

1 **Andradite skarn garnet records of exceptionally low $\delta_{18}\text{O}$ values within an Early**
2 **Cretaceous hydrothermal system, Sierra Nevada, CA**

4 J. Ryan-Davis^{1, 2}, J.S. Lackey², M. Gevedon³, J.D. Barnes³,
5 C-T.A. Lee⁴, K. Kitajima⁵, J.W. Valley⁵

7 ¹ Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA

8 ² Geology Department, Pomona College, 185 E. 6th Street, Claremont, California 91711, USA

9 ³ Department of Geological Sciences, University of Texas, Austin, Texas 78712, USA

10 ⁴ Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, Texas 77005, USA

11 ⁵ WiscSIMS, Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, USA

13 **June 18, 2019**

15 **Final publication:**

16 Ryan-Davis J, Lackey JS, Gevedon M, Barnes JD, Lee CTA, Kitajima K, Valley JW (2019)

17 Andradite skarn garnet records of exceptionally low $\delta_{18}\text{O}$ values within an Early

18 Cretaceous hydrothermal system, Sierra Nevada, CA. *Contr. Min. Pet.*, vol 174.

19 doi.org/10.1007/s00410-019-1602-6

22 **KEYWORDS:** skarn, garnet, oxygen isotope, fluid flow, arc magmatism,

23 **ABSTRACT**

24 Skarn garnets in the Mineral King roof pendant of the south-central Sierra Nevada within
25 Sequoia National Park, California, USA reveal variable fluid chemistry with a significant
26 component of meteoric water during metasomatism in the Early Cretaceous Sierra Nevada
27 Batholith. We focus on andradite garnet associated with Pb-Zn mineralization in the White Chief
28 Mine. Laser fluorination oxygen isotope analyses of $\delta_{18}\text{O}$ of garnet ($\delta_{18}\text{O}(\text{Grt})$) from sites along
29 the skarn show a large range of values (−8.8 to +4.6‰ VSMOW). Ion microprobe (SIMS)
30 analyses elucidate that individual andradite crystals are strongly zoned in $\delta_{18}\text{O}(\text{Grt})$ (up to 7‰ of
31 variation). Total rare earth element concentrations ($\sum\text{REE}$) across individual garnets show
32 progressive depletion of skarn-forming fluids in these elements during garnet growth.

33 These findings support a skarn model of earliest red high- $\delta_{18}\text{O}$ grandite garnet consistent
34 with a magmatic-dominated equilibrium fluid ($\delta_{18}\text{O}(\text{H}_2\text{O})$) as high as $\approx +8\text{\textperthousand}$). Later green
35 andradite crystallized in equilibrium with a low- $\delta_{18}\text{O}$ fluid indicating a significant influx of
36 meteoric fluid ($\delta_{18}\text{O}(\text{H}_2\text{O}) \approx -6$ to $-5\text{\textperthousand}$), following a hiatus in garnet growth, associated with
37 late-stage Pb-Zn mineralization. Latest orange overprint rims have higher $\delta_{18}\text{O}$ values
38 ($\delta_{18}\text{O}(\text{H}_2\text{O}) \approx 0$ to 2\textperthousand), and depleted total REEs, suggesting influx of high- $\delta_{18}\text{O}$, trace-element
39 depleted fluid derived from regional metamorphism of the carbonate host. Remarkably low
40 $\delta_{18}\text{O}(\text{Grt})$ values in the White Chief canyon skarn require a significant proportion of meteoric
41 fluid available during $>400^\circ\text{C}$ andradite-forming metasomatism. Fluid flow was channelized at
42 the pluton-wallrock contact, evidenced by the narrow extent of skarn.

43 **ACKNOWLEDGEMENTS**

44 We thank two anonymous reviewers and Executive Editor O. Müntener for their helpful
45 comments that clarified the manuscript. We thank K. Nydick and G. Bradshaw for assistance
46 with permitting for field work in Sequoia National Park, F. Kyte for assistance on the UCLA

47 electron microprobe, N. Kita, J. Kern and R. Havranek for assistance in the WiscSIMS lab. M.
48 Spicuzza (Wisconsin) and T. Larson (Texas) helped in the LF-IRMS isotope labs. T. Sisson and
49 D. John at the USGS are acknowledged for thoughtful discussions. This work was supported by
50 NSF - OCE-1338842 awarded to Lee, Lackey, Barnes and others as part of the Frontiers in Earth
51 Systems Dynamics program. J. Valley is supported by NSF (EAR-1524336). The WiscSIMS ion
52 microprobe laboratory is supported by the National Science Foundation (EAR-1355590, -
53 1658823) and by the University of Wisconsin-Madison.

54 INTRODUCTION

55 Elemental and oxygen isotope zoning within hydrothermal skarn systems is observable at
56 many scales: system-wide across a pluton, outcrop and hand-sample scale, and within individual
57 minerals (e.g., Meinert et al., 2005). Microanalysis by laser ablation or ion microprobe has
58 successfully been used to measure elemental and oxygen isotope compositions within individual
59 garnet crystals from skarns as a precise metric of fluid sources (e.g., Yardley et al. 1991;
60 Jamtveit et al. 1993; Jamtveit and Hervig 1994; Crowe et al. 2001; Clechenko and Valley 2003;
61 Smith et al. 2004; Gaspar et al. 2008; Page et al. 2010; D'Errico et al. 2012). A multitude of
62 properties of the fluids and spatial arrangements in a hydrothermal system (e.g., temperature,
63 fluid-pressure, oxidation state, chemistry, fluid sources, flow rate, diffusion) may be the cause of
64 observable skarn zoning (Bowman 1998b), and therefore a multi-method approach must be used
65 to understand potential causes of zoning in skarns.

66 This study focuses on a narrow band of andradite-rich skarn at White Chief canyon in the
67 Mineral King Roof Pendant. Pb-Zn-Ag mineralization there drew many miners to the Mineral
68 King mining district in the late 1800's, similar to the rush for gold in the western Sierran
69 foothills but otherwise unique in the Sierra, as most other skarns in the range harbor tungsten
70 mineralization (e.g., Goodyear 1888; Newberry 1982; MacKenzie 1983). The results provide
71 details on the dynamics of garnet chemistry and fluid flow in a shallow, early Cretaceous
72 hydrothermal system in the Sierra Nevada Batholith, a period of magmatic quiescence in the
73 Sierran Arc (Paterson and Ducea 2015), but one that preserves a critical glimpse of hydrothermal

74 fluid flow in the arc. Comparing oxygen isotope data with from White Chief canyon (this study),
75 with other skarn systems in the same roof pendant, provides a record of changing characteristics
76 of hydrothermal systems at key intervals in the Mineral King roof pendant. These archives of
77 hydrothermal processes give unusual glimpses into upper-crustal fluids in the Cretaceous Sierra
78 Nevada arc. Our investigation of the White Chief canyon skarn has implications for the role of
79 meteoric fluid exchange in the Early-Cretaceous volcanic system.

80 A comparison of oxygen isotope ratios of garnet, calcite and scheelite (CaWO_4) from the
81 White Chief skarn with oxygen isotope ratios measured elsewhere in the pendant tests for
82 contributions of fluids from distal sources (e.g., metarhyolites or metapelites in the pendant).
83 Measured oxygen isotope values whole rock ($\delta_{18}\text{O}(\text{WR})$) and zircon ($\delta_{18}\text{O}(\text{Zrc})$) from the
84 granodiorite of White Chief Mine provide the best estimates of $\delta_{18}\text{O}$ of the magmatic fluid in the
85 skarn-forming system.

86 We report textural, major, minor, and trace element composition, and oxygen isotope
87 ratios of near-end-member andradite (Adr) garnets from the Pb-Zn White Chief canyon skarn
88 system. By combining petrologic approaches with elemental and isotopic measurements, we
89 provide details of garnet morphology and chemistry that record the evolution of the
90 hydrothermal system including spatial relations of fluid flow over the time period recorded by
91 garnet growth.

92 **GEOLOGIC SETTING**

93 Complex centimeter- to meter-scale mineralogical zoning is apparent in the White Chief
94 Mine skarn within the Mineral King roof pendant in Sequoia National Park (Fig. 1). The Mineral
95 King pendant is among the largest ($\sim 10 \text{ km}^2$) roof pendants in the south-central Sierra Nevada
96 batholith (Fig. 1), and is bounded by ca. 98–99 Ma granodiorite and granite plutons (Sisson and

97 Moore 2013). Pendant rocks comprise Triassic-Jurassic metavolcanic and metasedimentary units
98 of the Kings Sequence group (Saleeby and Busby 1993).

99 The pendant also contains early Jurassic (ca. 196 Ma) tuffs and exposes aerially extensive
100 Cretaceous arc volcanic units (132 to 136 Ma) (Klemetti et al. 2014). Small plutons of
101 overlapping age (135 to 136 Ma) are found within and adjacent to the Mineral King pendant and
102 porphyritic textures in dikes and portions of the plutons are common, and provide evidence that
103 the area preserves a shallow “volcano-plutonic suite” transition (Sisson and Moore 2013).

104 Because of this shallow setting, we have assumed that the pressure of skarn formation at White
105 Chief canyon was <1 kbar. Within the metavolcanic units are carbonate-rich units interpreted to
106 represent intervals of volcanic and tectonic quiescence. Pendant protoliths at this location were
107 calcareous quartz sandstone interpreted to have been deposited in a deep marine environment
108 during a break in the volcanic activity that produced the material for the majority of the roof
109 pendant (Busby-Spera and Saleeby 1987; Sisson and Moore 2013). The roof pendant underwent
110 metamorphism and deformation of the volcanic and sedimentary protoliths, assigned to upper
111 greenschist and amphibolite facies (Sisson and Moore 2013), and mineral assemblages in the
112 metamorphic rocks include andalusite and cordierite, suggest low pressure and high temperature
113 associated with pluton emplacement at shallow levels (Sisson and Moore 2013; Klemetti et al.
114 2014). Pressures of 2–3 kilobars are reported by Al-in-hornblende barometry on most of the
115 large, ~98–100 Ma granodiorites that surround the pendant (Ague and Brimhall, 1988). Calcite-
116 and dolomite-rich marbles are exposed to the west and southwest of Empire Mountain, and to the
117 east and northeast of the granodiorite of White Chief Mine (Fig. 1).

118 Hydrothermal exchange between the granodiorite of White Chief Mine and the large
119 marble body that bounds it to the east drove formation of Pb-Zn skarns along a narrow (~1 to 10

120 m wide) zone between the pluton and marble in White Chief canyon (Figs. 1, 2). Field relations
121 indicate that emplacement of the 135 ± 1 Ma (U-Pb zircon, Sisson and Moore 2013) deformed
122 hornblende-biotite granodiorite of White Chief Mine drove skarn formation (Figs. 2 & 3), thus
123 linking its formation to the Early Cretaceous “volcano-plutonic suite” of Sisson and Moore
124 (2013). The White Chief canyon skarns are typically massive garnetites with subordinate green
125 clinopyroxene and in some cases secondary actinolite. Most of the “pockets” of garnetite are
126 composed of red- to beige-colored, granoblastic garnet. Olive-green and orange-rimmed
127 andraditic garnetite, often occurring with up to 80 volume % Pb-Zn sulfide mineralization
128 (galena + sphalerite), occurs as more localized domains within the skarns, with the largest of
129 these being the galena-rich ore zone where White Chief Mine was situated (Fig. 2a). Ore
130 deposition is often associated with late meteoric flooding in skarn systems, which represents the
131 retrograde stage of skarn formation (e.g., Einaudi and Burt 1982; Meinert et al. 2005). This
132 retrograde stage has been the focus of previous work on the White Chief skarn, beginning with
133 ore deposit reconnaissance by J.W. Crabtree in 1873 (Goodyear 1888). MacKenzie (1983)
134 characterized the skarn as a contact-infiltrational exoskarn between the granodiorite and marble.

135 Approximately 5 km to the north-northeast of White Chief canyon (Fig. 1), the 103±4 Ma
136 (Gevedon et al. 2018) skarn system of Empire Mountain, examined by D'Errico et al. (2012),
137 provides an interesting comparison to the White Chief canyon skarn, as both are within the
138 Mineral King roof pendant and indicate meteoric fluid as a major driver of metasomatism and
139 base metal variety in ores. The garnets in each skarn indicate different styles of fluid flow during
140 the skarn-forming intrusions, which are separated in time by nearly 30 million years (Klemetti et
141 al. 2013). Shallow emplacement at ~3.3 km depth of the 106.2 ± 1.1 Ma porphyritic quartz
142 diorite of Empire Mountain (U-Pb zircon, Sisson and Moore 2013)—metasomatically altered the

143 marbles, forming the extensive garnet-rich skarn bodies adjacent to and atop the present
144 exposure of the pluton at Empire mountain (D'Errico et al. 2012).

145 About 4 km north of the granodiorite of White Chief Mine, the small Sequoia Claim
146 skarn (Fig. 1) is thought to be late Cretaceous, in contact with the granodiorite of Castle Creek
147 (U-Pb zircon ages of 97.8 ± 0.7 to 98.4 ± 1.3 Ma (Sisson and Moore 2013)). The time period
148 over which this study examines hydrothermal fluids in the Sierra Nevada arc thus extends
149 through much of the Cretaceous.

150 METHODS

151 Sampling

152 Samples in this study include skarn, marble, and granodiorite—the main units involved in
153 the hydrothermal system at White Chief canyon and Sequoia Claim skarn (Fig. 2; Table S1
154 Online Resource 1). Thick and thin sections of rock samples were prepared to examine
155 petrographic textures of the rocks and individual garnet crystals. Individual grains, or pieces of
156 large (>1 mm diameter) garnet grains, were liberated from matrix for bulk $\delta_{18}\text{O}$ analysis by
157 gently crushing samples by hand in a mortar and pestle. Garnet and other silicate mineral
158 samples were rinsed in dilute hydrochloric acid to remove traces of carbonate and picked by
159 hand to be consistent in color and free of inclusions. A Dremel ® tool was used to rasp powders
160 of calcite from freshly cleaved surfaces of grains in marbles or calcite in skarn. Samples
161 analyzed for bulk rock $\delta_{18}\text{O}$ values (Table 1) were prepared from representative 5-10 cm³
162 domains of the rock trimmed of weathered surfaces and ground in a ring mill with tungsten
163 carbide head for 60–90 s to obtain a uniform, sub-5- μm , powder.

164 Garnet Morphology and Composition

165 Petrographic and scanning electron microscopy guided selection of samples for in situ
166 major, trace, and $\delta^{18}\text{O}$ analysis. Garnet grains were first mounted in epoxy and polished to
167 expose grain interiors and then imaged for backscattered electrons (BSE) on the Pomona College
168 Hitachi SU-70 field-emission SEM (15–20 kV accelerating voltage, 38–45 nA beam current, 8–
169 10 mm working distance). Representative garnet crystals were then re-cast in 25.4-mm (dia.)
170 epoxy rounds (Epoxide ® brand) with grains of UWG-2 garnet standard and prepared following
171 the methods described in Valley et al. (1995).

172 Mounted grains were re-imaged by backscattered electrons and 285 spots on 9 garnet
173 crystals were analyzed for major element chemistry by wavelength dispersive spectrometry using
174 the University of California at Los Angeles JEOL JXA-8200 Superprobe (15 kV, 10 nA, 1 μm
175 beam diameter). All electron microprobe analytical sessions were calibrated using natural and
176 synthetic mineral standards with counting times of 40 and 10 seconds on peak and background,
177 respectively. Count totals typically varied <1% (2 S.D.) on duplicate samples or standards.

178 Garnet stoichiometries were normalized to 8 cations and ferrous/ferric iron
179 concentrations were calculated from charge balance. Endmember garnet compositions were
180 calculated as mole percentages, using elemental concentrations of structurally significant
181 elements (Quinn et al. 2016; Table S2 Online Resource 1).

182 **Fluid Inclusion Assemblage Homogenization Temperatures**

183 Fluid inclusions were identified and texturally examined in 100–200 μm thick doubly
184 polished garnet slices. Only homogenization temperatures were obtained via heating
185 microthermometry performed at Pomona College manually with a FLUID, Inc. adapted USGS-
186 type gas flow heating/cooling stage calibrated with natural and synthetic standards for
187 temperature calibration. Fluid inclusions were interpreted according to Goldstein and Reynolds

188 (1994) and fluid inclusion assemblages (typically 2 to 5 inclusions showing similar morphology
189 and fluid-vapor assemblages) were identified and observed en masse and thermally
190 homogenized, cycled 2 to 3 times, for microthermometric estimates (Table S3 Online Resource
191 1). Because inclusions were examined for daughter salts and generally found to be two phase
192 (vapor-liquid), salinities were not measured. We use the homogenization temperatures here for
193 estimating the minimum temperature of garnet growth and thus the minimum temperature of
194 formation; salinities of inclusions were not systematically measured.

195

196 **Stable Isotope Methods**

197 *Laser Fluorination*

198 Thirteen fragments of garnet distinguished by color from eleven hand samples from the
199 White Chief canyon skarn, and other samples including one zircon sample, one grain of scheelite
200 and nine samples of calcite from the White Chief skarn, were analyzed for oxygen isotope ratios
201 by isotope ratio mass spectrometry (IRMS) at the University of Texas and the University of
202 Wisconsin Stable Isotope Laboratories (Table 1). Approximately 2 mg of garnet was measured
203 using the laser fluorination method in which samples were heated by a CO₂ laser in the presence
204 of a BrF₅ atmosphere to liberate oxygen (Sharp 1990; Valley et al. 1995). Liberated oxygen was
205 cryogenically purified, and at University of Wisconsin converted to CO₂, before being analyzed
206 on a dual inlet Finnigan MAT 251 mass spectrometer. At the University of Texas, the gas was
207 analyzed as O₂ using a ThermoElectron MAT 253. Whole rocks including tuffs and plutonic
208 rocks were analyzed as powders (2–2.5 mg) by laser fluorination with an airlock sample chamber
209 system at the University of Wisconsin (Spicuzza et al. 1998). Bulk aliquots of zircon were
210 analyzed at U. Wisconsin—using 2-3 mg of hydrofluoric acid-cleaned grains for each analysis—
211 as homogenized powder, to increase fluorination efficiency (Lackey et. al 2008). In order to

212 check for precision and accuracy of oxygen isotope analyses, analyses of garnet standard UWG-
213 2 ($\delta_{18}\text{O}$ value = +5.8‰, Valley et al. 1995, Page et al. 2010) was analyzed at both labs as well as
214 in-house quartz standard “Lausanne-1” ($\delta_{18}\text{O}$ value = +18.1‰) at the University of Texas. All
215 $\delta_{18}\text{O}$ values are reported relative to VSMOW, where the $\delta_{18}\text{O}$ value of NBS-28 is +9.6‰.
216 Precision on all reported isotopic data measured by laser fluorination is $\pm 0.1\text{\textperthousand}$.

217

218 *Calcite Analyses*

219 For $\delta_{18}\text{O}$ and $\delta_{13}\text{C}$ analysis of calcite (Cc) and marble samples (n = 16 and n=7, Table 1),
220 200– 500 micrograms of powdered sample were placed in 12 ml Exetainer vials and flushed with
221 ultra-high purity helium before reaction with concentrated (D = 1.03 g/cm³) H_3PO_4 for 2 h at 50
222 °C. Headspace CO_2 was analyzed using a Thermo Gasbench II coupled to a ThermoElectron
223 MAT 253 following the methods of Spötl and Vennemann (2003). Unknowns were calibrated to
224 Carrara marble, NBS-18, and NBS-19. Measured $\delta_{13}\text{C}$ and $\delta_{18}\text{O}$ values of the standards are each
225 reproducible within $\pm 0.1\text{\textperthousand}$ (2 S.D.). Carbon and oxygen isotope analysis results are reported
226 relative to VPDB and VSMOW, respectively. All stable isotope analyses of calcite were
227 measured at the University of Texas.

228

229 *SIMS methods*

230 In-situ oxygen isotope analyses of 85 spots (13 μm diameter) on 6 garnet crystals were
231 performed on a CAMECA IMS 1280 high-resolution, multi-collector ion microprobe at the
232 WiscSIMS Laboratory, University of Wisconsin–Madison on two consecutive days (Tables S2,
233 S3, S4 Online Resource 1). Sample standardization required correction for matrix effects
234 (compositionally dependent instrumental mass fractionation, IMF) because of variable garnet

235 cation chemistry. Five grandite garnet standards (92LEW2, 92LEW7, 92LEW8, 92LEW10 and
236 Grossular SE) that span from $X_{\text{Adr}} = 0$ to 0.91, and provide a highly systematic, quadratic IMF
237 correction curve (Page et al. 2010), were used in conjunction with UWG-2 to conduct
238 standardization (Table S4 Online Resource 1) (Valley and Kita 2009; Page et al. 2010; D'Errico
239 et al. 2012; Kitajima et al. 2016; Quinn et al. 2016). Because some garnet from the White Chief
240 skarns has appreciable Ca-Ti garnet, the combined mole percent of andradite plus Ca-Ti garnet
241 was used for corrections as recommended by Page et al. (2010) (Table S5 Online Resource 1).
242 Nearest EMPA spot neighbors to SIMS spots from equivalent garnet growth bands (e.g., Figs.
243 4a, b) were used for IMF correction (Table S6, S5 Online Resource 1).

244 A $^{133}\text{Cs}^+$ primary ion beam (20 kV total impact voltage) was focused to a diameter of
245 $13\mu\text{m}$ on the carbon-coated sample surface. Primary ion currents were ca. 1.9 to 2.2 nA. An
246 electron flood gun and the conductive coating assisted in charge compensation. Secondary $^{16}\text{O}_-$,
247 $^{16}\text{OH}_-$, and $^{18}\text{O}_-$ ions were accelerated away from the sample by -10kV and monitored
248 simultaneously on three Faraday cups. Faraday cups are calibrated in the beginning of the
249 session following routine protocol. The intensity of ^{16}O was ~ 1.5 to 1.7×10^9 cps depending on
250 the primary beam intensity and chemical composition of garnet (ca. 10^9 cps/nA). Mass resolving
251 power (MRP, $M/\Delta M$) was ca. 2200 for ^{16}O and ^{18}O , enough to separate hydride interferences on
252 ^{18}O . Higher MRP (~ 5000) was used for mass 17 to separate ^{17}O from $^{16}\text{O}\text{H}$. There is no
253 evidence of significant hydrogrossular or hydroandradite, as OH content is close to background
254 levels (no more than twice the value measured from the nominally anhydrous UWG-2 standards,
255 aside from outliers of SIMS spot 13WC6C_C2 where the hydride content is 9 times the
256 background UWG-2 value, and spot 13WC8_B_16 where it is 3 times the background value;
257 Table S6, Online Resource 1). The magnetic field was regulated by a Nuclear Magnetic

258 Resonance (NMR) probe with stability of mass better than 10 ppm for 10 hours. Each analysis
259 took ~3.5 minutes, including 10s pre-sputtering, ~60s of automated centering of secondary ions
260 in the field aperture, and 80 s of counting the three peaks simultaneously. Calibrations of the
261 mass spectrometer were performed every 12 hours. Instrument stability during analytical
262 sessions was documented by repeated analyses of the UWG-2 standard that were used to bracket
263 every 10 to 15 unknown spot analyses (see Table S6 Online Resource 1). The 2 S.D. precision on
264 each analysis is calculated as two standard deviations of the two blocks of UWG-2 standards
265 (n=8) that bracket a series of unknowns. The setting used attained an average spot-to-spot
266 reproducibility of \pm ~0.25‰ (2 S.D.) for $\delta_{18}\text{O}$ on UWG-2 running standard on the days of
267 analysis.

268 **Major and Trace Element Geochemistry of Garnet Crystals**

269 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using a New
270 Wave 213 nm laser and a ThermoFinnigan Element 2 magnetic sector ICP-MS system at Rice
271 University were used to obtain trace element chemistry on 42 spots on the 6 garnet crystals
272 selected for SIMS $\delta_{18}\text{O}$ analysis (Table S7 Online Resource 1). Reported major, minor and some
273 trace element concentrations were determined on 50- μm spots in medium mass resolution mode
274 ($m/\Delta m=3000$) to resolve argide and oxide isobaric interferences. Trace element concentrations
275 without significant isobaric interferences were measured in low mass resolution mode
276 ($m/\Delta m=300$) to ensure maximum sensitivity, also ~50 μm spots situated in corresponding zones
277 to medium resolution spots. Ablation scans were inspected for “spikes” of elemental
278 concentrations in order to screen for accidental ablation of mineral inclusions in garnet; such
279 spikes were excluded from integrations. Signal conversion to concentrations used external
280 calibration curves based on analyses of USGS glass standards, BHVO-2 g, BIR1g, and BCR-2 g

281 using the preferred values from Gao et al. (2002). Resulting elemental concentrations (ppm by
282 weight) were converted elements to oxide and normalized to 100%, following the methods
283 outlined by Lee et al. (2008).

284 **RESULTS**

285 **Field Relations**

286 The White Chief skarn zone has discontinuous 1 to 20 m wide pockets or “nodes” of
287 garnetite along the 1.5 to 2 km north-south contact between a steeply dipping marble body and
288 the granodiorite of White Chief Mine (Fig. 2). Because the skarn system is exposed along the
289 drainage of the East Fork Kaweah River, skarn and marble can be observed over 200 hundred
290 meters of vertical elevation difference along the side of the pluton. Color differences in garnet
291 (discussed below) show that the majority of garnet is red-brown in color, but that a subordinate
292 green garnet locally occurs in intimate association with Pb-Zn minerals galena and sphalerite.
293 We discuss later the detailed textural relations between the two kinds of garnet, but in general,
294 the green garnet skarn that forms the nexus of mineralization is <10% of total skarn outcrop area
295 and largely focused at the White Chief Mine (Fig. 2)

296 The main marble body into which skarn was formed shows weak relict bedding that
297 strikes parallel to the contact and dips steeply to the west and southwest (Fig. 2a), and it exhibits
298 grain-size variation in calcite (1 mm to 1 cm) with a range of color (Fig. 2b). Fine-grained, blue-
299 grey marble with carbonaceous matter occurs in parts of the body distal from skarns and in
300 contact with calc-silicates; alternatively, bleached white, strongly recrystallized marble with
301 trace (<0.5 modal %) diopside and the absence of carbonaceous matter is found adjacent to skarn
302 zones (Fig. 2b-e). Zones of metasomatic replacement of the marble sometimes show intercalation
303 with strongly recrystallized calcite that sharply transitions to marble (Fig. 2c). Locally, sharp,

304 small-scale bands of garnet and magnetite are vertically oriented in the marble—in cross-section,
305 the cylindrical pipe appears tabular (Fig. 2d).

306 Near the contact with the pluton, the transitions from granodiorite to skarn to marble
307 occur over distances of < 1 m. Massive garnetite is most typically red and is interpreted to
308 preserve porosity in the garnetite with euhedral crystals on the order of a centimeter growing into
309 the void spaces (Fig. 2f). Granodiorite exhibits sharp contacts with garnetite (Fig. 2e, 2f), often
310 exposed in glacially polished outcrops. The near vertical orientation of skarn features that
311 parallels the contact of marble with the granodiorite of White Chief Mine suggests the skarn
312 formed along the side of the pluton.

313 **White Chief Skarn Garnet Composition, Growth Textures, and Inclusion Assemblages**

314 The grossular-andradite garnets of the White Chief canyon skarn range from Adr_{26-96} ,
315 with an average of Adr_{91} of core to rim transects across green low- $\delta^{18}\text{O}$ zoned garnets. Two
316 distinctive types of garnet-dominated skarn at White Chief are (1) green garnet skarn associated
317 with Pb-Zn mineralization at the White Chief Mine, and (2) more massive, vuggy red garnetite
318 skarn elsewhere along the pluton-marble contact. The pocket of garnetite that was prospected for
319 the White Chief Mine is the only voluminous section of green garnetite, and veins of such
320 garnets cease to be found outside of the green dashed line showing “domains with green” garnet
321 in Figure 2. The mine-area green garnet has olive to yellow-green andradite cores with red-
322 orange to red grandite rims (Fig. 3). Garnet from the southern end of the skarn is red to reddish-
323 brown grandite (Fig. 3b) ($\text{Adr}_{14-45}\text{Grs}_{50-74}\text{Sps}_{1-3}\text{Alm}_{2-9}\text{CaTi}_{0-2}$; average Adr_{21} ; based upon 3 to 10
324 electron microprobe spots each on garnet fragments from 4 samples, Table S2 Online Resource
325 1) and coexists with clinopyroxene and magnetite. Red-brown grandite garnet has an average
326 ferrous/ferric ratio ranging from 1.0×10^{-1} to 7.4×10^{-1} . Clinopyroxene from samples near

327 White Chief Mine is mainly hedenbergite (Fig. 3a, 3f, 3h) and fills fractures and void spaces
328 between garnets, often as in a patchwork texture with calcite around the rims of garnets. Calcite
329 is texturally late, in interstices between clinopyroxene and garnet (Fig. 3c).

330 Garnet cores from green garnets in the mine area ore zone (Fig. 2a) are usually high in
331 andradite and oscillatory zoned ($\text{Adr}_{78-96}\text{Grs}_{1-19}\text{Alm}_{0-3}\text{Sps}_{1-2}\text{Pyp}_{0-1}\text{CaTi}_{0-2}$; average Adr_{88}) (Figs.
332 4, 5, Table S2 Online Resource 1). The oscillatory zoned cores have a high concentration of
333 mineral inclusions of magnetite and lead or zinc sulfide along zones in the outermost core (e.g.,
334 Fig. 3c; 13WC8-A, Fig. 4), and occasionally patchy blebs of garnet that crosscut zoning (e.g.,
335 Fig. 3f; 13WC1-A, Fig. 5). Often, zones of garnet exhibit patchiness or resorption in the core and
336 at the start of overprint rims, delineated by dashed white lines in Figure 4a and Figure 4b.

337 Orange overprint rims on several of these mine-area garnets (e.g., 13WC8-A, Figs. 3c, 4)
338 are more andraditic ($\text{Adr}_{85-96}\text{Grs}_{3-16}\text{Alm}_{0-3}\text{Sps}_{1-2}\text{Prp}_{0-1}\text{CaTi}_{0}$; average $X_{\text{Adr}} = 0.92$) and massive,
339 with little to no visible oscillatory zoning. These orange rims overprint the latest stages of garnet
340 growth, terminating in cracks or void space filled by calcite, and cross-cutting green garnet
341 oscillatory zoning (Figs. 3c, 5a). They often contain small ($<3 \mu\text{m}$) scheelite inclusions and are
342 lacking in magnetite and sulfide inclusions. It is notable that, out of all samples we observed in
343 detail, the 13WC8 garnet crystals contain the most abundant dark-colored iron oxide and
344 scheelite mineral inclusions that align parallel to growth zones (Figure 4a).

345 In samples from directly in and around the central mine adit ore zone, garnet is bright
346 green, often in a matrix of galena and sphalerite (Fig. 3d). They have the lowest-andradite zones
347 in their rims ($\text{Adr}_{62-98}\text{Grs}_{0-36}\text{Sps}_{1-2}\text{Prp}_{0-1}\text{CaTi}_{0}$; average $X_{\text{Adr}} = 0.88$) (Sample 13WC1-A Fig. 5,
348 Table S2 Online Resource 1, sample 13WC1-D). These garnets are strongly zoned and variable
349 in composition, with the highest-andradite zones in their cores ($\text{Adr}_{83-98}\text{Grs}_{0-15}\text{Sps}_{1}\text{Prp}_{0-1}\text{CaTi}_{0}$;

350 average $X_{\text{Adr}} = 0.93$). All Si in the skarn minerals is found in garnet or clinopyroxene. No
351 wollastonite or quartz has been identified in the skarn.

352 Garnets in sample 14WC13 in Figure 3a show the most complete record of skarn
353 formation; early massive red-brown grossular garnetite (mainly exposed in the southern end of
354 the skarn) is crosscut by zoned green andradite garnets with red-orange rims (overlapping in
355 composition with green ore-zone garnets, Fig. 3h), and latest red-orange clusters of 1 to 2 mm
356 garnets, with interstitial calcite. Thus, red grossular garnetite in the southern portion of the skarn
357 system formed sequentially before green garnetite observed by the mine adit, and red-orange
358 andradite rims were the latest garnet to grow in the skarn.

359

360 *Fluid inclusion assemblage homogenization temperatures*

361 Fluid inclusions in garnet were examined in four samples (13WC24, 14WC12, 14WC13
362 and 14WC17; Table S3 Online Resource 1) for microthermometric estimation of the minimum
363 temperature of garnet growth. Inclusions showing liquid-vapor phases suitable for
364 homogenization temperature measurements are rare and most inclusions appear to be mineral
365 inclusions (likely magnetite and/or scheelite as observed in other thin sections). Three-phase
366 inclusions were observed—fluid inclusions occasionally show vapor only, or liquid-solid (liquid,
367 daughter salt) inclusions, but variability in the assemblage in a given crystal is likely due to
368 alteration or secondary inclusion populations. Many fluid inclusions are necked or deformed,
369 showing extensive strain-induced elongation deformation with 5:1 to 15:1 length to width ratios.
370 Quasi-cubic fluid inclusions suggest negative crystal shapes and conform to oscillatory growth
371 zones visible in garnets (Fig. 3f, g). These inclusions, usually found in unzoned patches, were
372 deemed most likely to be primary, as opposed to obvious bands of secondary inclusions that

373 crosscut zoning or are aligned with cracks. For these primary two-phase (liquid-vapor)
374 inclusions, the area of the vapor bubble is ~10% of the inclusion.

375 A variety of samples (Fig. 3e, f, g), from massive green garnetite with late sulfides, to
376 yellow-green euhedral garnets with red-orange overprint rims, were examined (Table S3 Online
377 Resource 1). In some samples, clusters of small reddish garnet are nearly devoid of fluid
378 inclusions. Most fluid inclusions observed were from green andradite garnets. Groups of 2 to 4
379 apparently pristine inclusions with similar morphology were targeted for homogenization.

380 The fluid inclusion homogenization temperature range for primary inclusion assemblages
381 in green andradite garnets is consistent with entrapment from 380° to 400° C (samples 13WC24,
382 14WC13 and 14WC17). The full range for both red and green garnet for homogenization
383 temperatures is 370° to 415°C, but most commonly, the maximum temperature is ~400° C for
384 primary assemblages, which represent about 10% of observed fluid inclusions. Andradite and
385 hedenbergite may coexist in skarn systems over a temperature stability range of ~400 to 900° C,
386 with lower oxygen fugacity in addition to decreasing activity of SiO₂ at lower temperatures
387 (Taylor and Liou 1987; Einaudi 1982). These inclusion assemblages suggest 400° C as a good
388 approximation of the minimum temperature of skarn formation, consistent with andradite and
389 hedenbergite occasionally intergrown in samples from White Chief canyon.

390 In samples 13WC24, 14WC12 and 14WC17, secondary inclusions are abundant. A
391 growth parallel but slightly curved, and likely compromised, inclusion homogenized at 350° to
392 360° C. Inclusion assemblages parallel to ubiquitous crosscutting fractures across massive green
393 garnetite range in homogenization temperature from 265° to 290° C, and as low as 210° to 230°
394 C. Garnet growth during skarn formation reached a minimum temperature of 400° C, and based

395 on fluid inclusion data from secondary inclusions, garnets interacted with fluids as low as $\sim 200^\circ$
396 C during later deformation.

397

398 **Stable Isotope Geochemistry**

399 *Skarns*

400 Garnet from non-mineralized red garnetite pockets along the contact with the White
401 Chief pluton measured as crystal fragments by laser fluorination range in $\delta_{18}\text{O}(\text{Grt})$ values from
402 ~ 0 to $+4.6\text{\textperthousand}$, and varies from Adr_{14-45} , with relatively elevated ferric/ferrous ratio compared to
403 green andradite garnets (Figs. 3h, 6a, Table 1, Table S2 Online Resource 1). Garnet in ore-
404 bearing skarn has the lowest measured $\delta_{18}\text{O}(\text{Grt})$ values with green varieties clustering at -8.8 to
405 $-6.2\text{\textperthousand}$ (Adr_{62-98}). Comparing SIMS analyses to EMPA major element compositions (Figs. 4a,
406 5a), these same green garnets have irregular major-element oscillatory zones and orange slightly
407 more ferric rims (Adr_{90} and greater for both irregular and orange zones) with higher $\delta_{18}\text{O}(\text{Grt})$
408 values (oscillatory zone $\delta_{18}\text{O}(\text{Grt})$ values of -8.8 to $-6.0\text{\textperthousand}$, and rim $\delta_{18}\text{O}(\text{Grt})$ values of -5.5 to $-$
409 $2.2\text{\textperthousand}$) (Figs. 4b, 6a). A $\delta_{18}\text{O}$ value of $0.0\text{\textperthousand}$ was measured by laser fluorination of a single,
410 otherwise rare, 2.1 mg fragment of scheelite from sample 13WC-12 (Havranek 2014).

411 Calcite from marbles and skarns shows a wide range of $\delta_{18}\text{O}(\text{Cc})$ and $\delta_{13}\text{C}(\text{Cc})$ values
412 with groupings according to lithology (Fig. 6b, Table 1). Calcite from distal marbles shows some
413 exchange and lowering of $\delta_{18}\text{O}$ or $\delta_{13}\text{C}$ values from typical marine values. Calcite from coarse-
414 grained, bleached white marbles proximal to skarns and lithologic contacts (<3 m) shows lower
415 $\delta_{18}\text{O}(\text{Cc})$ (8.4 to $12.2\text{\textperthousand}$) and $\delta_{13}\text{C}(\text{Cc})$ (-1.5 to $-0.4\text{\textperthousand}$) values due to the influx of skarn-forming
416 fluids (Fig. 6b). Calcite from skarns define two patterns: values from calcite found in red, non-
417 mineralized garnetites, mainly in vugs, have a narrow range of $\delta_{18}\text{O}(\text{Cc})$ values from 7 to 8\textperthousand

418 with a wide range of lower $\delta^{13}\text{C}(\text{Cc})$ values (−5.4 to −9.6‰); calcite in green garnetite has lower
419 $\delta^{18}\text{O}(\text{Cc})$ values, less than 5‰, and a similar range of $\delta^{13}\text{C}(\text{Cc})$ values (0.1 to −7.8‰) as calcite
420 from red garnetite (Fig. 6b).

421

422 *Igneous Rocks*

423 Analysis of $\delta^{18}\text{O}$ values of zircon ($\delta^{18}\text{O}(\text{Zrc})$) and whole rock ($\delta^{18}\text{O}(\text{WR})$) samples of
424 granodiorite plutons associated with metamorphism of the Mineral King pendant, and of igneous
425 wallrocks in the pendant (Table 1), provides further information about the extent and nature of
426 hydrothermal fluid flow at White Chief canyon. The $\delta^{18}\text{O}(\text{WR})$ value of a single sample of the
427 granodiorite of White Chief Mine is 7.2‰ (Fig. 6a); $\delta^{18}\text{O}(\text{Zrc})$ from this sample averages
428 $6.9 \pm 0.1\text{‰}$. Measured whole rock and zircon $\delta^{18}\text{O}$ values of other igneous rocks in the Mineral
429 King area provide additional baseline values of the magmatic $\delta^{18}\text{O}$ value and the relative extent
430 of hydrothermal alteration that affected volcanic and plutonic rocks in the pendant. One sample
431 of the ca. 98 Ma granodiorite of Castle Creek, 11MKP-8, from the northwest edge of the pendant
432 (Fig. 1), has a $\delta^{18}\text{O}(\text{WR})$ value of 8.1‰. A sample of the gabbro body that runs axially through
433 the center of the pendant and is of presumed Jurassic age, 11MKP-4, has a $\delta^{18}\text{O}(\text{WR})$ value of
434 11.1‰. Values of $\delta^{18}\text{O}(\text{WR})$ of the 136.5 ± 2.7 Ma Village Rhyolite tuff and 134.2 ± 0.7 Ma
435 Vandever Mountain tuff (Klemetti et al. 2014) are 4.6‰ (11MK-3) and 9.3‰ (11MK-2),
436 respectively. The lower value is similar to $\delta^{18}\text{O}(\text{WR})$ values of tuffs from the northern portion of
437 the pendant (D'Errico et al. 2012), whereas the higher value, from the tuff of Vandever
438 Mountain, is greater than previously reported for any metavolcanic unit in the pendant. Values of
439 $\delta^{18}\text{O}(\text{Zrc})$ previously measured in zircon from the Village and Vandever Mountain tuffs are 6.8

440 and 7.3‰, respectively (Klemetti et al. 2014), and average 7.05‰, statistically identical to zircon
441 in the granodiorite of White Chief Mine.

442 **Intracrystalline Garnet Geochemistry**

443 Nine garnet crystals were examined for *in situ* major element, trace element, and oxygen
444 isotope compositional variations, and details from samples 13WC1 and 13WC8 are shown in
445 Figures 4 and 5. Data for seven other White Chief skarn garnet crystals measured using the same
446 techniques and showing similar isotopic and chemical compositions are reported in Tables S4,
447 S5 and S7 (Online Resource 1). Oscillatory zones within skarn garnets may act as markers of the
448 evolving hydrothermal system during garnet growth and reflect changes in fluid chemistry (e.g.
449 Park, et al. 2017; Ferry, et al. 2014; Zhai, et al. 2014; D'Errico, et al. 2012; Bocchio, et al. 2010;
450 Page, et al. 2010; Gaspar, et al., 2008; Smith, et al. 2004; Clechenko, et al. 2003; Crowe, et al.
451 2001; Jamtveit, et al. 1993). Areas with fine-scale laminations and oscillatory zoning indicate
452 fast garnet growth rates, and are found between larger “unconformities” that indicate dissolution
453 or resorption, delineated by dashed white lines in Figures 4b and 5b (Yardley et al. 1991;
454 Jamtveit and Andersen 1992; Jamtveit et al. 1993). The relationship between isotopic and
455 chemical shifts within the crystals, and physical changes in morphology and crystal structure
456 within garnets, such as areas of resorption or rapid garnet growth, gives valuable insight into
457 temporal changes in fluid chemistry and physical conditions of fluid flow.

458 Garnet A from sample 13WC1 (Fig. 5) is representative of other crystals from this
459 sample. This crystal has the highest variation in andradite composition (Adr_{62–98}) in yellow-green
460 garnets. The higher-andradite oscillatory-zoned low- $\delta^{18}\text{O}(\text{Grt})$ core (–8.5 to –8.0‰) is outlined
461 by a distinctive resorption zone and 250-μm outer core with slightly higher $\delta^{18}\text{O}(\text{Grt})$ (–7.2 to –
462 8.0‰), and a distinctive ~20 μm wide low-andradite rim (Adr_{72–90}; $\delta^{18}\text{O}(\text{Grt})$ = –8.2‰) followed

463 by noticeable resorption filled in by red-orange garnet growth (Fig 4a). Resorption zones host
464 large and abundant inclusions of the main ore minerals, galena and sphalerite.

465 Garnet crystals from sample 13WC8 (e.g. 13WC8-A, Fig. 4, and 13WC8-B, Table S6,
466 Online Resource 1) display the highest variability in $\delta_{18}\text{O}(\text{Grt})$ values, from oscillatory-zoned red
467 cores with values as low as $-8.8\text{\textperthousand}$ and as high as $-6.2\text{\textperthousand}$ in select zones, to un-zoned orange
468 rims higher in andradite with values typically ranging from $-5.5\text{\textperthousand}$ to $-2.2\text{\textperthousand}$, except for a
469 residual patch of oscillatory zoning with low $\delta_{18}\text{O}(\text{Grt})$ values (Fig. 4b). The transition from the
470 low- $\delta_{18}\text{O}(\text{Grt})$ core to the higher $\delta_{18}\text{O}(\text{Grt})$ orange overprint rim is irregular, crossing original
471 zoning. The major cation chemistry of this garnet is relatively homogeneous (Adr_{78–96}; average
472 Adr₈₇ in the zoned core with higher values and lower oscillatory zones; Adr₉₃ in the overprint
473 rim) (Fig. 4; Table S2 Online Resource 1). The zoned garnet contains small ($<5\mu\text{m}$) dark-colored
474 iron oxide and scheelite mineral inclusions parallel to growth zones.

475 Individual growth zones observed in BSE images or by EPMA have changing garnet
476 major-element chemistry and often have uniform oxygen isotope ratios. Significant shifts in
477 $\delta_{18}\text{O}(\text{Grt})$ values (about -9 to $-6\text{\textperthousand}$, to as high as $-2\text{\textperthousand}$, Fig. 4a) occur at abrupt morphological
478 transitions—for example, where wavy zones or dissolution features occur (shown by dotted
479 white lines in Fig. 4b). In general, as $\delta_{18}\text{O}(\text{Grt})$ value increases within individual garnets, X_{Adr}
480 also increases.

481 In transects from core to rim of garnets from sample 13WC8, zones marked by low $\delta_{18}\text{O}$
482 garnet ($< -8.0\text{\textperthousand}$) are followed by oscillatory zoned growth with gradually increasing $\delta_{18}\text{O}$
483 values, until abrupt, fine-scale dissolution features mark a new zone of low $\delta_{18}\text{O}(\text{Grt})$ (Fig. 4).
484 Late high-andradite orange rims of garnets tend to vary substantially in their oxygen isotope

485 ratios, increasing to the highest measured values ($-2.2\text{\textperthousand}$), and these rims overprint oscillatory
486 zoning in BSE images (sample 13WC8A, Fig. 4b).

487 Trace element concentrations along the same transects in these garnets are variable, but
488 the total REE concentration (ΣREE) correlates to the large changes observed in $\delta_{18}\text{O}(\text{Grt})$ value
489 or garnet color and morphology from core to rim. ΣREE is higher by about one and a half orders
490 of magnitude from chondrite values in garnet cores, and typically decreases through garnet
491 growth (Figure 4d, 5d, Table S7, Online Resource 1).

492 DISCUSSION

493 **$\delta_{18}\text{O}$ Composition of Magmas and Their Fluids**

494 Whole rock and zircon $\delta_{18}\text{O}$ laser fluorination values of this study record the isotopic
495 compositions of potential fluids that contributed to the White Chief canyon hydrothermal system
496 (Table 1). Lackey and others (2008) showed that measurements of $\delta_{18}\text{O}$ in zircon, an early
497 crystallizing phase that also resists sub-solidus alteration, can be used to determine the $\delta_{18}\text{O}$
498 composition of the bulk magma. This calculated value for the magma can itself be used to
499 calculate the $\delta_{18}\text{O}$ composition of water that would have been dissolved in the melt and
500 represents an idealized “magmatic fluid” in our models, important in establishing the extent of
501 other fluids circulating in the hydrothermal system exchanging with and altering original
502 magmatic $\delta_{18}\text{O}$ values. Assuming a near-solidus temperature of approximately 750°C and using
503 the measured $\delta_{18}\text{O}(\text{Zrc})$ value from sample 13WC-Grd of $6.9\pm0.1\text{\textperthousand}$ (Table 1), and its SiO_2
504 content of ~69.0 weight percent (Lackey, unpublished), the $\delta_{18}\text{O}$ value of water from the original
505 magma was approximately $8.6\text{\textperthousand}$, calculated following Lackey et al. (2008). The measured
506 $\delta_{18}\text{O}(\text{WR})$ value of the granodiorite sample, is $1.5\text{\textperthousand}$ lower than calculated, confirming that

507 lower $\delta_{18}\text{O}$ fluids have exchanged with minerals in the granodiorite that are subject to sub-
508 solidus alteration (e.g., feldspars, quartz, micas, hornblende). Similar lowering of whole rock
509 $\delta_{18}\text{O}$ composition was confirmed in the younger quartz diorite of Empire Mountain by D'Errico
510 and others (2012).

511 Previously reported $\delta_{18}\text{O}(\text{Zrc})$ values of coeval tuffs at Mineral King, 6.8 to 7.3‰
512 (Klemetti et al. 2014), are within error of the $\delta_{18}\text{O}(\text{Zrc})$ value of the granodiorite of White Chief
513 Mine suggesting that the ca. 134 to 137 Ma coeval granodiorites and silicic volcanic rocks of the
514 pendant had similar magmatic source values of $\delta_{18}\text{O}$. Zircon $\delta_{18}\text{O}$ values from these volcanic
515 rocks yield calculated $\delta_{18}\text{O}(\text{H}_2\text{O})$ values of 8.5 to 9.0‰ for magmatic fluid. In general, the
516 $\delta_{18}\text{O}(\text{WR})$ values calculated for the pluton and coeval tuffs preclude either rock as a source of
517 anomalously low $\delta_{18}\text{O}$ magmatic water, and we adopt 8.5‰ as a lower limit for our value of
518 magmatic $\delta_{18}\text{O}(\text{H}_2\text{O})$ (Figs. 6a, 7b).

519 The potential for low- $\delta_{18}\text{O}$ magmatic fluids emanating from Late Cretaceous intrusive
520 sources, that could overprint the early Cretaceous signatures at White Chief canyon, is evaluated
521 with our analysis of $\delta_{18}\text{O}(\text{WR})$ compositions of the large (~45 km N-S) ca. 98 Ma Castle Creek
522 pluton (11MKP-8, Fig. 6a). Its $\delta_{18}\text{O}(\text{WR})$ value of 8.1‰ is similar to a magmatic
523 $\delta_{18}\text{O}(\text{WR})$ value previously reported farther west in the pluton (7.9‰, Lackey et al. 2008), and is
524 typical of Late Cretaceous granodiorite plutons in the Sequoia region (Lackey et al. 2008). The
525 relatively “normal” $\delta_{18}\text{O}$ value for this large pluton suggests that it was not a source of exotic,
526 low- $\delta_{18}\text{O}$ magmatic fluids. Moreover, the single $\delta_{18}\text{O}(\text{Grt})$ value measured in this study from the
527 small Sequoia Claim skarn, adjacent to the granodiorite of Castle Creek, is relatively high

528 (+5.9‰) compared to all $\delta_{18}\text{O}(\text{Grt})$ values from White Chief canyon skarn samples, and from
529 Empire Mountain skarn samples (Table 1; D'Errico et al. 2012).

530 As with other typical, small-scale skarns in the Sierra Nevada that do not have low-
531 $\delta_{18}\text{O}(\text{Grt})$ values (Ryan-Davis et al. 2014), we conclude that Late Cretaceous hydrothermal
532 metamorphism in the Mineral King pendant was limited to fluid mixtures that had low meteoric
533 fluid proportions. Far to the south, in the Mojave section of the arc, exceptionally low $\delta_{18}\text{O}$
534 values in skarn garnets have also been reported (Gevedon 2019). There and at the White Chief
535 hydrothermal system, unusual ingress and focusing of meteoric water-dominant hydrothermal
536 fluids occurred during skarn formation.

537 **Calcite-Hosted Records of Fluid Sources**

538 Values of $\delta_{18}\text{O}_{\text{VSMOW}}(\text{Cc})$ and $\delta_{13}\text{C}_{\text{PDB}}(\text{Cc})$ from marble and skarn samples (Table 1)
539 provide a means to appraise the nature and extent of infiltration of low- $\delta_{18}\text{O}$ fluid in the White
540 Chief hydrothermal system. Devolatilization in a rock-dominated system without infiltrating
541 fluids could lower $\delta_{18}\text{O}$ values of silicate-bearing carbonate by no more than 2 to 4‰ (Valley
542 1986; Bowman 1998b). The protolith marble, nearly pure calcite (with only trace silicates),
543 would not shift much more than a few tenths of permil. Isotopic values of calcite from marbles
544 and calcite from red, non-mineralized, high- $\delta_{18}\text{O}(\text{Grt})$ garnetite, define an array between a
545 marine isotopic signature and the lower limit of “magmatic calcite” that would be in equilibrium
546 with typical igneous fluid (Fig. 6b).

547 Values of $\delta_{13}\text{C}$ in calcite in red garnetite samples approach $-10\text{\textperthousand}$ (range of -5.4 to $-$
548 $9.6\text{\textperthousand}$). Calculated $\delta_{13}\text{C}$ for “magmatic calcite” ranges from -5 to $-8\text{\textperthousand}$. Measured $\delta_{13}\text{C}$ in calcite
549 may shift by $\sim 1\text{\textperthousand}$ lower than “magmatic calcite” by exchange with, or oxidation of, up to 5%

550 graphitic matter ($\delta^{13}\text{C} = -30\text{\textperthousand}$) that makes protolith marbles grey. Values higher than
551 “magmatic calcite” suggest a source of carbon from the marbles, which range from -1.5 to
552 $+1.6\text{\textperthousand}$. The variation of $\delta^{18}\text{O}(\text{Cc})$ values in marble is much greater, ranging from 8.4 to $22.0\text{\textperthousand}$
553 (Table 1; Fig. 6b).

554 Model curves for exchange of water-rich fluids ($\text{XCO}_2 = 0.1$ to 0.3) between original
555 sedimentary values and the lower limit of magmatic calcite values (Fig. 6b, this study, Bowman
556 1998a) at 300 to 550°C , enclose these data from red garnetite and marble proximal to the skarn,
557 suggesting a magmatic fluid-dominated system. In contrast, calcite from the low- $\delta^{18}\text{O}(\text{Grt})$,
558 green, mineralized, garnetite have $\delta^{18}\text{O}(\text{Cc})$ values $<5\text{\textperthousand}$, falling well below the calculated
559 mixing arrays (Fig. 6b). Significantly lower $\delta^{18}\text{O}$ values of calcite from green garnetite samples
560 can only be explained by a large proportion of meteoric fluid present (Table 1; Figs. 6b, 7). Fluid
561 from carbonate would not be responsible for low $\delta^{18}\text{O}$ values recorded throughout the skarns at
562 White Chief canyon (e.g., D’Errico et al. 2012).

563 At least two externally derived fluids were present in the hydrothermal system. One is
564 low- $\delta^{18}\text{O}$ meteoric water (e.g. negative $\delta^{18}\text{O}$ value) that falls outside of the mixing arrays and
565 was most important in the discrete pockets of low- $\delta^{18}\text{O}(\text{Grt})$ green, mineralized garnetite skarn
566 that are volumetrically and spatially smaller compared to the extent of the red garnetite (Fig. 2).
567 A second fluid was more widespread throughout the skarn, indicating a magmatically dominated
568 fluid from the White Chief pluton based on values of $\delta^{18}\text{O}(\text{Cc})$ in proximal marbles and the red
569 garnetite skarns. Mixtures of green and red garnet at the scale of hand specimens and single
570 crystals (Figs. 3a, 4a) would suggest that these two fluids had high potential to mix.
571 Nevertheless, $\delta^{18}\text{O}$ values of garnet and calcite are largely bimodal (Figs. 6, 7). Thus, it appears

572 that the fluids remained largely discrete, offset in their timing of infiltration in the hydrothermal
573 system (Fig. 8)

574

575 **Chemistry of skarn rocks in relation to chemistry and timing of skarn-forming fluids**

576 Figure 7a plots $\delta_{18}\text{O}$ fractionation curves for minerals, including green Adr_{90} garnet
577 (yellow line), that would crystallize in equilibrium with $\delta_{18}\text{O}(\text{H}_2\text{O})$ of $-5\text{\textperthousand}$ over the range of
578 temperatures of interest in the skarn (Table S8 Online Resource 1; Online Resource 2). Figure 7b
579 shows the same curves, and red Adr_{60} garnet (yellow line), for equilibrium fluid of $+8.5\text{\textperthousand}$, the
580 calculated lower limit of $\delta_{18}\text{O}(\text{H}_2\text{O})$ for magmatic fluid in the system (Table S8 Online Resource
581 1; Online Resource 2 for discussion of fractionations). Magmatic fluid alone cannot account for
582 measured $\delta_{18}\text{O}(\text{Grt})$, and must have mixed with meteoric fluid throughout skarn formation, as the
583 curves for pure magmatic fluid do not overlap with garnet analyses at skarn-forming
584 temperatures ($>400^\circ\text{C}$).

585 Early red grossular garnetite toward the south end of the White Chief canyon are
586 interpreted to have a mostly magmatic fluid signature, as they have the highest measured
587 $\delta_{18}\text{O}(\text{Grt})$ values (above $\sim 2\text{\textperthousand}$, Figs. 2, 7; Table 1, 2). A component of meteoric water must have
588 been available to lower the overall $\delta_{18}\text{O}$ value of the fluid in all samples, as none of the values
589 measured in garnet are above a magmatic-fluid equilibrated $\delta_{18}\text{O}(\text{Grt})$ value of $\sim 5\text{\textperthousand}$ (Table 1).
590 This is in agreement with measurements of late calcite in these samples (Fig. 6b).

591 Late, green, high-andradite garnetite from the ore zone are interpreted to have formed
592 with a large proportion of meteoric fluid present at temperatures as low as $\sim 400^\circ\text{C}$ (Table S3
593 Online Resource 1), lowering the $\delta_{18}\text{O}(\text{Grt})$ value to below $-2\text{\textperthousand}$ (as low as $-9\text{\textperthousand}$) in garnets from
594 the mine adit, or below 1\textperthousand in bulk green garnet (Figs. 2, 4, 5, 7; Table 1). Scheelite inclusions

595 are found within rims of garnets and as small late-stage grains interstitial to calcite (MacKenzie
596 1983; Havranek 2014). Fluid in equilibrium with scheelite has a calculated isotopic range
597 (Wesolowski and Ohmoto, 1986) of $-4.4\text{\textperthousand}$ at 700°C to $-2.8\text{\textperthousand}$ at 400°C (Fig. 6a), calculated
598 from a single measurement of scheelite $\delta_{18}\text{O}$ of $0.0\text{\textperthousand}$ (Table 1). The $\delta_{18}\text{O}(\text{H}_2\text{O})$ range calculated
599 from the $\delta_{18}\text{O}$ value of scheelite at this broad temperature range overlaps with that of the low-
600 $\delta_{18}\text{O}$ green andradite garnet, suggesting that they were both in equilibrium with meteoric fluid-
601 dominant fluids. Mineralization in skarns has been shown to form during late-stage influx of
602 meteoric fluid into metasomatic systems (e.g. Meinert et al. 2005; Crowe et al. 2001; Bowman
603 1998a; MacKenzie 1983; Einaudi and Burt 1982).

604 The $\sum\text{REE}$ in the types of garnet distinguished above corroborate the sequence of fluids
605 inferred from the $\delta_{18}\text{O}$ data. Early, red garnetite at the southern end of the skarn has a high- $\delta_{18}\text{O}$,
606 high- $\sum\text{REE}$ composition suggesting dominance of magmatic fluid. Late, green garnetite from
607 near the mine adit has a low- $\delta_{18}\text{O}$ composition and low- $\sum\text{REE}$ signature suggesting dominance
608 of meteoric fluid in the later stages of the skarn. Orange overprint rims on andradite garnets
609 record the waning, end stages of the skarn system, where $\delta_{18}\text{O}$ increases but $\sum\text{REE}$ is
610 exceptionally low. Metamorphic fluid from regional carbonates, which are low in $\sum\text{REE}$, may
611 have entered the system as magmatic and meteoric fluid sources were depleted. Figure 8
612 schematically shows the possible fluid sources that contributed to the White Chief system, and
613 our interpreted sequence of garnet growth in the skarn, with corresponding changes in $\delta_{18}\text{O}$
614 values and $\sum\text{REE}$ concentrations.

615

616 **Oxygen isotope record of changing water sources in hydrothermal systems**

617 Based on the paleolatitude of the southern Sierra reconstructed for the Cretaceous from
618 paleomagnetic measurements (Hillhouse and Gromme 2011), we estimate meteoric water would
619 have a $\delta_{18}\text{O}$ value of approximately $-8\text{\textperthousand}$ according to hydrologic reconstruction of $\delta_{18}\text{O}$
620 compositions in the Cretaceous (White et al. 2001). A value of $-8.4\text{\textperthousand}$ is given by White et al.
621 (2001) for Middle Cretaceous (105 to 100 Ma) precipitation in the mountain belt representing
622 present day southern Sierra Nevada.

623 The $\delta_{18}\text{O}(\text{H}_2\text{O})$ compositions of fluid that formed the low- $\delta_{18}\text{O}$ andradite varies by $\sim 7\text{\textperthousand}$
624 ($-5.5\text{\textperthousand}$ to $+1.4\text{\textperthousand}$, assuming equilibrium at constant $T = 500^\circ\text{C}$) with three distinct isotopic
625 ranges: -5.5 to $-3.5\text{\textperthousand}$, -2.8 to $-1.5\text{\textperthousand}$, and -0.3 to $+1.4\text{\textperthousand}$ (Fig. 6a). Assuming a higher
626 equilibrium temperature of 600°C would require slightly lower fluid $\delta_{18}\text{O}$ values (~ -5.9 to
627 $+1.0\text{\textperthousand}$, Figure 6a, Table S9 Online Resource 1). Repeating the same calculation for the bulk
628 $\delta_{18}\text{O}$ values of all garnets, the $\delta_{18}\text{O}$ composition of equilibrium fluid varies by $> 12\text{\textperthousand}$ (-5.1 to
629 $+7.7\text{\textperthousand}$) assuming 500°C and equilibrium. Most importantly, all of these fluid compositions are
630 significantly lower than the magmatic fluid value of $8.5\text{\textperthousand}$ calculated for magmatic water in
631 equilibrium with granodiorite, requiring infiltration of meteoric fluid throughout all stages of
632 garnet growth in this skarn system (Fig. 8).

633 These calculations of fluid isotopic composition suggest a strikingly large proportion of
634 meteoric fluid was present in the skarn system ($> \sim 70$ percent), followed by a shift in the
635 proportion of magmatic or metamorphic fluid (> 30 percent; schematic plot in Fig. 8). Meteoric
636 water with a $\delta_{18}\text{O}$ value of $-8\text{\textperthousand}$ mixing with ~ 15 percent magmatic water ($\delta_{18}\text{O} = +8.5\text{\textperthousand}$, X_{CO_2}
637 = 0) would result in a fluid with a $\delta_{18}\text{O}(\text{H}_2\text{O})$ value around $-5.6\text{\textperthousand}$, the lowest of our calculated
638 fluid compositions. Addition of 15 percent of metamorphic fluid with a $\delta_{18}\text{O}(\text{H}_2\text{O})$ value of
639 $+22\text{\textperthousand}$ (i.e., equilibrated with the most pristine low-grade marble) to pure meteoric water would

640 only increase the $\delta_{18}\text{O}(\text{H}_2\text{O})$ composition to $-3.5\text{\textperthousand}$, assuming an XCO_2 of 0 as a theoretical end
641 member case. The variability of a $\delta_{18}\text{O}(\text{H}_2\text{O})$ values calculated from a single crystal, from -5.6
642 to $+1.3\text{\textperthousand}$, requires significant proportions of multiple sources of fluid. To increase the
643 $\delta_{18}\text{O}(\text{H}_2\text{O})$ to its maximum calculated value from single crystal transects ($+1.3\text{\textperthousand}$ at 500°C)
644 requires a significant influx of magmatic water (~ 60 percent), or metamorphic fluid (~ 30
645 percent), mixed with pure meteoric fluid, depending on the initial meteoric to magmatic water
646 proportions.

647

648 **Endowment of the White Chief Pb-Zn-Ag Ores**

649 The Pb-Zn with associated Ag ores, which brought mining interest into the Mineral King
650 district (Goodyear 1888), occur exclusively with green, low $\delta_{18}\text{O}$ andradite garnets, some of
651 which have late, red-orange rims. Because the green garnets are found cross-cutting early, red,
652 ore-barren grossular garnetite, and not distributed in new zones within marbles, we hypothesize
653 that the red garnetite was a locus of relatively high permeability rocks that served as fluid
654 channels for localized flow of meteoric (low- $\delta_{18}\text{O}$) mineralizing fluids (Fig. 8). Thus, the red
655 garnetite was important to important first-stage conditioning of the pluton-wallrock contact and
656 served as a site for late-stage endowment of the skarns with Pb-Zn sulfides. Previous detailed
657 petrographic study of the White Chief ore rocks is in agreement, showing that base and precious
658 metal precipitation was relatively late-stage and fracture controlled (MacKenzie 1983). New
659 work has shown that mineralization often occurs late in skarn systems, varying in age by millions
660 of years in some cases such as the Variscan skarns (Burisch et al. 2019). However, recent
661 attempts to date the absolute timing of the second stage of hydrothermal activity by U-Pb in
662 garnet from White Chief canyon have not yet produced a precise age of the late-stage garnets, as

663 Pb mineralization pervades the green garnets, with common lead hindering construction of
664 robust U-Pb isochrons otherwise shown to be useful in other skarn systems in the Mineral King
665 pendant (Gevedon et al. 2018).

666 Grandite garnet in the Pb-Zn-Ag Darwin skarn, (Argus range, eastern California),
667 similarly shows several stages of formation with differing andradite contents, and mineralization
668 may have occurred several million years later than when the Darwin pluton reached its solidus
669 (Newberry et al. 1991). The stages of garnet growth there are associated with early hornfels
670 metamorphism, followed by W and subsequent Pb-Zn sulfide mineralization, which occurred at
671 low temperatures (<425°C). Similarly, mineral inclusions of scheelite and magnetite in garnets
672 from White Chief canyon, and sulfides filling vugs and surrounding garnets suggest an earlier
673 phase of W mineralization, with late-stage Pb-Zn sulfides. Late meteoric fluid as the main
674 metasomatic agent is commonly invoked for mineralization at Pb-Zn skarn systems—it is the
675 likely source of the latest-stage fluids at the Empire zinc skarns in the Central Mining District,
676 New Mexico based on isotopic measurements (Turner and Bowman 1993). The evidence from
677 the White Chief canyon skarn suggests that meteoric fluids may have played a role during a
678 prolonged period of the later stages of skarn development, similar to these other Pb-Zn skarns.

679 **Incursion of meteoric water alongside a sub-volcanic pluton**

680 At White Chief canyon, the meteoric fluid dominated skarn requires a shallow level of
681 emplacement. Alternatively, pre-existing structural controls such as fractures and possibly
682 regional vertical dipping or axial planar features (e.g. Sisson and Moore 2013) may have allowed
683 for infiltration of meteoric water deep into the skarn system; however, the fine-grained and
684 porphyritic texture of the granodiorite of White Chief Mine, and the coeval volcanic rocks in
685 close proximity (Sisson and Moore 2013), corroborate the shallow nature of the system.

686 Rhyolites similar in age to the granodiorite of White Chief Mine within the Mineral King roof
687 pendant were erupted during a magmatic lull in the Sierra, during a transition from previously
688 island-arc volcanism to a continental arc (Klemetti et al. 2014). This shallow, extensional arc
689 setting allowed for mixing between meteoric surface water and hydrothermal fluids.

690 Meteoric fluid could have been convected into the system after heat from the intrusion
691 caused decarbonation and increased pore space, further increasing with garnet crystallization,
692 once magmatic overpressures have subsided (Ramos et al. 2018; Mackenzie 1983). Brittle
693 deformation in the late-stage plumbing system could have allowed meteoric water to dominate
694 during sub solidus cooling (Jamtveit and Hervig 1994; D'Errico et al. 2012). Fluid flow would
695 have been directed out of the pluton and up parallel to the skarn-pluton contact (Yardley and
696 Lloyd 1995; Lackey and Valley, 2004; Bowman et al. 2009). Skarn mineralization extends no
697 more than 10 m from the pluton—if hot magmatic fluids were expelled up and away from the
698 pluton, meteoric fluid must then have been convected locally downward into the system along
699 the sides (Fig. 8). That the lowest $\delta^{18}\text{O}$ values are concentrated in mineralized areas with the
700 green garnetite shows that this flow was strongly focused into a narrower “plumbing” system
701 within the existing skarn for the most part and did not convert additional marble to skarn.

702 CONCLUSIONS

703 Meteoric water was drawn down by convection into the ~135 Ma White Chief canyon
704 skarn system, resulting in exceptionally low recorded oxygen isotope ratios in skarn garnet (−
705 8.8‰). Pulses of garnet growth and resorption with changing isotopic and trace element
706 chemistry provide a fine-scale record of changing fluid conditions in skarn systems. An overall
707 depletion of ΣREE throughout garnet growth and in zones measured within individual crystals
708 implies late-stage dilution of fluids. Thus, multiple fluids, dominated by meteoric fluid but also

709 including magmatic and other carbonate-influenced fluid, were involved in skarn formation.
710 Magmatic fluid-releasing events that cause pulses of ^{18}O -enriched fluids to enter the system
711 cause chemical changes in garnet as well as observable resorption textures. In the skarn, shallow
712 levels of magma emplacement accompanied by convection of fluids along the pluton-wallrock
713 contact resulted in drawdown of meteoric water into the hydrothermal system.

714 Collectively, the Mineral King roof pendant skarns chronicle a 38-million-year transition
715 from sub-volcanic to plutonic hydrothermal systems in an evolving magmatic arc where meteoric
716 water is a significant contribution during an arc-wide magmatic lull, and possibly locally
717 extensional setting. The proportion of meteoric water diminished as magmatic flux increased
718 through the middle Cretaceous and engulfed the pendant. Further studies of mineral zoning in
719 skarn systems have potential for understanding tectonic setting in volcanic arcs as well as the
720 rates of decarbonation in Earth history (Lee et al. 2013; Carter and Dasgupta 2015; Lee and
721 Lackey 2015). Findings from this study point to use of skarn systems as a means of testing for
722 broad changes of access to meteoric vs. magmatic fluids in arc hydrothermal systems and more
723 broadly may illuminate tectonic stress fields in arcs

724

725 REFERENCES CITED

726

727 Ague JJ, Brimhall GH, (1988) Magmatic arc asymmetry and distribution of anomalous plutonic
728 belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of
729 crystallization. *Geological Society of America Bulletin* 100:912-927

730 Baumgartner LP and Valley JW (2001) Stable Isotope Transport and Contact Metamorphic Fluid
731 Flow. *Reviews in Mineralogy and Geochemistry* 43:415-476

732 Bau M (1991) Rare earth element mobility during hydrothermal and metamorphic fluid–rock
733 interaction and the significance of the oxidation state of europium. *Chemical Geology*
734 93:219–230

735 Bocchio R, Adamo I, Diella V (2010) The profile of trace elements, including the REE, in gem-
736 quality green andradite from classic localities. *The Canadian Mineralogist* 48:1205-1216

737 Boden TA, Marland G, Andres RJ (2017) Global, Regional, and National Fossil-Fuel

738 CO₂ Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National
739 Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. doi
740 10.3334/CDIAC/00001_V2017

741 Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in
742 the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. *Geochimica et*
743 *Cosmochimica Acta* 33:49-64

744 Bowen GJ, Wilkinson B (2002) Spatial distribution of $\delta^{18}\text{O}$ in meteoric precipitation. *Geology*
745 30:315-318

746 Bowman JR (1998a) Stable-isotope systematics of skarns. In: Lentz, D.R. (ed.), *Mineralized*
747 *Intrusion-related Skarn Systems*. Mineralogical Association of Canada Short Course
748 *Handbook* 26:99-145

749 Bowman JR (1998b) Basic aspects and applications of phase equilibria in the analysis of
750 metasomatic Ca-Mg-Al-Fe-Si skarns. In: Lentz, D.R. (ed.), *Mineralized Intrusion-related*
751 *Skarn Systems*, Mineralogical Association of Canada Short Course Handbook 26:1-49

752 Bowman JR, Valley JW, Kita NT (2009) Constraints on mechanisms of oxygen isotopic
753 exchange and isotopic evolution of $^{18}\text{O}/^{16}\text{O}$ -depleted periclast zone marbles in the Alta
754 aureole, Utah—Insights from ion microprobe analysis of calcite. *Contributions to*
755 *Mineralogy and Petrology* 157:77-93

756 Burisch M, Gerdes A, Meinert LD, Albert R, Seifert T, Gutzmer J (2019) The essence of time –
757 fertile skarn formation in the Variscan Orogenic Belt. *Earth and Planetary Science Letters*
758 519:165-170

759 Busby-Spera CJ (1983) Paleogeographic reconstruction of a submarine volcanic center:
760 geochronology, volcanology and sedimentology of the Mineral King roof pendant, Sierra
761 Nevada, California. PhD Thesis. California Institute of Technology, 317 p.

762 Busby-Spera CJ, Saleeby JB (1987) Geologic guide to the Mineral King area, Sequoia National
763 Park, California. SEPM Pacific Section Field Trip Guidebook 56:1–44

764 Carter LB, Dasgupta R (2015) Hydrous basalt-limestone interaction at crustal conditions:
765 Implications for generation of ultracalcic melts and outflux of CO₂ at volcanic arcs. *Earth*
766 *and Planetary Science Letters* 427:202-214

767 Clayton RN, O'Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water.
768 *Journal of Geophysical Research* 77: 3057-3067

769 Clechenko CC, Valley JW (2003) Oscillatory zoning in garnet from the Willsboro wollastonite
770 skarn, Adirondack Mts, New York: a record of shallow hydrothermal processes preserved
771 in a granulite facies terrane. *Journal of Metamorphic Geology* 21:771-784

772 Crowe DE, Riciputi LR, Bezenek S, Ignatiev A (2001) Oxygen isotope and trace element zoning
773 in hydrothermal garnets: windows into large-scale fluid-flow behavior. *Geology* 29:479-
774 482

775 D'Errico ME, Lackey JS, Surpless BE, Loewy SL, Wooden JL, Barnes JD, Strickland A, Valley
776 JW (2012) A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada
777 magmatic arc from low- $\delta^{18}\text{O}$ skarn garnets. *Geology* 40:763–766

778 Easton AJ, Hamilton D, Kempe DRC, Sheppard SMF, Agrell SO (1977) Low-temperature
779 metasomatic garnets in marine sediments. *Philosophical Transactions of the Royal Society*
780 of London. Series A, Mathematical and Physical Sciences, 286(1336):253-271

781 Einaudi MT, Burt DM (1982) Introduction: terminology, classification, and composition of skarn
782 deposits. *Economic Geology and the Bulletin of the Society of Economic Geologists*
783 77:745-754

784 Ferry JM, Kitajima K, Strickland A, Valley JW (2014) Ion microprobe survey of the grain-scale
785 oxygen isotope geochemistry of minerals in metamorphic rocks. *Geochimica et*
786 *Cosmochimica Acta*, 144:403-433

787 Friedman I, O'Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical
788 interest. US Geological Survey Professional Paper 440-KK:1-49

789 Gao S, Liu X, Yuan H, Hattendorf B, Guenther D, Chen L, Hu S (2002) Determination of forty
790 two major and trace elements in USGS and NIST SRM glasses by laser ablation-
791 inductively coupled plasma-mass spectrometry. *Geostandards Newsletter* 26:181-196

792 Gaspar M, Knaack C, Meinert LD, Moretti R (2008) REE in skarn systems: a LA-ICP-MS study
793 of garnets from the Crown Jewel gold deposit. *Geochimica et Cosmochimica Acta* 72:185-
794 205

795 Gevedon M, Seman S, Barnes JD, Lackey JS, Stockli DF (2018) Unraveling histories of
796 hydrothermal systems via U-Pb laser ablation dating of skarn garnet. *Earth and Planetary*
797 *Science Letters*, 498:237-246

798 Gevedon ML (2019) On the timing, fluid sources, and behavior of skarn formation: lessons from
799 oxygen isotopes in skarn garnets of the North American Mesozoic Cordilleran arc. PhD
800 Thesis. University of Texas at Austin, 159 p.

801 Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals:
802 Society of Economic Paleontologists and Mineralogists Short Course 3, 199 p.

803 Goodyear WA (1888) Inyo, Kern, Los Angeles, San Bernardino, San Diego, Tulare Counties.
804 California Mining Bureau Report 8:643-652

805 Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system
806 Ca—Fe—Si—O—H. *Journal of Petrology* 15:455–496

807 Gutzmer J, Pack A, Lüders V, Wilkinson JJ, Beukes NJ, van Niekerk HS (2001) Formation of
808 jasper and andradite during low-temperature hydrothermal seafloor metamorphism,
809 Ongeluk Formation, South Africa. *Contributions to Mineralogy and Petrology* 142:27-42

810 Havranek R (2014) Fluid Dynamics and Contact Metamorphism Using Scheelite in California.
811 Pomona College. BA Thesis. Pomona College, 51 p.

812 Hillhouse JW, Gromme S (2011) Updated paleomagnetic pole from Cretaceous plutonic rocks of
813 the Sierra Nevada, California: tectonic displacement of the Sierra Nevada block.
814 *Lithosphere* 3:275-288

815 Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet:
816 nonlinear dynamics in regions of immiscibility. *American Mineralogist* 76:1319-1327

817 Jamtveit B, Andersen TB (1992) Morphological instabilities during rapid growth of metamorphic
818 garnets. *Physics and Chemistry of Minerals* 19:176-184

819 Jamtveit B, Wogelius RA, Fraser DG (1993) Zonation patterns of skarn garnets: records of
820 hydrothermal system evolution. *Geology* 21:113-116

821 Jamtveit B, Hervig RL (1994) Constraints on transport and kinetics in hydrothermal systems
822 from zoned garnet crystals. *Science* 263:505-507

823 Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and
824 trace elements on a single low dilution Li-tetraborate fused bead. *Advances in X-ray*
825 *Analysis* 41:843–867

826 Kitajima K, Strickland A, Spicuzza MJ, Tenner TJ and Valley JW (2016) Improved matrix
827 correction of $\delta^{18}\text{O}$ analysis by SIMS for pyralspite and Cr-pyrope garnets. *Goldschmidt*
828 Conference, 1542, Yokohama, Japan.

829 Klemetti EW, Lackey JS, Starnes J (2014) Magmatic lulls in the Sierra Nevada captured in
830 zircon from rhyolite of the Mineral King Pendant, California. *Geosphere* 10:66–79

831 Klemetti EW, Williamson AL, Greene DC, Lackey JS, (2013) Geothermobarometry of the
832 Castle Creek quartz monzodiorite supports rapid Cretaceous subsidence of the Mineral
833 King metamorphic pendant, Sierra Nevada, California. *Abstracts with Programs -*
834 *Geological Society of America* 45:610

835 Kohn MJ, Valley JW (1998) Effects of cation substitutions in garnet and pyroxene on
836 equilibrium oxygen isotope fractionations. *Journal of Metamorphic Geology* 16:625–639

837 Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Evolving magma systems, crustal recycling,
838 and alteration in the central Sierra Nevada batholith: the oxygen isotope record. *Journal of*
839 *Petrology* 49:1397–1426

840 Lackey JS, Cecil MR, Windham CJ, Frazer RE, Bindeman IN, Gehrels G (2012) The Fine Gold
841 Intrusive Suite: The Roles of Basement Terranes and Magma Source Development in the
842 Early Cretaceous Sierra Nevada Batholith. *Geosphere* 8:292–313

843 Lee C-TA, Lackey JS (2015) Global continental arc flare-ups and their relation to long-term
844 greenhouse conditions. *Elements* 11:125–130

845 Lee C-TA, Oka M, Luffi P, Agranier A (2008) Internal distribution of Li and B in serpentinites
846 from the Feather River Ophiolite, California, based on laser ablation inductively coupled
847 plasma mass spectrometry. *Geochemistry, Geophysics, Geosystems - G3* 9:Citation
848 Q12011

849 Lee C-TA, Shen B, Slotnick BS, Liao K, Dickens GR, Yokoyama Y, Lenardic A, Dasgupta R,
850 Jellinek M, Lackey JS (2013) Continental arc-island arc fluctuations, growth of crustal
851 carbonates, and long-term climate change. *Geosphere* 9:21–36

852 MacKenzie D (1983) Sulfide mineral deposits of the Mineral King mining district, Tulare
853 County, California. M.Sc. Thesis. California State University–Long Beach, 100 pp.

854 Mascari S (2007) Metamorphism of marbles in the Sequoia National Park region of the Sierra
855 Nevada, CA. B.A. Thesis. College of Wooster, 52 pp.

856 Matthews A (1994) Oxygen isotope geothermometers for metamorphic rocks. *Journal of*
857 *Metamorphic Geology* 12:211–219

858 Meinert LD, Dipple GM, Niculescu S (2005) World skarn deposits. In Hedenquist, J.W.,
859 Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P., Eds., *Economic Geology* 100th
860 Anniversary Volume 1905–2005, Elsevier Science B.V., Amsterdam, Volume 1905–
861 2005:299–336

862 Newberry RJ (1982) Tungsten-bearing skarns of the Sierra Nevada. I. The Pine Creek Mine,
863 California. *Economic Geology* 77:823–844

864 Newberry RJ, Einaudi MT, Eastman HS (1991) Zoning and genesis of the Darwin Pb-Zn-Zg
865 skarn deposit, California: A reinterpretation based on new data. *Economic Geology*
866 86:960–982

867 Nicolescu S, Cornell D, Södervall U, Odelius H (1998) Secondary ion mass spectrometry
868 analysis of rare earth elements in grandite garnet and other skarn related silicates.
869 European Journal of Mineralogy 10:251–259

870 Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of
871 complex chemistry. Chemical Geology 270:9-19

872 Park C, Song Y, Kang I-M, Shim J, Chung D, Park C-S (2017) Metasomatic changes during
873 periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South
874 Korea. Chemical Geology 451:135–153

875 Paterson SR, Ducea MN (2015) Arc magmatic tempos: Gathering the evidence. Elements
876 11(2):91-98.

877 Quinn RJ, Valley JW, Page FZ, Fournelle JH (2016) Accurate Determination of Ferric Iron in
878 Garnets. American Mineralogist, 101:1704-1707

879 Quinn, RJ, Kitajima, K, Nakashima, D, Spicuzza, MJ, Valley, JW (2017). Oxygen isotope
880 thermometry using quartz inclusions in garnets. Journal of Metamorphic Geology, 35:
881 231-252

882 Ramos EJ, Hesse MA, Barnes JD, Jordan JS, Lackey JS (2018) Re-evaluating fluid sources
883 during skarn formation: an assessment of the Empire Mountain skarn, Sierra Nevada,
884 USA. Geochemistry, Geophysics, Geosystems, 19(10):3657-3672

885 Ryan-Davis JR, Head DA, Fulton AA, Lackey JS, Barnes JD, Lee C-TA (2014) Skarn garnet
886 records of fluid control of decarbonation and ore type in the California arc. Goldschmidt
887 Abstracts, 2014 2147

888 Saleeby JB, Busby C (1993) Paleogeographic and tectonic setting of axial and western
889 metamorphic framework rocks of the southern Sierra Nevada, California. In: Dunne GC,
890 McDougall K (eds) Mesozoic paleogeography of the Western United States: II, vol.
891 SEPM, Pacific Section 71, pp 197-225

892 Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen
893 isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta 54:1353–1357

894 Sisson TW, Moore JG (2013) Geologic map of southwestern Sequoia National Park, Tulare
895 County, California. In: U. S. Geological Survey Open-File Report 2013-1096, Reston,
896 VA, United States, pp 1:24,000

897 Smith MP, Henderson P, Jeffries TER, Long J, Williams CT (2004) The rare earth elements and
898 uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints
899 on processes in a dynamic hydrothermal system. Journal of Petrology 45:457-484

900 Spicuzza MJ, Valley JW, McConnell VS (1998) Oxygen isotope analysis of whole rock via laser
901 fluorination: An air-lock approach. Geological Society of America Abstracts with
902 Programs 30:80

903 Spötl C, Vennemann TW (2003) Continuous-flow isotope ratio mass spectrometric analysis of
904 carbonate minerals. Rapid Communications in Mass Spectrometry 17:1004–1006

905 Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications
906 for mantle composition and processes. Geological Society Special Publications 42:313-
907 345

908 Taylor BE, Liou JG (1978) The low-temperature stability of andradite in C-O-H fluids.
909 American Mineralogist 63:378-393

910 Turner DR, Bowman JR (1993) Origin and evolution of skarn fluids, Empire zinc skarns, Central

911 Mining District, New Mexico, U.S.A. *Applied Geochemistry* 8(1):9-36
912 Valley JW (1986) Stable Isotope Geochemistry of Metamorphic Rocks. In: *Stable Isotopes in*
913 *High Temperature Geological Processes*. JW Valley, JR O'Neil, and HP Taylor (eds.),
914 *M.S.A. Reviews in Mineralogy* 16:445-489
915 Valley, JW (2003) Oxygen isotopes in zircon. In: Hanchar, JM and Hoskin, PWO (eds) *Zircon.*
916 *Reviews in Mineralogy & Geochemistry* 53: 343-385
917 Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation
918 in zircon. *Geochimica et Cosmochimica Acta* 67:3257-3266
919 Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. In: Fayek M
920 (ed) *Secondary Ion Mass Spectrometry in the Earth Sciences, Short Course*, vol 41.
921 Mineralogical Association of Canada, pp 19-63
922 Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard
923 for oxygen isotope ratios: strategies for high precision and accuracy with laser heating.
924 *Geochimica et Cosmochimica Acta* 59:5223-5231
925 White T, Gonzalez L, Ludvigson G, Poulsen C (2001) Middle Cretaceous greenhouse hydrologic
926 cycle of North America. *Geology* 29:363–366
927 Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R (2007) Isotopic and elemental imaging of
928 geological materials by laser ablation Inductively Coupled Plasma mass spectrometry.
929 *Journal of Geostandards and Geoanalytical Research* 31: 331–343
930 Yardley BWD, Lloyd GE (1995) Why metasomatic fronts are really metasomatic sides. *Geology*
931 23:53–56
932 Yardley BWD, Rochelle CA, Barnicoat AC, Lloyd GE (1991) Oscillatory zoning in
933 metamorphic minerals: an indicator of infiltration metasomatism. *Mineralogical Magazine*
934 55:357-365
935 Zhai D-G, Liu J-J, Zhang H-Y, Wang J-P, Su L, Yang X-A, Wu S-H (2014) Origin of oscillatory
936 zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS
937 evidence. *Lithos* 190:279–291
938

939 FIGURES

940
941 **Fig. 1** Location and simplified geologic map of the Mineral King roof pendant, south-central
942 Sierra Nevada, California, modified after Sisson & Moore (2013). Mesozoic metavolcanics and
943 metasedimentary rocks make up the majority of the pendant. White areas are Quaternary
944 alluvium and talus; the quartz diorite of Empire Mountain (106.2 ± 1.1 Ma, Sisson & Moore
945 2013) spans ~8 km north-south, with skarn, mainly garnetite, along the southwest side and as
946 screens and a pendant that makes up the upper 100 m of Empire Mountain. ~3 km to the south-
947 southwest, White Chief canyon exposes the granodiorite of White Chief Mine (135 ± 1 Ma,
948 Sisson & Moore 2013) in contact with marble and calc-silicate, where metasomatism occurred;
949 at this scale, skarn garnet rocks are not distinguished. Figure 2a, delineated by the box, provides
950 detailed geology of White Chief canyon. Specimens collected elsewhere in the Mineral King
951 pendant in this study are located on the map as white circles outlined in black (e.g., Sequoia
952 Claim skarn, SQMK-1)
953
954
955

956 **Fig. 2** Geologic map of White Chief canyon showing field relationships between granodiorite,
957 skarn, and marble. (a) Detailed geologic map of White Chief canyon showing pockets of
958 garnetite skarn between pendant marble and the east contact of the granodiorite of White Chief
959 Mine. Marble color differences are denoted based on field observation. White areas represent
960 Quaternary alluvium and talus. “Garnet Skarn” is restricted to a narrow (1 to 20 m wide) band of
961 garnetite, in contact with the granodiorite and marble, both white and blue-gray. East of the band
962 of marble, calc-silicate with a protolith of Mesozoic metasedimentary or metavolcanic rock is
963 often also metasomatised. Samples are located on the map, with bulk garnet maximum and
964 minimum $\delta_{18}\text{O}$ values in red next to the black sample number. Strike and dip of primary bedding
965 features are labeled on the map. Locations of field photos in panels b through f are denoted with
966 camera icons on the map. (b) Transition zone from dark-gray to bleached white marble (c)
967 Contact between marble and a ductile skarn, with proximal garnetite (Grt) and distal
968 clinopyroxene (Cpx), relative to the pluton, and late calcite (Cc). (d) Early magnetite (Mt) on
969 either side of a vertically-oriented band of red garnet, filling a fracture in the marble. Arrow
970 denotes vertical direction in the field. (e) Exposure of garnetite skarn between granodiorite of
971 White Chief Mine and marble. (f) Garnetite skarn, in contact with the porphyritic granodiorite of
972 White Chief Mine; note void spaces of 2–5 cm with euhedral ~ 1 cm diameter garnet crystals
973 growing into them presumed to be relict porosity from skarn formation
974
975

976 **Fig. 3** Textures and compositions of skarn from White Chief canyon; samples indicated on
977 images. (a) Polished slab, showing that early clinopyroxene (Pyx) growth was followed by
978 massive red garnet (Grt) growth, subsequently crosscut by green to yellow-green andradite
979 garnet (Adr) with red-orange overprint rims, and later calcite (Cc) and dark blue-green
980 hedenbergite filling interstices. (b) Transmitted light image of red-brown grandite garnet (Grt)
981 from the southern end of the skarn. (c & d) Transmitted light images of green andradite in
982 garnet-rich (c) and sulfide-rich (d) skarn; in (c) zoned green garnet cores, with red hematite (Ht)
983 staining on rims, and interstitial calcite (Cc). Dark zones in the green cores are typically clusters
984 of small (<15 μm) magnetite inclusions, and small (<10 μm) scheelite inclusions localized in
985 garnet crystals; in (d) galena (Gal), and lesser sphalerite (not pictured), surrounds andradite from
986 the mine adit area. (e) Transmitted light image; massive green andradite exhibiting numerous
987 crosscutting sulfide veins with hematite staining imparting orange discoloration of some garnet.
988 Late hedenbergite fills interstices of sulfides and some garnets and shows strong association with
989 sulfide mineralization. (f) Enlargement of an area of (e) to show secondary fluid inclusions
990 aligned with through-going fractures andradite (dashed black lines), and overprint rims of
991 unfractured orange garnet that meet at triple-junctions containing hedenbergite. (g) Primary fluid
992 inclusions, in addition to many mineral inclusions, exhibit conformable structure along zones of
993 garnet growth; some fluid inclusions are oblique to growth zones, and likely not primary. (h)
994 Ternary plots of all garnet and clinopyroxene cation compositions from this study. Garnet ranges
995 from nearly pure andradite (Adr_{73–98}) in mine adit area samples to grandite (Adr_{14–40}) in red-
996 brown garnetite from the southern skarn. Hedenbergite-rich clinopyroxene dominates as
997 interstitial late growth in mine adit area samples
998
999

1000 **Fig. 4** Geochemistry and $\delta_{18}\text{O}$ values of garnet A from sample 13WC8; (a) Binocular,
1001 transmitted light (color) image of garnet zoning, showing the green zoned garnet, which appears

yellow, with small dark magnetite inclusions aligned with growth zones, and some white/reflective calcite, sphalerite and galena in resorbed cores. (b) Backscattered electron (BSE) image of garnet zoning. Bright minerals in the resorbed regions in the backscatter image are galena and sphalerite. White and light blue symbols (to locate the blue, out of line symbols along the plotted transect) with numbers represent SIMS spot locations and measured $\delta_{18}\text{O}$ values, plotted in (c). Colored circle pairs represent LA-ICPMS spot pairs along the transect, with $\sum\text{REE}$ plotted in (d). Dash-dot white lines indicate resorption features or irregular wavy zoning visible in the backscatter image, and are copied onto transects in the following plots. (c) $\delta_{18}\text{O}$ measured by SIMS as black or light blue symbols with gray error bars on the left axis, and corresponding mole percent andradite represented by red circles on the right axis, by distance from core to rim (in microns, μm) shows variability. Red, blue and black arrows represent interpreted fluid behavior, tracking $\delta_{18}\text{O}$ values. (d) $\sum\text{REE}$ concentration measured by LA-ICPMS, as a sum of REEs (La through Lu) in ppm for each analysis pair, plotted along the same transect

Fig. 5 Geochemistry and $\delta_{18}\text{O}$ values of garnet A from sample 13WC1; (a) Binocular, transmitted light (color) image of a polished fragment of garnet (white dotted line indicates epoxy covering the crystal), showing the zoned green andradite core, which appears yellow, with small dark magnetite inclusions aligned with growth zones, and the unzoned red-orange andradite overprint rim with scattered small ($<5\ \mu\text{m}$) scheelite inclusions, not visible. (b) Backscatter electron (BSE) image of garnet zoning, annotated with a red transect line from core to rim (A-A'). Late galena followed by sphalerite is the bright mineral at the rim and in resorbed spaces in the BSE image. Small ($<10\ \mu\text{m}$) inclusions of magnetite and scheelite are sparse in the innermost section (before $\sim 800\ \mu\text{m}$ along the transect) of the garnet. Black and light blue symbols (to locate the blue, out of line symbols along the plotted transect) with numbers represent SIMS spot locations and measured $\delta_{18}\text{O}$ values, plotted in (c). Colored circle pairs represent LA-ICPMS spot pairs along the transect, with $\sum\text{REE}$ plotted in (d). Dash-dot white lines indicate resorption features or irregular wavy zoning visible in the backscatter image, and are copied onto transect plots. (c) Plot of $\delta_{18}\text{O}$ measured by SIMS (black or light blue symbols with gray error bars, barely bigger than the symbol) on the left axis, and corresponding mole percent andradite (red circles) on the right axis, by distance from core to rim (in microns, μm). Red, blue and black arrows represent interpreted fluid behavior, tracking $\delta_{18}\text{O}$ values; the red arrow with a dashed outline and question mark is an increase in magmatic fluid interpreted from $\sum\text{REE}$, plotted in (d), with no corresponding $\delta_{18}\text{O}$ spot. (d) $\sum\text{REE}$ concentration in garnet measured by LA-ICPMS (La through Lu) in ppm for each analysis pair measured for a particular zone, plotted along the same transect line

Fig. 6 Oxygen isotope ratios from White Chief skarn and related rocks. (a) $\delta_{18}\text{O}$ values of whole rock powders from plutonic and volcanic rocks, garnet fragments, and scheelite. Black capped lines represent calculated $\delta_{18}\text{O}$ values of equilibrium fluid over a range in temperatures from 400°C to 600°C. The $\delta_{18}\text{O}$ value of fluid is calculated to a wider range of 700 to 400°C for scheelite, as the temperature of its formation, later than garnet, is uncertain. For sample 13WC8, with the widest range in $\delta_{18}\text{O}(\text{Grt})$ measured by SIMS, the ranges of values are represented by rectangles—the white and light gray rectangles represent analyses within zoned green andradite cores, the dark gray rectangle represents analyses of the red overprint rim. (b) $\delta_{18}\text{O}$ and $\delta_{13}\text{C}$

1048 values of calcite from marbles and skarn from the White Chief hydrothermal system. Distal
1049 marbles are massive and grey with carbonaceous matter from the White Chief area, and white
1050 squares represent samples from other areas of the pendant (Other MK). Calcite from skarn
1051 garnetite is distinguished as ore-bearing (with green garnet, thick black empty circles) and ore-
1052 absent (with red garnet, black filled circles). Reference values of marine carbonates and
1053 “magmatic calcite” calculated from equilibrium fluid fractionation are fitted with box-models for
1054 the total system assuming equilibrium carbon isotope exchange of fluid over a range of
1055 temperatures. Model curves are calculated according to Bowman (1998a, Equation 9) and
1056 assume equilibrium fractionation between calcite end-members in marine limestone ($\delta^{18}\text{O} = 21$
1057 to 25‰; $\delta^{13}\text{C} = 0$ to 3‰) and water-rich fluids [$X\text{CO}_2 = 0.1$ (300°C); 0.3 (550°C)] from which
1058 calcite in equilibrium with magmatic fluid ($\delta^{18}\text{O}(\text{Cc}) = 7.5\text{\textperthousand}$; $\delta^{13}\text{C}(\text{Cc}) = -8.0$) would
1059 precipitate. End-member values are from Bowman (1998a). Hash marks on model curves are
1060 fluid-rock ratios used in the models, but likely far underestimate actual fluid fluxes (Bowman
1061 1998a; Baumgartner and Valley, 2001)

1062

1063

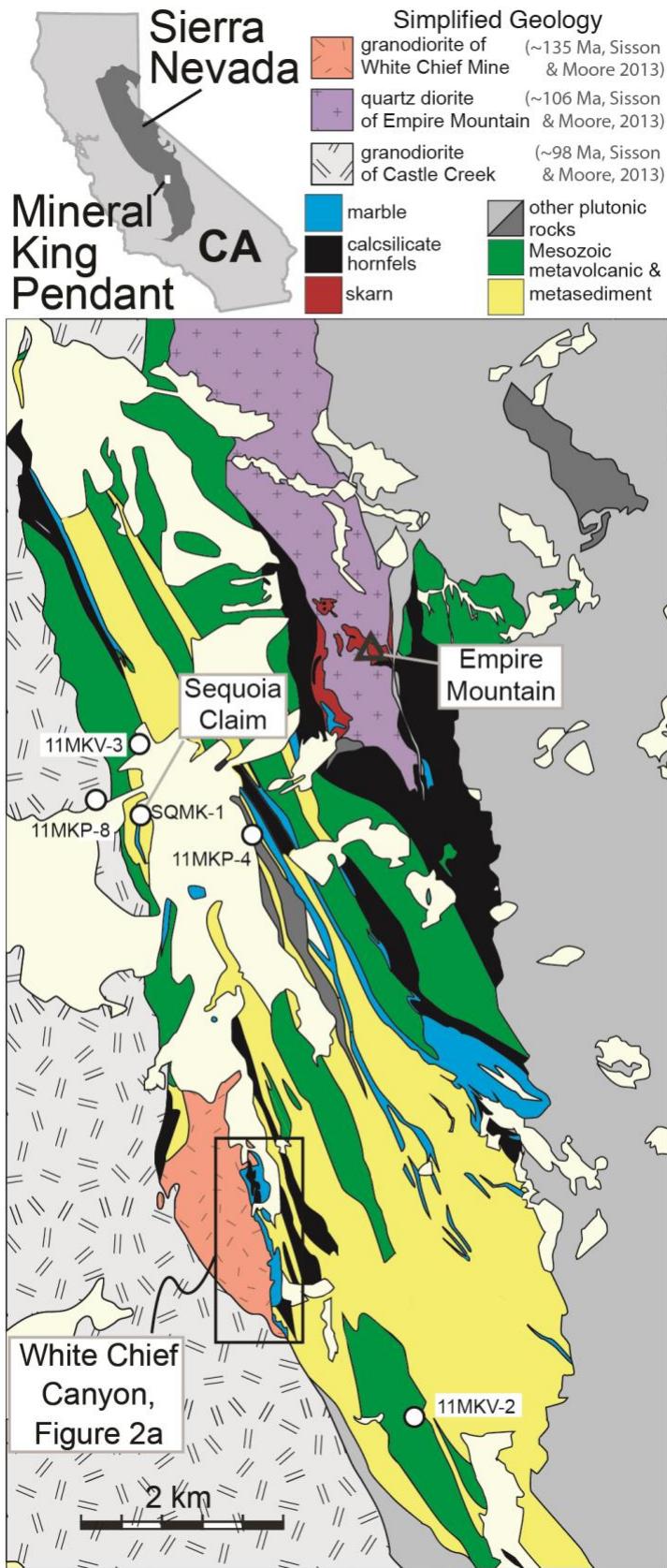
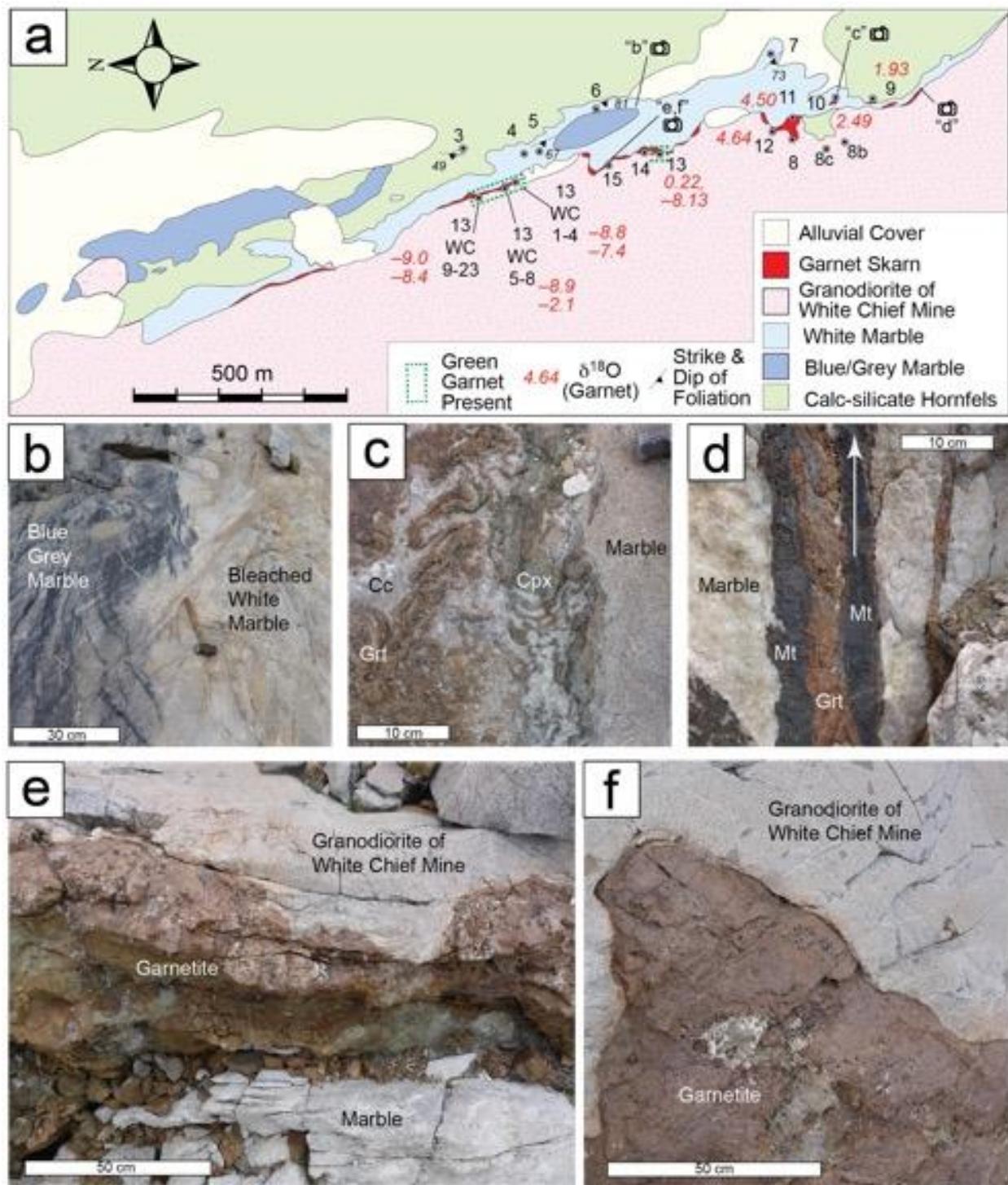

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Fig. 7 Oxygen isotope fractionations and measured values for garnet relevant to the White Chief canyon skarn system, where the thick black line represents a given water $\delta_{18}\text{O}$ value ($X_{\text{CO}_2} = 0$), and the curves are calculated equilibrium compositions for quartz (dotted blue line), grossular garnet (Gros₁₀₀, dashed red line) and andradite (Adr₁₀₀, solid green line). The measured values of $\delta_{18}\text{O}(\text{Grt})$ in red and green garnets, respectively, are plotted as horizontal bars across both panels. (a) A meteoric water-rich fluid $\delta_{18}\text{O}$ of $-5\text{\textperthousand}$, where garnets are nearly pure andradite (yellow curve, $X_{\text{Adr}} = 0.9$), as seen in green ore-zone garnet. The yellow curve here nearly overlaps the equilibrium andradite curve, in green, and overlaps with measured green garnetite $\delta_{18}\text{O}(\text{Grt})$ values to temperatures as low as $\sim 400^\circ\text{C}$, corresponding well to the minimum temperature of 400°C from fluid inclusion assemblages in green garnetite. (b) Magmatic water ($\delta_{18}\text{O} = +8.5$ calculated from zircon from the granodiorite of White Chief Mine) results in equilibrium $\delta_{18}\text{O}(\text{Grt})$ values that are above the highest measured values for the red garnetite. The yellow curve represents the calculated fractionation of Adr₆₀ garnet in equilibrium with purely magmatic water ($\delta_{18}\text{O} = +8.5$). The yellow curve just intersects the highest red garnetite measured values only at $T < 400^\circ\text{C}$; instead of such a low T of formation of the skarn, it is likely that all garnets formed in fluids that contained some portion of meteoric water, which would lower the curves to meet the measured values at an appropriate skarn-forming temperature range ($>400^\circ\text{C}$, from fluid inclusion microthermometry)


Fig. 8 Schematic model of skarn formation at White Chief Mine. In the shallow arc setting of ca. 135 Ma, this shallow system drove convection of meteoric fluids into the skarn-forming hydrothermal system at the contact of the pluton with carbonates. Silicic magma of the granodiorite of White Chief Mine intruded carbonate, causing devolatilization of $\text{CO}_2:\text{H}_2\text{O}$ fluid, which was first dominantly magmatic fluid (1). The opening of pore space along the contact formed a conduit for later fluids, *i.e.*, meteoric water (2), and potentially also including metamorphic fluid in equilibrium with local carbonates (3?).

Early red grossular-rich garnet crystallized in the southern present-day exposures of the skarn, with the highest $\delta_{18}\text{O}(\text{Grt})$ measured, up to $> 4\text{\textperthousand}$, and elevated $\sum\text{REE}$. Magmatic fluid ($\delta_{18}\text{O}$ of $\sim +8.5\text{\textperthousand}$) dominated the early red garnet growth, but a significant proportion of meteoric fluid was certainly present (see Figure 7). Diminishing expulsion of magmatic water later allowed low- $\delta_{18}\text{O}$ meteoric fluid ($\delta_{18}\text{O}$ of $-5\text{\textperthousand}$) to flood the system, recorded by low- $\delta_{18}\text{O}$, moderate- $\sum\text{REE}$ green, oscillatory zoned garnet in the ore zone near where abandoned mine adits exist today ($\delta_{18}\text{O}(\text{Grt}) < -8\text{\textperthousand}$). Resorption and overprinting of some green zoned garnet cores resulted in red-orange andradite (Adr₉₃) overprinted rims of the garnet during the low-temperature (as low as $\sim 400^\circ\text{C}$) skarn formation during final stages of cooling of the granodiorite of White Chief Mine, recording pulses of higher- $\delta_{18}\text{O}$, low $\sum\text{REE}$ fluid (brown and purple bar in $\delta_{18}\text{O}$ plot, and pale yellow bar in $\sum\text{REE}$ plot), likely a signature of “metamorphic” fluids from regional carbonate rock ($\delta_{18}\text{O}$ up to $+22\text{\textperthousand}$), recorded by a prominent increase in $\delta_{18}\text{O}(\text{Grt}) (> -3\text{\textperthousand})$ and extremely depleted $\sum\text{REE}$ within the red-orange andradite garnet rims

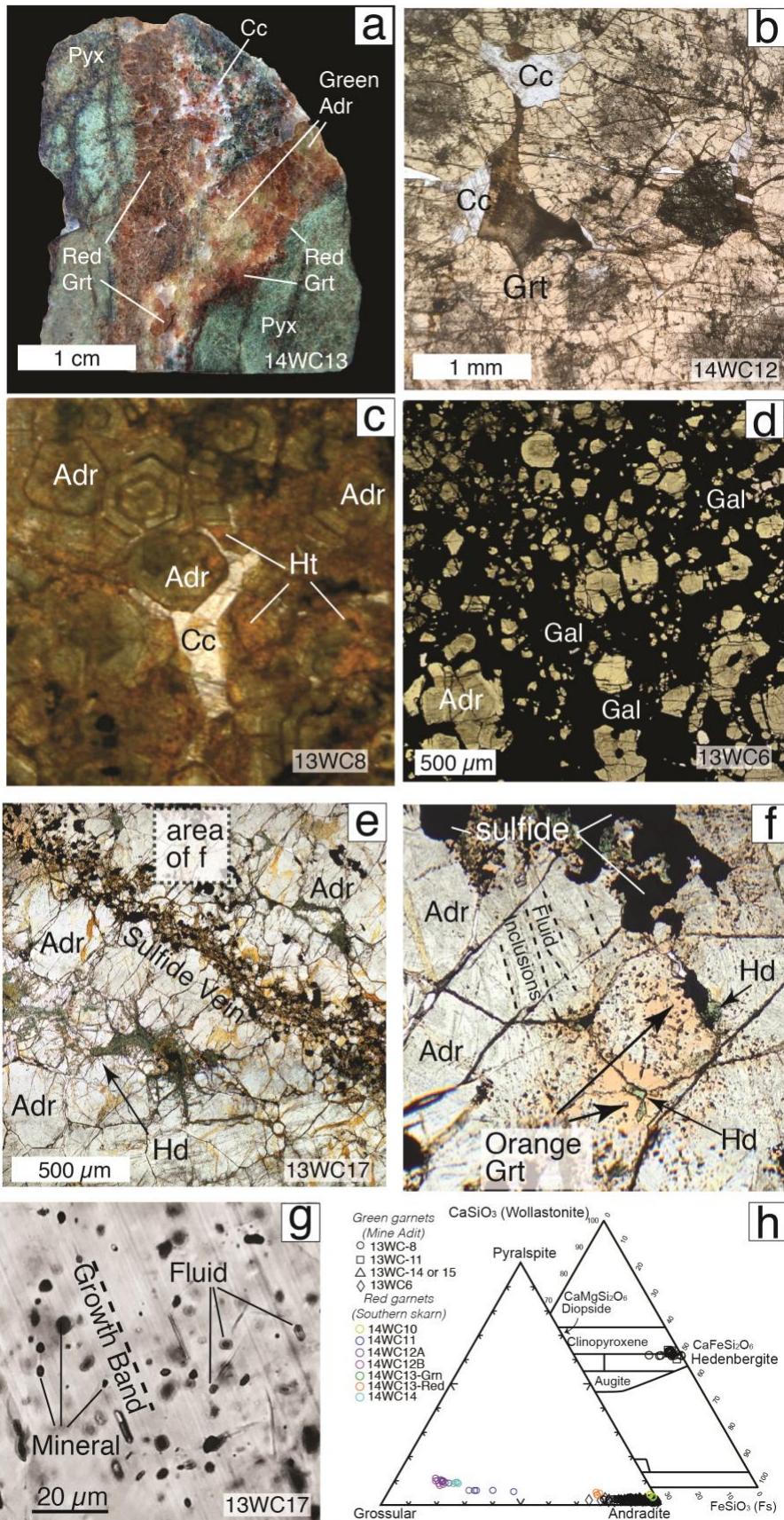


Fig. 1 Location and simplified geologic map of the Mineral King roof pendant, south-central Sierra Nevada, California, modified after Sisson & Moore (2013). Mesozoic metavolcanics and metasedimentary rocks make up the majority of the pendant. White areas are Quaternary alluvium and talus; the quartz diorite of Empire Mountain (106.2 ± 1.1 Ma, Sisson & Moore 2013) spans ~8 km north-south, with skarn, mainly garnetite, along the southwest side and as screens and a pendant that makes up the upper 100 m of Empire Mountain. ~3 km to the south-southwest, White Chief Canyon exposes the granodiorite of White Chief Mine (135 ± 1 Ma, Sisson & Moore 2013) in contact with marble and calc-silicate, where metasomatism occurred; at this scale, skarn garnet rocks are not distinguished. Figure 2a, delineated by the box, provides detailed geology of White Chief Canyon. Specimens collected elsewhere in the Mineral King pendant in this study are located on the map as white circles outlined in black (e.g., Sequoia Claim skarn, SQMK-1)

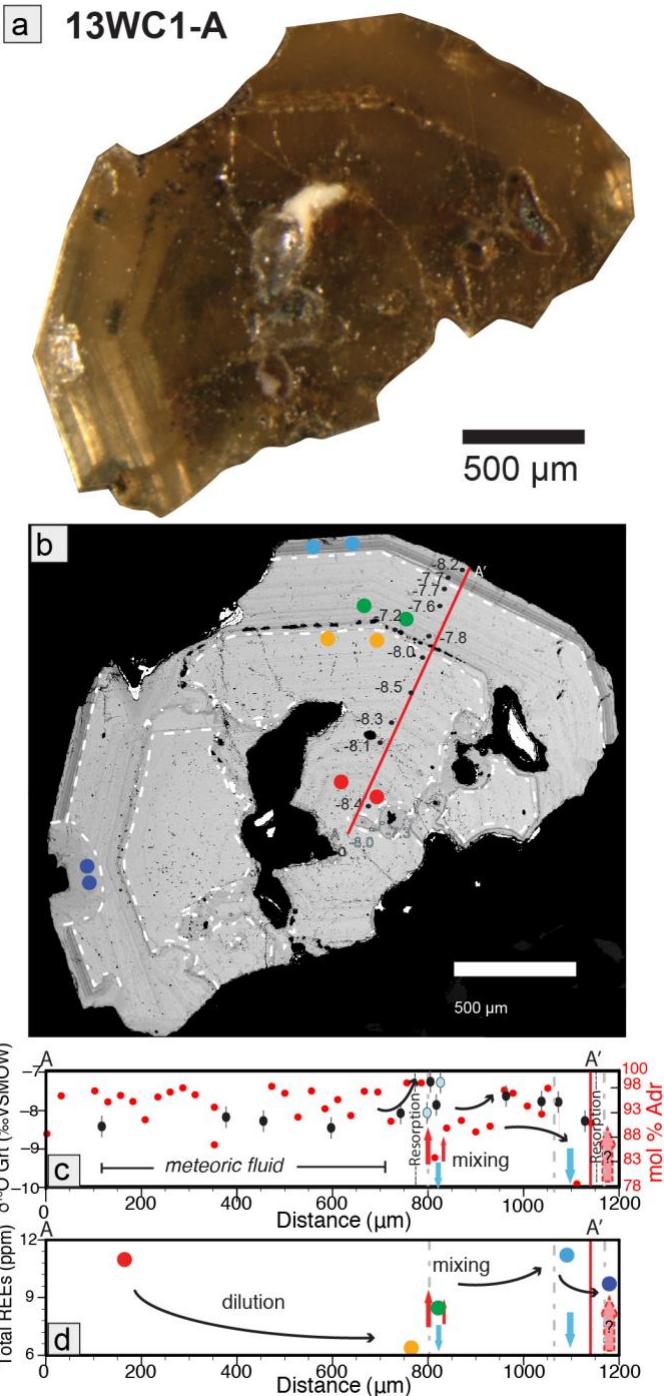


Fig. 2 Geologic map of White Chief Canyon showing field relationships between granodiorite, skarn, and marble. (a) Detailed geologic mapping of White Chief Canyon showing pockets of garnetite skarn between pendant marble and the east contact of the granodiorite of White Chief Mine. Marble color differences are denoted based on field observation. White areas represent Quaternary alluvium and talus. “Garnet Skarn” is restricted to a narrow (1 to 20 m wide) band of garnetite, in contact between the granodiorite and marble, both white and blue-gray. Calc-silicate

east of the band of marble with a protolith of Mesozoic metasedimentary or metavolcanic rock is often also metasomatised. Samples are located on the map, with bulk garnet maximum and minimum $\delta_{18}\text{O}$ values in red next to the black sample number. Strike and dip of primary bedding features are labeled on the map. Locations of field photos in b-f panels are denoted with camera icons on the map. (b) Transition zone from dark-gray to bleached white marble (c) Contact between marble and a ductile skarn, with proximal garnetite (Grt) and distal clinopyroxene (Cpx), relative to the pluton, and late calcite (Cc). (d) Early magnetite (Mt) on either side of a vertically-oriented band of red garnet, filling a fracture in the marble. Arrow denotes vertical direction in the field. (e) Exposure of garnetite skarn between granodiorite of White Chief Mine and marble. (f) Garnetite skarn, in contact with the porphyritic granodiorite of White Chief Mine; note void spaces of 2–5 cm with euhedral ~cm scale garnet crystals growing into them presumed to be relict porosity from skarn formation

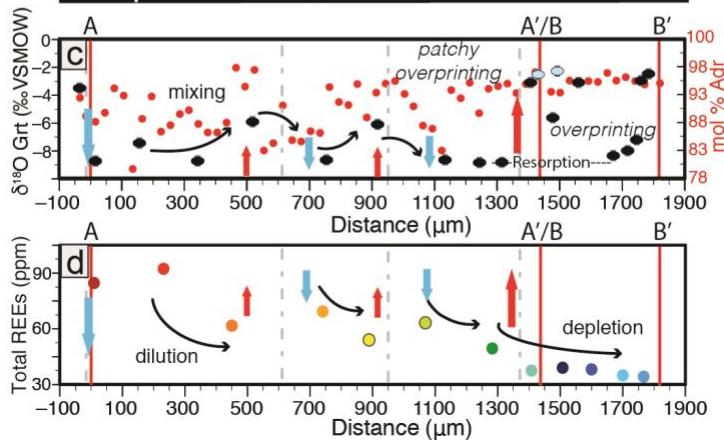
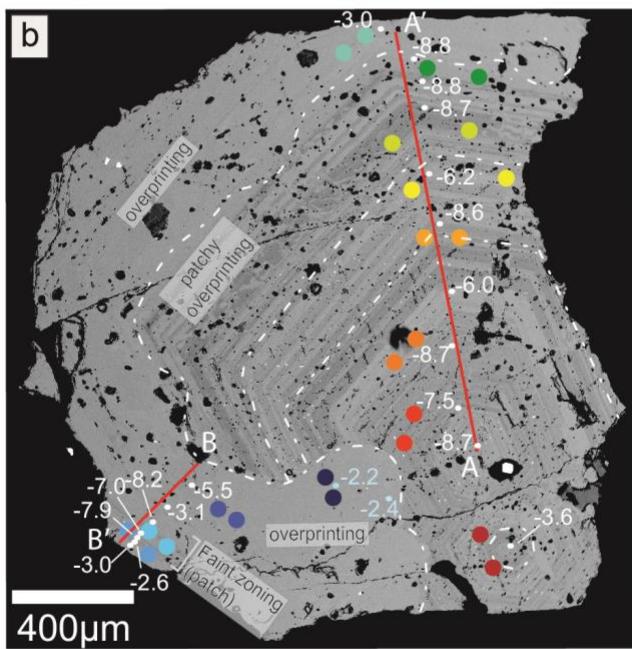
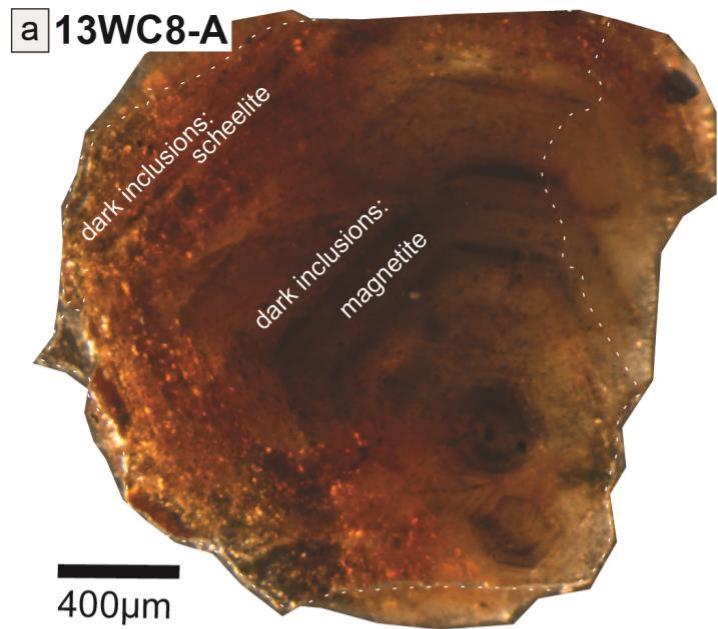




Fig. 3 Textures and compositions of skarn from White Chief canyon; samples indicated on images. (a) Polished slab, showing that early pyroxene (Pyx) growth was followed by massive red garnet (Grt) growth, subsequently crosscut by green to yellow-green andradite (Adr) with red-orange overprint rims, and later calcite (Cc) and dark blue-green hedenbergite filling interstices. (b) Transmitted light image of red-brown grandite garnet (Grt) from the southern end of the skarn. (c & d) Transmitted light images of green andradite in garnet-rich (c) and sulfide-rich (d) skarn; in (c) zoned green garnet cores, with red hematite (Ht) staining on rims, and interstitial calcite (Cc). Dark zones in the green cores are typically clusters of small ($<15\text{ }\mu\text{m}$) magnetite inclusions, and small ($<10\text{ }\mu\text{m}$) scheelite inclusions localized in garnet crystals; in (d) galena (Gal), and lesser sphalerite (not indicated), surrounds andradite from the mine adit area. (e) Transmitted light image; massive green andradite exhibiting numerous crosscutting sulfide veins with hematite staining imparting orange discoloration of some garnet. Late hedenbergite fills interstices of sulfides and some garnets and shows strong association with sulfide mineralization; (f) enlarges an area of (e) to show secondary fluid inclusions aligned with through-going fractures andradite (dashed black lines), and overprint rims of unfractured orange garnet that meet at triple-junctions containing hedenbergite. (g) Primary fluid inclusions, in addition to many mineral inclusions, exhibit conformable structure along zones of garnet growth; some fluid inclusions are oblique to growth zones, and likely not primary. (h) Ternary plots of all garnet and clinopyroxene cation compositions from this study. Garnet ranges from nearly pure andradite (Adr₇₃₋₉₈) in mine adit area samples to grandite (Adr₁₄₋₄₀) in red-brown garnetite from the southern skarn. Hedenbergite-rich clinopyroxene dominates as interstitial late growth in mine adit area samples

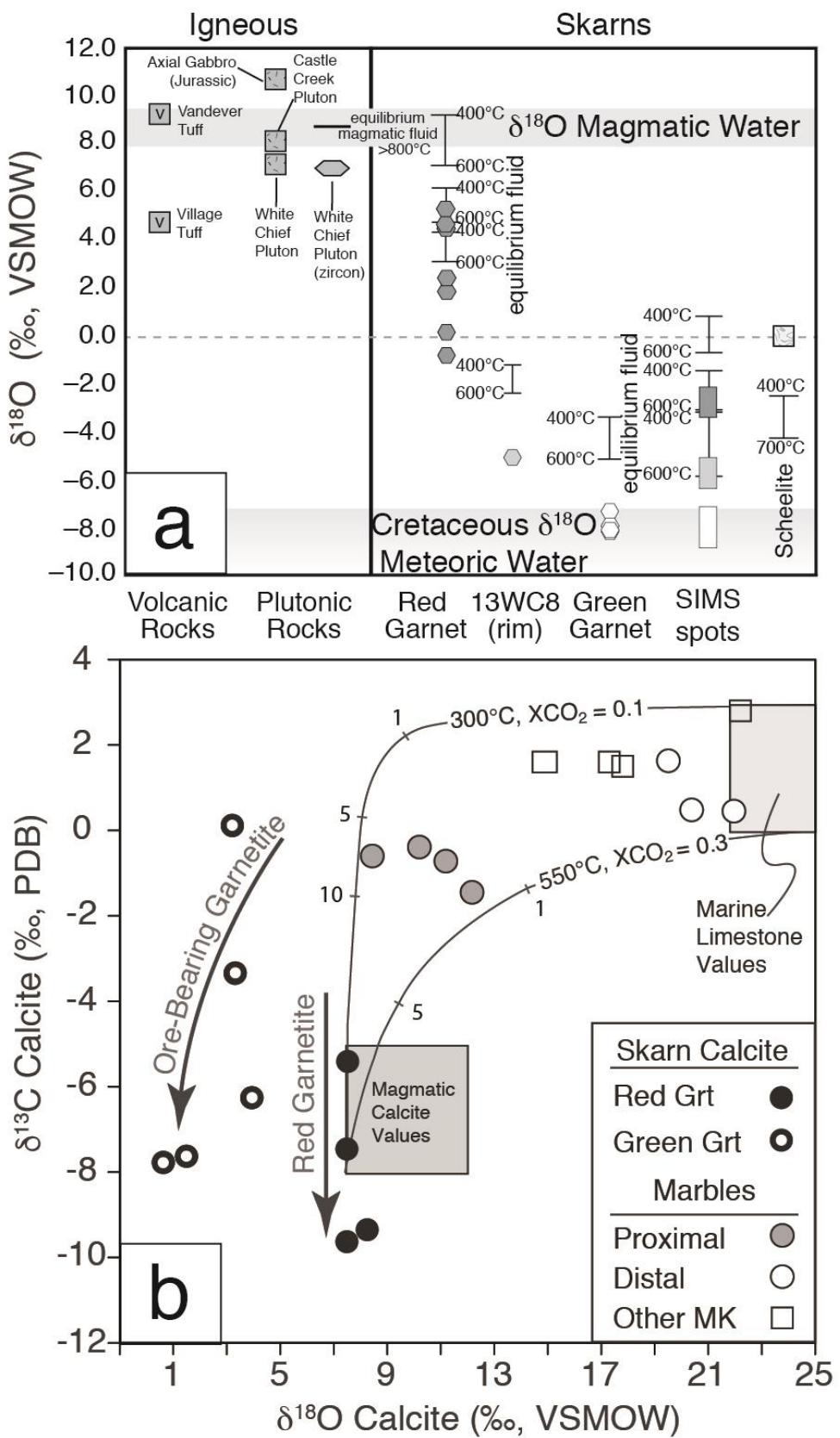


Fig. 4 Geochemistry and $\delta^{18}\text{O}$ values of garnet A from sample 13WC8; (a) Binocular, transmitted light (color) image of a polished fragment of garnet (white dotted line indicates epoxy covering the crystal), showing the zoned green andradite core, which appears yellow, with small dark magnetite inclusions aligned with growth zones, and the unzoned red-orange andradite overprint rim with scattered small ($<5 \mu\text{m}$) scheelite inclusions, not visible. (b) Backscattered electron (BSE) image of garnet zoning. Galena is a square bright mineral in the resorbed core in the backscatter image. Small ($<10 \mu\text{m}$) inclusions of magnetite and scheelite are

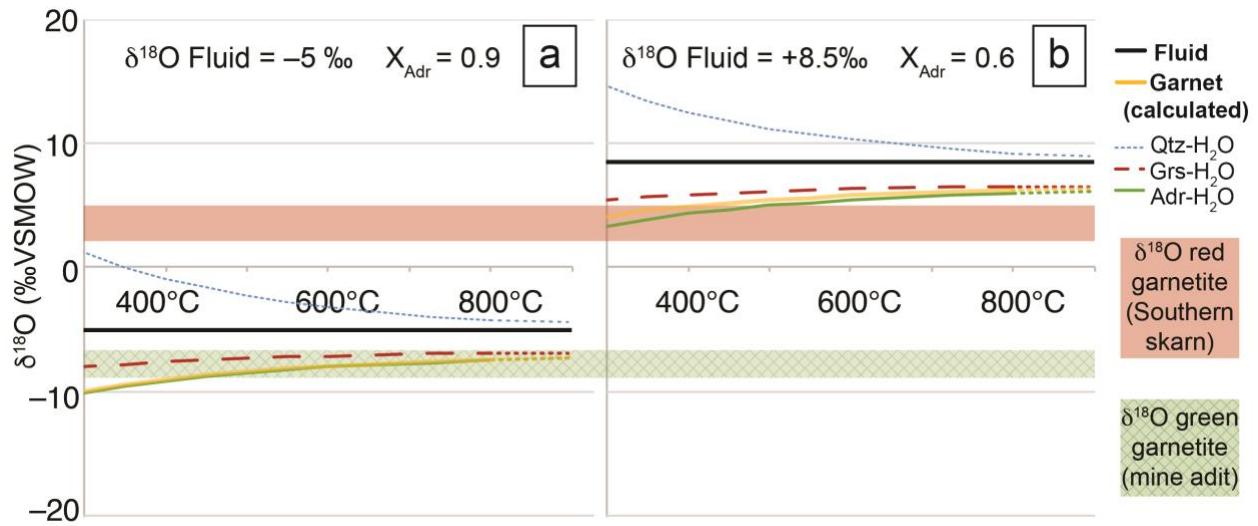

present, with magnetite restricted to the inner, zoned portion of the garnet (before B' along the transect) and scheelite more common in the outer overprinted area (from B to B' on the transect). White and light blue spots (to locate the blue, out of line spots along the plotted transect) with numbers represent SIMS spot locations and measured $\delta^{18}\text{O}$ values, plotted in (c). Colored spot pairs represent LA-ICPMS spot pairs along the transect, with $\sum\text{REE}$ plotted in (d). Dash-dot white lines indicate resorption features or irregular wavy zoning visible in the backscatter image, and are copied onto transects in the following plots. (c) $\delta^{18}\text{O}$ measured by SIMS as black or light blue spots with gray error bars (barely bigger than spots) on the left axis, and corresponding mole percent andradite represented by red circles on the right axis, by distance from core to rim (in microns, μm) shows variability. Red, blue and black arrows are interpreted fluid behavior, tracking $\delta^{18}\text{O}$. (d) $\sum\text{REE}$ concentration measured by LA-ICPMS, as a sum of REEs (La through Lu) in ppm for each analysis pair, plotted along the same transect

Fig. 5 Geochemistry and $\delta_{18}\text{O}$ values of garnet A from sample 13WC1; (a) Binocular, transmitted light (color) image of garnet zoning, showing the green zoned garnet, which appears yellow, with small dark magnetite inclusions aligned with growth zones, and some white/reflective calcite, sphalerite and galena in resorbed cores. (b) Backscatter electron (BSE) image of garnet zoning, annotated with a red transect line from core to rim (A-A'). Late galena followed by sphalerite is the bright mineral at the rim and in resorbed spaces in the BSE image. Small ($<10 \mu\text{m}$) inclusions of magnetite and scheelite are sparse in the innermost section (before $\sim 800 \mu\text{m}$ along the transect) of the garnet. Black and light blue spots (to locate the blue, out of line spots along the plotted transect) with numbers represent SIMS spot locations and measured $\delta_{18}\text{O}$ values, plotted in (c). Colored spot pairs represent LA-ICPMS spot pairs along the transect, with $\sum\text{REE}$ plotted in (d). Dash-dot white lines indicate resorption features or irregular wavy zoning visible in the backscatter image, and are copied onto transect plots. (c) Plot of $\delta_{18}\text{O}$ measured by SIMS (black or light blue spots with gray error bars) on the left axis, and corresponding mole percent andradite (red circles) on the right axis, by distance from core to rim (in microns, μm). Red, blue and black arrows are interpreted fluid behavior, tracking $\delta_{18}\text{O}$; the red arrow with a dashed outline and question mark is an increase in magmatic fluid interpreted from $\sum\text{REE}$, plotted in (d), with no corresponding $\delta_{18}\text{O}$ spot. (d) $\sum\text{REE}$ concentration in garnet measured by LA-ICPMS (La through Lu) in ppm for each analysis pair measured for a particular zone, plotted along the same transect line

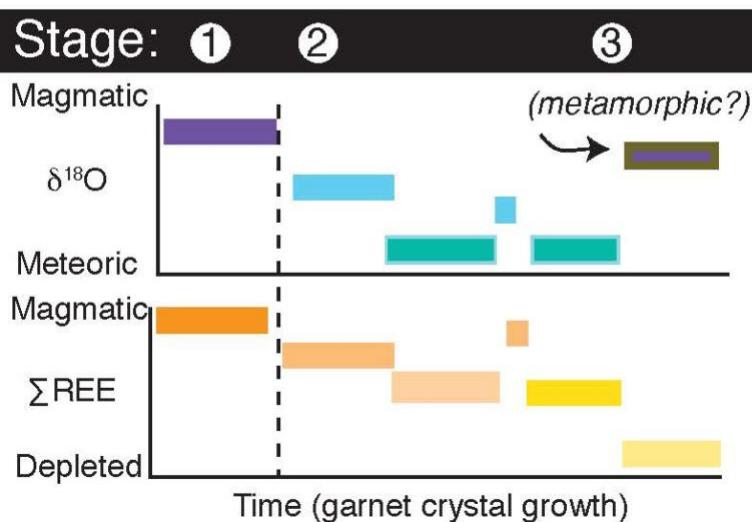
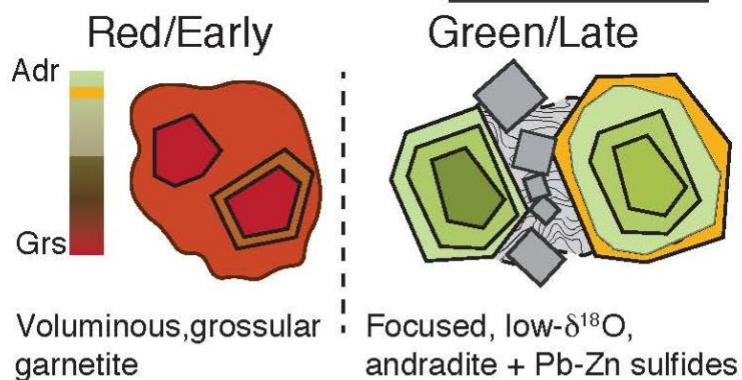
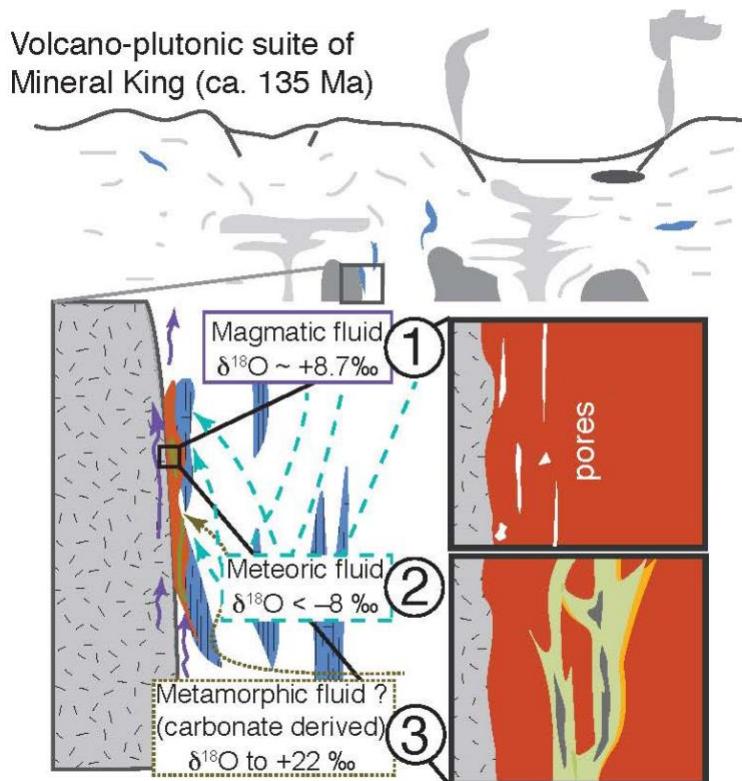




Fig. 6 Oxygen isotope ratios from White Chief skarn and related rocks. (a) $\delta^{18}\text{O}$ values of whole rock powders from plutonic and volcanic rocks, garnet fragments, and scheelite. Black capped lines represent calculated $\delta^{18}\text{O}$ values of equilibrium fluid over a range in temperatures from 400°C to 600°C. The $\delta^{18}\text{O}$ value of fluid is calculated to a wider range of 700 to 400°C for scheelite, as the temperature of its formation, later than garnet, is uncertain. For sample 13WC8, with the widest range in $\delta^{18}\text{O}(\text{Grt})$ measured by SIMS, the ranges of values are represented by rectangles—the white and light gray rectangles represent analyses within zoned green andradite cores, the dark gray rectangle represents analyses of the red overprint rim. (b) $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values of calcite from marbles and skarn from the White Chief hydrothermal system. Distal marbles are massive and grey with carbonaceous matter from the White Chief area, and white squares represent samples from other areas of the pendant (Other MK). Calcite from skarn garnetite is distinguished as ore-bearing (with green garnet, thick black empty circles) and ore-absent (with red garnet, black filled circles). Reference values of marine carbonates and “magmatic calcite” calculated from equilibrium fluid fractionation are fitted with box-models for the total system assuming equilibrium carbon isotope exchange of fluid over a range of temperatures. Model curves are calculated according to Bowman (1998a, Equation 9) and assume equilibrium fractionation between calcite end-members in marine limestone ($\delta^{18}\text{O} = 21$ to 25‰; $\delta^{13}\text{C} = 0$ to 3‰) and water-rich fluids [$X_{\text{CO}_2} = 0.1$ (300°C); 0.3 (550°C)] from which calcite in equilibrium with magmatic fluid ($\delta^{18}\text{O}(\text{Cc}) = 7.5\text{‰}$; $\delta^{13}\text{C}(\text{Cc}) = -8.0$) would precipitate. End-member values are from Bowman (1998a). Hash marks on model curves are fluid-rock ratios used in the models, but likely far underestimate actual fluid fluxes (Bowman 1998a; Baumgartner and Valley, 2001)

Fig. 7 Oxygen isotope fractionations and measured values for garnet relevant to the White Chief Canyon skarn system, where the thick black line represents a given water $\delta^{18}\text{O}$ value ($X_{\text{CO}_2} = 0$), and the curves are calculated equilibrium compositions for quartz (dotted blue line), grossular garnet (Grs100, dashed red line) and andradite (Adr100, solid green line). The measured values of $\delta^{18}\text{O}(\text{Grt})$ in red and green garnets, respectively, are plotted as horizontal bars across both panels. (a) A meteoric water-rich fluid $\delta^{18}\text{O}$ of $-5\text{\textperthousand}$, where garnets are nearly pure andradite (yellow curve, $X_{\text{Adr}} = 0.9$), as seen in green ore-zone garnet. The yellow curve here nearly overlaps the equilibrium andradite curve, in green, and overlaps with measured green garnetite $\delta^{18}\text{O}(\text{Grt})$

values to temperatures as low as $\sim 400^{\circ}\text{C}$, corresponding well to the minimum temperature of 400°C from fluid inclusion assemblages in green garnetite. (b) Magmatic water ($\delta_{18}\text{O} = +8.5$ calculated from zircon from the granodiorite of White Chief Mine) results in equilibrium $\delta_{18}\text{O}(\text{Grt})$ values that are above the highest measured values for the red garnetite. The yellow curve represents the calculated fractionation of Adr_{60} garnet in equilibrium with purely magmatic water ($\delta_{18}\text{O} = +8.5$). The yellow curve just intersects the highest red garnetite measured values only at $T < 400^{\circ}\text{C}$; instead of such a low T of formation of the skarn, it is likely that all garnets formed in fluids that contained some portion of meteoric water, which would lower the curves to meet the measured values at an appropriate skarn-forming temperature range ($>400^{\circ}\text{C}$, from fluid inclusion microthermometry)

Fig. 8 Schematic model of skarn formation at White Chief Mine. In the extensional arc setting of ca. 135 Ma, this shallow system drove convection of meteoric fluids into the skarn-forming hydrothermal system at the contact of the pluton with carbonates. Silicic magma of the granodiorite of White Chief Mine intruded carbonate, causing devolatilization of CO₂:H₂O fluid, which was first dominantly magmatic fluid (1). The opening of pore space along the contact formed a conduit for later fluids, *i.e.*, meteoric water (2), and potentially also including metamorphic fluid in equilibrium with local carbonates (3?).

Early red grossular-rich garnet crystallized in the southern present-day exposures of the skarn, with the highest $\delta_{18}\text{O}(\text{Grt})$ measured, up to $> 4\text{\textperthousand}$, and elevated $\sum\text{REE}$. Magmatic fluid ($\delta_{18}\text{O}$ of $\sim +8.5\text{\textperthousand}$) dominated the early red garnet growth, but a significant proportion of meteoric fluid was certainly present (see Figure 7). Diminishing expulsion of magmatic water later allowed low- $\delta_{18}\text{O}$ meteoric fluid ($\delta_{18}\text{O}$ of $-5\text{\textperthousand}$) to flood the system, recorded by low- $\delta_{18}\text{O}$, moderate- $\sum\text{REE}$ green, oscillatory zoned garnet in the ore zone near where abandoned mine adits exist today ($\delta_{18}\text{O}(\text{Grt}) < -8\text{\textperthousand}$). Resorption and overprinting of some green zoned garnet cores resulted in red-orange andradite (Adr₉₃) overprinted rims of the garnet during the low-temperature (as low as $\sim 400^\circ\text{C}$) skarn formation during final stages of cooling of the granodiorite of White Chief Mine, recording pulses of higher- $\delta_{18}\text{O}$, low $\sum\text{REE}$ fluid (brown and purple bar in $\delta_{18}\text{O}$ plot, and pale yellow bar in $\sum\text{REE}$ plot), likely a signature of “metamorphic” fluids from regional carbonate rock ($\delta_{18}\text{O}$ up to $+22\text{\textperthousand}$), recorded by a prominent increase in $\delta_{18}\text{O}(\text{Grt})$ ($> -3\text{\textperthousand}$) and extremely depleted $\sum\text{REE}$ within the red-orange andradite garnet rims

Table 1 Oxygen and carbon isotope laser fluorination analyses (all values reported in units of permil, ‰, relative to VSMOW)

White Chief Skarn Samples					
Sample	$\delta_{18}\text{O}$ (Grt)	$\delta_{18}\text{O}$ (Cc)	$\delta_{13}\text{C}$ (Cc)	Lab	Sample description
13WC1	-7.6			UT	Green garnetite
13WC4	-8.4	—	—	UT	Green garnetite
13WC8-R	-4.9	1.5, 0.6	-7.6, -7.8	UT	Red-orange garnet in massive green garnetite
13WC14-G	-8.4	—	—	UT	Green-brown garnet in garnetite
13WC-22	-1.3	3.3	-3.4	UW	Green garnetite domain
14WC-9B	1.9	—	—	UW	Red garnetite
14WC-9E	—	3.2	0.1	UW	Coarse grained red garnetite; vug fill calcite
14WC-10A	2.5	7.5	-7.5	UW	Red garnet-pyroxene skarn, vug fill calcite
14WC-11A	4.5	7.5	-5.4	UW	Red garnetite, adjacent calcite marble domain
14WC-12D	4.6	8.3	-9.4	UW	Red garnetite, calcite in vugs
14WC-13 Red	0.2	3.9	-6.3	UW	Red garnetite, gradational to green, in marble
14WC-13 Olive	-8.1	—	—	UW	Red garnetite, gradational to green, in marble
14WC-14	5.1	7.5	-9.6	UT	Red garnetite; calcite in veins
White Chief Marble Samples					
Sample		$\delta_{18}\text{O}$ (Cc)	$\delta_{13}\text{C}$ (Cc)	Lab	Sample description
13WC-3	—	10.2, 8.4	-0.4, -0.6	UT	Marble, bleached white, adjacent to skarn
14WC-3	—	12.2	-1.5	UT	1 m blue-gray marble, surrounded by calc silicates
14WC-5	—	20.4	0.5	UT	Massive marble, light gray
14WC-6	—	22.0	0.4	UT	Marble, light gray
14WC-7	—	19.5	1.6	UT	Marble, bleached white
14WC-15	—	11.2	-0.7	UT	Marble, bleached white, proximal to skarn
Other samples					
Sample	$\delta_{18}\text{O}$	Material			Sample description
13WC12	-0.0	Scheelite	—	UT	Scheelite from green garnetite Sequoia Claim skarn by 98 Ma Grd of Castle Creek.
SQMK-1	5.9	Garnet	—	UT	
13WC-Grd	6.9, 7.0	Zircon Whole	—	UW	Granodiorite of White Chief Mine
13WC-Grd	7.2	Rock Whole	—	UW	Granodiorite of White Chief Mine Vandever Mountain Tuff Collected from Vandever
11MK02	9.3	Rock Whole	—	UW	Mt. Area in Mineral King R0 Tuff from Tar Gap Trail parking area north of road.
11MK-03	4.6	Rock Whole	—	UW	Gabbro Sill from Mineral King. Has pyrite and apatite, few zircons
11MK-04	11.1	Rock Whole	—	UW	
11MK-08	8.1	Rock	—	UW	98 Ma Granodiorite of Castle Creek