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ABSTRACT

This study investigates potential biases between equilibrium climate sensitivity inferred from warming over
the historical period (ECSy;s) and the climate system’s true ECS (ECS;;y.). This paper focuses on two factors
that could contribute to differences between these quantities. First is the impact of internal variability over the
historical period: our historical climate record is just one of an infinity of possible trajectories, and these
different trajectories can generate ECSy,;s values 0.3 K below to 0.5 K above (5%-95% confidence interval)
the average ECS;. Because this spread is due to unforced variability, I refer to this as the unforced pattern
effect. This unforced pattern effect in the model analyzed here is traced to unforced variability in loss of sea
ice, which affects the albedo feedback, and to unforced variability in warming of the troposphere, which
affects the shortwave cloud feedback. There is also a forced pattern effect that causes ECSy;, to depart from
ECS,1e due to differences between today’s transient pattern of warming and the pattern of warming at
2XCO, equilibrium. Changes in the pattern of warming lead to a strengthening low-cloud feedback as
equilibrium is approached in regions where surface warming is delayed: the Southern Ocean, eastern Pacific,
and North Atlantic near Greenland. This forced pattern effect causes ECSy;s to be on average 0.2 K lower
than ECSy;e (~8%). The net effect of these two pattern effects together can produce an estimate of ECSy as
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much as 0.5 K below ECS;,e.

1. Introduction

Equilibrium climate sensitivity (ECS; i.e., the equi-
librium warming in response to a doubling of CO,) is
one of the quantities that controls how much future
warming we will experience in response to green-
house gas emissions from anthropogenic activities.
As such, it is frequently viewed as one of the most
important numbers in climate science and much effort
has been expended over decades attempting to constrain
its value.

ECS can be calculated from observations or models as

F
ECS = ——2xc0z 1)
A
where F, o> is the radiative forcing from doubled CO,
and A represents the top-of-atmosphere (TOA) flux
change per degree of surface temperature change:
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where T is the global average surface temperature, R is
the TOA flux, and F is the radiative forcing.

Some of the most influential estimates of ECS come
from the observed warming during the historical pe-
riod, between the mid-nineteenth century and today
(referred to as ECSy,;). To estimate A over this period
(referred to as Apis), A in Eq. (2) represents the change
between the mid-nineteenth century and the early
twenty-first century. ECSy is then calculated using
Eq (1) and )\hist~

There have been many estimates of ECSy;; from
observations [summarized in Forster (2016); see also
Knutti et al. (2017)]. These tend to be lower than ECS
estimated from other sources and they anchor the lower
end of the IPCC’s canonical ECS range of 1.5-4.5K.
Recently, it has been argued that ECSy;, may not
provide a good estimate of our climate system’s true
ECS (hereafter ECSy.). This is based on demonstra-
tions in models that AR depends not just on how much
warming occurs, but also on how that warming is dis-
tributed across the globe (Armour et al. 2013; Andrews
et al. 2015; Zhou et al. 2016, 2017). In other words,
two climate states with the same AT, but distributed
differently, can have different values of AR, leading
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to different estimates of ECSy; (Olson et al. 2013;
Huber and Knutti 2014). Following standard practice,
I will refer to this as the “pattern effect” (Stevens
et al. 2016).

The pattern effect causes ECSys to depart from
ECS,e if the aspects of the warming we experienced
over the historical period differ from aspects of warming
at 2XCO; equilibrium. I intentionally leave vague what
is meant by ‘‘aspects’’ as these will be investigated in
detail in the paper. Basically, though, there are two
different reasons why warming over the historical
period may be different from the long-term warming.
The first reason is that the historical observational
record is just one member of an infinity of possible
climate trajectories that Earth could have experi-
enced over the last 150 years. Dessler et al. (2018,
hereafter D18) used an ensemble of climate model
runs to show that different trajectories could yield
widely varying estimates of ECSy,;.. These differences
in ECSy;¢ are due to internal variability, so I will refer
to this variability in ECSy;s as the “unforced pattern
effect.”

There is also a ‘“‘forced pattern effect.”” This is
primarily related to the fact that the transient
warming pattern over the twentieth century is ex-
pected to be different from the equilibrium pattern
of warming; this will tend to make ECSy;,. larger
than ECSyjs, (Andrews et al. 2015; Armour 2017;
Proistosescu and Huybers 2017; Ceppi and Gregory
2017). Previous analyses (e.g., Marvel et al. 2018;
Andrews et al. 2018) have evaluated the combined
forced and unforced pattern effects. In this paper, I
analyze a large model ensemble to separately evaluate
their magnitudes.

2. Model ensemble

We analyze output from various runs of the fully
coupled Max Planck Institute Earth System Model
version 1.1 (MPI-ESM1.1), collectively referred to as
the Grand Ensemble. The MPI-ESM1.1 is a fully cou-
pled climate model from the Max Planck Institute for
Meteorology and consists of the ECHAM6.3 atmo-
sphere and land model coupled to the MPI-OM ocean
model. The Grand Ensemble is described in detail in
Maher et al. (2019).

The MPI-ESM1.1 has a transient climate response of
1.78 K (Adams and Dessler 2019) and an effective cli-
mate sensitivity (calculated from a regression of the first
150 years of an abrupt 4XCO, run) of 2.72K. These
values are near the middle of the CMIP5 ensemble
range. We will analyze a large number of runs from this
ensemble:
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e A 100-member ensemble of runs with historical forc-
ing (hereafter, the “historical ensemble’’). Each of the
100 members simulates the years 1850-2005 and uses
identical historical natural and anthropogenic forcing.
The ensemble members differ only in their initial
conditions—each starts from a different state sampled
from the preindustrial control simulation. This en-
semble was used by D18 to characterize the impact of
internal variability on ECS;;; and by Adams and
Dessler (2019) to investigate the impact of internal
variability on transient climate response. The ensem-
ble produces a good simulation of the historical re-
cord, as seen in Fig. 2 of Maher et al. (2019).

o A 68-member ensemble of runs with CO, increasing at
1% per year (hereafter, the ““1% ensemble”’). Each of
the members is 150 years long and uses identical
forcing. Like the historical ensemble, this ensemble’s
members differ only in their initial conditions.

e An abrupt 4XCO; run. In this run, CO, is abruptly
quadrupled from preindustrial values and then run for
2614 years. At that point, the model is nearly in
equilibrium.

o A preindustrial control run. In this run, atmospheric
conditions held at preindustrial values for 2000 years.
This is the run from which all other runs branch from.

Effective radiative forcing used in this paper is calcu-
lated from fixed SST runs of the model. Historical
effective radiative forcing (1850-2005) is 2.2 Wm >
(D18), while 2XCO, and 4XCO, forcing are 3.7 and
7.8 Wm 2, respectively (Adams and Dessler 2019). In
all calculations, surface temperature refers to 2-m air
temperature.

3. Feedbacks in the historical ensemble

D18 showed that Ay, from the historical ensemble
ranged from —1.63 to —1.17Wm 2K~ (5%-95% )—this
spread is what I have designated as the unforced pattern
effect. To gain physical insight into this, I decompose
Anist into constituent feedbacks using the approach and
radiative kernels of Soden et al. (2008), but using the
feedback decomposition of Held and Shell (2012),
in which the Planck and lapse-rate feedbacks assume
constant relative humidity (RH). I will refer to these as
the ‘“‘conventional” feedbacks. For consistency with
D18, I calculate those feedbacks by differencing rele-
vant fields between the first and last decade of the runs.
Picking different periods does not change the conclu-
sions of this section.

One disadvantage of the conventional approach is
that the sum of the feedbacks may not equal Ay,
leaving a residual that may be comparable in magnitude
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to the pattern effect [ am trying to diagnose. To address
this, I also calculate feedbacks a second way, based on
decomposing R into clear-sky and cloud radiative forc-
ing (CRF) components:

R=R +R

clear sky LW TR

clear sky SW CRFLW +R

crrsw> 3
where LW and SW refer to longwave and shortwave
fluxes, clear-sky fluxes refer to what the fluxes would be
in the absence of clouds (leaving everything else the
same), and CREF is the all-sky flux minus the clear-sky
flux. The change in these fluxes (with the corresponding
forcing subtracted off) divided by ATy yields the indi-
vidual feedbacks. For example, the clear-sky longwave
feedback is

AR AF

clear sky LW B clearsky LW (4)

AT,

/\clear skyLW

The terms /\clear sky SW;» /\CRF LW> and /\CRF sw are all
calculated analogously. By construction, the sum of
these feedbacks must equal Ap;s. I will refer to these as
the CRF feedbacks.

Figure 1 shows a comparison between the ensemble-
average feedbacks in the two breakdowns. I have
grouped similar feedbacks together: Apjanck + Alapse rate +
)\ARH with Aclear sky LW> Aalbedo with )\clear sky SW» /\LW cloud
with /\CRF LW> and /\SW cloud with /\CRF SW- The feedback
pairs do not agree exactly because of differences
in the underlying physical processes. For example,
Aclear sky sw disagrees with Aapeq0 because Aciear sky sw
contains a small fraction of the water vapor feedback
caused by SW absorption by water vapor. Differences
also arise from cloud-masking effects that mix the cloud
and noncloud feedbacks in the CRF breakdown (Soden
et al. 2004). A final difference arises because the con-
ventional feedbacks do necessarily sum to Ay, but
leave a small positive residual (Ap;, minus the sum
of the feedbacks). The ensemble-average residual
is +0.40Wm 2K !, with 90% of the residuals falling
between 0.31 and 0.50 Wm 2K L. Overall, though, the
two feedback breakdowns give a similar picture of the
breakdown of Ay;s.. Comparisons to the CMIPS ensemble
average also show reasonable agreement (Fig. 1).

Figure 2 shows the latitude distribution of the av-
erage and standard deviation of the ensemble. In
agreement with observations, the historical ensem-
ble simulates the largest warming in the Northern
Hemisphere (NH), although it overestimates warming
there [Fig. 2a; see also Fig. 2 of Adams and Dessler
(2019)] and simulates least warming in the Southern
Hemisphere (SH).
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historical ensemble average A

FIG. 1. Comparison of ensemble-average A (Wm 2K ') from
the historical ensemble using two different feedback breakdowns.
Gray bars represent the conventional feedbacks, while white bars
show the CRF feedbacks; similar feedbacks are grouped together.
Anist 1S the total feedback, estimated using Eq. (2). Residual is the
difference between Ap;,; and the sum of the feedbacks from the
conventional breakdown. By construction, the sum of the CRF
feedbacks sum to A All feedbacks are calculated by differencing
the first decade from the last. The bold crosses are the average
of the CMIPS5 ensemble, taken from Table S1 of Ceppi and
Gregory (2017).

The term Acjcar sky Lw (Fig. 2c) is basically a mirror
image of the surface warming pattern, showing that re-
gions with more warming radiate more energy back to
space. The term Acjear sky sw is primarily driven by loss of
sea ice, so it maximizes in the polar regions (Fig. 2d).
Note that Acoug Lw is larger than Acrr Lw at almost all
latitudes (Fig. 2e) due to cloud masking effects (Soden
et al. 2004) and Ajoua sw and A crr sw are similar except
in the Arctic (Fig. 2f), where cloud masking effects are
also important.

4. Quantifying the unforced pattern effect

D18 calculated Ay in the historical ensemble and
found that the 5%-95% spread in Apjs is —1.63 to —1.17.
Given that Ay is equal to the sum of individual feed-
backs, variability in Ap;s must be driven by variability in
the underlying feedbacks. Figure 3 summarizes this by
plotting the average feedbacks in the 10 ensemble
members with the highest ECSy;5 minus the average in
the 10 lowest ECS;;, ensemble members. This shows
that 55% of the unforced pattern effect is due to dif-
ferences in the Agcar sky sw, With most of the remainder,
39%, due to differences in Acrr sw. Differences in the
LW feedbacks contribute ~5%.

High ECSy,;s ensemble members have a larger frac-
tion of warming in the extratropics (and less in the
tropics) than the low ECSy;c models (Fig. 4a). The
difference in the LW clear-sky feedback (Fig. 4c),
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FIG. 2. (a) Zonal- and ensemble-average average AT (solid line) and the Berkeley Earth surface temperature
observations (dashed line) (Rohde et al. 2013). The model has been masked to match Berkeley coverage. (b) Zonal-
and ensemble-average normalized warming in the historical ensemble (AT at each latitude divided by the global
average ATg; the global average of this quantity is one by construction). (c)-(h) Zonal- and ensemble-average
feedbacks in the historical ensemble. Black lines are from the CRF breakdown; gray lines are the corresponding
feedback from conventional breakdown (where appropriate). All are plotted against area-weighted latitude. The
three numbers on each panel show the contributions to the feedback of the latitude ranges 90°-30°S, 30°S-30°N, and
30°-90°N to the global average; the sum of these numbers is equal to the global average. In each panel, the shaded
band shows the *1o range of the ensemble around the average.

AAciear sky Lw, basically mirrors the temperature differ-
ence, with positive values (meaning the feedback is less
negative) in regions with lower warming fractions (the
tropics) and negative values in regions with larger
warming fractions (the extratropics). Integrating over
latitude, these differences cancel and so the global-
average AAcjcar sky Lw 1S basically zero. This seems

likely to be generally true, so it might be expected that
this feedback should generally contribute little to the
pattern effect.

The term Adgear sky sw reflects changes in the surface
albedo feedback and Fig. 3 shows that it is contributing
the majority to the unforced pattern effect. Figure 4d
shows that this is arising almost entirely from the
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FIG. 3. Average feedbacks of the 10 historical ensemble mem-
bers with the highest ECSy; (least negative Ay ) minus the aver-
age of the 10 members with the lowest ECSp;; (most negative Apis)-

Antarctic region. Thus, while there is a strong ensemble-
average Aciear sky sw in the Arctic (Fig. 2d), there is little
variability within the ensemble in this feedback, so
Al giear sky sw there is close to zero.

The all-sky LW feedback difference (Aday sy tw =
AAiw crF T Mcear sky Lw) in Fig. 4g shows that the
near-zero difference in the LW feedback comes from
cancellation between positive differences in the tropics
and negative differences at high latitudes. The all-sky
SW feedback difference (AAup sky sw = AAsw crr +
Algiear sky sw) in Fig. 4h, which is responsible for most of
the unforced pattern effect, reveals that on average
45% of the difference is coming from the Southern
Hemisphere extratropics (5%-95% of individual en-
semble members range have values of 36%-56%), 20%
is coming from the tropics (14%-44%), and 35% is
coming from the Northern Hemisphere extratropics
(12%-39%).

5. Causes of the unforced pattern effect
a. Sea ice

The pattern of AAciear sky sw, With the maximum lo-
cated in the Antarctic region (Fig. 4d), strongly suggests
that variability in sea ice loss among the ensembles is
responsible for the spread in this feedback in the en-
semble. Indeed, I find a strong correlation between the
decrease of sea ice over the historical period in each
ensemble member and the surface albedo feedback in
that member (Figs. 5a,b). More quantitatively, vari-
ability in the loss of sea ice explains about half of the
variance in Ap (Fig. 5¢).

I find some connection between variability in the
ocean circulation and variability in sea ice. In particular,
changes in the Atlantic multidecadal oscillation (AMO)
index and the South Atlantic multidecadal oscillation
(SAMO) index correlate with Aupeqo from the same
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hemisphere (Fig. 6) (plots using Acjear sky sw 100k nearly
identical). The AMO and SAMO indices are defined as
the average of detrended SST over the North Atlantic
(0°-60°N, 0°-80°W) and South Atlantic (60°S-0°, 60°W—
40°E), respectively (B. Yao et al. 2019, unpublished
manuscript). There is little correlation between these
indices and the albedo feedback in the other hemisphere
(Jr] < 0.13). I have looked at other indices [the Pacific
decadal oscillation (PDO), South Pacific decadal oscil-
lation (SPDO), interdecadal Pacific oscillation (IPO),
tripole index (TPI), and Indian Ocean dipole (IOD))]
and also find weak correlations between any of them and
albedo feedback variability.

Of particular note, the slopes of the fits in Fig. 6a
and 6b are 0.07 and 0.03Wm 2K ™!, respectively. This
means that the albedo feedback response to a unit
change in the SAMO is more than twice the response to
the AMO. This again emphasizes the key role the
Southern Hemisphere has in varying Aps. It is worth
noting that CMIP5-era models do not always do a great
job of simulating the details of Antarctic sea ice (Turner
et al. 2013), so verifying this result with other ap-
proaches, preferably tied to observations, should be a
priority.

b. Shortwave clouds

The latitudinal pattern of AA ouq sw (Fig. 4f) does not
point to a clear physical mechanism. However, previous
work (Zhou et al. 2016, 2017; Andrews and Webb 2018;
Ceppi and Gregory 2017; Fueglistaler 2019) has pointed
toward atmospheric stability as key for regulating the
cloud feedback and D18 identified ATsqy, 500-hPa
tropical (30°N-30°S) temperature, as providing a fun-
damental control on planetary energy balance. I find that
variability in AT750/ATs, warming of the tropical atmo-
sphere per unit global-average surface warming, explains
much of the variability in A¢ouq sw (Fig. 7a). This leads to
ATs50/ATs having a strong correlation with Ay (Fig. 7b).

The slope of the line in Fig. 7a indicates that greater
warming of the troposphere makes the SW cloud feed-
back more negative. If the slope were due mainly to
the low-cloud feedback, then I would expect to also
see a similar or stronger correlation with the net cloud
feedback (Acioud = Acloud sw T Acloud Lw) because net
cloud feedback is a better indicator of low cloud changes
(changes in high clouds tend to have LW and SW feed-
backs that cancel; e.g., Zelinka et al. 2012). However,
correlations between Agouq (and also Acrp) versus
ATs500/ATs yield low correlations (r = —0.08). This
suggests that mid- and high-level clouds are also playing
arole in the variation of the SW cloud feedback in Fig. 7a.

I have also correlated Agouq sw With other indica-
tors of stability, such as estimated inversion strength
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F1G. 4. Asin Fig. 2, but for the change between the average of the 10 ensemble members with the highest ECS and
the average of the 10 with the lowest ECS. The blue shaded region shows the 5%-95% uncertainty of the

difference.

(Wood and Bretherton 2006) and find that ensemble
members whose atmosphere becomes more stable
also have a more negative Acoug sw (not shown).
However, the correlation (r = —0.54) is not as good as
with ATs500/ATs. This is again consistent with the signal
in Fig. 7a having a nontrivial contribution from mid- and
high-level clouds. Investigating the altitude distribution
of clouds driving the unforced pattern effect in models
and observations should be a high priority for fu-
ture work.

Given the role played by AT in regulating Acioud sw
a natural question is whether ENSO is playing a

role. Figure 7c shows that AENSO, the change in
ENSO3.4 index between the first and last decade,
does indeed correlate to some extent with Agoug sw- |
also find that AAMO has about the same magnitude
correlation (Fig. 7d). APDO (not shown) also correlates
with Agoua sw, but AENSO and APDO are strongly
correlated (r = 0.73), so I do not consider them inde-
pendent regressors.

c. Putting it all together

The magnitude of the unforced pattern effect is af-
fected by the exact periods selected, as I discuss in some
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FIG. 5. Scatterplots of the loss of sea ice vs (a) Acicar sky sw» (D) Aaibedo, and (€) Anis. Each dot represents the value from one member of the
historical ensemble. The change in sea ice is the change in percent ice coverage (e.g., a decrease in sea ice coverage from 4% of the globe to
3.5% would yield a change of 0.5% ). As with the feedbacks, the change in sea ice is the average difference between the first and last decade
of the run. The dotted line is a linear least squares fit; r values of the fit are shown in each panel.

detail later in the paper. Most investigators use 1859-82
as a base period due to the lack of volcanic activity
during those years. Using that base period, the 5%-95%
spread in Ay, in the ensemble is —1.46 to — 114Wm 2K},
with an ensemble average of —1.33Wm 2K ' (chang-
ing the base and end periods does not change any of
the previous results). This corresponds to an ensem-
ble spread of ECSy;s of 2.53 to 3.24K, with an en-
semble average of 2.79 K. Thus, the unforced pattern
effect can lead to ECSy;s having a bias of —0.26
to +0.46 K (—=9% to +16%) relative to the ensemble
average ECSy;g.

I also show that unforced variability in two key pa-
rameters, sea ice loss and AT500/AT, largely control the
unforced pattern effect in this ensemble. These two
parameters are correlated (r = —0.56) because sea ice
loss exposes relatively warm ocean water, so members
with more sea ice loss also have higher ATs. This means
that there is also a positive correlation between A pedo

0.31
0.2 4
0.14

0.0

SH /\albedo

-0.1
—0.27 (@) r=0.63
slope = 0.07

N
ASAMO

_03 -

and Agoua sw (r = 0.40), so that variability in these two
feedbacks work in the same direction to generate large
variability in Ap;s.

A key caveat to our conclusions is the question of
whether the model accurately simulates unforced vari-
ability. While we have not analyzed the fidelity of
this particular model, previous work has pointed up
some potential deficiencies in CMIP5-era models’ sim-
ulation of unforced variability (e.g., Zhou et al. 2016;
Hedemann et al. 2017; Kajtar et al. 2019). Determining
whether other models—and nature—show this same
unforced pattern effect should be a high priority.

6. The forced pattern effect
Magnitude

To determine the magnitude of the forced pattern
effect, I begin by averaging Ay over all members of
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FIG. 6. () Aaedo averaged over the Southern Hemisphere vs ASAMO; (b) Aapedo averaged over the Northern
Hemisphere vs AAMO. ASAMO and AAMO are the change in the respective index between the first and last
decade of the historical period in each ensemble member. Each dot represents the value from one member of the
historical ensemble and the dotted line is a linear least squares fit. The slope and correlation coefficient of the fit are

displayed in each panel.
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the historical ensemble, yielding Apist-average- 1he main
challenge with this calculation is that Anjsi-average 18
affected by the choice of averaging periods used in
Eq. (2)—using different base and end periods can
lead Apist-average t0 vary by a factor of 2, from —0.8
to —1.6 Wm *K~! (Fig. 8).

Previous investigators have attempted to get around
this problem by picking periods unaffected by
volcanic eruptions and I will follow that approach
here. Picking volcanically unperturbed base periods
(1860-69 or 1870-79) and end periods (1970-79 or 1996—
2005) produce estimates of Apis-average Detween —1.33
and —127Wm 2K !, with an average of —1.32Wm 2K .

To verify this estimate, I have also analyzed a
68-member ensemble forced by CO, increasing at
1% per year (and no volcanoes). Figure 9 shows
A derived from the ensemble average of these 1% runs,
hereafter Ao, average- This is derived using Eq. (2) with
ensemble average fluxes and temperatures; A is the
difference between the average of the first 10 years
of the run and the average of a sliding 10-yr window.
While there is some decadal variability, it is clear
that Ayo_average has much less variation with time than

Ahist-average> T€flecting more uniform forcing, particularly
the lack of volcanoes. Over the entire 150-yr run, the
median value of A1 9,_average is —1.33 W m 2K ! (5%-95%
of the values range from —1.29 to —1.41Wm 2K 1),
very close to Apjst-average fOT NONVOICanic periods.
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FIG. 8. Estimates of Apisi-average (W m 2 K™!) with various base
and end periods. Each line has a different base period, as indicated
in the figure legend. The x axis indicates the end period. The hor-
izontal dotted line is the value of A4xcoo.
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FIG. 9. Estimates of ensemble-average Ajo, (Wm 2K ') as a
function of end period, the value on the x axis. The y axis has the
same range as Fig. 8 to make comparison easier. All values are
calculated with a base period of the first 10 years of the ensemble.
The horizontal dotted line is the value of A4xcoo.

To estimate the forced pattern effect, I also need an
estimate of A from a more strongly forced equilibrium
run, for which I use the 2614-yr abrupt 4XCO, run. I
estimate A4xcoz using Eq. (2), with A representing the
difference between the time average of the 2000-yr
preindustrial control run and the time average of the last
500 years of the run, which covers a period nearly in
equilibrium (the trend in Tg over this period is 0.02K
century '). This calculation yields a value of Agcon
of —1.15Wm K™\,

Thus, A4xco2 is about 15% less negative than A pisiaverage-
However, the forced pattern effect should be the
difference between the historical ensemble aver-
age and a 2XCO; run, but the Grand Ensemble does
not have appropriate 2XCO, runs. Mauritsen et al.
(2019) analyzed both 2XCO, and 4XCO, runs of the
MPI-ESM 1.2 model, a model closely related to the
one used here. Using data from Fig. 12 and Table 5
of that paper, I estimate that Ayxco2 is about 7% less
negative than A,xco,. Previous work on this (Meraner
et al. 2013; Mauritsen et al. 2019) suggests that increas-
ing A with warming is due to increasing strength of the
water vapor feedback, related to an increase in height
of the tropopause, and an increasingly positive cloud
feedback.

I therefore conclude that ECS.,. (ECS in the
2XCO, run) is about 8% larger, corresponding to
0.2K, than ensemble-average ECSy;g. This estimate
of the forced pattern effect is smaller than suggested
by previous analyses (Armour 2017; Proistosescu
and Huybers 2017) but close to values found by other
analyses (Mauritsen and Pincus 2017; Lewis and
Curry 2018).

Estimates of ECSy,, require long forced runs to near-
equilibrium conditions. Because such runs are relatively
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rare, most previous estimates of the pattern effect have
used effective climate sensitivity (Where A is estimated
from a Gregory regression of an abrupt 4XCO, run)
instead of true climate sensitivity. For this model,
Aege derived from regression of the first 150 years
of the 4XCO, run is —1.36 Wm 2K !, meaning that
effective climate sensitivity is more negative than
Ahist-average—meaning, in turn, that ECS. < ECSy;
and implying a negative forced pattern effect. However,
the result is quite sensitive to the period selected for
the regression. Regressing years 20-150 yields a A
of —1.09, a forced pattern effect larger than found here. I
expect this may be quite different for different models,
so one should be cautious interpreting estimates of the
pattern effect based on Gregory regressions over arbi-
trary periods.

7. Causes of the forced pattern effect

Figure 10 shows global-average feedbacks from
the 1% ensemble and abrupt 4XCO, run, as well as
the differences between them. The forced pattern effect
shown here is almost entirely due to SW cloud feed-
backs, also noted by Andrews et al. (2015).

Figure 11 shows the spatial pattern of the difference in
the total cloud feedback. I plot the total cloud feedback
(LW + SW) because that feedback correlates better
with low-cloud changes. And I plot the cloud feedback
rather than the CRF feedback because the CRF feed-
back has large values in the polar regions associated with
cloud masking of changes in surface albedo rather than
changes in clouds.

Maxima in AAgeug Occur in regions where warming
is delayed: the Southern Ocean, eastern Pacific, and
Atlantic Ocean south of Greenland. As the surface in
these regions eventually warms in the future, the
stability of the atmosphere decreases, leading to a
reduction in low clouds, thereby increasing the mag-
nitude of the cloud feedback as the climate warms
(Senior and Mitchell 2000; Ceppi and Gregory 2017,
Andrews et al. 2018).

8. Conclusions

In this paper, I have addressed the question: Is ECS
estimated from historical observations (ECSy;s) a good
estimate of the true ECS (ECSyc) of our climate sys-
tem? I have investigated two reasons why the answer
may be “no.” First, the historical observational record
is just one member of an infinity of theoretical cli-
mate trajectories for the Earth since preindustrial.
Different climate trajectories over this period yield es-
timates of ECSy;; that can differ from the ensemble
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FIG. 10. (top) A (Wm 2K ') averaged over the 1% ensemble and from the abrupt 4XCO,
run. (bottom) The difference (4X CO, minus 1% ensemble average, in W m ™ >K™') between
these two model experiments. The 1%-ensemble feedbacks are calculated by differencing the
average of the first 10 years and the average of years 30-110 of the ensemble average fluxes

and temperatures.

average ECSyc by —0.26 to +0.46K, corresponding
to —9% to +16% (5%-95% confidence interval).

This unforced pattern effect arises mainly from two
sources: unforced variability in loss of sea ice, particu-
larly in the Antarctic, which leads to variability in the
surface albedo feedback, and unforced variability in
tropical tropospheric warming, which leads to variabil-
ity in the cloud feedbacks. Variability in these two pa-
rameters correlates with well-known climate indices
(e.g., ENSO, AMO), suggesting that the unforced pat-
tern effect is controlled by known modes of internal
variability. This may give us a way to evaluate where
the observed historical record lies within the envelope
of all possible records. Doing so should obviously be a
high priority for the community.

The second reason that ECSy;c may not be a good esti-
mate of ECS;,, is that the average transient warming pat-
tern over the twentieth century is expected to be different
from the equilibrium pattern of warming for doubled CO,,
and this can also lead to differences between ECSy,;; and
ECS;..- Because this effect is related to forced warming, I
refer to this as the forced pattern effect.

I estimate that ECSy;. is 8% larger than ensemble-
average ECSyq, corresponding to a bias of 0.2-0.3K.
This forced pattern effect is mainly due to a less negative
low-cloud feedback at equilibrium arising in oceanic
regions of where warming is delayed, namely the
Southern Ocean, east Pacific, and the Atlantic south
of Greenland (Senior and Mitchell 2000; Andrews
et al. 2015; Ceppi and Gregory 2017). Attempting to
estimate the magnitude of the forced pattern effect with
respect to effective climate sensitivity (estimated from
regressions of the first 150 years or so of a 4XCO, run)

can yield widely varying results and those estimates
should be treated with caution.

There are similarities between the forced and un-
forced pattern effect. Both operate primarily in the SW,
and in both cases Adgoug sw =~ 02Wm 2K ™! (Figs. 3
and 10). The main difference is that the unforced pattern
effect has an additional contribution from AA,pedo,
which does not play a significant role in the forced
pattern effect. Another difference is that we can have
high confidence in the direction of the forced pattern
effect: ensemble-average ECS;;s; should be lower
than ECS;,.. For the unforced pattern effect, the sign
is less clear, although previous analyses (Gregory and
Andrews 2016; Marvel et al. 2018; Andrews et al. 2018)
have argued that the observed climate trajectory of

-1.0

-1.5

FIG. 11. Cloud feedback in the 4XCO, run minus the ensemble
average cloud feedback in the 1% ensemble. The 1% ensemble
feedbacks are calculated by differencing the average of the first 10
years and the average of years 30-110 of the ensemble average
fluxes and temperatures. The gray lines show where the ensemble-
average difference has the same sign as difference between the
4XCO, feedback and the feedback in 90% of the individual en-
semble members.
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the twentieth century produces a ECSy;, that is lower
than ensemble-average ECSy;. If so then the forced
and unforced pattern effects would add, leading to an
ECS,;s: from observations that could be 0.5K or 17%
less than ECSy; .

Any bias from this calculation will add to other biases
in the calculation. For example, incomplete and chang-
ing spatial coverage of the surface temperature record,
as well as the fact that historical surface temperature
measurements are blends of SST over ocean and air
temperature over land and ice (Cowtan and Way 2014;
Cowtan et al. 2015) also bias ECSy;s low. These tem-
perature biases can by themselves lead to a 20%-30%
low bias for ECSy;5; (Richardson et al. 2016; Adams and
Dessler 2019). Combining this with a bias from the
pattern effect could lead to very large low biases in
ECSy;s.- Considering all of the potential biases between
ECSyisc and ECSyyye, it seems premature to argue that
climate models are overestimating ECS;,,. based on
comparisons to observational estimates of ECSy;g.

This analysis highlights potential areas of future re-
search. First, this analysis uses a single model ensemble.
Do other model ensembles confirm these results? Second,
how can we estimate the impact of the unforced pattern
effect on the actual historical climate record? This will
require a better understanding of how internal variability
impacts the important climate parameters (in our analysis,
sea ice and tropospheric temperature) as well as an esti-
mate of how these have changed over the historical period.

In the short term, these uncertainties in estimates of
ECSyisc may be difficult to reduce or eliminate. In that
case, better estimates of ECS may rely on developing
alternative methods of estimating ECS that are less
impacted by these pattern effects, such as using short-
term internal variability over the last few decades to
estimate ECS,, (e.g., Dessler and Forster 2018).
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