
pθ∗(x) =

∫
z
p(z)pθ∗(x|z)dz = pD(x), hence this

divergence DKL(pD(x)||pθ(x)) = 0 which is optimal.
EpD(x)[DKL(qφ(z|x)||pθ(z|x))]: Because pθ∗(·|z) is the

same for every z (x is independent from z) we have
pθ∗(z|x) = p(z). Because p(z) is usually a simple distri-
bution, if it is possible to choose φ such that qφ(z|x) =
p(z), ∀x ∈ X , this divergence will also achieve the optimal
value of 0.

Because LELBO is the sum of the above divergences,
when both are 0, this is a global optimum. There is no in-
centive for the model to learn otherwise, undermining our
purpose of learning a latent variable model.

The InfoVAE Model Family

In order to remedy these two problems we define a new
training objective that will learn both the correct model and
amortized inference distributions. We begin with the form of
ELBO in Eq. (4)

LELBO = −DKL(qφ(z)‖p(z))−
Ep(z)[DKL(qφ(x|z)‖pθ(x|z))]

First we add a scaling parameter λ to the divergence be-
tween qφ(z) and p(z) to increase its weight and counter-act
the imbalance between X and Z (see previous discussion).
Next we add a mutual information maximization term to en-
courage high mutual information between x and z. This en-
courages the model to use the latent code and avoids the

5887



information preference problem. We arrive at the following
objective

LInfoVAE = −λDKL(qφ(z)‖p(z))−
Eq(z)[DKL(qφ(x|z)‖pθ(x|z))] + αIq(x; z) (5)

where Iq(x; z) is the mutual information between x and z
under the distribution qφ(x, z).

Even though we cannot directly optimize this objective,
we can rewrite this into an equivalent form that we can opti-
mize more efficiently (we prove this in the Appendix)

LInfoVAE ≡ EpD(x)Eqφ(z|x)[log pθ(x|z)]−
(1− α)EpD(x)DKL(qφ(z|x)||p(z))−
(α+ λ− 1)DKL(qφ(z)‖p(z)) (6)

The first two terms can be optimized by the reparameteriza-
tion trick as in the original ELBO objective. The last term
DKL(qφ(z)‖p(z)) is not easy to compute because we can-
not tractably evaluate log qφ(z). However we can obtain un-
biased samples from it by first sampling x ∼ pD, then z ∼
qφ(z|x), so we can optimize it by likelihood free optimiza-
tion techniques (Goodfellow et al. 2014; Nowozin, Cseke,
and Tomioka 2016; Arjovsky, Chintala, and Bottou 2017;
Gretton et al. 2007). In fact we may replace the term
DKL(qφ(z)‖p(z)) with anther divergence D(qφ(z)‖p(z))
that we can efficiently optimize over. Changing the diver-
gence may alter the empirical behavior of the model but we
show in the following theorem that replacing DKL with any
(strict) divergence is still correct (a divergence is strict if

D(qφ(z)‖p(z)) = 0 iff qφ(z) = p(z)). Let L̂InfoVAE be
the objective where we replace DKL(qφ(z)‖p(z)) with any
strict divergence D(qφ(z)‖p(z)).
Proposition 2. Let X and Z be continuous spaces, and α <
1, λ > 0. Given fixed mutual information I0, among the

set of qφ that satisfy Iq(x; z) = I0, L̂InfoVAE is globally
optimized if pθ(x) = pD(x) and qφ(z|x) = pθ(z|x), ∀z.

Proof of Proposition 2. See Appendix.

Note that in the proposition we have the additional re-
quirement that the mutual information Iq(x; z) is bounded.
This is inevitable because if α > 0 the objective can be op-
timized to +∞ by simply increasing the mutual information
infinitely. In our experiments simply ensuring that qφ(z|x)
does not have vanishing variance is sufficient to regularize
the behavior of the model.

Relation to VAE and β-VAE: This model family gen-
eralizes several previous models. When α = 0 and λ = 1
we get back the original ELBO objective. When λ > 0 is
freely chosen, while α + λ − 1 = 0, and we use the DKL

divergences, we get the β-VAE (Higgins et al. 2017) model
family. However, β-VAE models cannot effectively trade-off
weighing of X and Z and information preference. In par-
ticular, for every λ there is a unique value of α = 1 − λ
that we can choose. For example, if we choose a large value
of λ ≫ 1 to balance the importance of observed and latent
spaces (X and Z), we must also choose α ≪ 0, which forces
the model to penalize mutual information. This in turn can
lead to under-fitting or ignoring the latent variables.

Relation to Adversarial Autoencoders (AAE): When
α = 1, λ = 1 and D is chosen to be the Jensen Shannon di-
vergence we get the adversarial autoencoders in (Makhzani
et al. 2015). This paper generalizes AAE, but more impor-
tantly we provide a deeper understanding of the correctness
and desirable properties of AAE. Furthermore, we charac-
terize settings when AAE is preferable compared to VAE
(i.e. when we would like to have α = 1).

Relation to Information Theoretical Analysis: Several
other lines of work analyze mutual information in latent
variable generative models from different perspectives, in-
cluding (Zhao, Song, and Ermon 2018; Alemi et al. 2017).

Our generalization introduces new parameters, but the
meaning and effect of the various parameter choices is clear.
We always select λ to a value that makes the loss on X ap-
proximately the same as the loss on Z . We also recommend
setting α = 0 when pθ(x|z) is a simple distribution, and
α = 1 when pθ(x|z) is a complex distribution and informa-
tion preference is a concern. The final degree of freedom is
the divergence D(qφ(z)‖p(z)) to use. We will explore this
topic in the next section.

Divergences Families

We consider and compare three divergences in this paper.
Adversarial Training: Adversarial autoencoders (AAE)

proposed in (Makhzani et al. 2015) use an adversarial dis-
criminator to approximately minimize the Jensen-Shannon
divergence (Goodfellow et al. 2014) between qφ(z) and
p(z). However, when p(z) is a simple distribution such as
Gaussian, there are preferable alternatives. In fact, adversar-
ial training can be unstable and slow even when we apply
recent techniques for stabilizing GAN training (Arjovsky,
Chintala, and Bottou 2017; Gulrajani et al. 2017).

Stein Variational Gradient: The Stein variational gradi-
ent (Liu and Wang 2016) is a simple and effective framework
for matching a distribution q to p by computing effectively
∇φDKL(qφ(z)||p(z)) which we can use for gradient descent
minimization of DKL(qφ(z)||p(z)). However a weakness of
these methods is that they are difficult to apply efficiently in
high dimensions. We give a detailed overview of this method
in the Appendix.

Maximum-Mean Discrepancy: Maximum-Mean Dis-
crepancy (MMD) (Gretton et al. 2007; Li, Swersky, and
Zemel 2015; Dziugaite, Roy, and Ghahramani 2015) is a
framework to quantify the distance between two distribu-
tions by comparing all of their moments. It can be efficiently
implemented using the kernel trick. Letting k(·, ·) be any
positive definite kernel, the MMD between p and q is

DMMD(q‖p) = Ep(z),p(z′)[k(z, z
′)]− 2Eq(z),p(z′)[k(z, z

′)]

+ Eq(z),q(z′)[k(z, z
′)]

DMMD = 0 if and only if p = q.

Experiments

Variance Overestimation with ELBO training

We first perform some simple experiments on toy data and
MNIST to demonstrate that ELBO suffers from inaccurate
inference in practice, and adding the scaling term λ in Eq.(5)
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