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Highlights:

SIMS analyses were made on Devonian-Mississippian middle Bakken member carbonates.
Analyses are from a nine core, ~250 km transect from basin center to margin.
Ankerite-series carbonate growth bands are correlated across the basin by chemistry.
Oxygen and carbon isotopes capture signals of organic maturation and meteoric fluids.

Diagenetic carbonates can preserve >10%. isotopic variability at the um scale.
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ABSTRACT

Diagenetic minerals preserve records of burial processes that overprint records of seawater
chemistry and impact reservoir porosity. The Mississippian-Devonian aged Bakken Formation in the
Williston Basin is a reservoir rock of economic importance whose productivity is affected by diagenetic
carbonates, particularly dolomite-ankerite-series carbonates. To investigate how diagenetic carbonate
alteration manifests in the Bakken and how that might change across the basin, a combined 680 and
63C isotope dataset for diagenetic carbonates was collected by in situ SIMS analysis of 10-um spots
from nine drill holes covering a ~250 km transect of the middle Bakken member. Observed core-to-rim
isotopic variability in these small Fe-zoned dolomites and calcites frequently exceeds 10%. in both 6¥0
and 6%3C, indicating significant changes in thermal and chemical conditions during cementation.
Individual ankeritic growth bands can be correlated across the basin by systematic similarities in minor-
element compositions and isotope ratios. In the central part of the basin, 680 and 6*3C trends at sub-
mme-scale decline consistently towards the rims of ankerite-series carbonates, which is interpreted to
reflect mineral growth coincident with rising temperatures and an increasing organic contribution to
inorganic carbon during burial. The most abrupt shifts in 620 and &'3C (changes as large as 12%o. for
680 and 6.5%o for 63C within distances < 15 um) are observed along the basin margin, and are believed
to preserve signals of hydrocarbon expulsion and fluid infiltration along basin margins. Based on the
data, we conclude that ankerite-series carbonates preserve records of prolonged thermal and chemical
processes that operated basinwide. The isotopic trends presented here show diagenetic rock evolution
from shallow dolomite formation to deep burial ankerites, as well as the isotopic responses of
carbonates to changing fluids and availability of organic 6*3C. These results provide important
constraints on how carbonate isotope records may be altered during burial in organic-rich sedimentary
rocks and emphasize the need for caution in using bulk powder samples for geochemical analysis in

carbonate systems.
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1. INTRODUCTION

Diagenetic carbonate cements are pum-scale mineralizations that can grow throughout the burial
and lithification of sedimentary rock under low-temperature and low-pressure conditions (Worden and
Burley, 2003). Cementation is ubiquitous in sedimentary rocks, and may be influenced chemically (e.g.,
aragonite recrystallization to calcite, infiltration of meteoric fluids), mechanically (e.g., cements sourced
from pressure solution at grain boundaries), or by thermally controlled processes (e.g., organic
maturation reactions, clay alteration reactions). Carbonate diagenesis is of interest to the geochemical
community due to its potential overprinting of primary seawater isotopic signals (e.g., Banner, 1995;
Banner and Hanson, 1990; Barnes et al., 2019; Brand and Veizer, 1981; Kozdon et al., 2011; Irwin et al.,
1977; Swart, 2015), impact on permeability and porosity (Brodie et al., 2018; Purser et al., 1994; Sarg,
2012; Sun, 1995), relevance to carbon sequestration (Berger et al., 2009; Bowen et al., 2011), and
continued uncertainty of the underlying kinetics and conditions of carbonate, particularly dolomite,
formation (Warren, 2000). Understanding the timing and factors that control carbonate diagenesis is
important not only for predicting porosity preservation and porosity creation, but also for constraining
carbonate behavior during an array of organic and inorganic reactions. Furthermore, understanding how
geochemical processes in the subsurface result in the dissolution and precipitation of carbonates is of
paramount importance to understanding fluid flow, both for resource development and for optimizing
carbon sequestration, where diagenetic reactions are the primary mechanism by which CO; will be

stored.

Because diagenetic minerals develop under temperature, pressure, and fluid conditions that are
commonly present across large areas of basins, it is important that diagenetic studies should attempt to
correlate changes in individual um-scale growth bands laterally through rocks that have experienced

different environmental or thermal histories. Secondary lon Mass Spectrometry (SIMS) is a powerful tool
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for reconstructing such diagenetic histories, as it can accurately measure isotopic ratios at the um scale,
and reveal isotopic heterogeneities in minerals that might otherwise be homogenized by more
traditional bulk analyses (Cammack et al., 2018; Denny et al., 2017; Harwood et al., 2013; Hyodo et al.,

2014; Pollington et al., 2011; Sliwinski et al., 2017a; Teboul et al., 2019).

Presented here are um-scale diagenetic carbonate 680 and 63C data of samples collected from
a ~250 km transect of the organic-rich, low-porosity middle Bakken member. This study’s main goals
were: 1) To determine the degree of 6'¥0 and 63C variability preserved at sub-mm-scale in the rock, 2)
To determine if carbonate isotopic zonation may be correlated across the basin, and 3) To constrain the
formation conditions of early dolomite cements. The results provide insight into how carbonate
diagenesis responds to changes in depth, thermal history, and maturity of adjacent petroleum source

rocks.

2. GEOLOGICAL BACKGROUND

2.1 Bakken Formation, Middle Member

The Bakken Formation was deposited in the Williston Basin of present-day North Dakota,
Montana, and southern Saskatchewan (Fig. 1). It is Devonian-Mississippian in age (Fig. 2a), and is
overlain by the Lodgepole Limestone and underlain by the Three Forks Formation (Fig. 2b). The Bakken
Formation is divided into a middle, mixed carbonate-siliciclastic member surrounded by upper and
lower organic-rich shale members. In the United States the shales have reported average total organic
carbon of 8 to 11 weight percent (LeFever et al., 2011; Smith and Bustin, 2000; Sonnenberg, 2011a). The
Bakken does not intersect the surface, and all direct study of the formation must be performed using
drill core and well logs. It formed in a shallow restricted basin, with the middle Bakken thought to reflect
shallower and more oxic conditions than the shales, which were deposited in oxygen-poor conditions

(Borcovsky et al., 2017). All three members show a high degree of regional continuity; some authors
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argue that individual parasequences within the Bakken may be traced laterally over distances exceeding

150 km (Egenhoff et al., 2011).

In recent years the Bakken Formation has become a prolific source of oil and gas in North
America, and there is much resource potential still to be explored—a 2013 assessment by the USGS
estimated total unrecovered oil resources to be in excess of seven billion barrels (Gaswirth et al., 2013;
Gaswirth and Marra, 2015). The middle member is a significant reservoir for hydrocarbons produced in
the adjacent shales despite low porosities ranging from 1 to 11% and an average permeability of 0.0042
mD (Simenson et al., 2011). It is regarded to be an unconventional reservoir, and hydraulic fracturing is
used heavily in resource extraction (Sonnenberg et al., 2011b). Carbonate diagenesis had an important
impact on present-day porosity, with porous dolomitized zones and fracture distributions contributing

significantly to reservoir potential (Pitman et al., 2001; Simenson et al., 2011; Sliwiriski et al., 2019).

3. METHODS

3.1 Sample Collection and Preparation

Seventy-four samples were collected from ten drill cores stored at the North Dakota Geological
Survey (NDGS) Wilson M. Laird Core and Sample Library. Cores were chosen that intersected the middle
Bakken Formation and cover a ~250 km transect from immature source rock conditions along the
northeast margin of the basin to mature source rocks in the basin center (Fig. 1). Maximum burial
temperatures are estimated to range from ~75 °C on the basin margin sample to ~160 °C in the basin
center (Kuhn et al., 2012). All cores and samples were initially described using the lithofacies
architecture defined by Egenhoff et al. (2011) (Fig. 2b). Samples were polished and imaged in
backscattered electron (BSE) mode using a Hitachi S3400-N scanning electron microscope (SEM) in
variable pressure mode; this was found to be the most efficient and effective way of quickly identifying
and evaluating the quality of um-scale ankerite-series zonation. One sample per core was selected to be

6
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prepared for SIMS analysis, as determined by which sample in each core showed the thickest zoned
ankerite-series cements in the middle Bakken, and therefore would yield the highest resolution isotopic
records by SIMS; one sample, from NDGS core #21706 (not shown in Fig. 1), later proved too friable to
produce a good quality polish and was not analyzed further. In preparation for SIMS analysis, 1-2 cm
chips were cut from sample rock and cast in Buehler epoxy in 2.54 cm-diameter round molds. In the
center of each was mounted the UW-6220 dolomite standard (Valley et al., 2009; SliwiAski et al.,
2016a,b). Mounts were then polished to a final grit of 0.25 um with a diamond suspension and checked
for flatness using a reflected light microscope. In total, 11 mounts covering 9 cores were prepared and
analyzed by SIMS. To simplify discussion, these cores will hereafter be numbered 1 through 9 (Table 1)
from the shallow NE basin margin (core 1) to the deep basin center in the SW (core 9; see Figure 1). Two
samples each were prepared in two cores (21668 and 22493) to compare two endmembers of Fe-

banded dolomite formation (sandstone dolomites vs. conspicuous fracture or vug dolomites).

3.2 SIMS Procedure

Values of 680 and 6'3C were measured on a CAMECA IMS 1280 large-radius, multi-collector
secondary ion mass spectrometer (SIMS) at the University of Wisconsin-Madison WiscSIMS laboratory
using established sample preparation and analysis procedures (Kita et al., 2009; Valley and Kita, 2009).
Samples were analyzed using a focused *33Cs* primary beam with a 10 kV accelerating voltage and 20
keV impact energy. The impact of the 133Cs* atoms sputters ions off of the sample surface and excavates
a pit. Pit dimensions were ~11x8 um for 680 analyses and ~9x6 um for §3C analyses; pit depths are
estimated to be 2 um. Charge neutralization is performed with an electron flood gun and a 60 nm gold
coat. Sputtered ions are accelerated into a double-focusing mass spectrometer where they are sorted by
mass/charge before reaching an array of detectors; 680 measurements were made with an array of 3
Faraday cup detectors (for ¢0-, 80", and *0*H’) (Wang et al., 2014) and 6'3C measurements were made

using one Faraday cup and two electron multiplier detectors (measuring 2C-, 3C-, and 3C'H-,
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respectively). In this study, all SIMS analyses of unknowns were made using dolomite UW-6220 as a
running standard (Valley and Kita, 2009), which involves bracketing groups of 8-16 analyses of unknowns
with eight analyses on the dolomite standard (4 before the unknowns and 4 after). This bracketing
allows users to monitor and correct for small amounts of instrumental drift. Analytical precision for
unknowns is typically reported as two standard deviations of the 8 bracketing standard analyses, and is

typically £0.3%o for 680 and +0.7%o. for 6*3C data reported here (Appendices A, B).

The raw isotope ratios obtained by SIMS are affected by an instrumental mass fractionation
(IMF) or bias that can vary in magnitude depending on isotopic system, instrumental conditions,
mineralogy, and sample composition (Valley and Kita, 2009; Sliwirski et al., 2016a,b, 2017b). IMF is
monitored and corrected through the repeated analysis of standards of known composition. It is most
sensitive to the concentration of Fe in the carbonate, such that for the conditions of this study, ankerite-
series IMFs range by more than 10%. for 680 using 10 um diameter analysis pits, and may range in
excess of 5%o for 63C. This effect is particularly pronounced towards dolomitic compositions, where a
compositional shift from 0% ankerite (endmember dolomite) to 1.5% ankerite can change the 860 IMF

by 1.5%o.

To address the effect of variable Fe/Mg on analytical IMF, a suite of standards along the
ankerite-series are analyzed at the start of each session and used to generate a calibration curve relative
to running standard UW-6220 (Sliwinski et al. 2016a,b). After SIMS analysis, this calibration curve is used
to determine the composition-specific IMF using an electron microprobe (see EPMA Procedure, below)

to determine the Fe concentration (Fe# = Fe/[Fe+Mg]) of each SIMS pit that lies on the ankerite-series.

SIMS analyses were monitored for internal error (2SE of individual analyses) or OH or CH ion
count rates (**0H for 680 sessions and 3C'H for §3C sessions) that were significantly above bracketing

standard measurements; these analyses were excluded from later discussion of the data. SEM imagery
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was also acquired of all SIMS pits, and analyses that were observed to intersect large inclusions or other
mineral phases were not included in data discussion. Quartz and calcite data were corrected using
standards UWQ-1 quartz (Kelly et al., 2007) and UWC-3 calcite (Kozdon et al., 2009), respectively. All

SIMS data are available in Appendices A and B.

3.3 Electron Probe Microanalysis

Chemical compositions for Ca, Mg, Fe, Mn, and Sr were determined by Electron Probe Micro-
Analysis (EPMA) for each carbonate SIMS pit using the CAMECA SX-51 in the Cameron Electron
Microprobe Lab at the University of Wisconsin-Madison. Data were collected over two analytical
sessions with a ~120 second analysis time and a 15 keV, 20 nA beam, which was defocused toa 5 um
diameter in an attempt to minimize sample damage. Data were processed in the Probe for EPMA
software (Donovan, 2018), and background correction was performed using the Mean Atomic Number
(MAN) procedure (Donovan and Tingle, 1996). As changes over time in measured intensities are
common for EPMA measurements in carbonates, particularly for the element Ca, a self-fitted Time

Dependent Intensity (TDI) correction was applied for all elements (Donovan, 2018).

As reliable EPMA measurements cannot be obtained from uneven surfaces, it was necessary
that measurements be made at least half the EPMA beam diameter from SIMS pits. Previously acquired
SEM-BSE imagery was used to aid in targeting EPMA analysis locations along the same compositional
growth bands as SIMS analyses, such that EPMA analyses measure areas compositionally equivalent to
that of the SIMS analysis pit. SEM-SE (secondary electron) imaging was made of regions post-EPMA as
an additional verification that EPMA analyses were properly located, and compared to SEM-BSE imaged
zonation to verify that SIMS-equivalent chemistries were obtained. Two to four analyses were made
adjacent to each SIMS analysis pit and their chemistries were averaged. If an EPMA analysis was found

by SEM imaging to have analyzed a growth band different from the SIMS analysis, or if elemental totals
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for an EPMA analysis fell outside of the 98 to 101% range, then it was not included in the calculation of

the chemistry at each SIMS analysis.

4. RESULTS

The following sections describe the SIMS data, first concerning the overall trends observable in
the data basinwide, and then as it relates to middle Bakken petrography on a sample-specific basis.
Readers wishing to see the data broken down in detail should proceed to Section 4.2. All 6§80 data are
reported in %o VSMOW, and 63C data are reported in %0 VPDB. Equivalent values of 330 are provided
on the VPDB scale in Appendix A. To simplify discussion, the term “dolomite” will only be used to
describe non-ferroan, near-stoichiometric (Ca,Mg)COs carbonates (Fe# < ~0.02), whereas carbonates
which are on the dolomite-ankerite solid solution and contain iron will be referred to as “ankerite-series
carbonates”. Unless otherwise noted, ankerite-series Fe contents will be reported as Fe# (mol.

Fe/[Fe+Mg]).

4.1 Overview of Mineral 680 and 63C Data

4.1.2 680 and 6%3C Distributions in Minerals

Banded ankerite-series cements and calcite both show large variability in 60 (Fig. 3) and 63C
(Fig. 4). This variability is often larger than 10%. across banded carbonates (some < 100 pum wide) and is
reproducible from grain to grain within an individual sample. This systematic zonation of ankerite-series
cements in %0 and 83C parallels zonation in Fe#. Because SEM-BSE imaging of Fe-zonation aided in the
identification of all growth stages of ankerite-series carbonates in each sample, the ranges of §'80 and
6%3C present in these histograms reflects the true isotopic range present in each sample at the pm scale.
With the exception of the two samples from the margin of the basin (Wells 1 and 2), there is a basin-
wide correlation between increasing Fe content, decreasing 60, and decreasing 6*3C from core to rim

in ankerite-series cements (Fig. 5a). Note that stable isotope variability at this scale could not be
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measured by other techniques; data measured by conventional acid dissolution yield average values and

do not record distinct burial events.

Calcite also shows large (often >10%o) variability in 680 (Fig. 3) and 6%3C (Fig. 4) values, and the
range of values for calcite overlaps closely with ankerite-series carbonate ranges in most samples (Fig.
6). Unlike Fe-banded ankerite-series carbonates, SEM imaging of calcite does not readily show
compositional zonation at this scale, either by BSE or CL, which makes the selection of analysis spots
that represent the full isotopic spectrum of calcite more challenging, especially in fine-grained rocks.
Because the growth sequence could not be imaged, calcite was analyzed less often than ankerite-series

carbonates (for which Fe-zonation patterns are apparent).

On the whole, quartz overgrowths >10 um thick appear to be rare in the middle Bakken,
although locally-significant diagenetic quartz growth may still occur. Quartz 620 values were analyzed in
23 spots from core 3 (Fig. 3¢), which contained large and pervasive quartz overgrowths. Classifying all
guartz analyses according to whether they were made on detrital grains or overgrowth (as evaluated by
SEM-CL imagery) reveals a bimodal distribution, with detrital grains clustering towards 80 = 10%o and
overgrowths clustering towards 30%o (Fig. 7). This bimodality indicates a dominantly high-temperature
igneous and metamorphic origin for the detrital quartz grains and low temperatures of cementation for
quartz overgrowths. These observations are consistent with previous studies (Denny et al., 2017;
Graham et al., 1996; Harwood et al., 2013; Hyodo et al., 2014; Pollington et al., 2011, 2016; Williams et
al., 1997). Very little evidence of 60 zonation was detected within individual quartz overgrowths,

though this is likely in part due to the small width of overgrowths relative to the spot size.

4.1.2 Growth Zones of Ankerite-series Cement
To aid classification and facilitate discussion of analyzed dolomite and ankerite cements,

ankerite-series cements are qualitatively divided into 3 growth zones based on a pervasive pattern of
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zonation observed repeatedly by SEM-BSE. As schematically illustrated in Figure 8, each successive zone
of the cement is delineated by a stepped increase in Fe-content along a traverse from core to rim. Figure

5b and Figure 9 show the distribution of Zones 1, 2, and 3 in plots of 680 vs. §3C.

Zone 1 is defined as the earliest-formed dolomite (Fe# = 0.00) cores that make up the center of
most of the ankerite-series cements observed in the middle Bakken. Subsequent generations of
carbonate are delineated from the dolomite cores by increases in Fe#. In places, this increase occurs
along a non-euhedral boundary that is indicative of dissolution or abrasion, while elsewhere in the same
sample other dolomite cores might show euhedral morphologies indicative of formation in place. A
comparison of the isotopic values between rounded and euhedral dolomites basinwide demonstrates

that morphology is not a predictor of chemistry (Fig. 10).

Zones 2 and 3 surround Zone 1 and have higher Fe#ts. Zone 2 is defined here as the first
significant relative rise in Fe content. Zone 2 Fe#s typically fall in the 0.02-0.1 range. Zone 3 starts at the
second sharp rise in Fe content, and includes the last carbonate rims to grow. The Zone 2 to 3 transition
tends to occur when Fe#ts approach 0.1, but this changeover may occur at Fe#s as low as 0.05 in shallow
samples. Zone 2 commonly contains at least one, and in places two, visible (by SEM-BSE) Fe-poor bands
(e.g., Figs. 11a) that may even mark a brief return to dolomitic compositions, but will frequently return

to Fetts more typical of Zone 2 before Zone 3 compositions are encountered.

Other studies have reported isotopic zonation in the Bakken, and the 3 zones discussed here
may be correlated to the work of others as follows. We use the Zone 1, 2, and 3 nomenclature of
Sliwinski et al. (2019), but their Zone 4 is not always present and has been consolidated here into Zone 3
to simplify discussion. We would correlate our Zones 1 and 2 to the Phase 1 and Phase 2 described by
Staruiala et al. (2013); an Fe-rich equivalent to Zone 3 is present in the samples examined by Staruiala et

al., but was not thick enough to sample by SIMS.
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4.2 Sample-Specific Petrography and Geochemistry

This section will present sample-specific descriptions of the observed petrography and
geochemistry for each SIMS mount. Mounts are labeled with a “Core number — depth in feet”
nomenclature for accurate comparison with other NDGS core records (that are measured in feet);
equivalent depths below the surface in meters are provided with each sample name. Samples are
presented in order as they would fall along a NE-SW transect starting at the NE shallow basin margin and
working towards the deepest part of the basin in the SW. Grain sizes are described under the
Wentworth classification scheme (Wentworth, 1922), using the terms medium silt (16 to 31 um), coarse

silt (31 to 63 um), very fine sand (63 to 125 um), and fine sand (125 to 250 um).

Figures 11 through 15 show petrography, SIMS pit locations and stable isotope values for
selected sample regions. These images will be referenced in concert with the following results and
discussion. SIMS mount maps were created by integrating SEM-BSE imagery, SIMS analyses, and EPMA
data in the QGIS software environment (Linzmeier et al., 2018), and additional images showing the

locations and values of all SIMS 680 and §3C analyses in each mount are available in Appendix C.

4.2.1 Well 1, Sample 24883-3743.4 (1141 m)

The shallowest and northeastern-most sample was collected from a predominantly carbonate
grain-supported rock at a depth of 1141 m (3743.4 ft.), and was made into a single SIMS mount (Figs. 3a,
3b, Appendix C1). Both medium to fine sand-sized calcite grains (some ooids) and fine to very fine sand-
sized quartz grains are present. Calcite cement is present between most calcite grains. Ankerite-series
cements are predominantly found either growing into large uncemented pore spaces in the rock, or
growing within a 0.5 to 1 mm wide vertical fracture running through the sample. In hand sample, this
fracture is predominantly filled with anhydrite, except in a few places (one of which was incorporated

into the mount) where 3-4 mm wide diagenetic pyrites are located within the fracture and appear to
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have replaced surrounding carbonates leaving silicate grains largely unaffected (Appendix C1). Calcite
680 values range from 20.1 to 29.2%o (n = 13) and 6*3C ranges from -7.4 to 2.6%o (n = 13). Ankerite-

series 680 values range from 19.2 to 38.2% (n = 36) and 63C ranges from -8.3 to 4.8%o (n = 31).

In the banded ankerite-series carbonates, the innermost carbonate core (Zone 1) is dolomite
(Fe# = 0.00); 680 values range from 24.9 to 27.2%., and 6*3C values range from -0.3 to 3.7%. (Figs. 3a,
3b). These dolomite cores are surrounded by a euhedral band of carbonate (Zone 2) with Fe#ts in the
~0.02-0.04 range (Fig. 3c), slightly higher 620 values showing a range of 26.4-29.9%., and &'3C values
showing a range of -1.9 to 4.8%., with 63C values declining towards the rim. This band is ringed by a
double euhedral band of dolomite (Fe# = 0.00) across which 680 values spike (from 24.8 to 38.2) and
63C values decline abruptly (from -0.7 to -5.9%.). This is surrounded by a broad Fe-rich band (Zone 3)
with a semi-euhedral boundary and increasing Fe content (Fe#s from 0.08 to 0.16), a narrow 60 range
(30.5 to 31.8%o), and very low 6*3C values (-6.6 to -8.3%o) (Figs. 3d, 3e, 3f). The final, outermost band
consists of rapidly rising Fe concentrations (Fe#s from 0.01 to 0.12), with 680 steadily increasing from
19.2 to 22.9%o and 6*3C ranging from -2.1 to -0.8. This final band is thin and truncated in fracture
carbonates but broad and correlatable within rock pores, suggesting that it formed coincident with or

after the precipitation of anhydrite within the fracture.

4.2.2 Well 2, Sample 20249-6013.4 (1833 m)

This sample was collected from a sandstone intercalated with laminated siltstones at a depth of
1833 m (6013.4 ft.), and was made into two SIMS mounts displaying similar petrography (Appendix C2).
Fine to very fine sand-sized quartz and fine sand-sized calcite grains are surrounded by significant
volumes of banded ankerite-series carbonate and anhydrite. No fractures or other structural features
were observed. Calcite 680 ranges from 27.6 to 29.7%o (n = 6) and 63C ranges from -0.7 to 0.8%o (n =

5). Ankerite-series 620 ranges from 23.1 to 35.2%o. (n=63) and §3C ranges from -3.2 to 4.0%e. (n = 40).
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In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is dolomite with
Fe#ts of 0.00, 680 values showing a range of 23.1 to 28.2%., and 63C values showing a range of -1.8 to
4.0%o. These dolomite cores commonly show rounded morphologies and internal banding, though
others show euhedral morphologies indicative of formation in place. Surrounding the dolomite core is a
band of carbonate (Zone 2) with higher Fetts (~0.04), 680 values ranging from 25.0 to 26.3%., and 63C
ranging from 0.6 to 4.0%o (Figs. 12a, 12b). This band is in turn surrounded by a double band of more Fe-
poor carbonate (Fe#s 0.02 to 0.03), similar to that in C24883, with 6§80 values spiking from 26.3 up to
35.2%o (Fig. 12b), and a range of 6'3C values between 0.0 to 3.8%o. This is surrounded by a final region
more enriched in Fe (Fe#s 0.05 to 0.10) with 680 values ranging from 27.7 to 30.6 and 6*3C ranging from

-3.2 to 1.2%e.. This final band typically ends in a euhedral rim.

4.2.3 Well 3, Sample 17272-7591.5 (2314 m)

This sample was collected from a sandstone at a depth of 2314 m (7591.5 ft.), and was made
into a single SIMS mount (Appendix C3). Fine to very fine sand-sized quartz forms the majority of the
grains, but fine to very fine sand-sized calcite grains are also present. Euhedral quartz overgrowths are
present around most detrital quartz grains. Banded ankerite-series carbonates are sparse but evenly
distributed through the rock, and are large in diameter (> 100 um). No fractures or other structural
features are present. Quartz 620 values range from 9.2 to 31.5%o (n = 22, detrital and overgrowth).
Calcite 60 values range from 23.2 to 31.3%o (n = 10) and &3C ranges from -4.2 to 5.7%o (n = 11).
Ankerite-series 60 values range from 23.4 to 29.8%o (n = 31) and 6*3C ranges from -7.2 to 2.6%o

(n=30).

In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is dolomite with
Fet#ts of 0.00 to 0.01, 680 values of 23.7 to 28.1%o, and *3C values of -0.8 to 2.2%.. The dolomite cores
commonly show rounded morphologies (Figs. 13a, 13c), and some show partial recrystallization and

higher Fe#s (up to 0.03). Surrounding these dolomite cores is a band of carbonate (Zone 2) with higher
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Fe#ts (0.03-0.05), declining 680 values from 29.8 to 24.5%o, and declining §'3C values from 1.1 to -4.5%eo.
This band is in turn surrounded by a final band of carbonate (Zone 3) with increasing Fe#s from 0.10 to
0.22, 60 values in the 23.4 to 25.3%o range, and rising 6'3C values from -7.2 to -1.9%o (Figs. 13a, 13d,
13e). This final band possesses a euhedral rim in some locations, but not where it impinges upon calcite

grains.

4.2.4 Well 4, Sample 17676-8738.4 (2663 m)

This sample was collected from an isolated ~2-cm thick carbonate-rich shell bed that was
isolated in a predominantly sandstone layer intercalated with siltstone at a depth of 2663 m (8738.4 ft.),
and was made into a single SIMS mount (Figs. 14a, 14b, Appendix C4). The sample matrix is
predominantly composed of microcrystalline calcite and coarse to medium silt-sized ankerite-series
carbonates and quartz. Larger banded ankerite-series carbonates have grown in porosity associated
with skeletal calcite (Appendix C4). These ankerite-series cements were the main target for SIMS
analysis. No fractures or other structural features are present. Quartz 6¥0 data range from 16.0 to
27.3%o (n = 3). Calcite 630 values range from 24.5 to 32.1%o. (n = 15) and 63C values from -10.3 to 4.8%o
(n =17). Ankerite-series 620 values range from 21.8 to 28.5%o (n = 32) and 6*3C ranges from -8.8 to 1.4

(n=37).

In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is dolomite with
Fet#ts of 0.00, 6180 values in the 26.3 to 28.5%o range, and 63C values in the -0.9 to 1.4%. range. These
dolomite cores are euhedral in shape and do not generally show evidence of rounding or
recrystallization (Fig. 14a). Surrounding the dolomite cores is a band of carbonate (Zone 2) with higher
Fe#s (0.03-0.05), 680 values in the 25.8 to 27.3%o. range, and 6*3C values in the -3.7 to -0.9%. range.
This band is in turn surrounded by a final band of carbonate (Zone 3) with increasing Fe#ts from 0.10 to
0.15, 80 values in the 21.8 to 25.2%o range, and rising 8'3C values from -8.6 to -4.4%o.. This final band

possesses a euhedral rim in most locations, but not where it impinges upon skeletal calcites (e.g., 14b).
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4.2.5 Well 5, Sample 16586-9812.5 (2991 m)

This sample was collected from a carbonate grain-supported rock from a depth of 2991 m
(9812.5 ft.), and was made into a single SIMS mount (Figs. 15a, 15b, Appendix C5). The sample is mainly
composed of fine sand-sized calcite grains, with very-fine sand-sized detrital quartz grains being less
predominant. Banded ankerite-series carbonates are sparse, but where present tend to be large (100 to
200 pum) when measured from rim to rim. No fractures or other structural features were observed.
Calcite 60 values range from 24.5 to 28.0 (n = 7) and 63C ranges from -2.0 to 5.2%. (n = 10). Ankerite-

series 680 values range from 21.7 to 29.5%o (n = 32) and 63C ranges from -5.9 to 3.3%o (n = 39).

In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is near to
endmember dolomite with Fe#s of 0.01 to 0.02, 680 values in the 24.2 to 26.4%. range, and 6*3C values
in the -0.7 to 2.4%. range. These carbonate cores have a rounded, anhedral contact with subsequent,
higher-Fe growth bands, texturally indicative of mechanical abrasion or dissolution. Surrounding these
cores is a thin band of carbonate (Zone 2) with higher Fe#s than Zone 1 (~0.06), higher 620 values (25.7
to 29.4%o), and heavier 63C values (-0.1 to 3.3%o). A thin Fe-poor (Fe#s 0.01 to 0.03) band is next, with
6180 ~27.0%o0 and &3C ~-1.1%e.. Surrounding this thin Fe-poor band is a broad band with increasing Fe#s
(0.05 to 0.09), 680 values in the 24.9 to 26.4%. range, and declining 613C values from -0.6 to -4.0%e..
Two narrow high-Fe bands follow (Zone 3), the first with Fe#s in the 0.18 to 0.23 range, 6%0 values in
the 21.7 to 22.3%o range, and 86%3C in the -2.9 to -2.9%o. range; the second and final band has Fe#s
around 0.38, 6180 values of ~23%o, and &3C values of ~-5%o. These last two Fe-rich bands are not
present in many of the sample’s banded ankerite-series carbonates (e.g., present in Fig. 15a vs. absent
in Fig. 15b), and where they are present they show intermittently anhedral rims suggestive of partial

recrystallization to calcite.
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4.2.6 Well 6, Sample 17015-10354.4 (3156 m)

This sample was collected from the horizontally laminated siltstone facies at a depth of 2991 m
(9812.5 ft.), and was made into a single SIMS mount (Figs. 15c, 15d, Appendix C6). The rock is supported
by rounded calcite, quartz, banded ankerite-series carbonate, and feldspar grains in the very fine sand to
course silt-size range. Both the feldspars and the ankerite-series carbonate commonly possess euhedral
overgrowths; it is difficult to determine based on textural evidence if dolomite was originally grain
supporting or if it is replacive after calcite. No fractures or other structural features are present. Quartz
680 data range from 10.4 to 17.1%o (n = 5, detrital and overgrowth). Calcite 620 values range from
22.7 t0 25.3%o (n = 17) and 6*3C ranges from -2.2 to 7.5%. (n = 17). Ankerite-series 620 values range

from 22.3 to 29.5%o (n = 47) and &*3C ranges from -5.5 to 5.1%o0 (n = 51).

In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is near to
endmember dolomite; however, while individual near-endmember dolomite cores are homogenous in
Fe#, the range of Fe#s varies from grain to grain, from 0.00 to 0.03. These cores also have a wide range
of 680 values (23.4 to 29.5%o), and 6'3C values in the -2.3 to 3.1%o. range. These carbonate cores
commonly show partially anhedral boundaries with surrounding generations, as well as isolated interior
pockets containing higher Fe compositions, both of which are typical of partial
dissolution/recrystallization textures. Two main bands of different Fe content lie between these cores
and the ankerite-series carbonate rim. The first of these (Zone 2) has Fe#s in the 0.06 to 0.12 range, 6§30
values in the 22.6 to 26.6%o range, and &'3C values in the -5.2 to 3.9%o range. The second and final high-
Fe band (Zone 3) has Fe#s in the 0.23 to 0.36 range, 680 values in the 22.3 to 23.6%. range, and §3C
values in the -5.5 to -1.4%o range. This final band is extremely thin or not present in a portion of the

ankerite-series.
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4.2.7 Well 7, Sample 21668-10225.8 (3117 m)

This sample was collected from skeletal mudstone at a depth of 3117 m (10225.8 ft.), and was
combined with underlying sample C21668-10233.5 into a single SIMS mount (Figs. 15e, 15f, Appendix
C7). The rock matrix is dominated by coarse to medium silt-sized silicates and carbonates, and surrounds
large (up to 1 cm) skeletal calcites. Skeletal calcite is partially silicified in places, and parts of the sample
where skeletal cavities once preserved porosity are now completely infilled with microcrystalline calcite.
Grown into one of the larger cavities is a ~1mm diameter fractured banded ankerite-series carbonates,
which was the main target for SIMS. Calcite 620 values range from 20.4 to 30.8%o (n = 9) and 6%3C
ranges from -6.3 to 6.1%eo (n = 9). Ankerite-series 680 values range from 19.3 to 27.7%o (n = 11) and 63C

ranges from -8.3 to -0.2%o (n = 15).

The innermost region of this banded carbonate (Zone 1) is dolomite with an Fe# of 0.00, 680
values of 24.6 to 28.0%., and 6'3C values of -3.1 to -0.3. This is surrounded by a broad band (Zone 2) of
more Fe-rich carbonate (Fe#s from 0.04 to 0.10), declining 80 values (24.9 to 21.4%o), and 63C values
in the -7.6 to -3.1%o range. At this stage of ankerite-series carbonate growth, the mineral was fractured
in several places by an unknown mechanism. This fracturing precedes the final, most Fe-rich band (Zone
3, Fetts of 0.17 to 0.24), which has 680 values in the 19.5 to 19.8%o. range and &3C values in the -8.2 to -

6.7%o range.

4.2.8 Well 7, Sample 21668-10233.5 (3119 m)

This sample was collected from an oolitic sandstone at a depth of 3119 m (10233.5 ft.), and was
combined with overlying sample C21668-10225.8 into a single SIMS mount (Figs. 15g, 15h, 15i, Appendix
C7). Rounded calcite grains are medium to fine sand-size, and quartz detrital grains are fine sand to
coarse silt- size. Banded ankerite-series carbonates are present throughout. Calcite 620 values range
from 26.4 to 28.1 (n = 4) and 63C ranges from -0.7 to 5.5%o (n = 4). Ankerite-series 620 values range

from 22.4 to 30.0%o (n = 19) and &3C ranges from -4.6. to 2.5%o (n = 16).
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The innermost region of this banded carbonate (Zone 1) is dolomite with an Fe# of 0.00, 6%0
values of 23.1 to 30.2%., and 6*3C values of 0.2 to 2.5%.. Subsequent Fe-compositional zonation in these
ankerite-series carbonates is more complex than in other samples. There is a general overall trend of
increasing Fe# from core (innermost dolomite) to rim, but in places these banded ankerite-series
carbonates also show regions of higher Fe concentration that are not evenly or concentrically
distributed about dolomite cores (e.g., Fig. 15i), indicating that they did not form through concentric
outward growth of ankerite-series carbonates, and likely result from recrystallization processes. There
are two major bins into which Fe#s may be placed. The first (Zone 2) has Fe#s in the range of 0.04-0.08
(680 from 23.0 to 25.2%o and 6*3C from -3.8 to 0.5%., and the second (Zone 3) has Fet#ts > 0.12 (6§80

from 22.5 to 23.2%o and 63C from -4.5 to -2.1%e.).

4.2.9 Well 8, Sample 12785-11315.5 (3449 m)

This sample was collected from a calcite-filled fracture in a rock with a mixed carbonate-
siliciclastic matrix at a depth of 3449 m (11315.5 ft.), and was made into a single SIMS mount (Figs. 15j,
15k, 151, Appendix C8). The rock matrix is predominantly calcite grains and diagenetic calcite pore-fill,
with some detrital quartz; grains are very fine sand-sized. Banded ankerite-series carbonates are sparse
in the rock matrix and entirely absent from the fracture itself. Calcite 630 values range from 22.9 to
27.0%o (n=18) and 83C ranges from -4.1 to 5.9%o (n=19). Ankerite-series 680 values range from 20.2 to

27.2%o (n = 20) and 83C ranges from -6.1 to 5.2%o (n = 21).

In the banded ankerite-series carbonates, the innermost carbonate (Zone 1) is dolomite with
Fe#s of 0.00, 680 values showing a range of 24.9 to 27.2%., and 63C values showing a range of 1.3 to
2.8%.. These dolomite cores show euhedral morphologies. Surrounding many of these dolomite cores is
a complex series of bands of carbonate with increasing Fe#ts (0.04 up to 0.24), declining 680 values

(26.2 down to 20.2%o), and fluctuating 6'3C values (-6.1 to 5.2%0) Some of these bands do not appear to
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correlate between individual ankerite-series carbonates, and in some cases no Fe-enriched bands are

found around the 0.00 Fe# dolomite (e.g., Fig. 15I).

4.2.10 Well 9, Sample 22493-11122.9 (3390 m)

This sample was collected from a sandstone at a depth of 3390 m (11122.9 ft.), and was made
into a single SIMS mount (Figs. 15m, 15n, Appendix C9). The rock is supported by detrital quartz, detrital
calcite, banded ankerite-series carbonate, and feldspar grains in the very fine sand to coarse silt-size
range. Both the feldspars and the ankerite-series carbonates commonly possess overgrowths; it is
difficult to determine based on textural evidence if dolomite was originally grain supporting or if it is
replacive after calcite. No fractures or other structural features are present. Calcite 680 data range from
24.0 to 24.6%o (n = 3) and 6'3C data range from -2.1 to 1.1%o (n = 2). Ankerite-series 620 values range

from 22.3 to 30.4%o (n = 34) and &*3C ranges from -5.6 to 5.3%o (n = 37).

The innermost band in the ankerite-series carbonates (Zone 1) is dolomite with an Fe# of 0.00,
680 values of 22.3 to 28.2%o, and 63C values in the -0.3 to 4.1%o range. These dolomite cores
commonly show rounded morphologies, and some show partial recrystallization to higher Fe#s (up to
0.18) (e.g., Fig. 15n). Subsequent Fe-compositional zonation in these ankerite-series carbonates is more
complex than in other samples, but shares certain textural parallels with C21668-10354.4. There is an
overall trend of increasing Fe# from core (innermost dolomite) to rim, but in places these banded
ankerite-series carbonates also show regions of higher Fe concentration that are not evenly or
concentrically distributed about dolomite cores (e.g., Fig. 15n), suggesting that they did not form
through concentric outward growth of ankerite-series carbonates, interpreted to result from
recrystallization. There are two major bins into which Fe#ts may be placed. The first (Zone 2) has broadly
increasing Fe#ts in the range of 0.02-0.08 (with declining 20 values from 30.3 to 22.8%. and 6%3C values
declining rapidly from 5.3 to -5.6), and the second (Zone 3) has Fe#s > 0.12 (with 680 in the 22.4 to

22.9%o range and 63C from -2.1 to -1.0%o).
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4.2.11 Well 9, Sample 22493-11159 (3401 m)

This sample was collected from the lower Bakken at a depth of 3401 m (11159 ft.), and was
made into a single SIMS mount (Figs. 150, 15p, Appendix C9). This is the only sample analyzed that was
not from the middle Bakken member; the rock was sampled due to the presence of a conspicuous 7
mm-wide fracture bounded by bands of pyrite and containing macroscopic ankerite-series carbonate
rhombs. The fracture is in a predominantly calcite rock matrix, with individual crystals in the matrix
falling in the 20-50 um size range. Infilling the fracture is the following growth sequence of minerals: a
thin 0.1 mm calcite band, a 0.5 mm band of pyrite, a thick layer of euhedral calcite crystals whose points
can stretch 2 mm from tip to base, large fracture-spanning banded ankerite-series carbonate rhombs
showing the curved euhedral growth bands typical of ‘saddle dolomite’ (Radke and Mathis, 1980), and

finally, anhydrite filling in the remaining fracture space.

Matrix calcite has 680 values ranging 26.5 to 29.5%o. (n = 5) and very negative 613C values
ranging -17.4 to -12.6%e. (n = 8). Fracture infill calcite shows a 620 values in the 23.1 to 26.5%0 range (n
=10), and 83C starts low and climbs towards higher values towards the calcite spar tips, from -15.7 up
to ~-2%o (n = 12). Banded ankerite-series carbonates (all Zone 3) show increasing Fe#s as towards the
rim (from 0.13 up to 0.30), declining 80 values (from 26.6 to 21.9%., n = 15), and declining 63C values

(from -1.8 to -10.3%o, n = 25).

5. DISCUSSION

5.1 Dolomite Zone 1

Zone 1 dolomites commonly show rounded boundaries and non-euhedral internal textures that
are suggestive of euhedral growth being interrupted by some additional process (e.g., 13c, 15b). Such
textures suggest either that rounded dolomites formed from abrasion in a clastic environment on the
seafloor, or that a period of dissolution that occurred within the sediment before carbonate
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491 precipitation resumed with ankerite-series compositions. The former interpretation would require

492  dolomite to have formed at or near the sediment-water interface so as to be accessible to mechanical
493 processes on the sea floor. Importantly, not all Zone 1 dolomites within an individual sample show

494  rounded morphologies, indicating that the process was selective and did not affect all grains equally. If
495  there is a mechanism by which heterogeneous dissolution can occur on dolomites at this scale, it is not
496  immediately evident from petrographic observations. Values of 6§80 and 6*3C from Zone 1 show a fair
497 degree of isotopic uniformity if compared between cores across the basin (Figs. 9 and 16a), which could
498  be used to argue for formation from water with nearly constant composition at a narrow range in

499  temperatures, as one would expect if dolomite formed near the sediment-seawater interface.

500 The range of 80 values of dolomite in Zone 1 (most are 24-29%.) presents an interesting

501 interpretational problem, however. If near-surface temperatures (~25 °C) are assumed, the 680 of

502  water from which the dolomite precipitated was in the -3 to -8%. range (Horita, 2014) (Fig. 16a). This is
503 low for marine conditions; estimates for seawater 60 at this time are substantially higher at -1.5%o
504 (Hudson and Anderson, 1989; van Geldern et al., 2006). Three plausible explanations exist for these

505  observations: 1) Basin waters had very low 680 values at this time and did not reflect global seawater
506  values, 2) Zone 1 dolomites precipitated from -1.5%0 porewater derived from seawater at around 50 °C,
507 and 3) Petrographic textures reflect early metastable dolomite precipitation near the sediment-

508  seawater interface (25°C) and their isotopic geochemistry was reset when these dolomites recrystallized

509  at higher temperatures.

510 If the Williston depocenter was sufficiently restricted at this time, it is conceivable that local

511  water may have been driven to lower 60 values by meteoric input from either enhanced precipitation
512 or riverine input. Such an interpretation would remove the necessity of invoking elevated temperatures
513  to explain the range of low 680 values of these dolomites, and allow for dolomite to form near enough

514  to the surface to allow the grains to be eroded in a clastic environment. However, a variable meteoric
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contribution cannot sufficiently explain the sizeable spread of 680 and §3C values (~5%.) observed in
6%3C and 680 measurements of these dolomites within the same sample, as such fluids might be

expected to be relatively homogenous across these length scales during early dolomite formation.

If, however, precipitation of Zone 1 dolomite occurred from water with a 6180 value that was no
lower than 880 = -1.5%o. for the Devonian-Mississippian ocean, then dolomite 680 values represent
either initial precipitation or recrystallization at higher temperatures of ~50 °C. In the precipitation case,
rounded textures would be indicative of dissolution, rather than abrasion, and that dissolution occurred
nonuniformly from dolomite grain to dolomite grain. Under this interpretation, the earliest growth
phase in these ankerite-series carbonates precipitated at or above 50 °C and no detrital dolomites were
present in the Bakken. By contrast, the recrystallization case allows rounded petrographic textures to
originate as detrital dolomite, but also necessitates that dolomites recrystallized from metastable

precursors at or above 50 °C, resetting their isotope ratios.

With the prevalence of recognizable recrystallization textures in some of the dolomite and
ankerite-series carbonates, particularly in the deeper and higher temperature parts of the basin, it is
evident that recrystallization has played a role in determining the final isotopic composition of some of
these carbonates. Regardless of the origin of rounded dolomite textures, we think that dolomite 0
values reflect recrystallization in the soft sediment at ~50°C, a process that has been recognized in other
locations (Jones, 2008; Reinhold, 1998). This interpretation is in agreement with fluid inclusion

measurements, which indicate that this zone formed below 70°C (Sliwinski et al., 2019).

5.2 Ankerite-series Zones 2 and 3

Zones 2 and 3 formed subsequent to Zone 1 and broadly follow a progression from Zone 1
values towards enriched Fe content and lower 630 and &3C values (Fig. 5a), and are interpreted as

forming along the path towards maximum burial temperatures. Fluid inclusion analyses on early Zone 3
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cements from a core along the western basin margin indicate temperatures of formation of ~115-125°C
(Sliwiriski et al., 2019), which is close to maximum temperatures modeled for that location by Kuhn et al.
(2012). Temperature changes have an effect on the dolomite-water fractionation for both 6§80 and 63C,
and the line plotted in Figures 5a and 5b shows the trajectory that a purely temperature-derived
isotopic trend will follow if the composition of fluids is constant. The degree of deviation from this line
shows that isotopic values in dolomite and ankerite cannot be ascribed solely to changes in
temperature, indicating that source pore water 630 values increased and/or 6*3Cco, declined over the
course of ankerite-series cement precipitation. Thus, ankerite-series cements precipitated over a
sufficient period of time to generate changes in temperature and porewater chemistry. The observation
that pore water 680 increased with time as ankerite-series cements grew is consistent with pore water
680 trends observed to occur in other basins in response to water-rock interaction (Clayton et al.,
1966). Brines in the middle Bakken today can have &80 values in excess of 5%o (Peterman et al., 2017),
and 60 in excess of 9.4%o has been reported for brines from the Devonian Duperow aquifer, which lies

below the Bakken (Rostron and Holmden, 2000, 2003).

The progressive trend of dolomite towards lower 520 values observed to occur across Zones 2
and 3 is interpreted to be primarily temperature-driven, but temperature effects were partly offset by
changing pore water §'80. Values of §'3C also decline across Zones 2 and 3, with the lowest §'3C values
generally being associated with the highest Fe#s. This is consistent with increasing interaction of pore
waters with low-6%3C organic matter present in adjacent shales, as CO; is produced during the
breakdown of organic matter and during hydrocarbon maturation (Surdam et al., 1989). If Zone 3 grew
relatively late in the burial history and at near-maximum temperatures, as is suggested by its more
ankeritic compositions and low 63C values, then one would also expect Zone 3 data to parallel

equilibrium fractionation lines for positive 6¥0y.ater Values at near maximum burial. Indeed, there is a
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progressive trend from Zone 1 to Zone 3 towards equilibrium with a +5 to +10%. 680 basinal brine (Figs.

16b, 16c).

5.3 Late Ankerite in Shallow Cores

Samples collected towards the margin of the basin (Wells 1 and 2) diverge from the above-
mentioned trends in some key ways. Fe-poor dolomitic bands present within Zone 2 and correlatable
between the two samples are closely associated with high 680 values (>30%o). In Well 2 there is no
significant correlation of §'3C with this change in 820, but in Well 1 these Fe-poor bands are followed by
a thick Fe-rich zone containing 880 values ~30%o and &*3C values ~-7%o, which require the unusual
combination of high 60 or low-temperature fluids that have also seen significant conversion of organic
to inorganic carbon. The final, Zone 3 growth band in Well 1 contains low 680 (~20%o) and &'3C near
0%o, indicative of high temperature or meteoric fluids that have interacted with carbonates. This last
band only appears where porosity is still preserved today, and does not develop any significant thickness
in an anhydrite-filled fracture, indicating that it is contemporaneous or post-dates the introduction of
anhydrite into the fracture. These isotopic trends necessitate the movement of fluids of significantly
different composition from those that precipitated Zone 1 and early Zone 2 ankerite-series carbonates.
We propose that the initial ~30%o band resulted from fluids that migrated out of the deeper parts of the
basin during hydrocarbon expulsion, as is known to have occurred along the NE margin of the Williston
Basin (Webster, 2011). The final band in Zone 3 must result from low-8'80 meteoric waters post-
expulsion (Fig. 16c), likely associated with hypothesized fresh water influx during the Pleistocene

glaciation (Grasby and Betcher, 2000).

5.4 Calcite Cements

Calcite and ankerite-series carbonates show similar magnitudes of variability in both &80 (Fig. 3)

and 6%3C (Fig. 4). This may indicate that, for some samples (e.g., Well 3), both calcite and ankerite-series
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carbonate grew or recrystallized under the same range of conditions (Fig. 6). However, not all of the
isotope data suggest that diagenetic calcites in the middle Bakken Formation resulted from the same
processes as ankerite-series cements. Most of the calcite values in sample 22493-11159 (Well 9) do not
parallel the dolomite trend in Fig. 6i. These cements petrographically predate those of the zoned
ankerite-series (Appendix C9), and likely resulted from low-temperature methanogenesis in the
shallowly buried mud-rich sediments of the lower Bakken member. Indeed, the fracture in sample
22493-11159 (Well 9) bears comparison to septarian concretions for its extremely low 8§*3C values of
both rock matrix and fracture-filling calcites (Siegel et al., 1987; Thyne and Boles, 1989). Despite forming
in a shale surrounded by calcites with very negative 6'3C values, the ankerites that have formed within
the cracks of the concretion fall along the same trajectory as the other Well 9 sample taken from the
middle Bakken. This strongly suggests that the same fluid and temperature trends were driving parallel

crystallization of ankerite throughout the formation.

6. CONCLUSIONS

SIMS analyses in zoned carbonates from nine middle Bakken cores demonstrate remarkably
large isotopic variability (often > 10%o) for 680 and 6*3C on the sub-mm scale, that would otherwise be
lost using gas-source mass spectrometry and acid dissolution of bulk powder samples. These zonations
are correlatable across a ~250 km transect through the Bakken formation, cover a wide range of burial
temperatures, and preserve a history of diagenetic rock evolution from the formation of early dolomites
in the shallow sediment on through to deep burial. This indicates that diagenetic processes affecting the
middle Bakken carbonates are regional in scope, and that individual growth bands in cements developed
in response to diagenetic conditions inherent to the middle Bakken and its neighboring units. Overall
trends in ankerite-series minerals strongly indicate a progressive bias of bulk carbonate 63C values due

to prolonged organic/inorganic mineral interaction. Cements along the basin margin have also recorded
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fluid movements into and out of the basin, associated with hydrocarbon expulsion and meteoric water
infiltration. Carbonate minerals are sometimes assumed to control the isotope ratio in diagenetic fluids
in the subsurface, but the large isotopic variability present in diagenetic carbonates at the micron scale
in these samples demonstrates that such rock control cannot be taken for granted in bulk isotopic
studies, especially if grain-boundary ion diffusion rates are sufficiently high and carbonate

reprecipitation rates are sufficiently low.
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FIGURES

Table 1. Name, depth, and location information for the 9 cores sampled.

Table 2. Ranges of isotopic data observed in each sample. A more detailed breakdown of isotopic trends

in each sample may be found in the text.

Figure 1. Map of structure-depth contours for the Bakken Formation in western North Dakota, with the
locations of drill core samples analyzed in this paper marked by stars. Note that contours displayed here
are measured relative to sea level so as to best convey the basin’s structure; all other depths reported in
this paper are relative to the local surface elevation. The subsurface extent of the Bakken formation is
marked with a dashed line. MT = Montana, ND = North Dakota. Figure modified from Sonnenberg et al.,

2011a. See Table 1 for more information about sampling locations.

Figure 2. (a) Generalized stratigraphy of the Williston Basin, modified from Borcovsky et al. (2017). (b)
Facies of the Bakken in studied drill cores, using the classification scheme of Egenhoff et al. (2011). Red

dots denote the locations of samples selected for SIMS analysis. Color available in online version.

Figure 3. Histograms showing the distribution of all SIMS 680 analyses for each core. Plots are arranged
from upper left to bottom right in the order from shallow to deep as described in the text. Bars are

shaded by mineral.

Figure 4. Histograms showing the distribution of all SIMS §3C analyses for each core. Plots are arranged

from upper left to bottom right in the order described in the text. Bars are shaded by mineral.

Figure 5. Crossplot for Bakken zoned ankerite-series cement SIMS data, showing paired 60 and 613C
carbonate analyses that are shaded by (a) Fe#, and (b) growth zone. Only adjacent analyses were paired,
making this dataset a subset of that presented in Figs. 4 and 5. The reference line shows the equilibrium
dolomite compositions for variable temperature, if 8*80water = 0%0 and §%3Cco, = -7%o (Horita, 2014). Color

available in online version.

Figure 6. Crossplots, one for each core, showing the distributions of paired 60 and §'3C analyses for
both dolomite and calcite. Filled dots correspond to dolomite analyses and are shaded by Fe#; open grey
dots correspond to calcite analyses. Only adjacent analyses were paired; this dataset is a subset of that
presented in Figs. 4 and 5. Plots are arranged from upper left to bottom right in the order described in
the text. Sample depths are indicated in each panel. Error bars are the 2SD precision measured on

bracketing dolomite standard UW-6220. Color available in online version.
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Figure 7. Histogram showing the distribution of SIMS 680 quartz analyses, classified using
cathodoluminescence according to whether the analysis was made on detrital grains or quartz

overgrowths.

Figure 8. Schematic ankerite-series crystal showing the three zones discussed in this paper. Darker grey
indicates lower Fe/Mg. The Zone 1 to Zone 2 boundary can be either euhedral or rounded. See text for

details.

Figure 9. Crossplots showing the distributions of paired 680 and §'3C analyses (ankerite-series only) for
each core, and colored by growth zone. Only adjacent analyses were paired, making this dataset a subset
of that presented in Figs. 4 and 5. Plots are arranged from upper left to bottom right in the order
described in the text. Sample depths are indicated in each panel. Arrows have been added to generalize

changes in isotopic values from core out to the rim. Color available in online version.

Figure 10. Histogram showing the distribution of 680 and 613C values for Zone 1 dolomite cores classified

according to the type of boundary they have with Zone 2.

Figure 11. SEM-BSE imagery overlain with SIMS analysis-pit locations for Well 1 (core 24883). SIMS pits
are represented by ovals and are the size and shape of actual analysis pits; 6180 pits are light pink and
813C pits are dark blue. Minerals are labeled as follows: Dol = Dolomite (endmember compositions), Ank =
Ankerite-series carbonates, DQ = Detrital Quartz, Anh = Anhydrite. Boundaries between growth Zones 1,
2, and 3 are shown in representative locations. Detailed discussion of petrography for each sample is in
the text. (a) Transect through an analyzed area of Well 1, with isotopic data (b) and Fe# (c) plotted. (d)

Transect through an analyzed area of Well 1, with isotopic data (e) and Fe# (f) plotted.

Figure 12. SEM-BSE imagery overlain with SIMS analysis-pit locations for Well 2 (core 20249). SIMS pits
are represented by ovals and are the size and shape of actual analysis pits; 680 pits are light pink and
813C pits are dark blue. Minerals are labeled as follows: Dol = Dolomite (endmember compositions), Ank =
Ankerite-series carbonates, Cal = Calcite, Anh = Anhydrite. Boundaries between growth Zones 1, 2, and 3
are shown in representative locations. Detailed discussion of petrography for each sample is in the text,
and more sample imagery may be found in Appendix C. (a) Transect through an analyzed area of Well 2,

with isotopic data (b) and Fe# (c) plotted.
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Figure 13. SEM-BSE imagery overlain with SIMS analysis-pit locations for Well 3 (core 17272). SIMS pits
are represented by ovals and are the size and shape of actual analysis pits; 6180 pits are light pink and
813C pits are dark blue. Minerals are labeled as follows: Dol = Dolomite (endmember compositions), Ank =
Ankerite-series carbonates, Cal = Calcite, OQ = Overgrowth (diagenetic) Quartz, DQ = Detrital Quartz.
Boundaries between growth Zones 1, 2, and 3 are shown in representative locations. Detailed discussion
of petrography for each sample is in the text, and more sample imagery may be found in Appendix C.
(a,b) Analyzed ankerite-series carbonates from Well 3. (c) Transect through an analyzed area of Well 3,

with isotopic data (d) and Fe# (e) plotted.

Figure 14. SEM-BSE imagery overlain with SIMS analysis-pit locations for Well 4 (core 17676). SIMS pits
are represented by ovals and are the size and shape of actual analysis pits; 6180 pits are light pink and
613C pits are dark blue. Minerals are labeled as follows: Dol = Dolomite (endmember compositions), Ank =
Ankerite-series carbonates, Cal = Calcite, OQ = Overgrowth (diagenetic) Quartz. Boundaries between
growth Zones 1, 2, and 3 are shown in representative locations. Detailed discussion of petrography for
each sample is in the text, and more sample imagery may be found in Appendix C. (a,b) Analyzed

ankerite-series carbonates from Well 4.

Figure 15a-i. (additional sample, petrography part 1 of 2, images a-i) Examples of sample SEM-BSE
imagery overlain with SIMS analysis-pit locations. SIMS pits are represented by ovals and are the size and
shape of actual analysis pits; 60 pits are light pink and 8§'3C pits are dark blue. Minerals are labeled as
follows: Dol = Dolomite (endmember compositions), Ank = Ankerite-series carbonates, Cal = Calcite, DQ =
Detrital Quartz. Boundaries between growth Zones 1, 2, and 3 are shown in representative locations.
Detailed discussion of petrography for each sample is in the text, and more sample imagery may be found
in Appendix C. (a,b) Well 5 (core C16586), sampled at 2991 m. (c,d) Well 6 (core 17015), sampled at 3156
m. (e,f,g,h,i) Well 7 (core C21668), sampled at 3117 m (e,f) and 3119 m (g,h,i).

Figure 15j-p. (additional sample petrography, part 2 of 2, images j-p) Examples of sample SEM-BSE
imagery overlain with SIMS analysis-pit locations. SIMS pits are represented by ovals and are the size and
shape of actual analysis pits; 6180 pits are light pink and §*3C pits are dark blue. Minerals are labeled as
follows: Dol = Dolomite (endmember compositions), Ank = Ankerite-series carbonates, Cal = Calcite, DQ =

Detrital Quartz, OQ = Overgrowth (diagenetic) Quartz, Anh = Anhydrite, Py = Pyrite. Boundaries between

40



917
918
919
920
921

922

923
924
925
926
927
928
929
930
931
932
933

growth Zones 1, 2, and 3 are shown in representative locations. Detailed discussion of petrography for
each sampleis in the text, and more sample imagery may be found in Appendix C. (j,k,1) Well 8 (core
12785), sampled at 3449 m. Small round holes in (r) are locations where qualitative SEM-EDS
measurements have damaged calcite. (u,v,w,x) Well 9 (core 22493), sampled at 3390 m (u,v) and 3401 m

(w,x). Image (w) is a zoomed in region of (x).

Figure 16. Values of 680 for ankerite-series cements, colored by zone, and plotted by the maximum
temperature each sample experienced as determined from burial models; plotted temperatures are not
necessarily the temperatures that each cement stage grew at (Kuhn et al., 2012). Lines represent §¥0
water in equilibrium with dolomite at variable 60 and temperature (Horita, 2014); modern porewater
possesses 680 values >5%o (Peterman et al., 2017). Color available in online version. (a) Zone 1
dolomites show a similar spread of 620 values regardless of depth, indicating that they formed early in
burial under similar temperature and fluid conditions. Assuming seawater fluid compositions at -1.5%o
yields a temperature range of Zone 1 formation of ~30 to 75°C. (b) Zone 2 dolomite 60 values develop a
slant that shows similarity to curves for high-680 water, presumably as burial and water-rock interaction
advance. (c) Zone 3 dolomite continues the Zone 2 trend at depth, but Well 1 shows a sequence of

chemical zonation indicative of fluid passage (see text for discussion).
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Transect | NDGS . . .

Name | Well # APl # Original Operator Well Name Latitude
Well1 | 24883 [33009023020000| CORINTHIANEXPLORATION |, peenpEn9-331-M | 48.9856084
(USA) CORP
Well 2 |20249 [33075014170000 MUREX PETROLEUM HEATHERLYNNE1 | 48.8628573
CORPORATION
Well3 |17272(33101004730000 HESS CORPORATION IM-SHORTY-159-88- | /¢ 604914

0805H-1
Well4 | 17676 [33061008840000 EOG RESOURCES, INC. SIDONIA 1-06H 48.5330324
Well5 | 16586 [33061005300000 EOG RESOURCES, INC. BURES 1-17H 48.3405436
well6 | 17015 |33105016670000 HEAD'NGTOTL?L COMPANY | \ESSON STATE 42X-36 | 48.2913654
well 7 | 21668 |33053038190000 | BURLINGTONRESOURCESOIL | \jaen\yacHEN 2234 | 48.03333
& GAS COMPANY LP
Well 8 | 12785 [33025004470000| MAXUS EXPLORATION CO. CARUS FEE#21-19 47.542727
Well9 | 22493 |33053040110000 NEWFIELD PRODUCTION BERNICE150-99-20- | /7 5914583

COMPANY

17-2H




Depth of SIMS sample (ft

Depth of SIMS sample

Longitude from surface) (~m from surface)
-100.6472088 37434 1141
-101.8269428 6013.4 1833
-102.0619859 7591.5 2314
-102.3443921 8738.4 2663
-102.5459482 9812.5 2991
-102.8284633 10354.4 3156
-102.8861333 10225.8/10233.5 3117/3119
-102.963685 11315.5 3449
-103.3731646 11122.9/11159 3390/3401




LONGITUD

FileNo LATITUDE E alt_ name
24883| 48.98561| -100.647 #
(24883)
20249 48.86286| -101.827 #2
(20249)
17272| 48.60491| -102.062 "3
(17272)
17676| 48.53303( -102.344 Ha
(17676)
16586| 48.34054( -102.546 #5
(16586)
17015| 48.29137( -102.828 #
(17015)
21668| 48.03333| -102.886 #7
(21668)
12785| 47.54273| -102.964 8
(12785)
22493 47.79146| -103.373 #9
(22493)
21706 47.81794| -103.172
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LONGITUD |FirstSpud
Township |Range Section QQ Footages |Hole Type|LATITUDE E Dlrs Py
2640 FNL
156 95 36 |NESE Horizontal | 48.29137| -102.828 2/4/08
210 FEL
210 FSL .
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1 L
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Ankerite-series carbonate Calc

Sample

6180 range 613Crange 6180 range
Well 1, Sample 24883-3743.4 19.2t038.2 (n=36) -8.3t04.8%0(n=31) 20.1t029.2 (n=13)
Well 2, Sample 20249-6013.4 23.11t035.2%0 (n=63) -3.210 4.0%o0 (n =40) 27.6t029.7%0(n =6)
Well 3, Sample 17272-7591.5 23.4t029.8%0(n=31) | -7.2t02.6%0(n=30) | 23.2t031.3%0(n=10)
Well 4, Sample 17676-8738.4 21.81t028.5%0(n=32) -8.8t01.4 (n=37) 24.5t032.1%0 (n =15)
Well 5, Sample 16586-9812.5 21.7t029.5%0(n=32) | -5.9t03.3%0(n=39) 24.5t028.0(n=7)

Well 6, Sample 17015-10354.4 22.3t029.5%0(n=47) | -5.5t05.1%0(n=51) | 22.7t025.3%0(n=17)

Well 7, Sample 21668-10225.8 19.3t027.7%0(n=11) | -8.3t0-0.2%0(n=15) 20.4t030.8%o0(n =9)

Well 7, Sample 21668-10233.5 22.4t030.0%0(n=19) | -4.6.t02.5%0(n=16) 26.4t028.1(n=4)

Well 8, Sample12785-11315.5 20.2t027.2%0(n=20) | -6.1t05.2%0(n=21) 22.9t027.0%0 (n=18)

Well 9, Sample22493-11122.9 22.3t030.4%0(n=34) | -5.6t05.3%0(n=37) 24.0t024.6%o(n =3)

Well 9, Sample22493-11159 21.9t026.6 %0(n=15) | -10.3t0-1.8%0(n=25)| 23.1t029.5%0(n=15)




lite

613Crange

-7.4t02.6 (n=13)

-0.7 10 0.8%o0 (n =5)

4.2t05.7%0(n=11)

-10.3t04.8%0(n=17)

-2.0t05.2%o0 (n =10)

2.2t07.5%0(n=17)

-6.3106.1%0(n=9)

-0.7105.5%0 (n =4)

-4.1t05.9%0 (n=19)

-2.1t01.1%0(n=2)

-17.4t0-1.8%0(n=20)
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