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ABSTRACT

This study investigates potential biases between equilibrium climate sensitivity inferred fromwarming over

the historical period (ECShist) and the climate system’s true ECS (ECStrue). This paper focuses on two factors

that could contribute to differences between these quantities. First is the impact of internal variability over the

historical period: our historical climate record is just one of an infinity of possible trajectories, and these

different trajectories can generate ECShist values 0.3 K below to 0.5K above (5%–95% confidence interval)

the average ECShist. Because this spread is due to unforced variability, I refer to this as the unforced pattern

effect. This unforced pattern effect in the model analyzed here is traced to unforced variability in loss of sea

ice, which affects the albedo feedback, and to unforced variability in warming of the troposphere, which

affects the shortwave cloud feedback. There is also a forced pattern effect that causes ECShist to depart from

ECStrue due to differences between today’s transient pattern of warming and the pattern of warming at

23CO2 equilibrium. Changes in the pattern of warming lead to a strengthening low-cloud feedback as

equilibrium is approached in regions where surface warming is delayed: the Southern Ocean, eastern Pacific,

and North Atlantic near Greenland. This forced pattern effect causes ECShist to be on average 0.2 K lower

thanECStrue (;8%). The net effect of these two pattern effects together can produce an estimate of ECShist as

much as 0.5K below ECStrue.

1. Introduction

Equilibrium climate sensitivity (ECS; i.e., the equi-

librium warming in response to a doubling of CO2) is

one of the quantities that controls how much future

warming we will experience in response to green-

house gas emissions from anthropogenic activities.

As such, it is frequently viewed as one of the most

important numbers in climate science and much effort

has been expended over decades attempting to constrain

its value.

ECS can be calculated from observations or models as

ECS52
F
23CO2

l
, (1)

where F23CO2 is the radiative forcing from doubled CO2

and l represents the top-of-atmosphere (TOA) flux

change per degree of surface temperature change:

l5
DR2DF

DT
S

, (2)

where TS is the global average surface temperature, R is

the TOA flux, and F is the radiative forcing.

Some of the most influential estimates of ECS come

from the observed warming during the historical pe-

riod, between the mid-nineteenth century and today

(referred to as ECShist). To estimate l over this period

(referred to as lhist), D in Eq. (2) represents the change

between the mid-nineteenth century and the early

twenty-first century. ECShist is then calculated using

Eq. (1) and lhist.

There have been many estimates of ECShist from

observations [summarized in Forster (2016); see also

Knutti et al. (2017)]. These tend to be lower than ECS

estimated from other sources and they anchor the lower

end of the IPCC’s canonical ECS range of 1.5–4.5K.

Recently, it has been argued that ECShist may not

provide a good estimate of our climate system’s true

ECS (hereafter ECStrue). This is based on demonstra-

tions in models that DR depends not just on how much

warming occurs, but also on how that warming is dis-

tributed across the globe (Armour et al. 2013; Andrews

et al. 2015; Zhou et al. 2016, 2017). In other words,

two climate states with the same DTs, but distributed

differently, can have different values of DR, leadingCorresponding author: Andrew Dessler, adessler@tamu.edu

15 MARCH 2020 DE S SLER 2237

DOI: 10.1175/JCLI-D-19-0476.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:adessler@tamu.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


to different estimates of ECShist (Olson et al. 2013;

Huber and Knutti 2014). Following standard practice,

I will refer to this as the ‘‘pattern effect’’ (Stevens

et al. 2016).

The pattern effect causes ECShist to depart from

ECStrue if the aspects of the warming we experienced

over the historical period differ from aspects of warming

at 23CO2 equilibrium. I intentionally leave vague what

is meant by ‘‘aspects’’ as these will be investigated in

detail in the paper. Basically, though, there are two

different reasons why warming over the historical

period may be different from the long-term warming.

The first reason is that the historical observational

record is just one member of an infinity of possible

climate trajectories that Earth could have experi-

enced over the last 150 years. Dessler et al. (2018,

hereafter D18) used an ensemble of climate model

runs to show that different trajectories could yield

widely varying estimates of ECShist. These differences

in ECShist are due to internal variability, so I will refer

to this variability in ECShist as the ‘‘unforced pattern

effect.’’

There is also a ‘‘forced pattern effect.’’ This is

primarily related to the fact that the transient

warming pattern over the twentieth century is ex-

pected to be different from the equilibrium pattern

of warming; this will tend to make ECStrue larger

than ECShist (Andrews et al. 2015; Armour 2017;

Proistosescu and Huybers 2017; Ceppi and Gregory

2017). Previous analyses (e.g., Marvel et al. 2018;

Andrews et al. 2018) have evaluated the combined

forced and unforced pattern effects. In this paper, I

analyze a large model ensemble to separately evaluate

their magnitudes.

2. Model ensemble

We analyze output from various runs of the fully

coupled Max Planck Institute Earth System Model

version 1.1 (MPI-ESM1.1), collectively referred to as

the Grand Ensemble. The MPI-ESM1.1 is a fully cou-

pled climate model from the Max Planck Institute for

Meteorology and consists of the ECHAM6.3 atmo-

sphere and land model coupled to the MPI-OM ocean

model. The Grand Ensemble is described in detail in

Maher et al. (2019).

The MPI-ESM1.1 has a transient climate response of

1.78K (Adams and Dessler 2019) and an effective cli-

mate sensitivity (calculated from a regression of the first

150 years of an abrupt 43CO2 run) of 2.72K. These

values are near the middle of the CMIP5 ensemble

range. We will analyze a large number of runs from this

ensemble:

d A 100-member ensemble of runs with historical forc-

ing (hereafter, the ‘‘historical ensemble’’). Each of the

100 members simulates the years 1850–2005 and uses

identical historical natural and anthropogenic forcing.

The ensemble members differ only in their initial

conditions—each starts from a different state sampled

from the preindustrial control simulation. This en-

semble was used by D18 to characterize the impact of

internal variability on ECShist and by Adams and

Dessler (2019) to investigate the impact of internal

variability on transient climate response. The ensem-

ble produces a good simulation of the historical re-

cord, as seen in Fig. 2 of Maher et al. (2019).
d A68-member ensemble of runs with CO2 increasing at

1% per year (hereafter, the ‘‘1% ensemble’’). Each of

the members is 150 years long and uses identical

forcing. Like the historical ensemble, this ensemble’s

members differ only in their initial conditions.
d An abrupt 43CO2 run. In this run, CO2 is abruptly

quadrupled from preindustrial values and then run for

2614 years. At that point, the model is nearly in

equilibrium.
d A preindustrial control run. In this run, atmospheric

conditions held at preindustrial values for 2000 years.

This is the run from which all other runs branch from.

Effective radiative forcing used in this paper is calcu-

lated from fixed SST runs of the model. Historical

effective radiative forcing (1850–2005) is 2.2Wm22

(D18), while 23CO2 and 43CO2 forcing are 3.7 and

7.8Wm22, respectively (Adams and Dessler 2019). In

all calculations, surface temperature refers to 2-m air

temperature.

3. Feedbacks in the historical ensemble

D18 showed that lhist from the historical ensemble

ranged from21.63 to21.17Wm22K21 (5%–95%)—this

spread is what I have designated as the unforced pattern

effect. To gain physical insight into this, I decompose

lhist into constituent feedbacks using the approach and

radiative kernels of Soden et al. (2008), but using the

feedback decomposition of Held and Shell (2012),

in which the Planck and lapse-rate feedbacks assume

constant relative humidity (RH). I will refer to these as

the ‘‘conventional’’ feedbacks. For consistency with

D18, I calculate those feedbacks by differencing rele-

vant fields between the first and last decade of the runs.

Picking different periods does not change the conclu-

sions of this section.

One disadvantage of the conventional approach is

that the sum of the feedbacks may not equal lhist,

leaving a residual that may be comparable in magnitude
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to the pattern effect I am trying to diagnose. To address

this, I also calculate feedbacks a second way, based on

decomposing R into clear-sky and cloud radiative forc-

ing (CRF) components:

R5R
clear skyLW

1R
clear sky SW

1R
CRFLW

1R
CRFSW

, (3)

where LW and SW refer to longwave and shortwave

fluxes, clear-sky fluxes refer to what the fluxes would be

in the absence of clouds (leaving everything else the

same), and CRF is the all-sky flux minus the clear-sky

flux. The change in these fluxes (with the corresponding

forcing subtracted off) divided by DTS yields the indi-

vidual feedbacks. For example, the clear-sky longwave

feedback is

l
clear skyLW

5
DR

clear skyLW
2DF

clear skyLW

DT
S

. (4)

The terms lclear sky SW, lCRF LW, and lCRF SW are all

calculated analogously. By construction, the sum of

these feedbacks must equal lhist. I will refer to these as

the CRF feedbacks.

Figure 1 shows a comparison between the ensemble-

average feedbacks in the two breakdowns. I have

grouped similar feedbacks together: lPlanck 1 llapse rate 1
lDRH with lclear sky LW, lalbedo with lclear sky SW, lLW cloud

with lCRF LW, and lSW cloud with lCRF SW. The feedback

pairs do not agree exactly because of differences

in the underlying physical processes. For example,

lclear sky SW disagrees with lalbedo because lclear sky SW

contains a small fraction of the water vapor feedback

caused by SW absorption by water vapor. Differences

also arise from cloud-masking effects that mix the cloud

and noncloud feedbacks in the CRF breakdown (Soden

et al. 2004). A final difference arises because the con-

ventional feedbacks do necessarily sum to lhist, but

leave a small positive residual (lhist minus the sum

of the feedbacks). The ensemble-average residual

is 10.40Wm22 K21, with 90% of the residuals falling

between 0.31 and 0.50Wm22K21. Overall, though, the

two feedback breakdowns give a similar picture of the

breakdown of lhist. Comparisons to the CMIP5 ensemble

average also show reasonable agreement (Fig. 1).

Figure 2 shows the latitude distribution of the av-

erage and standard deviation of the ensemble. In

agreement with observations, the historical ensem-

ble simulates the largest warming in the Northern

Hemisphere (NH), although it overestimates warming

there [Fig. 2a; see also Fig. 2 of Adams and Dessler

(2019)] and simulates least warming in the Southern

Hemisphere (SH).

The term lclear sky LW (Fig. 2c) is basically a mirror

image of the surface warming pattern, showing that re-

gions with more warming radiate more energy back to

space. The term lclear sky SW is primarily driven by loss of

sea ice, so it maximizes in the polar regions (Fig. 2d).

Note that lcloud LW is larger than lCRF LW at almost all

latitudes (Fig. 2e) due to cloud masking effects (Soden

et al. 2004) and lcloud SW and lCRF SW are similar except

in the Arctic (Fig. 2f), where cloud masking effects are

also important.

4. Quantifying the unforced pattern effect

D18 calculated lhist in the historical ensemble and

found that the 5%–95% spread in lhist is21.63 to21.17.

Given that lhist is equal to the sum of individual feed-

backs, variability in lhist must be driven by variability in

the underlying feedbacks. Figure 3 summarizes this by

plotting the average feedbacks in the 10 ensemble

members with the highest ECShist minus the average in

the 10 lowest ECShist ensemble members. This shows

that 55% of the unforced pattern effect is due to dif-

ferences in the lclear sky SW, with most of the remainder,

39%, due to differences in lCRF SW. Differences in the

LW feedbacks contribute ;5%.

High ECShist ensemble members have a larger frac-

tion of warming in the extratropics (and less in the

tropics) than the low ECShist models (Fig. 4a). The

difference in the LW clear-sky feedback (Fig. 4c),

FIG. 1. Comparison of ensemble-average l (Wm22 K21) from

the historical ensemble using two different feedback breakdowns.

Gray bars represent the conventional feedbacks, while white bars

show the CRF feedbacks; similar feedbacks are grouped together.

lhist is the total feedback, estimated using Eq. (2). Residual is the

difference between lhist and the sum of the feedbacks from the

conventional breakdown. By construction, the sum of the CRF

feedbacks sum to lhist. All feedbacks are calculated by differencing

the first decade from the last. The bold crosses are the average

of the CMIP5 ensemble, taken from Table S1 of Ceppi and

Gregory (2017).
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Dlclear sky LW, basically mirrors the temperature differ-

ence, with positive values (meaning the feedback is less

negative) in regions with lower warming fractions (the

tropics) and negative values in regions with larger

warming fractions (the extratropics). Integrating over

latitude, these differences cancel and so the global-

average Dlclear sky LW is basically zero. This seems

likely to be generally true, so it might be expected that

this feedback should generally contribute little to the

pattern effect.

The term Dlclear sky SW reflects changes in the surface

albedo feedback and Fig. 3 shows that it is contributing

the majority to the unforced pattern effect. Figure 4d

shows that this is arising almost entirely from the

FIG. 2. (a) Zonal- and ensemble-average average DTS (solid line) and the Berkeley Earth surface temperature

observations (dashed line) (Rohde et al. 2013). Themodel has beenmasked tomatchBerkeley coverage. (b) Zonal-

and ensemble-average normalized warming in the historical ensemble (DTS at each latitude divided by the global

average DTS; the global average of this quantity is one by construction). (c)–(h) Zonal- and ensemble-average

feedbacks in the historical ensemble. Black lines are from the CRF breakdown; gray lines are the corresponding

feedback from conventional breakdown (where appropriate). All are plotted against area-weighted latitude. The

three numbers on each panel show the contributions to the feedback of the latitude ranges 908–308S, 308S–308N, and

308–908N to the global average; the sum of these numbers is equal to the global average. In each panel, the shaded

band shows the 61s range of the ensemble around the average.
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Antarctic region. Thus, while there is a strong ensemble-

average lclear sky SW in the Arctic (Fig. 2d), there is little

variability within the ensemble in this feedback, so

Dlclear sky SW there is close to zero.

The all-sky LW feedback difference (Dlall sky LW 5
DlLW CRF 1 Dlclear sky LW) in Fig. 4g shows that the

near-zero difference in the LW feedback comes from

cancellation between positive differences in the tropics

and negative differences at high latitudes. The all-sky

SW feedback difference (Dlall sky SW 5 DlSW CRF 1
Dlclear sky SW) in Fig. 4h, which is responsible for most of

the unforced pattern effect, reveals that on average

45% of the difference is coming from the Southern

Hemisphere extratropics (5%–95% of individual en-

semble members range have values of 36%–56%), 20%

is coming from the tropics (14%–44%), and 35% is

coming from the Northern Hemisphere extratropics

(12%–39%).

5. Causes of the unforced pattern effect

a. Sea ice

The pattern of Dlclear sky SW, with the maximum lo-

cated in the Antarctic region (Fig. 4d), strongly suggests

that variability in sea ice loss among the ensembles is

responsible for the spread in this feedback in the en-

semble. Indeed, I find a strong correlation between the

decrease of sea ice over the historical period in each

ensemble member and the surface albedo feedback in

that member (Figs. 5a,b). More quantitatively, vari-

ability in the loss of sea ice explains about half of the

variance in lhist (Fig. 5c).

I find some connection between variability in the

ocean circulation and variability in sea ice. In particular,

changes in the Atlantic multidecadal oscillation (AMO)

index and the South Atlantic multidecadal oscillation

(SAMO) index correlate with lalbedo from the same

hemisphere (Fig. 6) (plots using lclear sky SW look nearly

identical). The AMO and SAMO indices are defined as

the average of detrended SST over the North Atlantic

(08–608N, 08–808W) and South Atlantic (608S–08, 608W–

408E), respectively (B. Yao et al. 2019, unpublished

manuscript). There is little correlation between these

indices and the albedo feedback in the other hemisphere

(jrj , 0.13). I have looked at other indices [the Pacific

decadal oscillation (PDO), South Pacific decadal oscil-

lation (SPDO), interdecadal Pacific oscillation (IPO),

tripole index (TPI), and Indian Ocean dipole (IOD)]

and also findweak correlations between any of them and

albedo feedback variability.

Of particular note, the slopes of the fits in Fig. 6a

and 6b are 0.07 and 0.03Wm22K21, respectively. This

means that the albedo feedback response to a unit

change in the SAMO is more than twice the response to

the AMO. This again emphasizes the key role the

Southern Hemisphere has in varying lhist. It is worth

noting that CMIP5-era models do not always do a great

job of simulating the details of Antarctic sea ice (Turner

et al. 2013), so verifying this result with other ap-

proaches, preferably tied to observations, should be a

priority.

b. Shortwave clouds

The latitudinal pattern of Dlcloud SW (Fig. 4f) does not

point to a clear physical mechanism. However, previous

work (Zhou et al. 2016, 2017; Andrews and Webb 2018;

Ceppi and Gregory 2017; Fueglistaler 2019) has pointed

toward atmospheric stability as key for regulating the

cloud feedback and D18 identified DT500, 500-hPa

tropical (308N–308S) temperature, as providing a fun-

damental control on planetary energy balance. I find that

variability in DT500/DTS, warming of the tropical atmo-

sphere per unit global-average surface warming, explains

much of the variability in lcloud SW (Fig. 7a). This leads to

DT500/DTS having a strong correlation with lhist (Fig. 7b).

The slope of the line in Fig. 7a indicates that greater

warming of the troposphere makes the SW cloud feed-

back more negative. If the slope were due mainly to

the low-cloud feedback, then I would expect to also

see a similar or stronger correlation with the net cloud

feedback (lcloud 5 lcloud SW 1 lcloud LW) because net

cloud feedback is a better indicator of low cloud changes

(changes in high clouds tend to have LW and SW feed-

backs that cancel; e.g., Zelinka et al. 2012). However,

correlations between lcloud (and also lCRF) versus

DT500/DTS yield low correlations (r 5 20.08). This

suggests that mid- and high-level clouds are also playing

a role in the variation of the SWcloud feedback in Fig. 7a.

I have also correlated lcloud SW with other indica-

tors of stability, such as estimated inversion strength

FIG. 3. Average feedbacks of the 10 historical ensemble mem-

bers with the highest ECShist (least negative lhist) minus the aver-

age of the 10members with the lowest ECShist (most negative lhist).
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(Wood and Bretherton 2006) and find that ensemble

members whose atmosphere becomes more stable

also have a more negative lcloud SW (not shown).

However, the correlation (r 5 20.54) is not as good as

with DT500/DTS. This is again consistent with the signal

in Fig. 7a having a nontrivial contribution frommid- and

high-level clouds. Investigating the altitude distribution

of clouds driving the unforced pattern effect in models

and observations should be a high priority for fu-

ture work.

Given the role played by DT500 in regulating lcloud SW,

a natural question is whether ENSO is playing a

role. Figure 7c shows that DENSO, the change in

ENSO3.4 index between the first and last decade,

does indeed correlate to some extent with lcloud SW. I

also find that DAMO has about the same magnitude

correlation (Fig. 7d). DPDO (not shown) also correlates

with lcloud SW, but DENSO and DPDO are strongly

correlated (r 5 0.73), so I do not consider them inde-

pendent regressors.

c. Putting it all together

The magnitude of the unforced pattern effect is af-

fected by the exact periods selected, as I discuss in some

FIG. 4. As in Fig. 2, but for the change between the average of the 10 ensemblemembers with the highest ECS and

the average of the 10 with the lowest ECS. The blue shaded region shows the 5%–95% uncertainty of the

difference.
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detail later in the paper. Most investigators use 1859–82

as a base period due to the lack of volcanic activity

during those years. Using that base period, the 5%–95%

spread in lhist in the ensemble is21.46 to21.14Wm22K21,

with an ensemble average of 21.33Wm22K21 (chang-

ing the base and end periods does not change any of

the previous results). This corresponds to an ensem-

ble spread of ECShist of 2.53 to 3.24K, with an en-

semble average of 2.79K. Thus, the unforced pattern

effect can lead to ECShist having a bias of 20.26

to 10.46K (29% to 116%) relative to the ensemble

average ECShist.

I also show that unforced variability in two key pa-

rameters, sea ice loss and DT500/DTS, largely control the

unforced pattern effect in this ensemble. These two

parameters are correlated (r 5 20.56) because sea ice

loss exposes relatively warm ocean water, so members

with more sea ice loss also have higher DTS. This means

that there is also a positive correlation between lalbedo

and lcloud SW (r 5 0.40), so that variability in these two

feedbacks work in the same direction to generate large

variability in lhist.

A key caveat to our conclusions is the question of

whether the model accurately simulates unforced vari-

ability. While we have not analyzed the fidelity of

this particular model, previous work has pointed up

some potential deficiencies in CMIP5-era models’ sim-

ulation of unforced variability (e.g., Zhou et al. 2016;

Hedemann et al. 2017; Kajtar et al. 2019). Determining

whether other models—and nature—show this same

unforced pattern effect should be a high priority.

6. The forced pattern effect

Magnitude

To determine the magnitude of the forced pattern

effect, I begin by averaging lhist over all members of

FIG. 5. Scatterplots of the loss of sea ice vs (a) lclear sky SW, (b) lalbedo, and (c) lhist. Each dot represents the value fromonemember of the

historical ensemble. The change in sea ice is the change in percent ice coverage (e.g., a decrease in sea ice coverage from 4%of the globe to

3.5%would yield a change of 0.5%).As with the feedbacks, the change in sea ice is the average difference between the first and last decade

of the run. The dotted line is a linear least squares fit; r values of the fit are shown in each panel.

FIG. 6. (a) lalbedo averaged over the Southern Hemisphere vs DSAMO; (b) lalbedo averaged over the Northern

Hemisphere vs DAMO. DSAMO and DAMO are the change in the respective index between the first and last

decade of the historical period in each ensemble member. Each dot represents the value from one member of the

historical ensemble and the dotted line is a linear least squares fit. The slope and correlation coefficient of the fit are

displayed in each panel.
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the historical ensemble, yielding lhist-average. The main

challenge with this calculation is that lhist-average is

affected by the choice of averaging periods used in

Eq. (2)—using different base and end periods can

lead lhist-average to vary by a factor of 2, from 20.8

to 21.6Wm22 K21 (Fig. 8).

Previous investigators have attempted to get around

this problem by picking periods unaffected by

volcanic eruptions and I will follow that approach

here. Picking volcanically unperturbed base periods

(1860–69 or 1870–79) and end periods (1970–79 or 1996–

2005) produce estimates of lhist-average between 21.33

and21.27Wm22K21, with an average of21.32Wm22K21.

To verify this estimate, I have also analyzed a

68-member ensemble forced by CO2 increasing at

1% per year (and no volcanoes). Figure 9 shows

l derived from the ensemble average of these 1% runs,

hereafter l1%-average. This is derived using Eq. (2) with

ensemble average fluxes and temperatures; D is the

difference between the average of the first 10 years

of the run and the average of a sliding 10-yr window.

While there is some decadal variability, it is clear

that l1%-average has much less variation with time than

lhist-average, reflecting more uniform forcing, particularly

the lack of volcanoes. Over the entire 150-yr run, the

median value of l1%-average is21.33Wm22K21 (5%–95%

of the values range from 21.29 to 21.41Wm22K21),

very close to lhist-average for nonvolcanic periods.

FIG. 7. (a) lSW cloud vs DT500/DTS, where T500 is the 500-hPa tropical (308N–308S) temperature, (b) lhist vs DT500/

DTS, (c) DENSO index vs DT500/DTS, and (d) DAMO index vs DT500/DTS. In all panels D represents the change

between first and last decade of the runs. Each point in each panel is derived from one of the historical ensemble

members and the dotted line is a linear least squares fit.

FIG. 8. Estimates of lhist-average (Wm22 K21) with various base

and end periods. Each line has a different base period, as indicated

in the figure legend. The x axis indicates the end period. The hor-

izontal dotted line is the value of l43CO2.
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To estimate the forced pattern effect, I also need an

estimate of l from a more strongly forced equilibrium

run, for which I use the 2614-yr abrupt 43CO2 run. I

estimate l43CO2 using Eq. (2), with D representing the

difference between the time average of the 2000-yr

preindustrial control run and the time average of the last

500 years of the run, which covers a period nearly in

equilibrium (the trend in TS over this period is 0.02K

century21). This calculation yields a value of l4xCO2

of 21.15Wm22K21.

Thus, l43CO2 is about 15% less negative than lhist-average.

However, the forced pattern effect should be the

difference between the historical ensemble aver-

age and a 23CO2 run, but the Grand Ensemble does

not have appropriate 23CO2 runs. Mauritsen et al.

(2019) analyzed both 23CO2 and 43CO2 runs of the

MPI-ESM 1.2 model, a model closely related to the

one used here. Using data from Fig. 12 and Table 5

of that paper, I estimate that l43CO2 is about 7% less

negative than l23CO2. Previous work on this (Meraner

et al. 2013; Mauritsen et al. 2019) suggests that increas-

ing l with warming is due to increasing strength of the

water vapor feedback, related to an increase in height

of the tropopause, and an increasingly positive cloud

feedback.

I therefore conclude that ECStrue (ECS in the

23CO2 run) is about 8% larger, corresponding to

0.2K, than ensemble-average ECShist. This estimate

of the forced pattern effect is smaller than suggested

by previous analyses (Armour 2017; Proistosescu

and Huybers 2017) but close to values found by other

analyses (Mauritsen and Pincus 2017; Lewis and

Curry 2018).

Estimates of ECStrue require long forced runs to near-

equilibrium conditions. Because such runs are relatively

rare, most previous estimates of the pattern effect have

used effective climate sensitivity (where leff is estimated

from a Gregory regression of an abrupt 43CO2 run)

instead of true climate sensitivity. For this model,

leff derived from regression of the first 150 years

of the 43CO2 run is 21.36Wm22K21, meaning that

effective climate sensitivity is more negative than

lhist-average—meaning, in turn, that ECStrue , ECShist
and implying a negative forced pattern effect. However,

the result is quite sensitive to the period selected for

the regression. Regressing years 20–150 yields a leff
of21.09, a forced pattern effect larger than found here. I

expect this may be quite different for different models,

so one should be cautious interpreting estimates of the

pattern effect based on Gregory regressions over arbi-

trary periods.

7. Causes of the forced pattern effect

Figure 10 shows global-average feedbacks from

the 1% ensemble and abrupt 43CO2 run, as well as

the differences between them. The forced pattern effect

shown here is almost entirely due to SW cloud feed-

backs, also noted by Andrews et al. (2015).

Figure 11 shows the spatial pattern of the difference in

the total cloud feedback. I plot the total cloud feedback

(LW 1 SW) because that feedback correlates better

with low-cloud changes. And I plot the cloud feedback

rather than the CRF feedback because the CRF feed-

back has large values in the polar regions associated with

cloud masking of changes in surface albedo rather than

changes in clouds.

Maxima in Dlcloud occur in regions where warming

is delayed: the Southern Ocean, eastern Pacific, and

Atlantic Ocean south of Greenland. As the surface in

these regions eventually warms in the future, the

stability of the atmosphere decreases, leading to a

reduction in low clouds, thereby increasing the mag-

nitude of the cloud feedback as the climate warms

(Senior and Mitchell 2000; Ceppi and Gregory 2017;

Andrews et al. 2018).

8. Conclusions

In this paper, I have addressed the question: Is ECS

estimated from historical observations (ECShist) a good

estimate of the true ECS (ECStrue) of our climate sys-

tem? I have investigated two reasons why the answer

may be ‘‘no.’’ First, the historical observational record

is just one member of an infinity of theoretical cli-

mate trajectories for the Earth since preindustrial.

Different climate trajectories over this period yield es-

timates of ECShist that can differ from the ensemble

FIG. 9. Estimates of ensemble-average l1% (Wm22 K21) as a

function of end period, the value on the x axis. The y axis has the

same range as Fig. 8 to make comparison easier. All values are

calculated with a base period of the first 10 years of the ensemble.

The horizontal dotted line is the value of l43CO2.
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average ECShist by 20.26 to 10.46K, corresponding

to 29% to 116% (5%–95% confidence interval).

This unforced pattern effect arises mainly from two

sources: unforced variability in loss of sea ice, particu-

larly in the Antarctic, which leads to variability in the

surface albedo feedback, and unforced variability in

tropical tropospheric warming, which leads to variabil-

ity in the cloud feedbacks. Variability in these two pa-

rameters correlates with well-known climate indices

(e.g., ENSO, AMO), suggesting that the unforced pat-

tern effect is controlled by known modes of internal

variability. This may give us a way to evaluate where

the observed historical record lies within the envelope

of all possible records. Doing so should obviously be a

high priority for the community.

The second reason that ECShist may not be a good esti-

mate of ECStrue is that the average transient warming pat-

tern over the twentieth century is expected to be different

from the equilibrium pattern of warming for doubled CO2,

and this can also lead to differences between ECShist and

ECStrue. Because this effect is related to forced warming, I

refer to this as the forced pattern effect.

I estimate that ECStrue is 8% larger than ensemble-

average ECShist, corresponding to a bias of 0.2–0.3K.

This forced pattern effect is mainly due to a less negative

low-cloud feedback at equilibrium arising in oceanic

regions of where warming is delayed, namely the

Southern Ocean, east Pacific, and the Atlantic south

of Greenland (Senior and Mitchell 2000; Andrews

et al. 2015; Ceppi and Gregory 2017). Attempting to

estimate the magnitude of the forced pattern effect with

respect to effective climate sensitivity (estimated from

regressions of the first 150 years or so of a 43CO2 run)

can yield widely varying results and those estimates

should be treated with caution.

There are similarities between the forced and un-

forced pattern effect. Both operate primarily in the SW,

and in both cases Dlcloud SW ’ 0.2Wm22K21 (Figs. 3

and 10). Themain difference is that the unforced pattern

effect has an additional contribution from Dlalbedo,
which does not play a significant role in the forced

pattern effect. Another difference is that we can have

high confidence in the direction of the forced pattern

effect: ensemble-average ECShist should be lower

than ECStrue. For the unforced pattern effect, the sign

is less clear, although previous analyses (Gregory and

Andrews 2016; Marvel et al. 2018; Andrews et al. 2018)

have argued that the observed climate trajectory of

FIG. 11. Cloud feedback in the 43CO2 run minus the ensemble

average cloud feedback in the 1% ensemble. The 1% ensemble

feedbacks are calculated by differencing the average of the first 10

years and the average of years 30–110 of the ensemble average

fluxes and temperatures. The gray lines show where the ensemble-

average difference has the same sign as difference between the

43CO2 feedback and the feedback in 90% of the individual en-

semble members.

FIG. 10. (top) l (Wm22 K21) averaged over the 1% ensemble and from the abrupt 43CO2

run. (bottom) The difference (43CO2 minus 1% ensemble average, in Wm22 K21) between

these twomodel experiments. The 1%-ensemble feedbacks are calculated by differencing the

average of the first 10 years and the average of years 30–110 of the ensemble average fluxes

and temperatures.
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the twentieth century produces a ECShist that is lower

than ensemble-average ECShist. If so then the forced

and unforced pattern effects would add, leading to an

ECShist from observations that could be 0.5K or 17%

less than ECStrue.

Any bias from this calculation will add to other biases

in the calculation. For example, incomplete and chang-

ing spatial coverage of the surface temperature record,

as well as the fact that historical surface temperature

measurements are blends of SST over ocean and air

temperature over land and ice (Cowtan and Way 2014;

Cowtan et al. 2015) also bias ECShist low. These tem-

perature biases can by themselves lead to a 20%–30%

low bias for ECShist (Richardson et al. 2016; Adams and

Dessler 2019). Combining this with a bias from the

pattern effect could lead to very large low biases in

ECShist. Considering all of the potential biases between

ECShist and ECStrue, it seems premature to argue that

climate models are overestimating ECStrue based on

comparisons to observational estimates of ECShist.

This analysis highlights potential areas of future re-

search. First, this analysis uses a single model ensemble.

Do other model ensembles confirm these results? Second,

how can we estimate the impact of the unforced pattern

effect on the actual historical climate record? This will

require a better understanding of how internal variability

impacts the important climate parameters (in our analysis,

sea ice and tropospheric temperature) as well as an esti-

mate of how these have changed over the historical period.

In the short term, these uncertainties in estimates of

ECShist may be difficult to reduce or eliminate. In that

case, better estimates of ECS may rely on developing

alternative methods of estimating ECS that are less

impacted by these pattern effects, such as using short-

term internal variability over the last few decades to

estimate ECStrue (e.g., Dessler and Forster 2018).
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