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Abstract 11 

 We compare different methodologies (in situ and bulk) for obtaining δ18O and elemental 12 

ratios in the benthic foraminifera genus Uvigerina from ODP Site 1015, (California Margin), to 13 

assess what new information can be obtained with high-resolution in situ techniques. Specimens 14 

were prepared in epoxy mounts and exposed in cross-section such that multiple high-resolution 15 

analyses could be completed on the same shells using both Secondary Ionization Mass 16 

Spectrometry (SIMS) and Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS). 17 

We also obtained elemental ratio data using LA-ICP-MS depth-profile measurements on whole, 18 

uncast foraminifera and elemental ratio and oxygen isotopes with standard bulk techniques using 19 

the same species of benthic foraminifera from the same sediment sub-samples. Comparison of the 20 

data collected by the different methodologies indicates that there is a consistent offset of ~ 0.9± 21 

0.1‰ between SIMS and bulk analysis of 18O. The in situ laser data studied in epoxy mount is 22 

correlated with the foraminifera bulk measurements for both Mg and Sr, whereas the in situ depth-23 

profile laser measurements of Mg and Sr from whole foraminifera are less correlated with the bulk 24 

measurements. We also observe that the intra-shell variability for each of the proxies is larger than 25 

the analytical error and does not follow chamber number. We propose that the 18O, Mg, and Sr 26 

variability within and between single specimens at this site is linked to some combination of 27 

measurement bias, vital effects, and variable environmental conditions in the pore water where the 28 

tests were precipitated. This information can in turn be related to the regional setting of the site. 29 
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 32 

1. Introduction 33 

 The isotopic and elemental compositions of calcium carbonate tests (shells) of fossil 34 

foraminifera are widely used to infer past ocean chemistry and temperature (e.g., Nürnberg et al., 35 

1996; Shackleton et al., 1984; Rosenthal et al., 1997; Lear et al., 2000; Wejnert et al., 2013; Mekik, 36 

2018 and reference there-in). As recently as two decades ago, geochemical analysis of 37 

foraminiferal calcite was generally restricted to bulk sampling methods (i.e. data obtained on an 38 

multiple tests combined into one sample). Since then, however, techniques for multi-element 39 

analysis of small sample volumes have been developed on sector field inductively coupled plasma 40 

mass spectrometry (ICP-MS) (Rosenthal et al., 1997; Marchitto, 2006) and quadrupole ICP-MS 41 

(Yu et al., 2005; Harding et al., 2006). Over the last decade, high-resolution analytical methods 42 

for measuring both Mg/Ca and δ18O have advanced such that micron-scale in situ analyses are now 43 

feasible by secondary ion mass spectrometry (SIMS) (Wycech et al., 2018a and reference there-44 

in) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) (Fehrenbacher, 45 

et al., 2015 and reference there-in). These technical advances allowed researchers to better 46 

understand empirical calibrations of element/Ca ratios used as proxies for paleo-environmental 47 

reconstruction (Nürnberg, 1995; Nürnberg et al., 1996; Eggins et al., 2003, 2004; Sadekov, 2005; 48 

Toyofoko and Kitazato, 2005; Pena et al., 2008; Groeneveld and Filipsson, 2013). They have also 49 

been used to assess post depositional alteration (Kozdon et al., 2013; Wycech et al., 2018b), and 50 

to resolve short time scale (seasonal or decadal) environmental data for paleo-reconstructions 51 

(Ford et al., 2015), or for considering biomineralization processes (Branson et al., 2016).  52 

 Microanalytical methods such as SIMS and LA-ICP-MS are particularly useful when a 53 

limited number of specimens are available or when an assessment of chemical heterogeneity is 54 

required (Glock et al., 2012, and references therein). One clear advantage of micro-analytical in 55 

situ techniques over bulk analyses is that single foraminiferal tests can be re-analyzed multiple 56 

times by the same or different in situ techniques. As a result, it is technically feasible to integrate 57 

a diverse range of analytical approaches to better characterize the environmental signals recorded 58 

in single foraminiferal shells or to refine understanding of biomineralization or post deposition 59 

alteration processes. For example, laser ablation techniques on single foraminifera have been used 60 
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to determine quantitative element/Ca ratios from depth-profiling analysis of single, whole 61 

specimens (Wu and Hillaire-Marcel, 1995; Hathorne et al., 2003; Reichart et al., 2003; Pena, et 62 

al., 2005; Munsel et al., 2010; Fehrenbacher et al., 2017). SIMS and electron probe micro-analysis 63 

(EPMA) have been used to produce elemental maps, determine elemental ratios, and (for SIMS 64 

only) test novel isotopic proxies in foraminiferal calcite (Allison and Austin, 2003; Sano et al., 65 

2005; Bice et al., 2005; Kunioka et al., 2006; Rollion-Bard and Erez, 2010; Glock et al., 2012; 66 

Vigier et al., 2015. Kozdon et al., 2013; 2009, Evans et al., 2015). More recently, SIMS methods 67 

have been further developed to permit analysis of planktonic foraminifera δ18O (Kozdon et al., 68 

2009; 2011; 2013; Vetter et al., 2015; Wycech et al., 2018a and b). Just one study, however, has 69 

analyzed intra-shell 18O variability in benthic foraminifera (Rollion Bard et al., 2008). Rollion-70 

Bard et al. (2008) analyzed 18O by SIMS in specimens of the benthic genus Amphistegina. They 71 

report that the thin layers of calcite that have elevated Mg/Ca and are associated with “primary 72 

calcite” precipitated within an organic matrix of newly deposited chamber have markedly (~3‰) 73 

lower 18O values than the “secondary” calcite that comprises 95% of the shell. They argue that 74 

the lower 18O of primary calcite is due to some ‘‘vital effect” that lowers the 18O of bulk analyses 75 

below the value predicted by inorganic experiments (e.g. Kim and O’Neil, 1997).  76 

Given that the 18O of benthic foraminifera is a foundational global-scale paleoclimate 77 

proxy (Lisiecki and Raymo, 2005), further interrogation of benthic foraminifera is warranted. In 78 

this study, we leveraged updated SIMS methods developed over the last decade along with 79 

element/Ca analysis by LA-ICP-MS to evaluate two generalized hypotheses that emerge from the 80 

work of Rollion-Bard et al. (2008): 1) that at intra-shell resolution, Mg/Ca variability anticorrelates 81 

with 18O, and 2) that at micron-scale, 18O anticorrelates with indicators of organic matrix. We 82 

investigated samples from ODP Site 1015 in the Santa Monica Basin representing two-time slices, 83 

the last 1000 years and the Younger Dryas (YD; 12.9–11.7 ky BP) (Rasmussen et al., 2006) 84 

focusing on the benthic genus Uvigerina, specifically Uvigerina peregrina, with ornamentation 85 

which is common to the California margin (Okhushi et al., 2013; Davis et al., 2016; Balestra et al., 86 

2018). The Santa Monica basin has been targeted as a region for paleoceanographic 87 

reconstructions because its location strategically links it to mechanisms of regional climate 88 

oscillations and ecosystem changes in the California Margin (Balestra et al., 2018). We measured 89 

both the Mg/Ca ratio (LA-ICP-MS) and 18O (SIMS) on single foraminifera tests that were 90 

embedded in an epoxy mount and exposed in cross-section. For comparison, we collected 91 
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element/Ca ratio data with LA-ICP-MS measurements on whole uncast foraminifera, as well as 92 

element/Ca ratios and 18O values by standard bulk techniques for each time slice using the same 93 

foraminifera species (i.e. Uvigerina) from the same sediment samples. We ultimately aim to assess 94 

the utility of analyzing single-shells using paired, high spatial-resolution geochemical analyses in 95 

single Uvigerina, which is a benthic genus commonly used for paleoclimate studies. 96 

 97 

2. Material and Methods  98 

2.1 ODP Site 1015 and Uvigerina spp. 99 

 ODP Site 1015, (33°42.925’N, 118°49.185’W, water depth 901 m; Figure 1) was drilled in 100 

the deepest part of Santa Monica Basin (Shipboard Scientific Party, 1997). Two holes were drilled 101 

at this site (A = 149.5 m and B = 98.7 m core lengths, Shipboard Scientific Party, 1997). In this 102 

study, sediment samples for analyses of the benthic foraminifera Uvigerina spp. were selected to 103 

avoid turbidite intervals (Romans et al., 2009). The age model for this core and thus the age of the 104 

samples utilized is based on Balestra et al. (2018) (Table 1). The average sedimentation rate for 105 

the late Holocene (0-11.7 ka) at this site is 2.0 mm/yr. For the Last Glacial Maximum (LGM) and 106 

deglacial period (22-11.7 ka) it is 3.6 mm/yr. Using this age model, two time-periods were chosen 107 

for this study, the last 1 ky of sediment accumulation and sediments deposited during the Younger 108 

Dryas (YD; 12.9- 11.7 kyr B.P) (Rasmussen et al., 2006). The last 1 ky samples represent the 109 

“warm” interglacial period, while the YD is a period during the last deglaciation when Northern 110 

Hemisphere climate returned abruptly to near-glacial conditions (i.e. cold, dry and windy) for ~1.5 111 

ky (Fairbanks, 1989; Bond et al., 1997).  112 

The benthic foraminifera Uvigerina spp. selected for analysis is present in both time-slices 113 

and it is relatively insensitive to changes in carbonate ion concentrations (Δ[CO3
2-]) (Elderfield et 114 

al., 2010). This genus is commonly found in mesotrophic environments, often characterized by 115 

fine-grained sediments with elevated organic matter content (Van der Zwaan et al., 1986). 116 

Uvigerina spp. lives in shallow infaunal depth habitats (Van der Zwaan et al., 1986; Fontanier et 117 

al., 2002; Schweizer et al., 2005). The weaker sensitivity to carbonate ion changes of this genus 118 

when compared to epifaunal species (Elderfield et al., 2006; 2010), is probably because it calcifies 119 

from pore water at 1-2 cm depth within the sediment, where Δ[CO3
2-] tends to be close to zero 120 

(Tachikawa and Elderfield, 2002; Martin and Saylaes, 1996; Elderfield et al., 2010). Therefore, 121 

there is limited influence of Δ[CO3
2-] on shell Mg/Ca of this genus (Elderfield et al., 2010).   122 
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 123 

2.2. SIMS measurements of 18O and OH/O  124 

 For SIMS analysis, six sediment samples representing the selected time intervals were 125 

soaked overnight in deionized water (pH= ~8.0, buffered), washed over 63 µm and 250 µm sieves, 126 

and oven dried at 45°C (as by Kozdon et al., 2013). The >250 µm fraction was then examined for 127 

benthic foraminifera (i.e., Uvigerina spp.). Sample cleaning consisted of multiple ultrasonication 128 

steps in MilliQ water and methanol, with additional rinses in MilliQ water between and after 129 

sonication. The cleaned tests were embedded along with two grains of UWC-3 calcite standard 130 

(δ18O=12.49‰ Vienna Standard Mean Ocean Water, VSW; Kozdon et al., 2009) in a single 25-131 

mm diameter, round epoxy mount. This mount was made with Buehler EpoxiCure® 2 hardener 132 

and resin (before the product formulation changed in 2016). After embedding, the epoxy mount 133 

was ground to the level of best sample exposure (Kozdon et al., 2011; 2013) and polished to a 134 

topographic relief of less than 1 μm (Kita et al., 2009). The sample mounts were gold-coated for 135 

scanning electron microscope (SEM) imaging and SIMS analyses. Since the genus Uvigerina adds 136 

a new layer of calcite to all existing chambers every time that a new chamber is formed (Grunlund 137 

and Hansen, 1976) we acquired high-resolution SEM images of all samples before SIMS analysis 138 

to facilitate targeting appropriate calcite layers. SEM images were taken after the in situ 139 

measurements to record the relative spot positions (Figure 2 and 3, right panels).  140 

In situ 18O data were acquired from the Uvigerina spp. test walls at the WiscSIMS Laboratory 141 

(University of Wisconsin-Madison) with a CAMECA IMS 1280 large-radius multi-collector SIMS 142 

(Kita et al., 2009; Valley and Kita, 2009). Analytical conditions on the SIMS are like those reported 143 

for the 10-m spot analyses by Kozdon et al. (2013). A 133Cs+ primary ion beam with an intensity 144 

of ~1.3 nA was focused to a beam-diameter of ~10 μm. The typical secondary 16O‒ intensity was 145 

2.5 × 109 counts per second (cps), and 18O‒, 16O1H–, and 16O– ions were simultaneously recorded 146 

by three Faraday cup detectors. Charging of the sample surface was compensated by gold coating 147 

and by an electron flood gun focused on the analysis site. Four to six consecutive measurements 148 

of UWC-3 calcite standard were performed before and after every set of 5–16 sample analyses. 149 

The precision (spot-to-spot reproducibility) for each sample analysis is calculated as the 2 s.d. of 150 

the bracketing UWC-3 analyses. Across the entire session, the average spot-to-spot reproducibility 151 

(1 s.d.) of 18O analyses in the UWC-3 standard was ±0.15‰.  152 
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Between three and seven 10-m spots were analyzed for 18O on each of 38 tests (16 tests 153 

from <1 ky and 22 tests from the YD, for a total of 144 10-m spots). The ratio 16OH–/16O– (OH/O, 154 

hereafter) was measured simultaneously during all 18O analyses. The average OH/O of bracketing 155 

UWC-3 standard measurements (an anhydrous marble) was used to measure “background” 16OH–156 

, which was subtracted from each sample analysis in the intervening block to calculate 157 

“background-corrected” OH/O (Wycech et al., 2018a and b). Following SIMS analysis, data were 158 

screened for outliers in secondary ion yield and background-corrected OH/O, and pit morphologies 159 

were examined by SEM for irregularities. Following these quality control measures, out of a total 160 

of 144 SIMS spots measured in the calcite tests just 1 was removed from interpretation. An 161 

additional 39 SIMS spots were removed from our paired-analysis interpretation because they did 162 

not have a matching LA-ICP-MS analysis of Mg/Ca for comparison (see below in section 2.4). A 163 

data table including all raw and corrected sample and standard measurements is included as 164 

Appendix A. 165 

 166 

2.3. Oxygen isotope analysis by Isotope Ratio Mass Spectrometry. 167 

 To compare the high-resolution SIMS data with typical whole-test analysis, we analyzed 168 

δ18O in Uvigerina spp. from the same core sections by conventional means (Kiel-device with 169 

Isotope Ratio Mass Spectrometer IR-MS). The foraminifera were analyzed at the University of 170 

California Santa Cruz, Stable Isotope Laboratory using a Finnigan Isotope Ratio Mass 171 

Spectrometer (IR-MS, MAT-256) with a Kiel auto-carbonate device (using an in-house crystalline 172 

Carrera Marble standard, CM12, calibrated against international standards and NBS-19 crystalline 173 

carbonate standards). The tests used for conventional analysis were picked from the same vial/split 174 

as the tests used for SIMS analysis but are not the identical individuals. Between 12 and 15 175 

specimens were picked from each sample, cleaned and gently crushed. Individuals between 355 176 

and 250 µm size fraction were used to eliminate variability based on size. All the data are expressed 177 

using standard delta (δ) notation in per mil (‰) relative to Vienna Pee Dee Belemnite standard 178 

and the reproducibility (1σ) of the NBS-19 standard was ±0.05‰ for δ18O during these analyses 179 

(Appendix B). 180 

 181 

2.4. Analysis by LA-ICP-MS (12 µm spots and 50 µm spots). 182 
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 We performed LA-ICP-MS analysis on Uvigerina spp. specimens with a Teledyne Photon 183 

Machines Analyte Excite laser (193 nm) and Thermo X Series II ICP-MS. Laser analysis spots 184 

were targeted to be adjacent to the SIMS analysis using the same epoxy mounts (i.e. same tests). 185 

Between SIMS and LA-ICP-MS analysis, the mounts were gently polished to remove the gold 186 

coating required for SIMS analysis. The advantage of measuring the samples by both techniques 187 

is that it allows for a more direct comparison between analytical methods and the various 188 

geochemical tracers obtained using these methods. One disadvantage of using epoxy mounts for 189 

LA-ICP-MS analysis is that the spot size, and thus analytical sensitivity, is spatially limited by the 190 

exposed cross-section of the test wall. Thus, we use a 12 µm spot size, which is smaller than the 191 

typical 50-µm spot used for non-epoxy mounted LA-ICP-MS analyses. The 12 m spots were 192 

carefully targeted to be in test areas with no pores, and well inside the edge of the test walls to 193 

avoid contamination bias in the measurements. To the best of our ability, laser spots were placed 194 

as close as possible to the SIMS analyses pits, however, this was not possible for some tests since 195 

the sample exposures were slightly altered during polishing between the two procedures (see 196 

Figures 2 and 3). Pre-ablation of the spots (5Hz, 5 shots, 0.4 J/cm3) was performed to clean the 197 

surface area. Approximately two to six laser spots (10Hz, 200 shots, 1.83 J/cm2), 12 µm in 198 

diameter, were ablated on each of the tests. These data are presented in the supplemental material 199 

as Appendix C, and were acquired for masses 24-Mg, 44-Ca, and 88-Sr. NIST 610 was analyzed 200 

with the same parameters and used for elemental calibration. Long-term reproducibility of the 201 

Mg/Ca ratio in NIST 610 (nominal values of 432 ppm, GeoRem, 6/2011), was 8.66 ± 0.14 mmol 202 

mol-1 (1σ, n = 150 over 5 analytical days). We assume that the analytical reproducibility using the 203 

standards is equivalent to that of the foraminifera, which we cannot assess directly since each 204 

measurement of the foraminifera destroys that portion of the sample, and repeated measurements 205 

are not possible. Repeated measurements on different locations in the same foraminifera are 206 

subject to larger variability inherent to the organism (representing short term environmental 207 

changes over the life span of each individual and vital effects).  208 

 We then obtained 50-m spot analyses by the more traditional depth-profiling LA-ICP-209 

MS procedure on uncast, whole foraminifera taken from the same sediment samples. Specimens 210 

were picked from the same six sediment splits from which tests were picked to make the epoxy 211 

mount used for LA-ICP-MS and SIMS analysis (but different individuals).  Individuals of similar 212 

size were analyzed to ensure the least variability based on size (250-355 µm). Because of low 213 
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sample availability, it was not possible to depth-profile the same number of tests for each time 214 

slice (in total 29 tests were used versus the 38 that were measured in the epoxy mounts). For 215 

consistency and to allow direct comparison with the procedure used for the foraminifera mounted 216 

in epoxy, the sample cleaning consisted of multiple ultrasonication steps in MilliQ water and 217 

methanol and additional rinses with MilliQ water. The tests were adhered to a glass slide using 218 

carbon tape (rather than embedded and polished in the epoxy). The sampling spots were pre-219 

ablated (5Hz, 5 shots, 0.4 J/cm2) before data acquisition to clean the surface area. Approximately 220 

two to six laser spots (10Hz, 200 shots, 1.83 J/cm2), 50 µm in diameter, were ablated on each of 221 

the tests. All the data are presented in supplemental material as Appendix D, and were acquired 222 

for masses 24-Mg, 44-Ca, 55-Mn, and 88-Sr. NIST 610 was analyzed with the same parameters 223 

used for the epoxy mount and used for elemental calibration (reproducibility of the Mg/Ca ratio in 224 

NIST 610 analyzed with these samples  was 8.74 ± 0.14 mmol mol-1 (1σ, n = 150 over 5 analytical 225 

days). As noted above the reproducibility of different spots obtained on each test is much lower 226 

than that of the standard as it incorporates real natural variability and unknown vital effects. 227 

 228 

 2.5. Bulk ICP-MS element ratio measurements 229 

 Bulk Mg/Ca and Sr/Ca ratios were measured by ICP-MS (Finnigan Elemental XR) at 230 

UCSC using the procedure described in Quintana Krupinski et al. (2017). Between 9 and 12 231 

specimens were picked from each of the six time-intervals, from the same samples used for LA-232 

ICP-MS and SIMS analysis. Individuals of similar size were analyzed to ensure the least variability 233 

based on size (250-355 µm). The specimens were crushed, and sample cleaning consisted of 234 

multiple ultrasonication steps in MilliQ water and methanol, a reductive and oxidative step and 235 

additional rinses with MilliQ water following the protocol by Quintana Krupinski et al. (2017). 236 

The reductive step was included in the cleaning procedures to remove Mg associated with remnant 237 

organic matter and adsorbed phases (Boyle and Keigwin, 1985; Brian and Martin, 2010; Quintana 238 

Krupinski et al., 2017). The cleaned tests were transferred to acid-cleaned Eppendorf vials on the 239 

day of analysis and dissolved in 400 µL of 0.075 HNO3 (Optima grade) prior to analysis. The 240 

between-run reproducibility (based on measurement of the liquid consistency standard and blank 241 

after every 3 samples) was ±0.3% (1σ) for both Mg/Ca and Sr/Ca, and the in-run reproducibility 242 

was ±0.4% (1σ). These data are presented in the supplemental material Appendix B. 243 

 244 
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2.6. Data Treatment 245 

 Images of each specimen analyzed by SIMS and LA-ICP-MS were taken using a Scanning 246 

Electron Microscope (SEM). These high-resolution images helped ensure that the measurements 247 

were taken on the same layer of growth of the shell and to avoid contamination due to the presence 248 

of pores and/or channel on the shell analyzed (see examples in Figure 2 and 3). Moreover, all the 249 

elemental ratio measurements (12- and 50-µm spots) are time resolved. Thus, every measurement 250 

has been manually examined making sure to identify contaminant phases or anomalous spikes. 251 

Most of the time-resolved trace element profiles show an enriched zone of high Mg/Ca at the start 252 

of each analysis, followed by an interval of relatively constant and lower Mg/Ca, consistent with 253 

observations reported in previous in situ laser ablation studies of foraminifera (Creech et al., 2010 254 

and reference there-in). The software that was utilized, Thermo PlasmaLab, permits screening the 255 

raw data and thus filtering each laser profile to remove suspect contaminate interferences, usually 256 

represented by sudden peaks of Mg or Mn (example in Figure 4; Mn was monitored only for the 257 

50 m spots due to a weak signal from the 12  m spots). We then compared the screened 258 

measurements from the different spot sizes (12-µm in epoxy versus 50-µm in uncast whole 259 

foraminifera) and for the bulk analysis. To compare the different spot sizes obtained with the LA-260 

ICP-MS methodologies (12-µm spot in epoxies (N= 38 tests in total) versus 50-µm spot on whole 261 

foraminifera (N= 29 tests in total) and bulk analyses (N= between 9 and 12 tests for each sample)) 262 

we calculated element/Ca means and standard deviations using the R software package. To 263 

compare δ18O and trace element results, we generated regressions utilizing the average 264 

composition of each foraminifer and for each time slice while also indicating the different 265 

chambers in which the measurements were taken, (two examples in Figure 2 and 3). The bivariate 266 

least-square regressions were generated using PAST software (Hammer et al., 2001).  267 

 268 

3. Results  269 

3.1. In situ δ18O measurements  270 

In situ SIMS δ18O measurements (reported on the VPDB scale) vary between 0.7–2.6‰ in 271 

the Holocene and between 1.4‰ and 3.0‰ during the YD (Appendix A). The background-272 

corrected OH/O ratios varied between 0.005-0.01 within the Uvigerina tests measured in this study 273 

(Appendix A). Simultaneous measurement of OH/O accompanies all carbonate 18O analyses at 274 

WiscSIMS. Its measurement was originally intended for use during data screening to monitor the 275 
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relative amount of H-bearing species (i.e., not calcite) included within a sputtered spot. Over time, 276 

OH/O observations in many carbonate types (biologically mediated and abiotic) have revealed 277 

some intriguing patterns, including intra- and inter-sample anticorrelations between 18O and 278 

OH/O (Orland et al., 2015; Wycech et al., 2018a and b; Helser et al., 2018). In any sample, OH/O 279 

likely indicates the amount of water and/or organic material included in each SIMS spot, but it is 280 

unknown if there is causality between elevated OH/O and lower 18O values. As such, quantitative 281 

interpretation of the OH/O metric remains unclear and is beyond the scope of this study. 282 

 283 

3.2. Traditional δ18O measurements 284 

18O data measured with the bulk technique are systematically higher than those measured 285 

by SIMS, ranging from 2.8–2.9‰ in the Holocene, and from 3.1–3.4‰ in the YD (Appendix B). 286 

The relative difference between average δ18O measurements from the Early Holocene and YD is 287 

~1.0‰ for both techniques (Appendix B).  288 

 289 

3.3. In situ Elemental Ratios  290 

 Values for Mg/Ca of individual specimens for the 12-µm spot analyses ranged from 0.6 to 291 

1.3 mmol mol-1 in the Holocene, and between 0.5 and 1.7 mmol mol-1 in the YD (Figure 5, 292 

Appendix C). For 50 µm spot analyses, Mg/Ca values are between 0.6 and 2 mmol mol-1 in the 293 

Holocene and between 0.8 and 1.7 mmol mol-1 in the YD (Appendix D). The Sr/Ca measurements 294 

ranged from 1 to 1.4 mmol mol-1 for the analyses on the epoxy mounts (12 µm spots) as well as 295 

from the depth-profiled foraminifera with 50 µm spots (Appendix C and Appendix D). To test for 296 

diagenetic overprinting, we monitored Mn/Ca during depth-profile analyses on the whole 297 

foraminifera (50 µm spot) after the pre-ablation (Appendix D). Mn/Ca values were relatively low 298 

(average 0.01 and 0.14 mmol mol-1) and within the generally used level of Mn/Ca confirming the 299 

absence of diagenetic coatings (between 0.05 mmol/mol and ~0.15 mmol/mol (Boyle, 1983; Boyle 300 

and Keigwin, 1985; Delaney, 1990; Ohkouchi et al., 1994; Glock et al., 2012)).  301 

 302 

3.4. Traditional Elemental Ratio 303 

The foraminifera bulk measurements are similar and correlated to the in situ laser data (12 304 

µm spot) studied in epoxies for both Mg and Sr (r2= 0.8 and 0.9 respectively). However, the in situ 305 
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depth-profile laser measurements of Mg and Sr from whole foraminifera (50 µm spot) show less 306 

correlation with the bulk measurements (r2= 0.2 and 0.02 respectively) (Figure 6, Appendix C). 307 

 308 

4. Discussion 309 

4.1 Geochemical variability within and between Uvigerina tests. 310 

 For both time intervals (i.e. last 1000 years and YD), the SIMS δ18O values span a range 311 

of 1.9‰, which is remarkably high if we consider that the species is benthic and hence seasonal 312 

environmental changes and habitat depth are not expected to vary much. Specifically, Uvigerina 313 

generally prefers a shallow infaunal habitat (Corliss and Emerson, 1990; Ernst and van der Zwaan, 314 

2004; Davis et al., 2016) and samples were obtained from sediments at a depth of 901 m of 315 

seawater. However, the difference in the average values between the two time-intervals is 316 

consistent with lower temperatures or higher salinity (higher δ18O) in the YD bottom waters 317 

(Rickaby and Elderfield, 2005). The Mg/Ca data, in contrast, do not show a significant difference 318 

in the values or the range between the two time-intervals. Assuming Mg/Ca data represent bottom 319 

water temperatures, the δ18O difference between the two time-periods suggests that the 18O of 320 

bottom water and/or pore-water decreased between the YD and Late Holocene.  321 

The in situ analyses allow us to calculate a correlation coefficient between Mg/Ca and δ18O 322 

within single foraminifera (see Figures 2 and 3 as two examples). In contrast to the finding of 323 

Rollion-Bard et al. (2008) for the benthic foraminifera Amphistegina, no correlation is observed in 324 

any Uvigerina test between the in situ Mg/Ca and 18O measurements (Figure 7). Furthermore, 325 

considering the growth mechanism of the genus Uvigerina (Grunlund and Hansen, 1976), and that 326 

the paired analysis are within the same growth layer, we do not see any apparent correlation 327 

between either geochemical proxy and chamber number, implying that there is no consistent age- 328 

or size-related impact on Mg/Ca and δ18O (Figures 2 and 3). Our results suggest species-specific 329 

responses, which warrant further research comparing different benthic foraminifera genus.  330 

Our analyses of Uvigerina individuals demonstrate considerable within-genus variability. 331 

Other than bias due to the utilized methodologies, there are several effects that could contribute to 332 

the observed variability, including biological or “vital” effects and changes over time in the 333 

porewater chemistry. We have not used the data to derive temperatures because we expect that the 334 

bottom water temperatures varied little within each time slice and thus is not relevant for the aims 335 

of this research (e.g., to compare among analytical techniques and between time slices). 336 
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Theoretically, if both proxies record the temperature of the pore water, we would expect a strong 337 

correlation since bottom water 18O is assumed to change little in the open ocean within the time 338 

scale represented by each time interval used (Wit et al., 2012). One of the causes for the lack of 339 

correlation could be the specific location of Site 1015 (i.e. Santa Monica Basin) and the sensitivity 340 

of this location to environmental changes which are then recorded in the genus utilized for this 341 

study. Specifically, the basin is relatively deep and different water masses with distinct 342 

characteristics of temperature, salinity and origin may have filled the basin during the different 343 

time slices analyzed here and contributed to the lack of correlation between Mg/Ca and 18O when 344 

comparing data from the last 1000 years to that of the YD (Figure 7). It has been shown that the 345 

benthic foraminifera investigated in this study can calcify in low bottom water oxygenation levels 346 

(Moffit et al., 2014, 2015; Ohkushi et al., 2013; Balestra et al., 2018).  Thus, it is also possible that 347 

Mg/Ca ratios in Uvigerina particularly at this location, are sensitive to different growth and 348 

calcification conditions, such as food availability or carbonate chemistry (Wit et al., 2010), which 349 

could contribute to the lack of correlation seen in the data. 350 

 351 

4.2 Comparison of bulk and in situ analytical techniques. 352 

4.2.1 18O 353 

 An offset of ~1‰ is observed between the 18O values of Uvigerina measured by SIMS 354 

and those measured by traditional bulk gas isotope ratio mass spectrometry (IRMS) (Figure 5). 355 

This offset, (SIMS 18O values ~1‰ lower than measured by IRMS) and the average background-356 

corrected OH/O ratio of 0.008 (Appendix A) are consistent with IRMS-SIMS comparison studies 357 

reported in other low-temperature carbonates, including foraminifera (Orland et al., 2015; Wycech 358 

et al., 2018a). Here, the existence of a 1‰ offset is notable because it matches the offset observed 359 

by Rollion-Bard et al. (2008) between the secondary calcite in their cultured benthic foraminifera 360 

and the expected 18O value. The IRMS-SIMS 18O offset is likely the result of matrix effects on 361 

the SIMS data (i.e., the inclusion of water and/or organic materials within the sputtered sample 362 

volume (Orland et al., 2015; Wycech et al., 2018b), and possibly the related effect of trace element 363 

content on the SIMS measurements (Sliwinski et al., 2017). While experiments are underway to 364 

clarify the origin of the offset, we note that the 18O offset is uniform across the population of 365 

Uvigerina tests analyzed in this study. The precision of the SIMS analyses is established by a 366 

rigorous approach to standardization, so the relative inter- and intra-shell 18O variability we 367 
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observe (regardless of the offset in absolute values) and the previously mentioned lack of 368 

correlation to Mg/Ca suggests that factors beyond temperature contribute to the 18O of Uvigerina 369 

test calcite in the Santa Monica basin. 370 

 371 

4.2.2 Mg/Ca and Sr/Ca 372 

 We found considerable variability in the Mg/Ca data within and among individual 373 

specimens of the same genus and time slice. Variability among different individual foraminifera 374 

has been clearly shown in cultured foraminifera (Dissard et al., 2010; Duenas-Bohorquez et al., 375 

2011) including benthic species (Wit et al., 2012). Thus, in addition to analytical errors, the 376 

variability in the Mg/Ca data is due to short time-scale (diurnal, seasonal, decadal) environmental 377 

variability and biological effects related to differences among individuals even if they belong to 378 

the same genus and were collected in samples representing the same time-interval (Wit et al., 379 

2012).  380 

  A strong correlation is observed between the 12 m spots and bulk analyses in both Mg/Ca 381 

and Sr/Ca analyses. The agreement between the 12 m and the bulk analyses and their lack of 382 

agreement with the larger 50 m depth-profiling of whole foraminifera may be explained by real 383 

differences in the material included in each analysis. Specifically, the bulk analysis was done on 384 

crushed and chemically cleaned specimens using a procedure that removes a considerable amount 385 

of surface-bound organic matter and may preferentially remove high-Mg calcite (Brian and Martin, 386 

2010). In contrast, the foraminifera samples that were analyzed by laser (both 50 m and 12 m 387 

spot methods) were only cleaned by sonication and rinsing with methanol and water (a procedure 388 

that does not necessary remove all the organic matter present on the shell). There is a critical 389 

difference between the laser methods, however, in that 50 m depth-profiling indiscriminately 390 

includes all material between the sample surface and bottom of the laser pit whereas the 12 m 391 

analysis of the cross section uses SEM imaging to avoid contamination that may be present on the 392 

surface or in cracks of the sample.  393 

 We suggest that the use of the 12 m beam to analyze a shell in cross-section together with 394 

SEM imaging allows measurement of Mg/Ca in better-preserved or less-contaminated domains 395 

than the 50 m depth-profiling technique. The correlation observed between bulk and 12m 396 

Mg/Ca results indicates that although the reductive cleaning may have lowered the Mg/Ca of bulk 397 

material, the relative Mg/Ca is preserved. In planktonic tests it has been suggested that Mg/Ca 398 
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ratios obtained by LA-ICP-MS on whole foraminifera (50 m spots) could record a large range of 399 

values that are not related to environmental temperatures but instead to the presence of detrital 400 

material on the test (Eggins et al., 2003 and references therein). However, it is also possible that 401 

the application of different cleaning techniques plays a significant role in determining the result of 402 

the analysis (Sadekov et al., 2008). Another possibility could be that the lack of significant 403 

correlation between the 50 m and 12 m in situ analyses is due to the limited number of 404 

foraminifera analyzed. We suggest that further work is warranted to compare depth-profiling 405 

analyses of element/Ca to small spot, cross-section analyses where care is taken to avoid organic-406 

rich or porous domains. Such a study would be particularly useful if both types of analyses could 407 

be completed in a single individual (e.g. Wycech et al., 2018a). 408 

 409 

5. Conclusion 410 

 In this study, we apply bulk and high-resolution in situ analytical methodologies to obtain 411 

18O, Mg/Ca and Sr/Ca values from the benthic foraminifera genus Uvigerina. We show an 412 

approach for obtaining paired, in situ measurements of element/Ca ratios by LA-ICPMS and δ18O 413 

by SIMS within the same individual benthic foraminifera. For both the element/Ca and 18O 414 

proxies, the same range of values is seen in the averaged in situ measurements as in the bulk 415 

foraminifera, but there are varying degrees of correlation between the different analytical 416 

methodologies. The large intra-shell variability for each of the proxies measured by in situ 417 

methodologies (12 µm and 50 µm spots) does not follow chamber number, which implies that 418 

there are no significant size(age)-related impacts on Mg/Ca, Sr/Ca and δ18O for this species. 419 

Further, the intra-shell variability is not correlated between the above geochemical proxies. We 420 

surmise that the differences between proxies for the time slices we examined and the correlations 421 

(or lack thereof) between the proxies that we reported, are due to a combination of 1) real 422 

variability in the water chemistry from which the individual foraminifera tests were precipitated, 423 

and 2) biological responses of the foraminifera to different growth conditions. The biological 424 

mechanisms behind this natural variability are still unknown (Wit et al., 2012), and most 425 

importantly they could be unique to specific setting and environmental characteristics (e.g., Santa 426 

Monica Basin in this case). Our data also demonstrate large inter-shell variability in all three 427 

geochemical proxies (Mg/Ca, Sr/Ca and 18O) analyzed in Uvigerina where environmental 428 
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conditions are expected to be less variable than in the surface ocean. This observed variability may 429 

represent some combination of: 1) real environmental conditions specific to the study site (samples 430 

from the deep ocean could verify if this is unique to coastal settings), 2) vital effects on individual 431 

specimens as seen in culture studies, or 3) variability in non-calcite phases included in the analysis 432 

(e.g. intra-crystalline organic matter or other contaminating phases) that strongly depend on 433 

cleaning and ablation conditions. This study illustrates the complexities of micro-scale 434 

geochemistry inherent to benthic Uvigerina foraminifera and demonstrates that inter- and intra-435 

shell variability should be expected when constructing paleoclimate proxy records. 436 
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Appendix A: Summary table for the SIMS data on the foraminifera analyzed. 

File sample comment δ18O ‰ 
VSMOW

2SD 
(ext.)

δ18O ‰ 
VPDB

Mass Bias 
(‰)

δ18O ‰ 
measured

2SE 
(int.)

16O 
(Gcps)

IP (nA)
Yield 

(Gcps/nA)
Relative 

Yield
X Y 16OH/16O

OH/O-
corrected

UWC-3 12.49
8/24/2015

20150824@1.asc WI-STD-83 UWC-3 G1 5.154 0.556 2.117 0.902 2.346 740 422 5.52E-04
20150824@2.asc WI-STD-83 UWC-3 G1 5.019 0.603 2.296 0.966 2.378 765 432 5.23E-04

20150824@3.asc WI-STD-83 UWC-3 G1 5.117 0.551 2.543 1.100 2.312 756 448 5.17E-04
20150824@4.asc WI-STD-83 UWC-3 G1 4.829 0.500 2.552 1.115 2.290 716 465 4.46E-04
20150824@5.asc WI-STD-83 UWC-3 G1 4.990 0.519 2.653 1.141 2.325 730 440 5.12E-04
20150824@6.asc WI-STD-83 UWC-3 G1 4.920 0.408 2.664 1.172 2.273 754 467 5.40E-04

average and 2SD -7.43 4.964 0.243

8/25/2015
SBB2015-2

20150824@7.asc SBB2015-2 UWC3 G1 5.140 0.410 2.673 1.192 2.243 -565 -124 1.38E-03

20150824@8.asc SBB2015-2 UWC3 G1 4.703 0.442 2.687 1.186 2.265 -581 -136 1.49E-03
20150824@9.asc SBB2015-2 UWC3 G1 4.955 0.592 2.668 1.182 2.258 -600 -141 1.51E-03
20150824@10.asc SBB2015-2 UWC3 G1 5.020 0.507 2.668 1.176 2.269 -591 -158 1.60E-03
20150824@11.asc SBB2015-2 UWC3 G1 4.985 0.506 2.630 1.169 2.251 -627 -149 1.56E-03

average and 2SD 4.916 0.289

VSMOW 2SD VPDB
20150824@12.asc SBB2015-2 unrelated analysis 24.02 0.36 -6.69 16.391 0.824 1.104 1.157 0.954 0.420 -760 3033 2.37E-02 0.022
20150824@13.asc SBB2015-2 unrelated analysis 27.77 0.36 -3.04 20.121 1.049 1.806 1.148 1.573 0.692 -776 3045 1.90E-02 0.017
20150824@14.asc SBB2015-2 unrelated analysis 26.79 0.36 -4.00 19.144 0.711 1.994 1.139 1.751 0.770 -811 3004 2.07E-02 0.019
20150824@15.asc SBB2015-2 unrelated analysis 29.36 0.36 -1.50 21.697 0.880 1.994 1.129 1.767 0.777 -891 3016 1.94E-02 0.018
20150824@16.asc SBB2015-2 unrelated analysis 32.96 0.36 1.99 25.268 0.439 2.433 1.119 2.174 0.957 -833 3199 8.66E-03 0.007
20150824@17.asc SBB2015-2 unrelated analysis 31.30 0.36 0.38 23.619 0.611 2.228 1.110 2.006 0.883 -827 3212 1.43E-02 0.013
20150824@18.asc SBB2015-2 unrelated analysis 24.69 0.36 -6.03 17.065 0.920 0.784 1.107 0.708 0.311 -756 3049 2.65E-02 0.025
20150824@19.asc SBB2015-2 unrelated analysis 32.33 0.36 1.38 24.646 0.464 2.317 1.095 2.117 0.931 -842 3210 1.16E-02 0.010

20150824@20.asc SBB2015-UWC3 G1 4.907 0.500 2.488 1.088 2.287 -606 -83 1.63E-03
20150824@21.asc SBB2015-UWC3 G1 5.000 0.593 2.474 1.081 2.288 -590 -92 1.76E-03
20150824@22.asc SBB2015-UWC3 G1 5.296 0.517 2.564 1.119 2.291 -613 -99 1.89E-03
20150824@23.asc SBB2015-UWC3 G1 4.748 0.470 2.657 1.168 2.275 -629 -106 1.81E-03

bracket average and 2SD -7.45 4.952 0.364 2.273 0.002
VSMOW 2SD VPDB

20150824@24.asc SBB2015-2 unrelated analysis 30.75 0.40 -0.16 23.055 0.625 2.358 1.199 1.966 0.864 -889 3123 1.30E-02 0.011
20150824@25.asc SBB2015-2 unrelated analysis 32.06 0.40 1.12 24.359 0.529 2.505 1.196 2.095 0.921 -935 3177 1.32E-02 0.011
20150824@26.asc SBB2015-2 unrelated analysis 31.62 0.40 0.69 23.915 0.473 2.455 1.179 2.083 0.916 -947 3183 1.44E-02 0.013
20150824@27.asc SBB2015-2 unrelated analysis 30.69 0.40 -0.21 22.998 0.565 2.373 1.169 2.030 0.893 290 3214 1.49E-02 0.013
20150824@28.asc SBB2015-2 unrelated analysis 32.88 0.40 1.91 25.172 0.532 2.530 1.162 2.177 0.957 352 3294 8.01E-03 0.006
20150824@29.asc SBB2015-2 unrelated analysis 33.31 0.40 2.33 25.595 0.578 2.509 1.156 2.171 0.954 340 3290 8.07E-03 0.006
20150824@30.asc SBB2015-2 unrelated analysis 32.80 0.40 1.83 25.085 0.548 2.505 1.147 2.184 0.960 324 3283 8.43E-03 0.007
20150824@31.asc SBB2015-2 unrelated analysis 32.30 0.40 1.35 24.598 0.611 2.450 1.139 2.151 0.946 309 3267 1.06E-02 0.009
20150824@32.asc SBB2015-2 unrelated analysis 32.74 0.40 1.78 25.032 0.440 2.450 1.131 2.166 0.952 282 3195 9.08E-03 0.007
20150824@33.asc SBB2015-2 unrelated analysis 32.77 0.40 1.81 25.061 0.559 2.427 1.125 2.158 0.949 274 3183 9.16E-03 0.007

20150824@34.asc SBB2015-UWC3 - G1 4.812 0.597 2.524 1.116 2.262 -729 -156 1.85E-03
20150824@35.asc SBB2015-UWC3 - G1 4.989 0.543 2.499 1.110 2.252 -716 -146 1.72E-03
20150824@36.asc SBB2015-UWC3 - G1 4.648 0.433 2.581 1.139 2.267 -751 -146 1.86E-03
20150824@37.asc SBB2015-UWC3 - G1 5.051 0.423 2.644 1.163 2.273 -730 -139 1.90E-03

bracket average and 2SD -7.47 4.931 0.403 2.274 0.002
VSMOW 2SD VPDB

20150824@38.asc SBB20152 unrelated analysis 32.90 0.36 1.93 25.107 0.561 2.444 1.163 2.102 0.929 462 3063 8.84E-03 0.007
20150824@39.asc SBB20152 unrelated analysis 33.12 0.36 2.14 25.322 0.461 2.499 1.158 2.158 0.954 473 3119 8.05E-03 0.006
20150824@40.asc SBB20152 unrelated analysis 29.54 0.36 -1.33 21.777 0.570 2.160 1.154 1.873 0.828 385 3195 1.56E-02 0.014
20150824@41.asc SBB20152 unrelated analysis 32.72 0.36 1.76 24.933 0.530 2.470 1.149 2.149 0.951 356 3153 1.04E-02 0.009
20150824@42.asc SBB20152 unrelated analysis 32.17 0.36 1.22 24.384 0.528 2.401 1.142 2.103 0.930 356 3141 1.12E-02 0.009
20150824@43.asc SBB20152 unrelated analysis 32.22 0.36 1.27 24.431 0.561 2.319 1.138 2.037 0.901 91 3462 1.15E-02 0.010
20150824@44.asc SBB20152 unrelated analysis 32.24 0.36 1.29 24.455 0.756 2.322 1.134 2.048 0.905 188 3418 1.23E-02 0.011
20150824@45.asc SBB20152 unrelated analysis 32.75 0.36 1.79 24.962 0.462 2.430 1.125 2.159 0.955 1252 3306 1.32E-02 0.011

20150824@46.asc SBB2015-UWC3-G1 4.929 0.514 2.550 1.125 2.268 -731 -88 1.74E-03
20150824@47.asc SBB2015-UWC3-G1 4.990 0.379 2.525 1.119 2.257 -724 -68 1.77E-03
20150824@48.asc SBB2015-UWC3-G1 4.852 0.476 2.637 1.173 2.247 -721 -52 1.76E-03
20150824@49.asc SBB2015-UWC3-G1 4.543 0.418 2.660 1.175 2.265 -746 -76 1.92E-03

bracket average and 2SD -7.54 4.852 0.356 2.261 0.002
VSMOW 2SD VPDB

20150824@50.asc SBB2015-2 unrelated analysis 32.68 0.48 1.72 25.034 0.522 2.564 1.167 2.196 0.971 1252 3271 8.75E-03 0.007
20150824@51.asc SBB2015-2 unrelated analysis 32.17 0.48 1.22 24.530 0.482 2.509 1.165 2.154 0.952 1230 3103 1.03E-02 0.008
20150824@52.asc SBB2015-2 unrelated analysis 33.05 0.48 2.08 25.405 0.442 2.542 1.157 2.197 0.971 1286 3167 8.15E-03 0.006
20150824@53.asc SBB2015-2 unrelated analysis 32.70 0.48 1.74 25.057 0.567 2.450 1.151 2.128 0.941 1282 3182 1.14E-02 0.009
20150824@54.asc SBB2015-2 unrelated analysis 32.18 0.48 1.23 24.542 0.526 2.450 1.144 2.142 0.947 1402 3159 9.81E-03 0.008
20150824@55.asc SBB2015-2 unrelated analysis 33.02 0.48 2.05 25.375 0.490 2.524 1.139 2.216 0.980 1349 3304 7.90E-03 0.006
20150824@56.asc SBB2015-2 unrelated analysis 32.58 0.48 1.62 24.939 0.522 2.466 1.133 2.176 0.962 1385 3386 1.03E-02 0.008
20150824@57.asc SBB2015-2 unrelated analysis 32.94 0.48 1.97 25.291 0.531 2.379 1.127 2.110 0.933 1376 3461 9.05E-03 0.007

20150824@58.asc SBB2015-UWC3-G1 5.076 0.552 2.540 1.118 2.273 -671 -124 1.83E-03
20150824@59.asc SBB2015-UWC3-G1 5.363 0.489 2.500 1.119 2.235 -647 -104 3.50E-03
20150824@60.asc SBB2015-UWC3-G1 5.066 0.505 2.628 1.148 2.289 -623 -120 1.75E-03
20150824@61.asc SBB2015-UWC3-G1 5.144 0.497 2.642 1.167 2.264 -694 -122 1.62E-03

bracket average and 2SD -7.40 4.995 0.477 2.262 0.002
VSMOW 2SD VPDB

20150824@62.asc SBB2015-2.2.1-1 32.96 0.23 1.99 25.445 0.563 2.497 1.161 2.152 0.952 -2595 1807 9.31E-03 0.007
20150824@63.asc SBB2015-2.2.1-2 32.91 0.23 1.94 25.389 0.469 2.487 1.158 2.148 0.950 -2553 1970 9.34E-03 0.007
20150824@64.asc SBB2015-2.2.1-3 32.38 0.23 1.42 24.864 0.473 2.450 1.155 2.121 0.938 -2546 1757 1.26E-02 0.011
20150824@65.asc SBB2015-2.2.1-4 32.82 0.23 1.86 25.305 0.447 2.499 1.149 2.175 0.962 -2552 1667 8.53E-03 0.007
20150824@66.asc SBB2015-2.2.2-1 33.25 0.23 2.27 25.731 0.511 2.516 1.140 2.207 0.977 -1270 1611 7.11E-03 0.005
20150824@67.asc SBB2015-2.2.2-2 not used (low yield) 30.52 0.23 -0.38 23.021 0.635 2.210 1.139 1.940 0.858 -1362 1853 1.66E-02 0.015
20150824@68.asc SBB2015-2.2.2-3 33.20 0.23 2.22 25.680 0.419 2.443 1.132 2.159 0.955 -1280 1709 7.22E-03 0.005
20150824@69.asc SBB2015-2.2.2-4 32.91 0.23 1.94 25.387 0.543 2.471 1.127 2.191 0.970 -1344 1690 7.56E-03 0.006

20150824@70.asc SBB2015-UWC3- G1 5.177 0.514 2.516 1.121 2.245 -648 -35 1.54E-03
20150824@71.asc SBB2015-UWC3-G1 4.978 0.495 2.530 1.116 2.268 -674 -26 1.57E-03
20150824@72.asc SBB2015-UWC3-G1 5.054 0.504 2.609 1.152 2.265 -651 -8 1.56E-03
20150824@73.asc SBB2015-UWC3- G1 5.101 0.460 2.633 1.173 2.245 -628 3 1.52E-03

bracket average and 2SD -7.28 5.120 0.230 2.260 0.002
VSMOW 2SD VPDB

20150824@74.asc SBB2015-2.2.3-1 not used (no LA) 32.71 0.27 1.74 25.139 0.463 2.506 1.178 2.128 0.942 -318 2214 1.25E-02 0.011
20150824@75.asc SBB2015-2.2.3-2 32.69 0.27 1.72 25.118 0.560 2.489 1.176 2.117 0.936 -287 1982 1.20E-02 0.010
20150824@76.asc SBB2015-2.2.3-3 33.25 0.27 2.27 25.680 0.466 2.568 1.174 2.188 0.968 -309 1773 9.85E-03 0.008
20150824@77.asc SBB2015-2.2.4-1 33.13 0.27 2.15 25.559 0.457 2.507 1.168 2.147 0.950 955 1841 1.13E-02 0.010
20150824@78.asc SBB2015-2.2.4-2 32.81 0.27 1.85 25.246 0.489 2.530 1.165 2.172 0.961 834 1733 9.41E-03 0.008
20150824@79.asc SBB2015-2.2.4-3 not used (no LA) 32.83 0.27 1.86 25.259 0.474 2.542 1.162 2.188 0.968 849 1739 8.94E-03 0.007
20150824@80.asc SBB2015-2.2.4-4 32.93 0.27 1.96 25.360 0.530 2.510 1.157 2.169 0.960 858 1747 9.27E-03 0.008
20150824@81.asc SBB2015-2.2.5-1 32.37 0.27 1.41 24.802 0.565 2.485 1.152 2.157 0.954 1951 1907 8.70E-03 0.007
20150824@82.asc SBB2015-2.2.5-2 32.53 0.27 1.57 24.967 0.449 2.442 1.146 2.131 0.943 1978 1946 1.14E-02 0.010
20150824@83.asc SBB2015-2.2.5-3 32.93 0.27 1.96 25.363 0.502 2.430 1.140 2.131 0.943 1992 1735 8.94E-03 0.007
20150824@84.asc SBB2015-2.2.6-1 not used (no LA) 31.10 0.27 0.18 23.540 1.780 1.672 1.142 1.464 0.648 3124 1693 1.61E-02 0.015
20150824@85.asc SBB2015-2.2.6-2 not used (no LA) 32.03 0.27 1.09 24.468 0.426 2.415 1.125 2.146 0.950 3022 1610 1.13E-02 0.010

20150824@86.asc SBB2015-UWC3-G1 5.227 0.454 2.516 1.115 2.256 -580 -53 1.60E-03
20150824@87.asc SBB2015-UWC3-G1 5.212 0.502 2.506 1.110 2.256 -568 -37 1.61E-03
20150824@88.asc SBB2015-UWC3-G1 4.986 0.487 2.587 1.139 2.272 -548 -36 1.54E-03
20150824@89.asc SBB2015-UWC3-G1 4.828 0.513 2.642 1.162 2.274 -577 -19 1.66E-03

bracket average and 2SD -7.33 5.070 0.274 2.260 0.002
VSMOW 2SD VPDB

20150824@90.asc SBB2015-2.2.6-3 not used (no LA) 32.63 0.40 1.66 25.083 0.496 2.175 1.174 1.852 0.816 3036 1840 1.19E-02 0.010
20150824@91.asc SBB2015-2.2.7-1 not used (no LA) 33.04 0.40 2.07 25.498 0.600 2.419 1.152 2.099 0.926 3729 1911 1.35E-02 0.012
20150824@92.asc SBB2015-2.2.7-2 not used (no LA) 33.00 0.40 2.03 25.454 0.526 2.423 1.144 2.119 0.934 3784 1580 1.08E-02 0.009
20150824@93.asc SBB2015-2.2.7-3 not used (no LA) 33.40 0.40 2.42 25.851 0.523 2.479 1.137 2.181 0.961 4007 1550 7.91E-03 0.006
20150824@94.asc SBB2015-2.3.1-1 32.17 0.40 1.23 24.634 0.514 2.335 1.118 2.088 0.921 -4771 673 1.10E-02 0.009

20150824@95.asc SBB2015-UWC3-G1 5.233 0.396 2.542 1.115 2.279 -541 -116 1.61E-03
20150824@96.asc SBB2015-UWC3-G1 5.222 0.509 2.518 1.114 2.261 -521 -106 1.61E-03
20150824@97.asc SBB2015-UWC3-G1 5.265 0.552 2.520 1.109 2.273 -517 -132 1.84E-03
20150824@98.asc SBB2015-UWC3-G1 4.777 0.436 2.592 1.140 2.273 -516 -86 1.64E-03

bracket average and 2SD -7.31 5.094 0.400 2.268 0.002
VSMOW 2SD VPDB

20150824@99.asc SBB2015-2.3.1-2; 32.90 0.33 1.93 25.392 0.498 2.480 1.169 2.121 0.933 -4727 525 8.14E-03 0.006
20150824@100.asc SBB2015-2.3.1-3; not used (no LA) 32.69 0.33 1.73 25.191 0.486 2.379 1.173 2.028 0.892 -4657 465 8.75E-03 0.006
20150824@101.asc SBB2015-2.3.2-1; 32.81 0.33 1.84 25.307 0.536 2.488 1.163 2.139 0.941 -3965 468 1.01E-02 0.008
20150824@102.asc SBB2015-2.3.2-2; 33.11 0.33 2.13 25.599 0.512 2.519 1.162 2.168 0.954 -3900 586 7.97E-03 0.006
20150824@103.asc SBB2015-2.3.2-3; 31.59 0.33 0.66 24.099 0.535 2.397 1.158 2.069 0.910 -3905 810 1.25E-02 0.010



20150824@104.asc SBB2015-2.3.2-4; 33.41 0.33 2.42 25.901 0.441 2.461 1.153 2.134 0.939 -3943 748 7.89E-03 0.006
20150824@105.asc SBB2015-2.3.2-5; not used (no LA) 30.24 0.33 -0.65 22.753 0.847 1.996 1.150 1.736 0.764 -3791 813 1.50E-02 0.013
20150824@106.asc SBB2015-2.3.2-6; 32.50 0.33 1.54 24.997 0.622 2.433 1.146 2.122 0.934 -3872 860 9.42E-03 0.007
20150824@107.asc SBB2015-2.3.2-7; 32.37 0.33 1.42 24.872 0.538 2.454 1.143 2.147 0.945 -3818 713 9.46E-03 0.007
20150824@108.asc SBB2015-2.3.3-1; 30.99 0.33 0.08 23.501 0.646 2.362 1.139 2.074 0.912 -2934 711 1.31E-02 0.011
20150824@109.asc SBB2015-2.3.3-2; not used (no LA) 31.00 0.33 0.08 23.504 0.518 2.249 1.133 1.985 0.873 -2877 656 1.36E-02 0.011
20150824@110.asc SBB2015-2.3.3-3; 32.05 0.33 1.10 24.550 0.472 2.315 1.126 2.057 0.905 -3133 714 1.43E-02 0.012
20150824@111.asc SBB2015-2.3.3-4; not used (no LA) 30.72 0.33 -0.18 23.233 0.622 2.139 1.122 1.907 0.839 -3113 707 1.58E-02 0.014

20150824@112.asc SBB2015-UWC3-G1 5.047 0.587 2.528 1.117 2.263 -540 -148 6.25E-03
20150824@113.asc SBB2015-UWC3-G1 5.244 0.469 2.541 1.112 2.285 -545 -75 1.79E-03
20150824@114.asc SBB2015-UWC3-G1 5.085 0.502 2.601 1.140 2.281 -525 -47 1.72E-03
20150824@115.asc SBB2015-UWC3-G1 5.193 0.506 2.641 1.164 2.268 -507 -31 1.66E-03

bracket average and 2SD -7.27 5.133 0.328 2.273 0.002
VSMOW 2SD VPDB

20150824@116.asc SBB2015-2.3.3-5 31.88 0.28 0.94 24.290 0.475 2.426 1.173 2.068 0.910 -2858 368 1.57E-02 0.013
20150824@117.asc SBB2015-2.3.3-6 not used (no LA) 31.88 0.28 0.94 24.293 0.824 2.228 1.162 1.917 0.844 -3013 361 1.44E-02 0.012
20150824@118.asc SBB2015-2.3.4-1 32.70 0.28 1.74 25.112 0.495 2.429 1.157 2.100 0.924 -2089 749 9.73E-03 0.007
20150824@119.asc SBB2015-2.3.4-2 not used (no LA) 31.33 0.28 0.41 23.753 0.607 2.294 1.146 2.001 0.881 -2009 717 1.23E-02 0.010
20150824@120.asc SBB2015-2.3.4-3 32.55 0.28 1.59 24.960 0.517 2.407 1.141 2.110 0.929 -1932 521 9.78E-03 0.007
20150824@121.asc SBB2015-2.3.5-1 not used (no LA) 32.71 0.28 1.75 25.122 0.681 2.303 1.135 2.029 0.893 -1193 490 9.84E-03 0.007
20150824@122.asc SBB2015-2.3.5-2 not used (no LA) 32.63 0.28 1.67 25.044 0.490 2.468 1.133 2.178 0.958 -1365 489 8.80E-03 0.006
20150824@123.asc SBB2015-2.3.5-3 not used (no LA) 33.74 0.28 2.74 26.137 0.498 2.292 1.135 2.019 0.889 -1408 865 8.01E-03 0.006
20150824@124.asc SBB2015-2.3.6-1 33.37 0.28 2.38 25.769 0.530 2.457 1.123 2.188 0.963 -1 693 9.16E-03 0.007

20150824@125.asc SBB2015-UWC3-G1; 4.811 0.443 2.542 1.120 2.270 -609 -178 1.77E-03
20150824@126.asc SBB2015-UWC3-G1; 4.971 0.528 2.539 1.118 2.271 -573 -204 1.64E-03
20150824@127.asc SBB2015-UWC3-G1; 4.926 0.503 2.612 1.150 2.271 -506 -159 2.86E-03
20150824@128.asc SBB2015-UWC3-G1; 5.102 0.530 2.673 1.178 2.268 -529 -168 1.78E-03

bracket average and 2SD -7.35 5.047 0.284 2.272 0.002
VSMOW 2SD VPDB

20150824@129.asc SBB2015-2.3.6-2 32.16 0.30 1.21 24.497 0.543 2.496 1.184 2.109 0.928 168 611 1.25E-02 0.011
20150824@130.asc SBB2015-2.3.6-3 32.85 0.30 1.89 25.189 0.501 2.558 1.182 2.163 0.952 323 686 9.60E-03 0.008
20150824@131.asc SBB2015-2.3.7-1 not used (no LA) 30.12 0.30 -0.77 22.471 0.536 2.231 1.175 1.900 0.836 1380 635 1.68E-02 0.015
20150824@132.asc SBB2015-2.3.7-2 not used (no LA) 31.37 0.30 0.45 23.719 0.469 2.354 1.171 2.011 0.885 1382 654 1.22E-02 0.010
20150824@133.asc SBB2015-2.3.7-3 not used (no LA) 31.16 0.30 0.24 23.503 0.500 2.391 1.165 2.053 0.903 1554 337 1.50E-02 0.013
20150824@134.asc SBB2015-2.3.8-1 not used (no LA) 33.40 0.30 2.41 25.729 0.465 2.450 1.157 2.117 0.932 2566 655 8.68E-03 0.007
20150824@135.asc SBB2015-2.3.8-2 not used (no LA) 29.49 0.30 -1.37 21.853 0.807 1.745 1.152 1.515 0.667 2465 688 1.87E-02 0.017
20150824@136.asc SBB2015-2.3.8-3 not used (no LA) 33.04 0.30 2.06 25.371 0.464 2.439 1.145 2.130 0.938 2529 504 9.89E-03 0.008

20150824@137.asc SBB2015-UWC3-G1 5.083 0.459 2.586 1.141 2.267 -563 -169 1.84E-03
20150824@138.asc SBB2015-UWC3-G1 4.871 0.501 2.592 1.138 2.278 -522 -192 1.88E-03
20150824@139.asc SBB2015-UWC3-G1 5.232 0.473 2.662 1.166 2.283 -653 -181 1.68E-03
20150824@140.asc SBB2015-UWC3-G1 4.814 0.461 2.707 1.192 2.270 -648 -199 1.73E-03

bracket average and 2SD -7.42 4.976 0.302 2.272 0.002

8/26/2015
SBB2015-2

20150824@300.asc SBB2015-UWC3-G1 E-beam off -5.076 5.246 0.081 1.271 0.064 -697 -166 9.67E-03

20150824@301.asc SBB2015-UWC3-G1 5.213 0.505 2.516 1.137 2.213 -749 -164 1.46E-03
20150824@302.asc SBB2015-UWC3-G1 5.140 0.503 2.543 1.138 2.236 -718 -173 1.49E-03
20150824@303.asc SBB2015-UWC3-G1 4.948 0.450 2.631 1.171 2.246 -694 -187 1.47E-03
20150824@304.asc SBB2015-UWC3-G1 4.962 0.436 2.679 1.199 2.235 -669 -194 1.51E-03

average and 2SD 5.066 0.263
VSMOW 2SD VPDB

20150824@305.asc SBB2015-2.3.9-1 not used (no LA) 31.97 0.24 1.02 24.395 0.674 2.395 1.226 1.954 0.876 3626 313 1.17E-02 0.010
20150824@306.asc SBB2015-2.3.9-2 not used (no LA) 32.77 0.24 1.81 25.196 0.577 2.435 1.224 1.989 0.892 3495 406 1.07E-02 0.009
20150824@307.asc SBB2015-2.3.9-3 not used (no LA) 32.90 0.24 1.93 25.321 0.463 2.491 1.215 2.051 0.920 3487 654 1.03E-02 0.009
20150824@308.asc SBB2015-2.3.10-1 not used (no LA) 31.15 0.24 0.23 23.582 0.513 2.337 1.206 1.937 0.869 4497 78 1.33E-02 0.012
20150824@309.asc SBB2015-2.3.10-2 33.47 0.24 2.49 25.892 0.479 2.496 1.192 2.095 0.939 4493 471 8.21E-03 0.007
20150824@310.asc SBB2015-2.3.10-3 33.42 0.24 2.44 25.839 0.475 2.502 1.185 2.111 0.947 4471 605 8.52E-03 0.007
20150824@311.asc SBB2015-2.3.10-4 not used (construction vibration) 32.77 0.24 1.80 25.191 0.598 2.362 1.182 1.998 0.896 4506 161 1.05E-02 0.009
20150824@312.asc SBB2015-2.5.3-1 not used (construction vibration) 32.42 0.24 1.46 24.844 0.396 2.301 1.172 1.963 0.880 -3931 -2759 8.26E-03 0.007
20150824@313.asc SBB2015-2.5.3-2 31.67 0.24 0.73 24.096 0.820 2.444 1.168 2.092 0.938 -4033 -2635 1.46E-02 0.013
20150824@314.asc SBB2015-2.5.3-3 32.99 0.24 2.02 25.415 0.526 2.438 1.161 2.100 0.942 -3947 -3066 1.07E-02 0.009
20150824@315.asc SBB2015-2.5.4-1 33.21 0.24 2.23 25.627 0.458 2.463 1.158 2.127 0.954 -3036 -2881 9.32E-03 0.008
20150824@316.asc SBB2015-2.5.4-2 32.84 0.24 1.87 25.260 0.516 2.558 1.149 2.227 0.999 -2967 -2936 1.19E-02 0.010

20150824@317.asc SBB2015-UWC3-G1; 4.901 0.508 2.551 1.140 2.238 -729 -186 1.69E-03
20150824@318.asc SBB2015-UWC3-G1; 5.075 0.514 2.538 1.138 2.231 -715 -219 1.58E-03
20150824@319.asc SBB2015-UWC3-G1; 4.967 0.444 2.557 1.135 2.253 -642 -266 1.58E-03
20150824@320.asc SBB2015-UWC3-G1; 5.165 0.552 2.492 1.132 2.201 -441 -144 1.53E-03
20150824@321.asc SBB2015-UWC3-G1; 5.180 0.521 2.575 1.161 2.219 -409 -141 1.56E-03

bracket average and 2SD -7.34 5.061 0.236 2.230 0.002
VSMOW 2SD VPDB

20150824@322.asc SBB2015-2.5.4-3 32.07 0.30 1.12 24.552 0.575 2.459 1.192 2.062 0.928 -3073 -2817 1.14E-02 0.010
20150824@323.asc SBB2015-2.5.5-1 not used (construction vibration) 32.60 0.30 1.64 25.082 0.595 2.436 1.196 2.037 0.917 -1694 -2626 1.09E-02 0.009
20150824@324.asc SBB2015-2.5.5-2 not used (construction vibration) 31.86 0.30 0.92 24.350 0.870 2.333 1.196 1.950 0.877 -1469 -2555 2.33E-02 0.022
20150824@325.asc SBB2015-2.5.5-3 not used (no LA) 32.16 0.30 1.21 24.642 0.450 2.311 1.201 1.924 0.866 -1596 -2613 1.32E-02 0.012
20150824@326.asc SBB2015-2.5.6-1 33.56 0.30 2.57 26.031 0.522 2.518 1.193 2.110 0.950 -597 -2786 8.35E-03 0.007
20150824@327.asc SBB2015-2.5.6-2 not used (no LA) 33.11 0.30 2.13 25.588 0.534 2.365 1.199 1.973 0.888 -725 -2670 8.59E-03 0.007
20150824@328.asc SBB2015-2.5.6-3 33.21 0.30 2.23 25.688 0.515 2.503 1.197 2.091 0.941 -404 -2870 8.79E-03 0.007
20150824@329.asc SBB2015-2.5.7-1 33.53 0.30 2.54 26.006 0.513 2.545 1.196 2.128 0.957 791 -2995 7.57E-03 0.006
20150824@330.asc SBB2015-2.5.7-2 33.19 0.30 2.21 25.667 0.419 2.542 1.195 2.127 0.957 663 -2936 8.15E-03 0.007
20150824@331.asc SBB2015-2.5.7-3 32.60 0.30 1.64 25.082 0.552 2.510 1.193 2.104 0.947 681 -2833 9.80E-03 0.008
20150824@332.asc SBB2015-2.5.8-1 33.07 0.30 2.09 25.545 0.487 2.410 1.179 2.045 0.920 1995 -3007 1.09E-02 0.009
20150824@333.asc SBB2015-2.5.8-2 32.86 0.30 1.89 25.343 0.460 2.392 1.177 2.033 0.915 2037 -3079 1.20E-02 0.010
20150824@334.asc SBB2015-2.5.8-3 33.60 0.30 2.61 26.074 0.421 2.445 1.169 2.091 0.941 2109 -3284 8.72E-03 0.007

20150824@335.asc SBB2015-UWC3-G1 5.274 0.467 2.572 1.163 2.213 -376 -77 1.51E-03
20150824@336.asc SBB2015-UWC3-G1 5.071 0.506 2.564 1.160 2.210 -409 -92 1.55E-03
20150824@337.asc SBB2015-UWC3-G1 5.386 0.524 2.650 1.206 2.197 -478 -11 1.51E-03
20150824@338.asc SBB2015-UWC3-G1 5.048 0.477 2.721 1.216 2.238 -564 -70 1.72E-03

bracket average and 2SD -7.28 5.119 0.301 2.222 0.002

SBB2015-3

20150824@339.asc SBB2015-3-UWC3-G1 5.142 0.463 2.726 1.221 2.233 135 28 1.40E-03
20150824@340.asc SBB2015-3-UWC3-G1 5.115 0.436 2.724 1.218 2.236 105 24 1.43E-03
20150824@341.asc SBB2015-3-UWC3-G1 4.877 0.493 2.733 1.215 2.249 130 49 1.52E-03
20150824@342.asc SBB2015-3-UWC3-G1 5.216 0.487 2.720 1.214 2.241 158 41 1.47E-03

average and 2SD 5.088 0.293
VSMOW 2SD VPDB

20150824@343.asc SBB2015-3.1.1-1 not used (no LA) 33.37 0.22 2.38 25.824 0.539 2.527 1.207 2.094 0.931 -4838 3608 1.08E-02 0.009
20150824@344.asc SBB2015-3.1.1-2 not used (no LA) 32.14 0.22 1.19 24.604 0.799 2.437 1.210 2.014 0.896 -5007 3714 2.00E-02 0.019
20150824@345.asc SBB2015-3.1.1-3 not used (no LA) 32.58 0.22 1.62 25.043 0.649 2.387 1.208 1.976 0.879 -5208 3928 1.05E-02 0.009
20150824@346.asc SBB2015-3.1.2-1 not used (no LA) 33.15 0.22 2.17 25.610 0.489 2.618 1.211 2.163 0.962 -4109 3446 9.83E-03 0.008
20150824@347.asc SBB2015-3.1.2-2 not used (no LA) 33.78 0.22 2.78 26.234 0.485 2.417 1.208 2.002 0.890 -4105 3583 7.60E-03 0.006
20150824@348.asc SBB2015-3.1.2-3 not used (no LA) 33.57 0.22 2.58 26.029 0.571 2.483 1.197 2.074 0.923 -4007 3546 8.14E-03 0.007
20150824@349.asc SBB2015-3.1.3-1 33.64 0.22 2.65 26.096 0.435 2.511 1.185 2.119 0.942 -3128 3807 8.21E-03 0.007
20150824@350.asc SBB2015-3.1.3-2 33.33 0.22 2.35 25.787 0.462 2.529 1.178 2.147 0.955 -3210 3788 8.62E-03 0.007
20150824@351.asc SBB2015-3.1.3-3 not used (no LA) 33.05 0.22 2.07 25.508 0.553 2.223 1.171 1.898 0.844 -3226 3913 1.20E-02 0.010
20150824@352.asc SBB2015-3.1.4-1 not used (no LA) 33.15 0.22 2.18 25.613 0.728 2.113 1.169 1.807 0.804 -2494 4355 1.15E-02 0.010
20150824@353.asc SBB2015-3.1.4-2 not used (no LA) 32.72 0.22 1.76 25.188 0.602 2.507 1.163 2.155 0.958 -2586 4282 1.00E-02 0.009
20150824@354.asc SBB2015-3.1.4-3 not used (no LA) 33.48 0.22 2.49 25.933 0.542 2.489 1.155 2.154 0.958 -2277 4449 9.36E-03 0.008

20150824@355.asc SBB2015-3-UWC3-G1; 5.222 0.557 2.589 1.150 2.251 218 94 1.58E-03
20150824@356.asc SBB2015-3-UWC3-G1; 5.088 0.430 2.588 1.145 2.262 276 8 1.54E-03
20150824@357.asc SBB2015-3-UWC3-G1; 5.058 0.588 2.574 1.143 2.251 283 -52 1.55E-03
20150824@358.asc SBB2015-3-UWC3-G1; 5.091 0.485 2.584 1.140 2.266 342 -41 1.56E-03

bracket average and 2SD -7.30 5.101 0.217 2.249 0.002
VSMOW 2SD VPDB

20150824@359.asc SBB2015-3.1.5-1; 33.21 0.30 2.23 25.772 0.522 2.470 1.130 2.185 0.964 -1332 3835 9.49E-03 0.008
20150824@360.asc SBB2015-3.1.5-2; 33.76 0.30 2.76 26.310 0.553 2.442 1.128 2.166 0.956 -1564 3710 8.00E-03 0.006
20150824@361.asc SBB2015-3.1.5-3; 33.53 0.30 2.54 26.086 0.529 2.460 1.128 2.180 0.962 -1412 3693 8.32E-03 0.007
20150824@362.asc SBB2015-3.1.6-1 33.43 0.30 2.45 25.990 0.432 2.414 1.127 2.142 0.945 -571 3969 9.00E-03 0.007
20150824@363.asc SBB2015-3.1.6-2; 33.58 0.30 2.59 26.137 0.400 2.333 1.123 2.077 0.917 -503 3980 8.09E-03 0.007
20150824@364.asc SBB2015-3.1.6-3; 33.27 0.30 2.29 25.828 0.470 2.437 1.117 2.181 0.962 -739 3954 8.64E-03 0.007
20150824@365.asc SBB2015-3.2.1-1; unrelated analysis 33.67 0.30 2.68 26.229 0.557 2.507 1.163 2.156 0.951 -5439 2032 8.67E-03 0.007
20150824@366.asc SBB2015-3.2.1-2; unrelated analysis 33.35 0.30 2.36 25.903 0.545 2.519 1.162 2.168 0.957 -5267 2222 9.22E-03 0.008
20150824@367.asc SBB2015-3.2.1-3; unrelated analysis 33.47 0.30 2.48 26.023 0.508 2.499 1.158 2.158 0.952 -5199 2324 8.14E-03 0.007
20150824@368.asc SBB2015-3.2.2-1; unrelated analysis 30.35 0.30 -0.54 22.932 0.738 1.823 1.153 1.582 0.698 -4198 2301 1.45E-02 0.013
20150824@369.asc SBB2015-3.2.2-2; unrelated analysis 33.51 0.30 2.52 26.064 0.500 2.471 1.152 2.145 0.946 -4031 2277 8.67E-03 0.007
20150824@370.asc SBB2015-3.2.2-3; unrelated analysis 33.80 0.30 2.81 26.359 0.563 2.461 1.145 2.150 0.949 -3947 2311 9.39E-03 0.008
20150824@371.asc SBB2015-3.2.2-4; unrelated analysis 33.55 0.30 2.56 26.103 0.499 2.440 1.137 2.145 0.947 -3784 2336 9.70E-03 0.008



20150824@372.asc SBB2015-3-UWC3-G1 5.428 0.574 2.564 1.127 2.275 29 -81 1.59E-03
20150824@373.asc SBB2015-3-UWC3-G1 5.272 0.535 2.561 1.123 2.281 73 -79 1.59E-03
20150824@374.asc SBB2015-3-UWC3-G1 5.378 0.435 2.615 1.149 2.275 99 -70 1.56E-03
20150824@375.asc SBB2015-3-UWC3-G1 5.046 0.493 2.673 1.177 2.271 209 -78 1.55E-03

bracket average and 2SD -7.20 5.198 0.300 2.267 0.002
VSMOW 2SD VPDB

20150824@376.asc SBB2015-3.2.3-1 unrelated analysis 33.04 0.39 2.07 25.541 0.550 2.304 1.182 1.949 0.861 -3108 2668 1.25E-02 0.011
20150824@377.asc SBB2015-3.2.3-2 unrelated analysis 33.43 0.39 2.45 25.929 0.476 2.509 1.176 2.133 0.942 -3135 2398 9.39E-03 0.008
20150824@378.asc SBB2015-3.2.3-3 unrelated analysis 33.59 0.39 2.59 26.081 0.512 2.514 1.171 2.148 0.949 -3125 2294 9.62E-03 0.008
20150824@379.asc SBB2015-3.2.4-1 unrelated analysis 33.51 0.39 2.52 26.003 0.497 2.479 1.165 2.127 0.940 -2215 2947 9.41E-03 0.008
20150824@380.asc SBB2015-3.2.4-2 unrelated analysis 33.61 0.39 2.62 26.104 0.523 2.500 1.162 2.151 0.950 -2151 2844 7.41E-03 0.006
20150824@381.asc SBB2015-3.2.4-3 unrelated analysis 33.74 0.39 2.75 26.236 0.565 2.503 1.159 2.160 0.954 -2182 2749 7.41E-03 0.006
20150824@382.asc SBB2015-3.2.5.1 unrelated analysis 33.02 0.39 2.05 25.520 0.522 2.505 1.155 2.169 0.958 -1335 2992 1.05E-02 0.009
20150824@383.asc SBB2015-3.2.5.2 unrelated analysis 33.46 0.39 2.47 25.953 0.437 2.494 1.154 2.162 0.955 -1287 2888 9.49E-03 0.008
20150824@384.asc SBB2015-3.2.5.3 unrelated analysis 33.47 0.39 2.48 25.968 0.518 2.503 1.149 2.177 0.962 -1301 2687 8.58E-03 0.007
20150824@385.asc SBB2015-3.2.6-1 unrelated analysis 33.24 0.39 2.26 25.736 0.512 2.487 1.144 2.174 0.960 -403 2650 9.45E-03 0.008
20150824@386.asc SBB2015-3.2.6-2 unrelated analysis 33.20 0.39 2.23 25.703 0.424 2.461 1.140 2.158 0.953 -307 2957 1.05E-02 0.009
20150824@387.asc SBB2015-3.2.6-3 unrelated analysis 33.09 0.39 2.11 25.586 0.556 2.480 1.136 2.183 0.964 -376 3059 9.01E-03 0.007

20150824@388.asc SBB2015-3-UWC3-G1 4.964 0.503 2.547 1.132 2.249 179 119 1.59E-03
20150824@389.asc SBB2015-3-UWC3-G1 4.890 0.504 2.549 1.129 2.256 202 181 1.57E-03
20150824@390.asc SBB2015-3-UWC3-G1 5.074 0.552 2.631 1.155 2.279 176 192 1.56E-03
20150824@391.asc SBB2015-3-UWC3-G1 5.061 0.468 2.625 1.179 2.228 215 251 1.59E-03

bracket average and 2SD -7.26 5.139 0.393 2.264 0.002
VSMOW 2SD VPDB

20150824@392.asc SBB2015-3.2.7-1; unrelated analysis 33.76 0.29 2.76 26.113 0.494 2.538 1.173 2.164 0.957 627 3543 9.74E-03 0.008
20150824@393.asc SBB2015-3.2.7-2; unrelated analysis 33.73 0.29 2.73 26.083 0.535 2.535 1.178 2.152 0.952 775 3679 8.99E-03 0.007
20150824@394.asc SBB2015-3.2.8-1; unrelated analysis 32.42 0.29 1.46 24.783 0.649 2.393 1.177 2.033 0.899 1857 3688 1.23E-02 0.011
20150824@395.asc SBB2015-3.2.8-2; unrelated analysis 33.13 0.29 2.15 25.489 0.492 2.583 1.175 2.199 0.972 1704 3414 1.16E-02 0.010
20150824@396.asc SBB2015-3.2.8-3; unrelated analysis 28.77 0.29 -2.08 21.161 0.715 1.340 1.177 1.138 0.503 1392 2733 3.66E-02 0.035
20150824@397.asc SBB2015-3.2.8-4; unrelated analysis 33.36 0.29 2.38 25.722 0.514 2.356 1.177 2.002 0.885 1600 3155 1.15E-02 0.010
20150824@398.asc SBB2015-3.2.8 unrelated analysis 33.70 0.29 2.71 26.061 0.505 2.509 1.174 2.137 0.945 1624 3905 8.68E-03 0.007
20150824@399.asc SBB2015-3.2.8 unrelated analysis 33.08 0.29 2.10 25.438 0.474 2.573 1.172 2.196 0.971 1600 3813 9.68E-03 0.008
20150824@400.asc SBB2015-3.2.8 unrelated analysis 33.51 0.29 2.52 25.867 0.472 2.541 1.167 2.176 0.962 1482 3894 9.42E-03 0.008
20150824@401.asc SBB2015-3.2.9-1; unrelated analysis 34.02 0.29 3.01 26.369 0.485 2.479 1.159 2.139 0.946 2956 3150 6.88E-03 0.005
20150824@402.asc SBB2015-3.2.9-2; unrelated analysis 32.32 0.29 1.37 24.686 0.734 1.835 1.157 1.587 0.702 2922 3571 1.14E-02 0.010
20150824@403.asc SBB2015-3.2.9-3; unrelated analysis 32.96 0.29 1.99 25.322 1.071 1.380 1.143 1.207 0.534 2894 3653 2.17E-02 0.020
20150824@404.asc SBB2015-3.2.9-4; unrelated analysis 34.16 0.29 3.15 26.510 0.542 2.438 1.143 2.133 0.944 2980 3216 7.03E-03 0.005

20150824@405.asc SBB2015-3-UWC3-G1; 5.077 0.444 2.584 1.142 2.264 88 44 1.66E-03
20150824@406.asc SBB2015-3-UWC3-G1; 4.994 0.555 2.598 1.139 2.281 109 54 1.81E-03
20150824@407.asc SBB2015-3-UWC3-G1; 5.227 0.499 2.633 1.163 2.265 123 84 1.66E-03
20150824@408.asc SBB2015-3-UWC3-G1 4.738 0.472 2.692 1.187 2.267 142 93 1.66E-03

bracket average and 2SD -7.39 5.003 0.291 2.261 0.002
VSMOW 2SD VPDB

20150824@409.asc SBB2015-3.2.9 unrelated analysis 34.02 0.37 3.02 26.282 0.477 2.432 1.198 2.029 0.896 3105 3966 7.86E-03 0.006
20150824@410.asc SBB2015-3.2.9 unrelated analysis 32.99 0.37 2.02 25.256 0.528 2.269 1.200 1.891 0.835 3044 4024 1.14E-02 0.010
20150824@411.asc SBB2015-3.2.9 unrelated analysis 33.84 0.37 2.84 26.096 0.501 2.551 1.199 2.126 0.939 2981 3971 8.29E-03 0.007
20150824@412.asc SBB2015-3.2.10-1 unrelated analysis 33.69 0.37 2.70 25.953 0.405 2.554 1.184 2.157 0.953 3605 3867 9.75E-03 0.008
20150824@413.asc SBB2015-3.2.10-2 unrelated analysis 33.64 0.37 2.64 25.898 0.511 2.526 1.177 2.147 0.948 3534 3601 8.68E-03 0.007
20150824@414.asc SBB2015-3.2.10-3 unrelated analysis 33.73 0.37 2.74 25.993 0.582 2.524 1.171 2.155 0.952 3462 3391 8.32E-03 0.007
20150824@415.asc SBB2015-3.3.1-1 33.48 0.37 2.49 25.743 0.563 2.524 1.169 2.160 0.954 -4772 583 8.36E-03 0.007
20150824@416.asc SBB2015-3.3.1-2 33.16 0.37 2.19 25.430 0.539 2.452 1.159 2.115 0.934 -4698 485 9.53E-03 0.008
20150824@417.asc SBB2015-3.3.1-3 33.91 0.37 2.91 26.175 0.477 2.407 1.159 2.077 0.917 -4665 671 8.92E-03 0.007
20150824@418.asc SBB2015-3.3.2-1 32.54 0.37 1.59 24.815 0.409 2.540 1.158 2.193 0.969 -3643 812 1.18E-02 0.010

20150824@419.asc SBB2015-3-UWC3-G1 4.802 0.537 2.604 1.160 2.246 216 -4 1.58E-03
20150824@420.asc SBB2015-3-UWC3-G1 4.939 0.480 2.623 1.159 2.263 204 14 1.62E-03
20150824@421.asc SBB2015-3-UWC3-G1; Cs 215-216 4.672 0.449 2.696 1.184 2.277 226 80 1.58E-03
20150824@422.asc SBB2015-3-UWC3-G1; 4.836 0.481 2.727 1.212 2.250 230 100 1.63E-03

bracket average and 2SD -7.49 4.911 0.370 2.264 0.002
VSMOW 2SD VPDB

20150824@423.asc SBB2015-3.3.2-2 32.69 0.19 1.73 24.871 0.440 2.651 1.219 2.175 0.966 -3589 992 1.04E-02 0.009
20150824@424.asc SBB2015-3.3.2-3 not used (no LA) 33.45 0.19 2.47 25.625 0.486 2.415 1.212 1.992 0.885 -3602 1176 9.52E-03 0.008
20150824@425.asc SBB2015-3.3.3-1 not used (no LA) 32.51 0.19 1.55 24.683 0.638 1.964 1.192 1.647 0.731 -2650 1094 1.27E-02 0.011
20150824@426.asc SBB2015-3.3.3-2 not used (no LA) 33.68 0.19 2.68 25.844 0.585 2.558 1.197 2.137 0.949 -2554 927 9.14E-03 0.008
20150824@427.asc SBB2015-3.3.3-3 not used (no LA) 33.65 0.19 2.66 25.820 0.503 2.430 1.200 2.025 0.900 -2598 819 9.68E-03 0.008
20150824@428.asc SBB2015-3.3.4-1 not used (no LA) 33.39 0.19 2.41 25.562 0.505 2.575 1.191 2.162 0.960 -1444 1357 1.01E-02 0.009
20150824@429.asc SBB2015-3.3.4-2 not used (no LA) 33.37 0.19 2.39 25.545 0.428 2.554 1.194 2.139 0.950 -1453 1177 9.35E-03 0.008
20150824@430.asc SBB2015-3.3.4-3 not used (no LA) 31.52 0.19 0.60 23.709 0.658 2.217 1.236 1.793 0.797 -1390 1092 1.28E-02 0.011
20150824@431.asc SBB2015-3.3.4-4 not used (no LA) 32.77 0.19 1.80 24.941 0.494 2.553 1.255 2.035 0.904 -1397 1070 1.17E-02 0.010

20150824@432.asc SBB2015-3-UWC3-G1 4.819 0.525 2.805 1.253 2.239 119 -90 1.52E-03
20150824@433.asc SBB2015-3-UWC3-G1 4.829 0.501 2.795 1.246 2.243 149 -82 1.51E-03
20150824@434.asc SBB2015-3-UWC3-G1 4.720 0.386 2.787 1.240 2.247 166 -66 1.55E-03
20150824@435.asc SBB2015-3-UWC3-G1 4.936 0.527 2.778 1.236 2.247 3 -84 1.49E-03

bracket average and 2SD -7.58 4.819 0.185 2.252 0.002

8/26/2015
SBB2015-3

20150824@436.asc SBB2015-3-UWC3-G1 5.141 0.529 2.603 1.142 2.278 162 145 1.11E-03
20150824@437.asc SBB2015-3-UWC3-G1 5.227 0.503 2.591 1.138 2.276 145 138 1.19E-03
20150824@438.asc SBB2015-3-UWC3-G1 5.213 0.513 2.595 1.133 2.292 225 90 1.19E-03
20150824@439.asc SBB2015-3-UWC3-G1 4.929 0.497 2.682 1.169 2.294 254 97 1.08E-03

average and 2SD 5.128 0.275
VSMOW 2SD VPDB

20150824@440.asc SBB2015-3.3.5-1 32.82 0.26 1.85 25.334 0.491 2.501 1.190 2.101 0.920 1122 1270 1.08E-02 0.010
20150824@441.asc SBB2015-3.3.5-2 32.54 0.26 1.58 25.055 0.435 2.461 1.186 2.075 0.908 1161 1519 1.11E-02 0.010
20150824@442.asc SBB2015-3.3.5-3 32.45 0.26 1.49 24.960 0.473 2.442 1.180 2.068 0.905 1205 1454 1.01E-02 0.009
20150824@443.asc SBB2015-3.3.6-1 not used (no LA) 32.93 0.26 1.96 25.445 0.455 2.524 1.172 2.154 0.943 2411 1467 8.57E-03 0.007
20150824@444.asc SBB2015-3.3.6-2 not used (no LA) 33.33 0.26 2.34 25.835 0.432 2.539 1.168 2.174 0.952 2451 1406 7.40E-03 0.006
20150824@445.asc SBB2015-3.3.6-3 not used (no LA) 33.80 0.26 2.80 26.302 0.483 2.491 1.160 2.146 0.939 2444 1261 8.25E-03 0.007
20150824@446.asc SBB2015-3.3.7-1 33.68 0.26 2.69 26.184 0.511 2.364 1.144 2.067 0.905 3642 1233 9.06E-03 0.008
20150824@447.asc SBB2015-3.3.7-2 not used (no LA) 30.50 0.26 -0.40 23.031 0.634 2.254 1.150 1.959 0.857 3591 1017 1.30E-02 0.012
20150824@448.asc SBB2015-3.3.7-3 33.49 0.26 2.51 26.000 0.388 2.481 1.138 2.180 0.954 3408 1684 9.17E-03 0.008

20150824@449.asc SBB2015-3-UWC3-G1 5.195 0.517 2.593 1.133 2.288 73 73 1.22E-03
20150824@450.asc SBB2015-3-UWC3-G1 5.106 0.445 2.560 1.128 2.271 132 18 1.28E-03
20150824@451.asc SBB2015-3-UWC3-G1 5.348 0.446 2.667 1.164 2.290 166 87 1.25E-03
20150824@452.asc SBB2015-3-UWC3-G1 5.035 0.426 2.709 1.183 2.290 182 63 1.26E-03

bracket average and 2SD -7.25 5.149 0.257 2.285 0.001
VSMOW 2SD VPDB

20150824@453.asc SBB2015-3.3.8-1 not used (no LA) 33.50 0.28 2.51 25.939 0.426 2.505 1.180 2.123 0.930 4909 1338 8.26E-03 0.007
20150824@454.asc SBB2015-3.3.8-2 not used (no LA) 33.46 0.28 2.47 25.897 0.599 2.391 1.186 2.016 0.883 4958 1353 9.52E-03 0.008
20150824@455.asc SBB2015-3.3.8-3 not used (no LA) 32.77 0.28 1.80 25.209 0.543 2.328 1.180 1.973 0.864 4832 1477 1.12E-02 0.010
20150824@456.asc SBB2015-3.4.1-1 not used (no LA) 30.86 0.28 -0.04 23.321 0.467 2.299 1.181 1.946 0.853 -5817 -2347 1.24E-02 0.011
20150824@457.asc SBB2015-3.4.1-2 31.73 0.28 0.80 24.183 0.551 2.460 1.177 2.090 0.916 -5803 -2419 1.14E-02 0.010
20150824@458.asc SBB2015-3.4.1-3 33.73 0.28 2.74 26.166 0.465 2.519 1.168 2.156 0.945 -5733 -2035 8.30E-03 0.007
20150824@459.asc SBB2015-3.4.1-4 33.96 0.28 2.96 26.398 0.488 2.471 1.161 2.128 0.932 -5586 -2122 8.60E-03 0.007
20150824@460.asc SBB2015-3.4.2-1 not used (no LA) 31.96 0.28 1.02 24.408 0.616 2.346 1.155 2.031 0.890 -4872 -2111 1.04E-02 0.009
20150824@461.asc SBB2015-3.4.2-2 not used (no LA) 32.06 0.28 1.12 24.512 0.589 2.374 1.149 2.066 0.905 -4684 -2133 1.06E-02 0.009
20150824@462.asc SBB2015-3.4.2-3 not used (no LA) 33.46 0.28 2.47 25.897 0.476 2.444 1.150 2.124 0.931 -4600 -2376 8.43E-03 0.007
20150824@463.asc SBB2015-3.4.2-4 not used (no LA) 33.47 0.28 2.49 25.910 0.492 2.528 1.145 2.209 0.968 -4653 -2511 8.76E-03 0.008
20150824@464.asc SBB2015-3.4.3-1 33.54 0.28 2.55 25.973 0.485 2.535 1.144 2.217 0.971 -3716 -2342 7.38E-03 0.006

20150824@465.asc SBB2015-3-UWC3-G1; 5.083 0.541 2.595 1.144 2.269 112 -127 1.18E-03
20150824@466.asc SBB2015-3-UWC3-G1; 4.963 0.538 2.605 1.140 2.285 136 -163 1.18E-03
20150824@467.asc SBB2015-3-UWC3-G1; 4.917 0.493 2.578 1.135 2.272 279 -112 1.31E-03
20150824@468.asc SBB2015-3-UWC3-G1; 4.997 0.486 2.651 1.155 2.296 475 134 1.17E-03

bracket average and 2SD -7.32 5.081 0.278 2.282 0.001
VSMOW 2SD VPDB

20150824@469.asc SBB2015-3.4.3-2; 33.02 0.22 2.05 25.289 0.457 2.497 1.188 2.101 0.922 -3842 -2089 1.06E-02 0.009
20150824@470.asc SBB2015-3.4.3-3 not used (construction vibration) 32.13 0.22 1.18 24.404 0.470 2.393 1.191 2.010 0.882 -3847 -2074 1.13E-02 0.010
20150824@471.asc SBB2015-3.4.3-4; 33.74 0.22 2.74 26.002 0.448 2.514 1.190 2.112 0.927 -3565 -2235 7.35E-03 0.006
20150824@472.asc SBB2015-3.4.4-1; not used (no LA) 32.84 0.22 1.87 25.112 0.752 2.365 1.184 1.998 0.877 -2479 -2179 1.15E-02 0.010
20150824@473.asc SBB2015-3.4.4-2; 33.14 0.22 2.17 25.411 0.472 2.585 1.178 2.193 0.963 -2273 -2278 9.48E-03 0.008
20150824@474.asc SBB2015-3.4.4-3; 33.73 0.22 2.73 25.990 0.475 2.554 1.176 2.172 0.953 -2454 -1987 1.03E-02 0.009
20150824@475.asc SBB2015-3.4.5-1; not used (no LA) 24.34 0.22 -6.37 16.676 1.219 1.293 1.173 1.102 0.483 -985 -2230 1.97E-02 0.018
20150824@476.asc SBB2015-3.4.5-2; 32.77 0.22 1.81 25.045 0.588 2.542 1.174 2.165 0.950 -1041 -2218 1.21E-02 0.011
20150824@477.asc SBB2015-3.4.5-3; 33.20 0.22 2.22 25.466 0.510 2.493 1.180 2.112 0.927 -858 -2520 9.09E-03 0.008
20150824@478.asc SBB2015-3.4.5-4; 32.87 0.22 1.90 25.138 0.422 2.494 1.180 2.114 0.928 -790 -2632 1.05E-02 0.009

20150824@479.asc SBB2015-3-UWC3-G1; 4.726 0.477 2.706 1.179 2.295 42 23 1.21E-03
20150824@480.asc SBB2015-3-UWC3-G1; 4.815 0.512 2.695 1.187 2.270 176 19 1.33E-03
20150824@481.asc SBB2015-3-UWC3-G1; 4.931 0.492 2.740 1.201 2.282 245 29 1.29E-03
20150824@482.asc SBB2015-3-UWC3-G1; 4.864 0.564 2.714 1.201 2.260 252 69 1.31E-03



bracket average and 2SD -7.48 4.912 0.221 2.279 0.001
VSMOW 2SD VPDB

20150824@483.asc SBB2015-3.4.5-5 32.74 0.19 1.78 24.968 0.487 2.460 1.190 2.068 0.911 -911 -2737 1.26E-02 0.011
20150824@484.asc SBB2015-3.4.5-6 not used (no LA) 7.60 0.19 -22.61 0.009 1.375 1.413 1.187 1.190 0.524 -891 -2680 4.67E-01
20150824@485.asc SBB2015-3.4.5-7 not used (no LA) 31.59 0.19 0.66 23.822 0.673 2.364 1.191 1.985 0.874 -927 -2690 1.17E-02 0.010
20150824@486.asc SBB2015-3.4.6-1 33.45 0.19 2.47 25.672 0.497 2.597 1.192 2.179 0.960 189 -2582 8.07E-03 0.007
20150824@487.asc SBB2015-3.4.6-2 33.53 0.19 2.54 25.748 0.500 2.613 1.189 2.198 0.968 182 -2382 8.23E-03 0.007
20150824@488.asc SBB2015-3.4.6-3 33.27 0.19 2.29 25.488 0.418 2.516 1.192 2.110 0.930 139 -2174 7.89E-03 0.007
20150824@489.asc SBB2015-3.4.7-1 not used (no LA) 33.74 0.19 2.75 25.959 0.487 2.570 1.200 2.141 0.943 1510 -2070 7.14E-03 0.006
20150824@490.asc SBB2015-3.4.7-2 not used (no LA) 33.50 0.19 2.51 25.714 0.556 2.593 1.201 2.159 0.951 1563 -2131 7.85E-03 0.007
20150824@491.asc SBB2015-3.4.7-3 not used (no LA) 32.84 0.19 1.87 25.065 0.607 2.540 1.207 2.105 0.927 1460 -2433 9.11E-03 0.008
20150824@492.asc SBB2015-3.4.7-4 not used (no LA) 33.37 0.19 2.39 25.589 0.595 2.313 1.206 1.918 0.845 1427 -2385 1.03E-02 0.009

20150824@493.asc SBB2015-3-UWC3-G1; 5.058 0.507 2.722 1.210 2.249 222 -80 1.26E-03
20150824@494.asc SBB2015-3-UWC3-G1; 4.822 0.490 2.760 1.215 2.271 237 -68 1.33E-03
20150824@495.asc SBB2015-3-UWC3-G1; 4.852 0.546 2.773 1.222 2.269 253 -59 1.38E-03
20150824@496.asc SBB2015-3-UWC3-G1; 4.860 0.470 2.768 1.223 2.264 329 -61 1.25E-03

bracket average and 2SD -7.53 4.866 0.193 2.270 0.001
VSMOW 2SD VPDB

20150824@497.asc SBB2015-3.4.8-1; 33.62 0.35 2.63 25.856 0.487 2.634 1.223 2.154 0.953 2573 -2132 8.49E-03 0.007
20150824@498.asc SBB2015-3.4.8-2; 33.88 0.35 2.88 26.116 0.456 2.603 1.212 2.147 0.951 2657 -2039 9.23E-03 0.008
20150824@499.asc SBB2015-3.4.8-3; 33.53 0.35 2.55 25.773 0.532 2.615 1.192 2.193 0.971 2458 -1838 8.66E-03 0.007
20150824@500.asc SBB2015-3.5.1-1; not used (no LA) -24.77 0.35 -54.01 -32.090 6.139 0.075 1.186 0.063 0.028 -5645 -3368 1.20E-01 0.119
20150824@501.asc SBB2015-3.5.1-2 34.40 0.35 3.39 26.636 0.490 2.518 1.187 2.122 0.939 -5649 -3348 7.44E-03 0.006
20150824@502.asc SBB2015-3.5.1-3; 33.76 0.35 2.77 25.999 0.486 2.523 1.184 2.132 0.944 -5789 -3491 8.46E-03 0.007
20150824@503.asc SBB2015-3.5.1-4; 33.88 0.35 2.88 26.119 0.403 2.560 1.196 2.140 0.947 -5841 -3576 9.61E-03 0.008
20150824@504.asc SBB2015-3.5.2-1; 33.31 0.35 2.32 25.546 0.517 2.555 1.193 2.142 0.948 -4870 -3586 8.38E-03 0.007
20150824@505.asc SBB2015-3.5.2-2; 33.37 0.35 2.39 25.611 0.418 2.564 1.194 2.148 0.951 -4788 -3659 8.83E-03 0.008
20150824@506.asc SBB2015-3.5.2-3; not used (no LA) 26.67 0.35 -4.11 18.965 5.397 2.121 1.197 1.772 0.784 -4647 -3771 9.15E-02
20150824@507.asc SBB2015-3.5.2-4; 34.16 0.35 3.15 26.391 0.453 2.521 1.205 2.093 0.927 -4752 -3453 7.44E-03 0.006
20150824@508.asc SBB2015-3.5.3-1; not used (no LA) 30.79 0.35 -0.12 23.051 0.673 1.410 1.207 1.168 0.517 -3621 -3539 1.73E-02 0.016
20150824@509.asc SBB2015-3.5.3-2; 33.13 0.35 2.15 25.368 0.458 2.549 1.209 2.109 0.934 -3631 -3560 1.02E-02 0.009

20150824@510.asc SBB2015-3-UWC3-G1; 5.012 0.470 2.757 1.213 2.273 161 -9 1.35E-03
20150824@511.asc SBB2015-3-UWC3-G1; 4.642 0.498 2.742 1.217 2.253 390 44 1.23E-03
20150824@512.asc SBB2015-3-UWC3-G1; 4.702 0.518 2.745 1.218 2.254 405 14 1.24E-03
20150824@513.asc SBB2015-3-UWC3-G1 5.149 0.412 2.724 1.217 2.238 285 24 1.34E-03

bracket average and 2SD -7.51 4.887 0.350 2.259 0.001
VSMOW 2SD VPDB

20150824@514.asc SBB2015-3.5.3-3; not used (no LA) 18.30 0.44 -12.23 10.731 2.060 0.282 1.208 0.233 0.103 -3512 -3514 4.54E-02 0.043
20150824@515.asc SBB2015-3.5.3-4; 33.63 0.44 2.64 25.945 0.464 2.665 1.215 2.193 0.971 -3526 -3503 8.47E-03 0.007
20150824@516.asc SBB2015-3.5.3-5; not used (no LA) 33.27 0.44 2.29 25.587 0.516 2.614 1.217 2.147 0.951 -3421 -3638 8.60E-03 0.007
20150824@517.asc SBB2015-3.5.4-1; not used (no LA) 33.56 0.44 2.58 25.883 0.468 2.665 1.223 2.179 0.965 -2248 -3727 7.63E-03 0.006
20150824@518.asc SBB2015-3.5.4-2; not used (no LA) 34.16 0.44 3.15 26.475 0.517 2.517 1.194 2.109 0.934 -2077 -3878 7.76E-03 0.006
20150824@519.asc SBB2015-3.5.4-3; not used (no LA) 35.00 0.44 3.97 27.310 0.453 2.167 1.185 1.828 0.810 -2032 -4004 8.04E-03 0.006
20150824@520.asc SBB2015-3.5.5-1; 32.78 0.44 1.82 25.107 0.536 2.460 1.153 2.134 0.945 -1206 -4075 1.05E-02 0.009
20150824@521.asc SBB2015-3.5.5-2; 32.77 0.44 1.80 25.092 0.475 2.416 1.148 2.105 0.932 -991 -3897 8.84E-03 0.007
20150824@522.asc SBB2015-3.5.5-3; 33.21 0.44 2.23 25.534 0.564 2.539 1.154 2.201 0.975 -1195 -4207 7.95E-03 0.006
20150824@523.asc SBB2015-3.5.6-1; 33.07 0.44 2.10 25.397 0.496 2.467 1.152 2.143 0.949 30 -4151 1.03E-02 0.008
20150824@524.asc SBB2015-3.5.6-2; 33.25 0.44 2.27 25.574 0.679 2.439 1.156 2.110 0.935 -128 -4193 1.07E-02 0.009
20150824@525.asc SBB2015-3.5.6-3 33.49 0.44 2.50 25.809 0.429 2.518 1.164 2.162 0.958 81 -4059 8.46E-03 0.007
20150824@526.asc SBB2015-3.5.7-1; 33.61 0.44 2.62 25.931 0.489 2.534 1.164 2.177 0.965 995 -4045 9.54E-03 0.008

20150824@527.asc SBB2015-3-UWC3-G1 5.305 0.592 2.582 1.155 2.236 307 199 6.10E-03
20150824@528.asc SBB2015-3-UWC3-G1 4.944 0.526 2.604 1.150 2.264 397 212 1.27E-03
20150824@529.asc SBB2015-3-UWC3-G1; Cs 217-218 5.037 0.500 2.702 1.189 2.273 399 239 1.24E-03
20150824@530.asc SBB2015-3-UWC3-G1; 4.929 0.482 2.743 1.209 2.269 458 219 1.24E-03

bracket average and 2SD -7.43 4.965 0.436 2.257 0.002
VSMOW 2SD VPDB

20150824@531.asc  SBB2015-3.5.7-2 ; 33.37 0.26 2.38 25.766 0.566 2.652 1.215 2.183 0.962 1032 -3926 8.96E-03 0.007
20150824@532.asc  SBB2015-3.5.7-3; not used (no LA) 33.45 0.26 2.47 25.851 0.471 2.633 1.208 2.180 0.961 976 -3748 8.76E-03 0.007
20150824@533.asc  SBB2015-3.5.8.1; 33.31 0.26 2.33 25.709 0.464 2.617 1.219 2.147 0.946 2348 -4064 8.45E-03 0.007
20150824@534.asc  SBB2015-3.5.8.2; 33.27 0.26 2.29 25.670 0.605 2.561 1.209 2.118 0.933 2147 -3773 9.31E-03 0.007
20150824@535.asc  SBB2015-3.5.8.3; not used (no LA) 33.59 0.26 2.60 25.984 0.445 2.605 1.199 2.173 0.957 2263 -3899 8.48E-03 0.007
20150824@536.asc  SBB2015-3.5.9-1; 33.53 0.26 2.54 25.923 0.469 2.631 1.196 2.200 0.969 3301 -3718 9.00E-03 0.007
20150824@537.asc  SBB2015-3.5.9-2; not used (no LA) 33.23 0.26 2.25 25.628 0.448 2.668 1.200 2.222 0.979 3352 -3716 7.92E-03 0.006
20150824@538.asc  SBB2015-3.5.9-3; 33.55 0.26 2.56 25.950 0.493 2.626 1.207 2.176 0.959 3366 -3550 8.48E-03 0.007
20150824@539.asc  SBB2015-3.5.10-1; not used (no LA) 33.49 0.26 2.50 25.886 0.443 2.605 1.197 2.176 0.959 4421 -3832 7.85E-03 0.006
20150824@540.asc  SBB2015-3.5.10-2; not used (no LA) 33.77 0.26 2.77 26.164 0.530 2.451 1.197 2.048 0.903 4343 -3908 9.42E-03 0.007
20150824@541.asc  SBB2015-3.5.10-3; not used (no LA) 33.61 0.26 2.62 26.002 0.488 2.543 1.176 2.163 0.953 4394 -3716 7.55E-03 0.006
20150824@542.asc  SBB2015-3.6.1-1; 33.94 0.26 2.93 26.329 0.490 2.493 1.149 2.170 0.956 -200 -5406 8.05E-03 0.006
20150824@543.asc  SBB2015-3.6.1-2; 33.74 0.26 2.75 26.139 0.406 2.431 1.149 2.116 0.932 -243 -5457 7.91E-03 0.006
20150824@544.asc  SBB2015-3.6.1-3; not used (no LA) 33.73 0.26 2.73 26.124 0.543 2.284 1.150 1.985 0.875 -141 -5654 8.84E-03 0.007

20150824@545.asc SBB2015-3-UWC3-G1 5.043 0.475 2.620 1.148 2.283 61 91 1.39E-03
20150824@546.asc SBB2015-3-UWC3-G1 4.947 0.437 2.605 1.145 2.276 100 112 1.41E-03
20150824@547.asc SBB2015-3-UWC3-G1 4.977 0.491 2.605 1.143 2.280 44 10 1.38E-03
20150824@548.asc SBB2015-3-UWC3-G1 5.147 0.507 2.593 1.140 2.275 58 -3 1.42E-03

bracket average and 2SD -7.36 5.041 0.257 2.269 0.002

Conversion of the standard reference:  d18OVPDB = (d18OVSMOW - 30.91)/1.03091 from: Coplen, T. B., Kendall, C., and Hopple, J., 1983. 
Comparison of stable isotope reference samples. Nature 302, 236-238.
All values of δ18O, were calculated on the VSMOW scale established by the UWC-3 bracketing standard. The external precision for d18OVSMOW 
measurements is reported as 2 times the standard deviation of typically 8 bracketing UWC-3 calcite standard analyses. 
beam off: electron flood gun inadvertently left off, analysis discarded; not used (no LA): this analysis has been discarded because there is no 
corresponding Laser Ablation analysis; unrelated analysis: analysis on foraminifera not belonging to the Genus Uvigerina, analysis discarded. 



Appendix B: Bulk analysis data. The asterisks represent data already reported in Balestra et al., (2018)

age cal. y.b.p.
Mg/Ca 

(mmol/mol)
Sr/Ca 

(mmol/mol)
Mass Bias (‰) PDB

197 0.67 1.25 2.82
561 1.01 1.26 2.80*

1003 0.42 1.20 2.96
12115 0.86 1.32 3.09
12463 1.65 1.26 3.24*
12976 0.58 1.26 3.43



Appendix C: 12 µm spots for LA-ICP results.
Average for each tests Average for each time slice

Age cal. y.b.p. # Chambers Foraminifera # Mg/Ca (LA) Sr/Ca (LA) Mg/Ca (LA) Sr/Ca (LA) Mg/Ca (LA) Sr/Ca (LA)

197 1 1 0.95 1.36 1.19 1.28 1.00 1.25
197 3 1 1.58 1.30
197 5 1 0.72 1.29
197 6 1 1.50 1.19

197 6 2 0.76 1.27 0.94 1.21
197 5 2 0.64 1.18
197 7 2 1.43 1.17

197 8 3 0.85 1.19 0.89 1.23
197 6 3 0.92 1.27

197 5 4 0.62 1.32 0.62 1.34
197 4 4 0.66 1.33
197 5 4 0.58 1.35

197 3 5 1.63 1.20 1.38 1.21
197 3 5 1.54 1.27
197 4 5 0.98 1.15

561 2 6 0.73 1.22 0.67 1.21 0.99 1.27
561 4 6 0.68 1.22
561 5 6 0.61 1.18

561 3 7 1.44 1.35 1.21 1.33
561 6 7 0.98 1.30

561 4 8 1.04 1.36 0.80 1.26
561 7 8 0.55 1.14
561 8 8 0.81 1.29

561 5 9 0.88 1.29 1.09 1.36
561 4 9 1.30 1.42

561 6 10 1.28 1.17 1.06 1.22
561 5 10 0.84 1.26

561 1 11 1.09 1.26 1.12 1.24
561 2 11 0.90 1.27
561 3 11 0.92 1.25
561 7 11 0.92 1.29
561 7 11 2.14 1.15
561 8 11 0.77 1.19

1003 5 12 0.59 1.23 0.86 1.14 0.84 1.20
1003 7 12 1.12 1.05

1003 4 13 0.63 1.21 0.64 1.17
1003 5 13 0.76 1.15
1003 6 13 0.54 1.16

1003 4 14 0.65 1.25 0.68 1.21
1003 6 14 0.70 1.17

1003 5 15 0.55 1.21 1.26 1.26
1003 4 15 2.28 1.30
1003 3 15 0.96 1.27

1003 1 16 0.70 1.24 0.75 1.24
1003 6 16 0.76 1.32
1003 8 16 0.79 1.16

12115 3 17 0.99 1.36 0.93 1.34 0.90 1.32
12115 1 17 1.13 1.39
12115 6 17 0.68 1.26

12115 1 18 0.84 1.22 0.86 1.28
12115 4 18 0.89 1.34

12115 3 19 0.74 1.31 0.89 1.34



12115 7 19 0.72 1.47
12115 5 19 1.23 1.25

12463 4 20 1.54 1.40 1.47 1.32 1.15 1.24
12463 5 20 1.20 1.23
12463 6 20 1.65 1.34

12463 4 22 0.94 1.27 1.07 1.26
12463 6 22 1.20 1.25

12463 6 23 1.95 1.20 1.41 1.21
12463 7 23 1.13 1.18
12463 8 23 1.16 1.25

12463 5 24 1.90 1.16 1.25 1.23
12463 10 24 0.60 1.29

12463 3 25 1.05 1.09 1.55 1.15
12463 7 25 1.44 1.21
12463 8 25 2.15 1.16

12463 1 26 0.85 1.25 0.92 1.23
12463 5 26 1.36 1.22
12463 7 26 0.55 1.22

12463 5 27 0.43 1.15 0.71 1.17
12463 8 27 0.99 1.19

12463 7 28 0.93 1.30 0.97 1.33
12463 7 28 1.14 1.44
12463 10 28 1.03 1.32
12463 12 28 0.77 1.25

12463 1 29 0.81 1.25 1.00 1.30
12463 6 29 1.17 1.38
12463 7 29 1.01 1.28

12463 7 30 1.74 1.39 1.14 1.24
12463 8 30 0.74 1.23
12463 10 30 0.96 1.11

12976 1 31 1.04 1.40 0.84 1.33 0.83 1.27
12976 5 31 0.83 1.31
12976 8 31 0.64 1.29

12976 5 32 0.59 1.29 0.55 1.29
12976 6 32 0.54 1.29
12976 3 32 0.54 1.30

12976 7 33 0.61 1.34 0.73 1.23
12976 6 33 0.86 1.13

12976 2 34 0.77 1.22 1.02 1.18
12976 4 34 1.04 1.18
12976 6 34 1.26 1.13

12976 5 35 0.63 1.19 0.61 1.26
12976 4 35 0.62 1.36
12976 6 35 0.58 1.23

12976 9 36 0.69 1.27 0.70 1.23
12976 2 36 0.71 1.20

12976 2 37 1.04 1.18 0.86 1.21
12976 8 37 0.69 1.23

12976 6 38 0.77 1.38 1.23 1.34
12976 7 38 1.69 1.29

12976 5 39 0.65 1.42 0.92 1.33
12976 1 39 1.19 1.25



average each 
test

average each 
time period

# test age cal. Y.b.p. Mg/Ca Sr/Ca Mn/Ca   Mg/Ca Sr/Ca   Mg/Ca Sr/Ca

1 197 1.21 1.15 0.0015 1.21 1.21 1.13 1.23
197 0.94 1.16 0.0014
197 1.21 1.27 0.0009
197 1.48 1.26 0.0036

2 197 1.44 1.31 0.0088 1.63 1.24
197 1.83 1.23 0.0028
197 1.67 1.23 0.0012
197 1.60 1.18 0.0028

3 197 1.07 1.31 0.0166 1.57 1.22
197 1.21 1.16 0.0015
197 1.33 1.21 0.0013
197 2.66 1.18 0.0025

4 197 1.23 1.28 -0.0105 0.99 1.25
197 1.19 1.31 0.0028
197 0.82 1.20 0.0016
197 0.72 1.20 0.0018

5 197 1.29 1.40 0.0031 1.08 1.30
197 0.96 1.27 0.0024
197 0.98 1.24 0.0021
197 1.08 1.28 0.0104

6 197 0.45 1.18 0.0020 0.61 1.21
197 0.41 1.18 0.0004
197 0.65 1.26 0.0022
197 0.68 1.16 0.0017
197 0.88 1.26 0.0050

7 197 1.51 1.34 0.0036 0.82 1.19
197 0.60 1.18 0.0011
197 0.57 1.18 0.0034
197 0.60 1.07 0.0029

8 561 1.76 1.32 0.0044 1.96 1.46 1.35 1.23
561 2.14 1.52 0.0044
561 2.32 1.54 0.0034
561 1.61 1.44 0.0031

9 561 1.28 1.13 0.0049 1.06 1.13
561 1.27 1.11 0.0041
561 0.93 1.13 0.0024
561 0.75 1.13 0.0013

10 561 1.17 1.32 0.0036 0.96 1.21
561 1.09 1.24 0.0015
561 0.81 1.14 0.0011
561 0.79 1.13 0.0036

11 561 0.66 1.33 0.0002 1.13 1.25
561 1.81 1.34 0.0031
561 1.35 1.24 0.0023
561 0.70 1.10 0.0014

12 561 0.96 1.11 0.0046 1.25 1.18
561 1.21 1.16 0.0033
561 1.22 1.16 0.0036
561 1.62 1.27 0.0038

13 561 1.49 1.35 0.0020 1.48 1.29
561 1.95 1.33 0.0028
561 1.40 1.28 0.0018
561 1.07 1.20 0.0011

14 561 1.00 1.08 0.0038 1.18 1.14
561 0.96 1.10 0.0036
561 1.02 1.12 0.0023
561 1.73 1.25 0.0032

Appendix D: 50 µm spots for LA-ICP results.



15 561 1.18 1.33 0.0019 1.13 1.23
561 1.29 1.24 0.0015
561 0.98 1.18 0.0016
561 1.08 1.18 0.0015

16 561 3.19 1.32 0.0026 2.00 1.20
561 1.92 1.16 0.0037
561 2.35 1.14 0.0029
561 2.03 1.17 0.0029

17 1003 1.42 1.33 0.0055 1.22 1.28 1.41 1.25
1003 1.15 1.30 0.0037
1003 1.45 1.24 0.0025
1003 0.85 1.23 0.0027

18 1003 2.47 1.38 0.0058 1.60 1.22
1003 1.37 1.22 0.0047
1003 1.13 1.11 0.0071
1003 1.43 1.16 0.0060

19 12115 1.16 1.37 0.0168 1.43 1.36 1.57 1.27
12115 1.56 1.35 0.0146
12115 1.58 1.35 0.0160

20 12115 1.80 1.19 0.0155 1.70 1.19
12115 1.58 1.23 0.0178
12115 1.73 1.16 0.0199

21 12463 1.10 1.28 0.0158 1.29 1.17 1.12 1.19
12463 1.36 1.22 0.0183
12463 0.93 1.15 0.0142
12463 1.79 1.04 0.0263

22 12463 0.95 1.35 0.0106 0.91 1.27
12463 1.08 1.43 0.0125
12463 0.95 1.18 0.0127
12463 0.68 1.13 0.0080

23 12463 0.79 1.09 0.0203 1.19 1.19
12463 1.61 1.17 0.0149
12463 1.11 1.22 0.0232
12463 0.84 1.20 0.0152

24 12463 0.80 1.19 0.0099 0.92 1.18
12463 0.90 1.17 0.0086
12463 1.07 1.17 0.0123

25 12463 1.35 1.15 0.0190 1.28 1.17
12463 0.77 1.21 0.0145
12463 0.90 1.18 0.0152
12463 2.24 1.16 0.0408
12463 1.12 1.13 0.0144

26 12463 0.79 1.15 0.0169 0.82 1.10
12463 0.94 1.13 0.0234
12463 0.73 1.11 0.0150
12463 0.74 1.08 0.0149
12463 0.92 1.04 0.0171

27 12463 1.26 1.19 0.0117 1.39 1.21
12463 0.93 1.24 0.0104
12463 1.98 1.19 0.0127

28 12976 1.61 1.11 0.1224 1.71 1.08 1.51 1.15
12976 1.39 1.08 0.0655
12976 2.73 1.07 0.0852
12976 1.11 1.05 0.0536

29 12976 1.06 1.24 0.0911 1.30 1.22
12976 1.59 1.25 0.1474
12976 1.28 1.24 0.0981
12976 1.29 1.17 0.0525
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