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Abstract

Geospatial analysis lacks methods like the word vector repre-
sentations and pre-trained networks that significantly boost
performance across a wide range of natural language and
computer vision tasks. To fill this gap, we introduce Tile2 Vec,
an unsupervised representation learning algorithm that ex-
tends the distributional hypothesis from natural language —
words appearing in similar contexts tend to have similar
meanings — to spatially distributed data. We demonstrate
empirically that Tile2Vec learns semantically meaningful
representations for both image and non-image datasets. Our
learned representations significantly improve performance in
downstream classification tasks and, similarly to word vec-
tors, allow visual analogies to be obtained via simple arith-
metic in the latent space.

1 Introduction

Remote sensing, the measurement of the Earth’s surface
through aircraft- or satellite-based sensors, is becoming in-
creasingly important to many applications, including land
use monitoring, precision agriculture, and military intelli-
gence (Foody 2003; Mulla 2013; Oshri et al. 2018). Com-
bined with recent advances in deep learning and computer
vision (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016), there is enormous potential for monitoring global is-
sues through the automated analysis of remote sensing and
other geospatial data streams. However, recent successes in
machine learning have largely relied on supervised learn-
ing techniques and the availability of very large annotated
datasets. Remote sensing provides a huge supply of data,
but many downstream tasks of interest are constrained by a
lack of labels.

The research community has developed a number of tech-
niques to mitigate the need for labeled data. Often, the key
underlying idea is to find a low-dimensional representa-
tion of the data that is more suitable for downstream ma-
chine learning tasks. In many NLP applications, pre-trained
word vectors have led to dramatic performance improve-
ments. In computer vision, pre-training on ImageNet is a de
facto standard that drastically reduces the amount of train-
ing data needed for new tasks. Existing techniques, how-
ever, are not suitable for remote sensing data that, while su-
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perficially resembling natural images, have unique charac-
teristics that require new methodologies. Unlike natural im-
ages — object-centric, two-dimensional depictions of three-
dimensional scenes remote sensing images are taken
from a bird’s eye perspective, and they are also often multi-
spectral. These differences present both challenges and op-
portunities. On one hand, models pre-trained on ImageNet
do not transfer well and cannot take advantage of additional
spectral bands (Xie et al. 2016). On the other, there are fewer
occlusions, permutations of object placement, and changes
of scale to contend with — this spatial coherence provides a
powerful signal for learning representations.

Our main assumption is that image tiles that are geo-
graphic neighbors (i.e., close spatially) should have similar
semantics and therefore representations, while tiles far apart
are likely to have dissimilar semantics and should therefore
have dissimilar representations. This is akin to the distribu-
tional hypothesis used to construct word vector representa-
tions in natural language: words that appear in similar con-
texts should have similar meanings. The main computational
(and statistical) challenge is that image patches are them-
selves complex, high-dimensional vectors, unlike words.

In this paper, we propose Tile2Vec, a method for learn-
ing compressed yet informative representations from unla-
beled remote sensing data. We evaluate our algorithm on a
wide range of remote sensing datasets and find that it gen-
eralizes across data modalities, with stable training and ro-
bustness to hyperparameter choices. On a difficult land use
classification task, our learned representations outperform
other unsupervised features and even exceed the perfor-
mance of supervised models trained on large labeled train-
ing sets. Tile2Vec learns a meaningful embedding space,
demonstrated through visual query by example, latent space
interpolation, and visual analogy experiments. Finally, we
apply Tile2Vec to the non-image task of predicting coun-
try health indices from economic data, suggesting that real-
world applications of Tile2Vec may extend to domains be-
yond remote sensing.

2 Tile2Vec

For clarity, in this section we focus on the application of
Tile2Vec to remotely sensed image datasets. The extension
to non-image spatial data is straightforward, and we revisit
this setting in Section 4.4.



2.1 Distributional semantics

The distributional hypothesis in linguistics is the idea that
“a word is characterized by the company it keeps”. In NLP,
algorithms like Word2vec and GloVe leverage this assump-
tion to learn continuous representations that capture the nu-
anced meanings of huge vocabularies of words. The strategy
is to build a co-occurrence matrix and solve an implicit ma-
trix factorization problem, learning a low-rank approxima-
tion where words that appear in similar contexts have sim-
ilar representations (Levy and Goldberg 2014; Pennington,
Socher, and Manning 2014; Mikolov et al. 2013b).

To extend these ideas to geospatial data, we need to an-
swer the following questions:

e What is the right atomic unit, i.e., the equivalent of indi-
vidual words in NLP?

e What is the right notion of context?

For atomic units, we propose to learn representations at
the level of remote sensing tiles, a generalization of im-
age patches to multispectral data. This introduces new chal-
lenges as tiles are high-dimensional objects — computations
on co-occurrence tensors of tiles would quickly become in-
tractable, and statistics almost impossible to estimate from
finite data. Convolutional neural networks (CNNs) will play
a crucial role in projecting down the dimensionality of our
inputs.

For context, we rely on spatial neighborhoods. Distance
in geographic space provides a form of weak supervision:
we assume that tiles that are close together have similar se-
mantics and therefore should, on average, have more similar
representations than tiles that are far apart. By exploiting this
fact that landscapes in remote sensing datasets are highly
spatially correlated, we hope to extract enough learning sig-
nal to reliably train deep neural networks.

2.2 Unsupervised triplet loss

To learn a mapping from image tiles to low-dimensional em-
beddings, we train a convolutional neural network on triplets
of tiles, where each triplet consists of an anchor tile ,, a
neighbor tile ¢,, that is close ﬁeographically, and a distant
tile ¢4 that is farther away. Following our distributional as-
sumption, we want to minimize the Euclidean distance be-
tween the embeddings of the anchor tile and the neighbor
tile, while maximizing the distance between the anchor and
distant embeddings. For each tile triplet t = (¢4, t,,tq), We
seek to minimize the triplet loss

L(t) = [[Ifo(ta) = fo(tn)ll2 = |l fo(ta) = fo(ta)ll2 +m], (1)

To prevent the network from pushing the distant tile farther
without restriction, we introduce a rectifier [ with margin
m. Once the distance to the distant embedding exceeds the
distance to the neighbor embedding by at least the margin,
we are satisfied. Here, fy is a CNN with parameters 6 that
maps from the domain of image tiles &’ to d-dimensional
real-valued vector representations, fy : X — R%,

Notice that when ||fo(ts) — fo(tn)llz < |lfo(ta) —
fo(ta)]|2, all embeddings can be scaled by some constant
in order to satisfy the margin and bring the loss to zero. We
observe this behavior empirically — beyond a small number

of iterations, the CNN learns to increase embedding mag-
nitudes and the loss decreases to zero. By penalizing the
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Figure 1: Top: Light blue boxes denote anchor tiles, dark
blue neighbor tiles, and red distant tiles. Bottom: Tile
triplets corresponding to the top panel. The columns show
anchor, neighbor, and distant tiles and their respective CDL
class labels. Anchor and neighbor tiles tend to be the same
class, while anchor and distant tend to be different.
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embeddings’ [2-norms, we constrain the network to gener-
ate embeddings within a h%/persphere and encourage a better
representation, not just a bigger one. Given a dataset of N
tile triplets, our full training objective is

N
min >~ [266D) + A (11287112 + 1120112 +11:0112)] . @)
i=1

where A\ controls the regularization strength and z,(f)
o( ((f)) € R? and similarly for 29

and zg).

2.3 Triplet sampling

The sampling procedure for ¢,, t,, and ¢4 is described by
two parameters:

o Tile size defines the pixel width and height of a single tile.

e Neighborhood defines the region around the anchor tile
from which to sample the neighbor tile. In our implemen-
tation, if the neighborhood is 100 pixels, then the center of
the neighbor tile must be within 100 pixels of the anchor
tile center both vertically and horizontally. The distant tile

is sampled at random from outside this region.

Tile size should be chosen so that tiles are large enough
to contain information at the scale needed for downstream
tasks. Neighborhood should be small enough that neighbor
tiles will be semantically similar to the anchor tile, but large



Algorithm 1 SampleTileTriplets(D, N, s, 1)

1. Input: Image dataset D, number of triplets N, tile size s,
neighborhood radius r

: Output: Tile triplets T' = {(tff), 9, tfﬁ)}f;l

. Initialize tile triplets T' = {}
: fori < 1, N do

()« SAMPLETILE(D, s)
tsf) < SAMPLETILE(NEIGHBORHOOD(D, r, tff)), s)
t$/) < SAMPLETILE(-=NEIGHBORHOOD(D, 1, t{), 5)
9 Update T < T'U (tff), D, tfii))
. end for
: return T’

R N o

. function SAMPLETILE(A, s)

t < Sample tile of size s uniformly at random from A
return ¢

. end function

. function NEIGHBORHOOD(D, r, t)

A < Subset of D within radius r of tile ¢
return A

. end function

enough to capture intra-class (and potentially some inter-
class) variability. In practice, we find that plotting some ex-
ample triplets as in Fig. 1 allowed us to find reasonable val-
ues for these parameters. Results across tile size and neigh-
borhood on our land cover classification experiment are re-
ported in Table A3.!

Pseudocode for sampling a dataset of triplets is given in
Algorithm 1. Note that no knowledge of actual geographi-
cal locations is needed, so Tile2Vec can be applied to any
dataset without knowledge of the data collection procedure.

2.4 Scalability

Like most deep learning algorithms, the Tile2Vec objec-
tive (Eq. 2) allows for mini-batch training on large datasets.
More importantly, the use of the triplet loss allows the train-
ing dataset to grow with a quadratic relationship relative to
the size of the available remote sensing data. Concretely,
assume that for a given remote sensing dataset we have a
sampling budget of N triplets. If we train using the straight-
forward approach of Eq. 2, we will iterate over N training
examples in each epoch. However, we notice that in most
cases the area covered by our dataset is much larger than
the area of a single neighborhood. For any tile ¢, the likeli-
hood that any particular ¢’ in the other (N — 1) tiles is in its
neighborhood is extremely low. Therefore, at training time
we can match any (t,,t,) pair with any of the 3N tiles in
the dataset to increase the number of unique example triplets
that the network sees from O(N) to O(N?).

In practice, we find that combining Tile2 Vec with this data
augmentation scheme to create massive datasets results in
an algorithm that is easy to train, robust to hyperparameter
choices, and resistant to overfitting. This point will be revis-
ited in section 4.1.

! Appendix available at https://arxiv.org/abs/1805.02855.

3969

3 Datasets

We evaluate Tile2Vec on several widely-used classes of re-
mote sensing imagery, as well as a non-image dataset of
country characteristics. A brief overview of data organized
by experiment is given here, with more detailed descriptions
in Appendix A.5.

3.1 Land cover classification

We first evaluate Tile2Vec on a land use classification task
— predicting what is on the Earth’s surface from remotely
sensed imagery — that uses the following two datasets: The
USDA’s National Agriculture Imagery Program (NAIP)
provides aerial imagery for public use that has four spectral
bands — red (R), green (G), blue (B), and infrared (N) —
at 0.6 m ground resolution. We obtain an image of Central
Valley, California near the city of Fresno for the year 2016
(Fig. 2), spanning latitudes [36.45,37.05] and longitudes
[—120.25, —119.65]. The Cropland Data Layer (CDL) is a
raster geo-referenced land cover map collected by the USDA
for the continental United States (USDA-NASS 2016). Of-
fered at 30 m resolution, it includes 132 class labels span-
ning crops, developed areas, forest, water, and more. In our
NAIP dataset, we observe 66 CDL classes (Fig. A10). We
use CDL as ground truth for evaluation by upsampling it to
NAIP resolution.

3.2 Latent space interpolation and visual analogy

We explore Tile2Vec embeddings by visualizing linearly in-
terpolated tiles in the learned feature space and performing
visual analogies on two datasets. Tiles sampled from NAIP
are used in the latent space interpolation evaluation. The
USGS and NASA’s Landsat 8 satellite provide moderate-
resolution (30 m) multispectral imagery on a 16-day col-
lection cycle. Landsat datasets are public and widely used
in agricultural, environmental, and other scientific applica-
tions. We generate median Landsat 8 composites containing
7 spectral bands over the urban and rural areas of three ma-

jor US cities — San Francisco, New York City, and Boston

— for a visual analogy evaluation.

3.3 Poverty prediction in Uganda

We evaluate the regression task of predicting local poverty
levels from Landsat 7 composites of Uganda from 2009-
2011 containing 5 spectral bands. The World Bank’s Living
Standards Measurement Study (LSMS) surveys measure
annual consumption expenditure at the household and vil-
lage levels — these measurements are the basis for deter-
mining international standards for extreme poverty. We use
the Uganda 2011-12 survey as labels for the poverty predic-
tion task described in (Jean et al. 2016).

3.4 Worldwide country health index prediction

Lastly, to demonstrate that Tile2Vec can be used with other
high-dimensional vector data within a spatial context, we
predict a subset of country characteristics from other country
features. The CIA World Factbook is an annual document
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Figure 2: Left: Our NAIP aerial imagery covers 2500 km? around Fresno, California. Center: Land cover types as labeled by
the Cropland Data Layer (CDL, see Section 3.1) show a highly heterogeneous landscape; each color represents a different CDL
class. Right: For the land cover classification task, we split the dataset spatially into train, validation, and test sets.

compiled by the U.S. Central Intelligence Agency contain-
ing information on the governments, economies, energy sys-
tems, and societies of 267 world entities (Factbook 2015).
We extract a dataset from the 2015 Factbook that contains
73 real-valued features (e.g., infant mortality rate, GDP per
capita, crude oil production) for 242 countries.

4 Experiments
4.1 Land cover classification using aerial imagery

We train Tile2Vec embeddings on 100k triplets sampled
from the NAIP dataset. The Tile2Vec CNN is a ResNet-18
architecture (He et al. 2016) modified for 28 x 28 CIFAR-
10 images (1) with an additional residual block to handle
our larger input and (2) without the final classification layer.
Each of the 300k 50 x 50 NAIP tiles is labeled with the mode
CDL land cover class and our evaluation metric is classifi-
cation accuracy on this label.

To ensure that training and test sets are spatially disjoint,
we split the area into a 12 x 12 grid of rectangular blocks,
which we then partitioned randomly into train (104 blocks),
validation (20 blocks), and test (20 blocks) (Fig. 2, right).
Each of these blocks is just over 17 km? in size, roughly
5000 times the size of each tile. By splitting the dataset at the
block level, we are able to reduce the spatial autocorrelation
and estimate generalization error with minimal inflation.

Tile2Vec hyperparameter optimization We tune the two
main hyperparameters of Algorithm 1 by searching over
a grid of tile sizes and neighborhoods. We run the CDL
land cover classification experiment 20 times in total, us-
ing combinations of tile size in [25, 50, 75, 100] and neigh-
borhood radius in [50, 100, 500, 1000, None|, where None
indicates that both the neighbor and distant tiles are sam-
pled from anywhere in the dataset (i.e., infinite radius). The
resulting accuracies are reported in Table Al. Results sug-
gest that on this task and dataset, a neighborhood radius of
100 pixels strikes the ideal balance between sampling se-
mantically similar tiles and capturing intra-class variabil-
ity, though classification accuracy remains higher than the

3970

model with infinite radius even when the neighborhood is
increased to 1000 pixels. Accuracy also increases with tile
size, which can be attributed to greater imbalance of labels
at larger tile sizes (Appendix A.4) as well as greater avail-
able spatial context for classification.

Because CDL labels are at a resolution (30 m) equivalent
to 50 NAIP pixels (0.6 m), we ultimately choose a tile size of
50 and neighborhood of 100 pixels for the land cover classi-
fication task. For consistency, subsequent experiments also
use these default hyperparameters. Although these default
hyperparameters yield high performance in most cases, they
should generally be optimized for new datasets and tasks.

Unsupervised learning baselines We compare Tile2Vec
to a number of unsupervised feature extraction methods. We
describe each baseline here, and provide additional training
details in Appendix A.1.

Autoencoder: A convolutional autoencoder is trained on
all 300k multispectral tiles, split 90% training and 10%
validation. We train until the validation reconstruction er-
ror flattens; the encoder is then used to embed tiles into
the feature space. The autoencoder achieves good recon-
structions on the held-out test set (examples in Appendix
A.l).

Pre-trained ResNet-18: A modified ResNet-18 was
trained on resized CIFAR-10 images and used as a fea-
ture extractor. Since CIFAR-10 only has RGB channels,
this approach only allows for use of the RGB bands of
NAIP and illustrates the limitations of transferring mod-
els from natural images to remote sensing datasets.

PCA/ICA: Each RGBN tile of shape (50,50,4) is un-
raveled into a vector of length 10,000 and then PCA/ICA
is used to compute the first 10 principal components for
each tile.

K-means: Tiles are clustered in pixel space using k-
means with & = 10, and each tile is represented as 10-
dimensional vectors of distances to each cluster centroid.



n = 1000 n = 10000

Unsupervised features RF LR MLP RF LR MLP

Tile2Vec 526+11 537+13 551+12 569 +03 59.7+03 584+0.3
Autoencoder 49.1+0.7 447+10 520+10 53.1+£02 556+02 572+04
Pre-trained ResNet-18 47.74+ 0.6 4844+08 4994+17 50.6+02 53.74+02 5444+04
PCA 469 +0.8 502+04 436+53 501+£03 51.1+0.1 524+0.3
ICA 477+0.6 501+06 467+31 504+04 51.1+01 525+02
K-Means 43.1+0.8 494+04 445+39 456+0.5 500+0.1 505+02

Table 1: Comparison of Tile2Vec features to unsupervised baselines on the CDL classification task in Section 4.1. Random
forest (RF), logistic regression (LR), and multilayer perceptron (MLP) classifiers are trained over 10 trials of n = 1000 and
n = 10000 randomly sampled labels, with mean accuracies and standard deviations reported.
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Figure 3: Left: Logistic regression on Tile2Vec unsupervised features outperforms supervised CNNs until 50k labeled exam-
ples. Right: The Tile2Vec triplet loss decreases steadily and downstream classification accuracy tracks the loss.

As shown in Table 1, the features learned by Tile2Vec out-
perform other unsupervised features when used by random
forest (RF), logistic regression (LR), and multilayer percep-
tron (MLP) classifiers trained on n = 1000 or n = 10000
labels. We also trained a DCGAN (Radford, Metz, and Chin-
tala 2015) as a generative modeling approach to unsuper-
vised feature learning. Although we were able to gener-
ate reasonable samples, features learned by the discrimina-
tor performed poorly — samples and results can be found
in Appendix A.l. Approaches based on variational autoen-
coders (VAEs) would also provide intriguing baselines, but
we are unaware of existing models capable of capturing
complex multispectral image distributions.

Supervised learning comparisons Surprisingly, our
Tile2Vec features are also able to outperform fully-
supervised CNNs trained directly on the classification task
with large amounts of labeled data. Fig. 3 shows that ap-
plying logistic regression on Tile2Vec features beats several
state-of-the-art supervised architectures (He et al. 2016;
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Szegedy et al. 2015; Huang et al. 2017) trained on as many
as 50k CDL labels. We emphasize that the Tile2Vec CNN
and the supervised ResNet share the same architecture,
so logistic regression in Fig. 3 is directly comparable to
the classification layers of the supervised architectures.
Similar results for random forest and multilayer perceptron
classifiers can be found in Appendix A.4.

Latent space interpolation We further explore the
learned representations with a latent space interpolation ex-
periment shown in Fig. 4. Here, we start with the Tile2Vec
embeddings of a field tile and an urban tile and linearly in-
terpolate between the two. At each point along the interpo-
lation, we search for the five nearest neighbors in the la-
tent space and display the corresponding tiles. As we move
through the semantically meaningful latent space, we re-
cover tiles that are more and more developed.

Training details Tile2Vec is easy to train and robust to the
choice of hyperparameters. We experimented with margins
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Figure 4: Left: Linear interpolation in the latent space at equal intervals between representations of rural and urban images.
Below, we show 5 nearest neighbors in the latent space to each interpolated vector. Right: Starting with a rural NYC embedding,
we add urban SF and subtract rural SF to successfully discover urban NYC tiles. More visual analogies are shown in Fig. A6.

ranging from 0.1 to 100 and found little effect on accuracy.
Using a margin of 50, we trained Tile2Vec for 10 trials with
different random initializations and show the results in Fig.
3. The training loss is stable from epoch to epoch, consis-
tently decreasing, and most importantly, a good proxy for
unsupervised feature quality as measured by performance on
the downstream task (Fig. 3, bottom right). By combining
explicit regularization (Eq. 2) with the data augmentation
scheme described in Section 2.4, we observe that Tile2Vec
does not seem to overfit even when trained for many epochs.

4.2 Visual analogies across US cities

To evaluate Tile2Vec qualitatively, we explore three major
metropolitan areas of the United States: San Francisco, New
York City, and Boston. First, we train a Tile2Vec model
on the San Francisco dataset only. Then we use the trained
model to embed tiles from all three cities. As shown in Fig.
4 and A6, these learned representations allow us to perform
arithmetic in the latent space, or visual analogies (Radford,
Metz, and Chintala 2015). By adding and subtracting vec-
tors in the latent space, we can recover image tiles that are
semantically expected given the operations applied.

Here we use Landsat images with 7 spectral bands,
demonstrating that Tile2Vec can be applied effectively to
highly multispectral datasets. Tile2Vec can also learn rep-
resentations at multiple scales: each Landsat 8 (30 m resolu-
tion) tile covers 2.25 km?, while the NAIP and DigitalGlobe
tiles are 2500 times smaller. Finally, Tile2 Vec learns robust
representations that allow for domain adaptation or transfer
learning, as the three datasets have widely varying spectral
distributions (Fig. A9).

4.3 Poverty prediction from satellite imagery

Next, we apply Tile2Vec to predict annual consumption ex-
penditures in Uganda from satellite imagery. Accurate mea-
surements of poverty are essential for both research and pol-
icy, but reliable data is limited in the developing world —
machine learning methods that are still effective when la-
beled data is scarce could help to fill these critical gaps.
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Features d kNN RF RR

Tile2Vec 10 775+1.0 76.0+13 69.6+1.0
Non-health 60 628+15 721+1.6 687=+1.7
Locations 2 693+10 677+£26 11.6+1.5

Table 2: Predicting health index using Tile2 Vec features ver-
sus non-health features and locations (i.e., {lat, lon}). Here,
d is feature dimension, kNN is k-nearest neighbors, RF is
random forest, and RR is ridge regression. Hyperparameters
(e.g., k and regularization strength) are tuned for each fea-
ture set. We report average > and standard deviation for 10
trials of 3-fold cross-validation.

The previous state-of-the-art result used a transfer learn-
ing approach in which a CNN is trained to predict night-
time lights (a proxy for poverty) from daytime satellite im-
ages — the features from this model are then used to pre-
dict consumption expenditures (Jean et al. 2016). We use
the same LSMS survey preprocessing pipeline and ridge re-
gression evaluation (see Appendix A.2). Evaluating over 10
trials of 5-fold cross-validation, we report an average 72 of
0.496 + 0.014 compared to 72 = 0.41 for the transfer learn-
ing approach — this is achieved with publicly available im-
agery with much lower resolution than the proprietary im-
ages used in (Jean et al. 2016) (30 m vs. 2.4 m).

4.4 Generalizing to other spatial data: Predicting
country health indices

The CIA Factbook contains 73 features spanning economic,
energy, social, and other characteristics of countries around
the world. To demonstrate that Tile2Vec can leverage spatial
coherence for non-image datasets as well, we use 13 of the
features in the CIA Factbook related to public health and
compute a health index, then attempt to predict this health
index from the remaining 60 features. We train Tile2Vec by
sampling triplets of countries and feeding the feature vectors
into a small MLP with one hidden layer.



e Africa
Asia
Europe
Middle East
North America
e South America

e Africa Uganda
Asia Afghanistan
o o000
Europe eoe ®
Middle East LI °
North America
South America
Rl °
oRussia e ® _North Korea
°, ) .o °
.N.geﬁa . SGhina Y
(Soutf koA
Spain
° JCanada

Figure 5: Left: The 60 non-health country features visualized using t-SNE. Spatial relationships are preserved for some clusters,
but not for others. Right: The 10-dimensional Tile2Vec embeddings visualized using t-SNE. The latent space now respects
both spatial and characteristic similarities. Several countries are annotated to highlight interesting relationships: North Korea
and South Korea are embedded far apart even though they are spatial neighbors; USA, South Korea, and China are embedded

close together though they are geographically separated.

As shown in Table 2, the embeddings learned by Tile2Vec
on this small spatial dataset (N = 242) outperform both the
original features and approaches that explicitly use spatial
information. Fig. 5 shows the original 60-dimensional fea-
ture vectors as well as the 10-dimensional learned Tile2Vec
embeddings projected down to two dimensions using t-SNE
(van der Maaten and Hinton 2008). While there is some ge-
ographic grouping of countries in projecting down the orig-
inal features, the Tile2Vec embeddings appear to capture
both geographic proximity and socioeconomic similarity.

In this experiment, the Haversine formula was used to
compute the great-circle distance between pairs of countries
in kilometers — future work could explore using distance
functions more meaningful to the application at hand, e.g.,
shared borders or trade volume.

5 Related Work

Our inspiration for using spatial context to learn repre-
sentations originated from continuous word representations
like Word2vec and GloVe (Mikolov et al. 2013b; 2013a;
Pennington, Socher, and Manning 2014). In NLP, the distri-
butional hypothesis can be summarized as “a word is char-
acterized by the company it keeps” — words that appear in
the same context likely have similar semantics. We apply
this concept to remote sensing data, with multispectral im-
age tiles as the atomic unit analogous to individual words in
NLP, and geospatial neighborhoods as the “company” that
these tiles keep. A related, supervised version of this idea
is the patch2vec algorithm (Fried, Avidan, and Cohen-Or
2017), which its authors describe as learning “globally con-
sistent image patch representations”. Working with natural
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images, they use a very similar triplet loss (first introduced in
(Hoffer and Ailon 2015)), but sample their patches with su-
pervision from an annotated semantic segmentation dataset.

Unsupervised learning for visual data is an active area
of research and thus impossible to summarize concisely,
but we attempt a brief overview of the most relevant topics
here. The three main classes of deep generative models —
likelihood-based variational autoencoders (VAEs) (Kingma
and Welling 2013), likelihood-free generative adversarial
networks (GANSs) (Goodfellow et al. 2014), and various au-
toregressive models (Oord, Kalchbrenner, and Kavukcuoglu
2016; van den Oord et al. 2016) — attempt to learn the
generating data distribution from training samples. Other re-
lated lines of work use spatial or temporal context to learn
high-level image representations. Some strategies for using
spatial context involve predicting the relative positions of
patches sampled from within an image (Noroozi and Favaro
2016; Doersch, Gupta, and Efros 2015) or trying to fill in
missing portions of an image (in-painting) (Pathak et al.
2016). In videos, nearby frames can be used to learn tem-
poral embeddings (Ramanathan et al. 2015); other methods
leveraging the temporal coherence and invariances of videos
for feature learning have also been proposed (Misra, Zitnick,
and Hebert 2016; Wang and Gupta 2015).

6 Conclusion

We demonstrate the efficacy of Tile2Vec as an unsuper-
vised feature learning algorithm for spatially distributed data
on tasks from land cover classification to poverty predic-
tion. Our method can be applied to image datasets spanning
moderate to high resolution, RGB or multispectral bands,



and collected via aerial or satellite sensors, and even to
non-image datasets. Tile2Vec outperforms other unsuper-
vised feature extraction techniques on a difficult classifi-
cation task — surprisingly, it even outperforms supervised
CNNss trained on 50k labeled examples.

In this paper, we focus on exploiting spatial coherence,
but many geospatial datasets also include sequences of data
collected over time. Temporal patterns can be highly infor-
mative (e.g., seasonality, crop cycles), and we plan to ex-
plore this aspect in future work. Remote sensing data have
largely been unexplored by the machine learning commu-
nity — more research in these areas could result in enormous
progress on many problems of global significance.
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