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Abstract

Geospatial analysis lacks methods like the word vector repre-
sentations and pre-trained networks that significantly boost
performance across a wide range of natural language and
computer vision tasks. To fill this gap, we introduce Tile2Vec,
an unsupervised representation learning algorithm that ex-
tends the distributional hypothesis from natural language —
words appearing in similar contexts tend to have similar
meanings — to spatially distributed data. We demonstrate
empirically that Tile2Vec learns semantically meaningful
representations for both image and non-image datasets. Our
learned representations significantly improve performance in
downstream classification tasks and, similarly to word vec-
tors, allow visual analogies to be obtained via simple arith-
metic in the latent space.

1 Introduction

Remote sensing, the measurement of the Earth’s surface
through aircraft- or satellite-based sensors, is becoming in-
creasingly important to many applications, including land
use monitoring, precision agriculture, and military intelli-
gence (Foody 2003; Mulla 2013; Oshri et al. 2018). Com-
bined with recent advances in deep learning and computer
vision (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016), there is enormous potential for monitoring global is-
sues through the automated analysis of remote sensing and
other geospatial data streams. However, recent successes in
machine learning have largely relied on supervised learn-
ing techniques and the availability of very large annotated
datasets. Remote sensing provides a huge supply of data,
but many downstream tasks of interest are constrained by a
lack of labels.

The research community has developed a number of tech-
niques to mitigate the need for labeled data. Often, the key
underlying idea is to find a low-dimensional representa-
tion of the data that is more suitable for downstream ma-
chine learning tasks. In many NLP applications, pre-trained
word vectors have led to dramatic performance improve-
ments. In computer vision, pre-training on ImageNet is a de
facto standard that drastically reduces the amount of train-
ing data needed for new tasks. Existing techniques, how-
ever, are not suitable for remote sensing data that, while su-
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perficially resembling natural images, have unique charac-
teristics that require new methodologies. Unlike natural im-
ages — object-centric, two-dimensional depictions of three-
dimensional scenes — remote sensing images are taken
from a bird’s eye perspective, and they are also often multi-
spectral. These differences present both challenges and op-
portunities. On one hand, models pre-trained on ImageNet
do not transfer well and cannot take advantage of additional
spectral bands (Xie et al. 2016). On the other, there are fewer
occlusions, permutations of object placement, and changes
of scale to contend with — this spatial coherence provides a
powerful signal for learning representations.

Our main assumption is that image tiles that are geo-
graphic neighbors (i.e., close spatially) should have similar
semantics and therefore representations, while tiles far apart
are likely to have dissimilar semantics and should therefore
have dissimilar representations. This is akin to the distribu-
tional hypothesis used to construct word vector representa-
tions in natural language: words that appear in similar con-
texts should have similar meanings. The main computational
(and statistical) challenge is that image patches are them-
selves complex, high-dimensional vectors, unlike words.

In this paper, we propose Tile2Vec, a method for learn-
ing compressed yet informative representations from unla-
beled remote sensing data. We evaluate our algorithm on a
wide range of remote sensing datasets and find that it gen-
eralizes across data modalities, with stable training and ro-
bustness to hyperparameter choices. On a difficult land use
classification task, our learned representations outperform
other unsupervised features and even exceed the perfor-
mance of supervised models trained on large labeled train-
ing sets. Tile2Vec learns a meaningful embedding space,
demonstrated through visual query by example, latent space
interpolation, and visual analogy experiments. Finally, we
apply Tile2Vec to the non-image task of predicting coun-
try health indices from economic data, suggesting that real-
world applications of Tile2Vec may extend to domains be-
yond remote sensing.

2 Tile2Vec

For clarity, in this section we focus on the application of
Tile2Vec to remotely sensed image datasets. The extension
to non-image spatial data is straightforward, and we revisit
this setting in Section 4.4.
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Algorithm 1 SampleTileTriplets(D,N, s, r)

1: Input: Image dataset D, number of triplets N , tile size s,
neighborhood radius r

2: Output: Tile triplets T = {(t
(i)
a , t

(i)
n , t

(i)
d
)}Ni=1

3:

4: Initialize tile triplets T = {}
5: for i← 1, N do

6: t
(i)
a ← SAMPLETILE(D, s)

7: t
(i)
n ← SAMPLETILE(NEIGHBORHOOD(D, r, t

(i)
a ), s)

8: t
(i)
d
← SAMPLETILE(¬NEIGHBORHOOD(D, r, t

(i)
a ), s)

9: Update T ← T ∪ (t
(i)
a , t

(i)
n , t

(i)
d
)

10: end for
11: return T
12:

13: function SAMPLETILE(A, s)
14: t← Sample tile of size s uniformly at random from A
15: return t
16: end function
17:

18: function NEIGHBORHOOD(D, r, t)
19: A← Subset of D within radius r of tile t
20: return A
21: end function

enough to capture intra-class (and potentially some inter-
class) variability. In practice, we find that plotting some ex-
ample triplets as in Fig. 1 allowed us to find reasonable val-
ues for these parameters. Results across tile size and neigh-
borhood on our land cover classification experiment are re-
ported in Table A3.1

Pseudocode for sampling a dataset of triplets is given in
Algorithm 1. Note that no knowledge of actual geographi-
cal locations is needed, so Tile2Vec can be applied to any
dataset without knowledge of the data collection procedure.

2.4 Scalability

Like most deep learning algorithms, the Tile2Vec objec-
tive (Eq. 2) allows for mini-batch training on large datasets.
More importantly, the use of the triplet loss allows the train-
ing dataset to grow with a quadratic relationship relative to
the size of the available remote sensing data. Concretely,
assume that for a given remote sensing dataset we have a
sampling budget of N triplets. If we train using the straight-
forward approach of Eq. 2, we will iterate over N training
examples in each epoch. However, we notice that in most
cases the area covered by our dataset is much larger than
the area of a single neighborhood. For any tile t, the likeli-
hood that any particular t′ in the other (N − 1) tiles is in its
neighborhood is extremely low. Therefore, at training time
we can match any (ta, tn) pair with any of the 3N tiles in
the dataset to increase the number of unique example triplets
that the network sees from O(N) to O(N2).

In practice, we find that combining Tile2Vec with this data
augmentation scheme to create massive datasets results in
an algorithm that is easy to train, robust to hyperparameter
choices, and resistant to overfitting. This point will be revis-
ited in section 4.1.

1Appendix available at https://arxiv.org/abs/1805.02855.

3 Datasets

We evaluate Tile2Vec on several widely-used classes of re-
mote sensing imagery, as well as a non-image dataset of
country characteristics. A brief overview of data organized
by experiment is given here, with more detailed descriptions
in Appendix A.5.

3.1 Land cover classification

We first evaluate Tile2Vec on a land use classification task
— predicting what is on the Earth’s surface from remotely
sensed imagery — that uses the following two datasets: The
USDA’s National Agriculture Imagery Program (NAIP)
provides aerial imagery for public use that has four spectral
bands — red (R), green (G), blue (B), and infrared (N) —
at 0.6 m ground resolution. We obtain an image of Central
Valley, California near the city of Fresno for the year 2016
(Fig. 2), spanning latitudes [36.45, 37.05] and longitudes
[−120.25,−119.65]. The Cropland Data Layer (CDL) is a
raster geo-referenced land cover map collected by the USDA
for the continental United States (USDA-NASS 2016). Of-
fered at 30 m resolution, it includes 132 class labels span-
ning crops, developed areas, forest, water, and more. In our
NAIP dataset, we observe 66 CDL classes (Fig. A10). We
use CDL as ground truth for evaluation by upsampling it to
NAIP resolution.

3.2 Latent space interpolation and visual analogy

We explore Tile2Vec embeddings by visualizing linearly in-
terpolated tiles in the learned feature space and performing
visual analogies on two datasets. Tiles sampled from NAIP
are used in the latent space interpolation evaluation. The
USGS and NASA’s Landsat 8 satellite provide moderate-
resolution (30 m) multispectral imagery on a 16-day col-
lection cycle. Landsat datasets are public and widely used
in agricultural, environmental, and other scientific applica-
tions. We generate median Landsat 8 composites containing
7 spectral bands over the urban and rural areas of three ma-
jor US cities — San Francisco, New York City, and Boston
— for a visual analogy evaluation.

3.3 Poverty prediction in Uganda

We evaluate the regression task of predicting local poverty
levels from Landsat 7 composites of Uganda from 2009-
2011 containing 5 spectral bands. The World Bank’s Living
Standards Measurement Study (LSMS) surveys measure
annual consumption expenditure at the household and vil-
lage levels — these measurements are the basis for deter-
mining international standards for extreme poverty. We use
the Uganda 2011-12 survey as labels for the poverty predic-
tion task described in (Jean et al. 2016).

3.4 Worldwide country health index prediction

Lastly, to demonstrate that Tile2Vec can be used with other
high-dimensional vector data within a spatial context, we
predict a subset of country characteristics from other country
features. The CIA World Factbook is an annual document

3969











and collected via aerial or satellite sensors, and even to
non-image datasets. Tile2Vec outperforms other unsuper-
vised feature extraction techniques on a difficult classifi-
cation task — surprisingly, it even outperforms supervised
CNNs trained on 50k labeled examples.

In this paper, we focus on exploiting spatial coherence,
but many geospatial datasets also include sequences of data
collected over time. Temporal patterns can be highly infor-
mative (e.g., seasonality, crop cycles), and we plan to ex-
plore this aspect in future work. Remote sensing data have
largely been unexplored by the machine learning commu-
nity — more research in these areas could result in enormous
progress on many problems of global significance.
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