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ABSTRACT

Tropical cyclones (TCs) are an important source of precipitation for much of the eastern United States.
However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and
the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and
short records of satellite measurements. To address this, we developed a new gridded (0.25° X 0.25°)
publicly available dataset of TCP (1948-2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using
TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to charac-
terize total June-November TCP and percentage contribution to total June-November precipitation. TCP
totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially
decreasing farther inland at rates of approximately 6.2-6.7 mm km ~!. Few statistically significant trends
were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of
the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the
strongest correlations concentrated in the southeastern United States. Weaker inverse correlations be-
tween TCP and El Nifno-Southern Oscillation are seen throughout the study site. Ultimately, spatial
variations of TCP are more closely linked to variations in the NASH flank position or strength than to the
ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane—
climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the
eastern United States.
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1. Introduction

Tropical cyclone precipitation (TCP) is an important
part of the hydroclimate in the southeastern United States
(Knight and Davis 2007). However, inland flooding from
excessive TCP is a widespread natural hazard. One notable
example of TCP-induced flooding is Hurricane Harvey
(2017), which produced record-breaking rainfall that ex-
ceeded 1500 mm in some locations in Texas (Risser and
Wehner 2017; Trenberth et al. 2018; Zhang et al. 2018). In
addition to flooding, excessive rainfall from tropical cy-
clones (TCs) can trigger other hazards including mass
wasting along saturated slopes (e.g., Lin et al. 2008;
Wooten et al. 2008; Antinao and Farfan 2013; Kuo et al.
2013; Cogan et al. 2018; Yanites et al. 2018), outbreaks of
infectious diseases (e.g., Lin et al. 2012; Kim et al. 2013;
Deng et al. 2015; Fredrick et al. 2015; Zheng et al. 2017),
and infrastructure damage and failure (Guiney 2007,
Czajkowski et al. 2013; Mondoro and Frangopol 2018;
Yang et al. 2019). While excess TCP is hazardous, TCP is
also an important contributor to annual water budgets in
the region (Cry 1967; Knight and Davis 2007; Nogueira
and Keim 2011), can expedite drought cessation (Maxwell
et al. 2012, 2013, 2017; Kam et al. 2014; Brun and Barros
2014), and can be an important abiotic control on biodi-
versity and ecosystem structure (Walls et al. 2013; Chi et al.
2015; Goulding et al. 2016; Knapp et al. 2016). The di-
chotomous nature of TCP underlines the importance of
understanding TCP variability and determining connec-
tions to large-scale atmospheric variability to elucidate
spatiotemporal patterns in TCP—climate interactions.

Numerous studies have examined individual storms or
TCs over smaller spatial scales to understand the at-
mospheric circulation patterns and ambient conditions
(e.g., sea surface temperatures) giving rise to anomalous
amounts of TCP (e.g., Zhu and Zhang 2006; Konrad and
Perry 2010; Chien and Kuo 2011; Hall et al. 2013;
Hernandez Ayala and Matyas 2016; Matyas 2017;
Trenberth et al. 2018). Relatively few studies have ex-
amined TCP from the context of regional or global hy-
droclimates. Cry (1967) provided one of the earliest
TCP climatologies (1931-60) for the East Coast of the
United States using surface observations from locations
frequently impacted by TCs. Building on the work of
Cry (1967), Knight and Davis (2007) developed a TCP
climatology (1980-2004) in the mid-Atlantic and south-
eastern United States using first-order surface observa-
tions and the Cooperative Observer Program (COOP).
However, they did not distinguish between TCP and ex-
tratropical precipitation (Knight and Davis 2007), making
the two studies difficult to compare. Importantly, Knight
and Davis (2009) found that the frequency of TCP events
and their contribution to extreme precipitation events in
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the southeastern United States were increasing. Nogueira
and Keim (2011) show broadly similar spatial patterns in
the eastern United States, with the greatest annual av-
erage TCP located in south Florida (120-130 cm), while
additional areas of high values (90-120cm) occur in
central/north Florida, southeast North Carolina, and the
northern Gulf Coast. Generally, their estimates of TCP
contributions to seasonal precipitation were similar to
the results in Cry (1967). However, contributions of TCP
to seasonal precipitation farther inland were greater
than previous estimates (Cry 1967) by ~2% yr !, which
Nogueira and Keim (2011) attribute to a different study
period (1960-2007) and greater station density. The
difference between studies becomes more apparent in
the mean monthly TCP contribution; Nogueira and
Keim (2011) report TCP contributions that are ap-
proximately half of the values shown in previous work
(Knight and Davis 2007). In addition to the aforemen-
tioned factors, selection criteria (e.g., inclusion/exclusion
of extratropical cyclones) and storm track density may
explain differences in mean monthly TCP contributions
between studies (Nogueira and Keim 2011).

While gauge-based studies have helped to understand
historical TCP variability, missing observations and the
irregular distribution of rain gauges limit interpretabil-
ity. Efforts to address this problem often employ satel-
lite or radar measurements of TCP (e.g., Rodgers et al.
1994; Rodgers and Pierce 1995; Rodgers et al. 2001;
Lonfat et al. 2004; Benedetti et al. 2005; Shepherd et al.
2007; Jiang and Zipser 2010; Jiang and Ramirez 2013;
Prat and Nelson 2013a,b; Zhu and Quiring 2017; Rios
Gaona et al. 2018; Tang and Matyas 2018). Using
satellite measurements improves data coverage. For
example, the Tropical Rainfall Measuring Mission
(TRMM) Multisatellite Precipitation Analysis 3B42 and
3B43 provide subdaily measurements from 50°N to 50°S
at a resolution of 0.25°. These improvements have
prompted multiple studies examining recent changes in
TCP within and beyond the spatial coverage provided by
most stations (e.g., Lonfat et al. 2004; Jiang and Zipser
2010; Prat and Nelson 2013a,b; Xu et al. 2014; Zick
and Matyas 2015; Zhu and Quiring 2017). However,
satellite-based TCP climatologies are currently limited
by a short record length (e.g., Defense Meteorological
Satellite Program Special Sensor Microwave Imager:
1987—-present; TRMM: 1997-2015; Global Precipitation
Measurement: 2014—present), making them less useful
for assessing TCP interactions with low-frequency
climate oscillations (Ashouri et al. 2015; Zhu and
Quiring 2017).

The influence of El Nifio-Southern Oscillation
(ENSO) on tropical cyclone activity for the North
Atlantic is well documented, with the warm (EIl Nifio)
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and cool (La Nifia) phases associated with decreased
and increased TC frequency, respectively (e.g., Gray 1984;
Bove et al. 1998; Elsner et al. 2001; Smith et al. 2007). The
few studies that have examined the relationship between
TCP and large-scale atmospheric—oceanic variability
focus on ENSO, the Atlantic multidecadal oscillation, or
the North Atlantic Oscillation (Nogueira et al. 2013;
Khouakhi et al. 2017; Aryal et al. 2018), but no studies
have examined the connection between TCP patterns
and the North Atlantic subtropical high. Nogueira
et al. (2013) found that ENSO was driving increased
spatial variability in TCP for certain regions of the
eastern United States, particularly in Texas. This pattern
is attributed to the change in landfall frequency in re-
sponse to shifts in ENSO phases (Nogueira et al. 2013).
Likewise, Khouakhi et al. (2017) demonstrated that La
Nifia is generally responsible for the increased extreme
precipitation arising from TCs. They suggest that what
underlies the control ENSO has on TCP is the fact that
there is a heightened probability of TCs impacting the
United States simply due to the increased number of
storms generated during La Nifia.

Relative to ENSO, less attention has been focused on
the role of the North Atlantic subtropical high (NASH;
often referred to as the Azores or Bermuda high) on
TCP. Instead, studies often use the North Atlantic
Oscillation (NAO) to represent atmospheric circulation
patterns in the North Atlantic (e.g., Elsner et al. 2000,
2001; Aryal et al. 2018). However, the NAO is consid-
ered to be the dominant mode of circulation only during
the winter. The NASH is a semipermanent anticy-
clone that migrates between Bermuda and the Azores
(Sahsamanoglou 1990; Davis et al. 1997). It is the dom-
inant form of circulation during summer and fall (Davis
et al. 1997); consequently, it can directly influence
summer precipitation in the southeastern United States
(Li et al. 2011, 2012). Several studies suggest that shifts
in the position, size, or intensity of the NASH have a
strong influence on TC tracks (Liu and Fearn 2000;
Elsner et al. 2000, 2001; Glaser et al. 2013), which can
impact spatiotemporal patterns of TCP.

To overcome the limitations of gauge- and satellite-
based analyses, we developed a long-term, high-resolution,
gridded dataset of TCP that is publicly available (see
section 4). Using an existing gridded (0.25° X 0.25°)
precipitation dataset, we extracted TCP for the eastern
United States by integrating TC track information on a
subdaily basis. We used this newly developed Tropical
Cyclone Precipitation Dataset (TCPDat) to 1) examine
the spatial patterns of TCP and the contribution of TCP
to seasonal rainfall for the eastern United States, 2) test
for trends in TCP, and 3) identify the role of large-scale
atmospheric—oceanic variability on TCP patterns.
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2. Materials and methods
a. Tropical cyclones

To determine the position and intensity of TCs, we
used the tropical cyclone best track data from the
Hurricane Database (HURDAT?) (Landsea et al. 2004;
Landsea and Franklin 2013), available from the World
Meteorological Organization’s International Best Track
Archive for Climate Stewardship initiative v03r09
(Knapp et al. 2010). The regularly updated database
includes best track data from the season preceding the
current Atlantic hurricane season and extends to 1851.
The accuracy and completeness of the dataset prior to
aircraft reconnaissance (pre-1944) and satellite moni-
toring (pre-1972) is limited because of uncertainties in
the best track parameters (e.g., position, intensity, wind
radii; Hagen et al. 2012; Torn and Snyder 2012; Landsea
and Franklin 2013; Landsea et al. 2014) used in the re-
analysis. The precipitation data that we used, and con-
sequently our study period, begin in 1948, so we also
avoided many of the problems that come with using pre-
1944 reanalyses (Vecchi and Knutson 2011). While a
portion of our study period lacked satellite observations
(1948-71), tropical cyclones that impacted the eastern
conterminous United States (CONUS) were well ob-
served by in situ data sources during this period.

We defined a TC as a tropical depression, tropical
storm, or hurricane. Following this definition, storms
that were entirely extratropical or subtropical were re-
moved from the dataset. We also excluded any portions
of the life cycle of a given TC during which it was in the
subtropical or extratropical phase. Likewise, we ex-
cluded any nontropical precursor classification. In all
cases, we used the system status (e.g., tropical depres-
sion [TD], hurricane [HU], extratropical cyclone [EX],
subtropical storm [SS]) from HURDAT? to identify and
remove nontropical cyclones and nontropical stages.
Given that the initiation of storm transition is not
identified in HURDAT?2, our selection criteria for a TC
include the transition period during which storms are a
hybrid between tropical and nontropical cyclones.
While transitioning storms have both tropical and non-
tropical characteristics (Evans and Hart 2003; Hart et al.
2006), we assume that the system status indicated by
HURDAT? is the most accurate characterization of the
storm. We further refined the dataset by removing any
storms that were not within 223 km of any landmass, in
accordance with the average precipitation radius of a TC
(Matyas 2010). This radius allowed us to capture TCP
over the CONUS for nearshore TCs that never made
landfall. Finally, HURDAT?2 storm entries are recorded
at 6-h intervals. Consequently, fast-moving TCs can
move large distances between entries. To address this,



1806

we used a cubic spline to spatially interpolate TC posi-
tion (i.e., eye coordinates) between observations, dou-
bling the number of position entries per TC.

b. Precipitation

We used daily precipitation data from the Climate
Prediction Center (CPC) U.S. Unified Precipitation
(URD) dataset (Higgins et al. 2000a) provided by
NOAA/OAR/ESRL Physical Sciences Division. A
comprehensive discussion about the development of
the CPC gridded precipitation dataset can be found in
Higgins et al. (2000b). URD is updated daily (—1200 to
1200 UTC) to provide high-resolution (0.25° X 0.25°)
gridded precipitation over the CONUS since 1948
(Higgins et al. 2000b, 2008). Precipitation data from
more than 8000 stations in the CPC unified rain gauge
dataset are interpolated to a grid using an optimal in-
terpolation (OI; Gandin 1965) scheme (Chen et al. 2008;
Higgins et al. 2008; Higgins and Kousky 2013). Grid
points are built using the weighted mean of observed
and first-guess value differences among stations within
the specified search distance (Gandin 1965; Chen et al.
2008). The weighted coefficient used in Ol is determined
using the precipitation field variance and covariance
structures (Gandin 1965; Chen et al. 2008). This is
unique because unlike the Cressman and Shepard
techniques (Cressman 1959; Shepard 1968), OI does not
solely rely on the distance between grid points and sta-
tion gauges to determine the weighted coefficient
(Gandin 1965; Chen et al. 2008). Rather, OI constructs
fields of daily precipitation climatologies based on his-
torical station observations (Xie et al. 2007; Chen et al.
2008). The resulting gridded fields consist of interpo-
lated ratios between the daily precipitation and daily
climatologies, which are then multiplied by the daily
climatology to yield daily precipitation analyses (Xie
et al. 2007; Chen et al. 2008). Interpolating with the ratio
makes the OI technique especially powerful for char-
acterizing the spatial patterns of precipitation (Chen
et al. 2008). Moreover, analysis of different interpola-
tion techniques indicates that OI consistently outper-
forms other techniques when applied to daily precipitation
analysis and representing spatial patterns of precipitation
(Chen et al. 2008).

URD is widely used in hydroclimatological studies as
it is perhaps the most spatiotemporally complete daily
precipitation dataset covering the CONUS (Atallah
et al. 2007; Corbosiero et al. 2009; Higgins and Kousky
2013; Aryal et al. 2018; Luitel et al. 2018). While indi-
vidual intense precipitation events are often not accu-
rately represented by URD due to smoothing, the
differences between gauge-based and URD-based sea-
sonal and annual rainfall totals are small (Atallah et al.
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2007; Ensor and Robeson 2008). Presumably, the simi-
larities between gauge- and URD-based seasonal and
annual totals persist over longer (e.g., decadal or mul-
tidecadal) intervals. Ultimately, while smoothing is an
issue with URD, which can limit its utility in certain
applications where gauge-based data are preferred (e.g.,
recurrence intervals; Ensor and Robeson 2008), the lack
of missing data and the gridded structure of URD are
strengths that result in a spatiotemporally complete
dataset.

URD has been successfully applied to the eastern
Pacific to understand the TC hydroclimate of the south-
west United States (Corbosiero et al. 2009). Despite
~10% of Pacific TCs occurring in the eastern Pacific,
URD has shown that these TCs are an important water
source for regional hydroclimates, contributing between
5% and 20% of annual precipitation throughout the
southwestern United States (Corbosiero et al. 2009).
Further, the results presented by Corbosiero et al. (2009)
demonstrate that the use of gridded data such as URD
can yield a robust climatology of TCP, in spite of the
difficulty URD has with capturing mesoscale phenomena
(Atallah et al. 2007; Archambault et al. 2008; Ensor and
Robeson 2008). We focused on TCP during the North
Atlantic hurricane season, from 1 June to 30 November
(JJASON), used in many North Atlantic TCP studies
(e.g., Knight and Davis 2007, 2009; Nogueira and Keim
2010; Zhou and Matyas 2017) as seasonal TCP values
should largely reflect annual TCP values. Hence, values
for total TCP and its contribution to total rainfall repre-
sent JJASON rather than an entire year.

c. Tropical cyclone precipitation extraction

To extract TCP from the precipitation dataset, we
identified all grid points within a 223-km radius (Matyas
2010) from the interpolated TC position. Although the
shape of the TC rain field changes after landfall and
cannot be fully captured with a circle (Matyas 2007,
2013; Villarini et al. 2011), we used the average size of a
TC rain field (223 km; Matyas 2010) to construct a search
radius, reducing the probability that nontropical pre-
cipitation is captured in TCPDat. Other approaches
have been employed by examining TCP over multiple
radii (e.g., Konrad et al. 2002) as well as using a liberal
search radius (e.g., 500km; Nogueira and Keim 2011).
While these approaches have yielded invaluable infor-
mation on the TCP hydroclimate, we elected to use a
more conservative radius (223 km) to examine variable
minima in extreme precipitation.

Using subdaily interpolated TC tracks risks precipi-
tation at a given grid cell being counted multiple times.
To account for this, we built a gridded Boolean
presence—absence matrix for each daily precipitation
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period. At each grid point, we then calculated multiple
metrics, including total JJASON TCP, monthly total
TCP, mean JJASON TCP, and JJASON TCP contri-
bution to total seasonal precipitation. We performed a
monotonic trend analysis on the total sum of JJASON
TCP and the JJASON TCP contribution using the
nonparametric Mann—Kendall test, which is widely used
in climate studies for its resistance to outliers (e.g.,
Tabari et al. 2011; Gocic and Trajkovic 2013; Ficklin
etal. 2015; Maxwell et al. 2017; Aryal et al. 2018). Setting
the significance threshold at @ = 0.05, we used the
Mann-Kendall z scores to identify locations with in-
creasing (z > 0) and decreasing (z < 0) TCP. Before
trend analysis, we tested for autocorrelation and found
that TCP values were not autocorrelated.

d. Climate indices

To examine the role of large-scale atmospheric cir-
culation and climate modes on TCP, we targeted climate
indices known to influence TC genesis, development,
and/or tracks. Specifically, we selected mean monthly
index values representative of the NASH and ENSO.
While the Atlantic multidecadal oscillation is thought to
influence TCs (Klotzbach and Gray 2008; Wang et al.
2008; Enfield and Cid-Serrano 2010), there are only a
limited number of complete cycles over our period of
record, and therefore we elected to focus on indices with
important roles on interannual TC variability. Despite
the influence of the NAO on TCs (Elsner and Kocher
2000; McCloskey et al. 2013), the NASH is a direct
representation of atmospheric circulation in the region
of the North Atlantic where TCs develop and track
(McCloskey et al. 2013). While the central core of the
NASH is usually positioned in the central or eastern
Atlantic, the center of circulation typically moves west
during summer, positioning the western edge of the
NASH over the southeastern United States. Summer
precipitation patterns may shift in response to this mo-
tion (Stahle and Cleaveland 1992; Davis et al. 1997; Katz
et al. 2003; Li et al. 2011; Li et al. 2012). The magnitude
of western migration often is quantified using the
Bermuda high index (BHI), which represents the
normalized sea level pressure gradient between New
Orleans (Louisiana) and Bermuda (Stahle and Cleaveland
1992; Katz et al. 2003; Ortegren et al. 2011). Negative
(positive) values indicate that the western flank of the
NASH is positioned farther west (east) closer to New
Orleans (Bermuda) (Ortegren and Maxwell 2014).
The BHI does not provide information regarding the
position of the NASH or its strength; rather, it ex-
plicitly defines meridional variations in the western
ridge of the anticyclone. Furthermore, it does not
entirely capture zonal variations in western flank
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position (Ortegren and Maxwell 2014), which can be
an important control on precipitation variability in
the southeastern United States (Li et al. 2011, 2012).
We also retrieved index values for the NAO index for
September—October from Li and Wang (2003). This
index extends back to 1948 and represents the stan-
dardized pressure gradient between the Azores and
Iceland. Finally, we used the bivariate ENSO time
series (BEST; Smith and Sardeshmukh 2000) index
(1948-2015; 3-month moving average) from NOAA/
OAR/ESRL PSD. We selected the BEST dataset as it
fully represents oceanic and atmospheric processes by
combining the Nifio-3.4 SST index with the Southern
Oscillation index (SOI).

To identify potential relationships between the large-
scale forcings of TCP, we conducted a spatial field cor-
relation between the gridded TCP metrics and the
climate indices using Kendall’s tau-b. To examine the
combined effect of ENSO and BHI, we used both indi-
ces as predictors in a linear regression model against
logged TCP. To account for the multiple zeros, we
added 1 mm to every year of TCP prior to taking the
natural log of TCP. Finally, we used empirical orthog-
onal function (EOF) analysis to identify spatial patterns
associated with the primary modes of variability. Using
the seasonal total TCP and TCP contribution, EOF
analysis produced eigenvectors, principal component
(PC) time series, and eigenvalues that we used to iden-
tify primary modes of variability and potential climate
connections. We tested whether the first five PC time
series (which indicate the amplitudes of the leading
modes of variability) were correlated with the contem-
poraneous ENSO and BHI values using Spearman’s
rank correlation. The color schema of our maps were
created using ‘“‘cmocean mfiles” (Thyng et al. 2016).

3. Results and discussion

a. Total JJASON TCP and TCP contributions to total
JJASON precipitation

Our TCP and TCP contribution results show the ex-
pected major features presented in previous studies
(Knight and Davis 2007; Nogueira and Keim 2011), but
with gridded data at high spatial resolution over a long
period of time (Figs. 1 and 2). The highest values of
mean JJASON TCP (Fig. 1) and mean JJASON TCP
contribution (Fig. 2) are concentrated along the Gulf
and Southeast Coasts, which have the greatest number
of years with at least one TC (=40 years; see Fig. S1 in
the online supplemental material). Generally, our mean
TCP (Fig. 1) and mean TCP contributions (Fig. 2) are
lower than previous studies (e.g., Knight and Davis 2007;
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FIG. 1. Map of the mean seasonal (JJASON) TCP (mm yr~ ') during 1948-2015 for
0.25° X 0.25° grid.

Nogueira and Keim 2011), sometimes by approximately
50% in areas with higher contributions.

Our results differ slightly from previous studies
(Knight and Davis 2007; Nogueira and Keim 2011)
likely because of data and methodological differences,
including different search radii and the inclusion or ex-
clusion of extratropical precipitation. At 68 years (1948
2015), our study period was the longest. The increase in
record length alone provides more reliable estimates of
TCP patterns. Another possible explanation is the dif-
ference between gridded and point data (Ensor and
Robeson 2008). Two studies used precipitation data
from either the United States Historical Climatology
Network (USHCN; Nogueira and Keim 2011) or first-
order station datasets/COOP (Knight and Davis 2007).

405 400 95 90

While these approaches use reliable data, TCP patterns
are not fully represented due to nonuniform station
coverage. Although our precipitation dataset relies on
station data (Higgins et al. 2000a), an interpolation
scheme is applied beforehand (Higgins et al. 2007; Xie
et al. 2007; Higgins and Kousky 2013), producing a high-
resolution dataset with no missing values. As such, the
use of a gridded dataset could produce slightly different
results from those seen in point-based data (Ensor and
Robeson 2008). Finally, extraction techniques can
affect TCP patterns by over- or underestimating TCP
(Hewitson and Crane 2005; Ensor and Robeson 2008),
particularly if precipitation from extratropical cyclones
or frontal systems is included. Knight and Davis (2007)
included precipitation from extratropical cyclones and

T R | S

85 80 5 70

FIG. 2. Map of the mean seasonal (JJASON) contribution (% yr™') of TCP to seasonal
precipitation during 1948-2015 for 0.25° X 0.25° grid.
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TCP beyond ~300 km inland plateaus (not shown).

potentially frontal (nontropical) systems in their analy-
sis. Nogueira and Keim (2011) avoided collecting ex-
tratropical precipitation by only including storms given a
“tropical” rating in HURDAT. However, considering
the extreme changes in TCP distribution that occur
postlandfall (Atallah et al. 2007; Matyas 2007, 2010), the
larger 500-km search radius used by Nogueira and Keim
(2010, 2011) to extract TCP could have included frontal
and other nontropical precipitation. While our selection
of a 223-km radius (Matyas 2010) could lead us to un-
derestimate actual TCP, it increases the probability that
the extracted precipitation arises primarily from TCs
rather than non-tropical-cyclogenic sources.

To determine whether the difference between previ-
ous studies and this one was related to the conservative
search radius, we analyzed mean TCP and mean TCP
contributions using a similar search radius (500 km) and
study period (1960-2007) as Nogueira and Keim (2011).
Mean TCP from TCPDat was consistently less than
previous studies (Figs. S2 and S3). The spatial patterns
predominantly match our results using a 223-km radius
(Fig. 1), such as maxima located along much of the Gulf
Coast, Florida, and North Carolina. TCP contribution
also increased substantially (Figs. S4 and S5) and were
closer to the values presented by Nogueira and Keim
(2011) and Knight and Davis (2007). Additionally, there
was no difference in TCP contribution between the two
different study periods using TCPDat (i.e., 1948-2015
and 1960-2007; Figs. S4 and S5). The spatial patterns of
TCP contributions using a 500-km radius (Figs. S4 and
S5) and a 223-km radius (Fig. 2) were virtually identical.
Furthermore, our analysis of rainfall from Hurricane

Georges (Figs. S6, S7) using two different radii, 223 and
500km, reveals that TCPDat generally mirrors the
spatial patterns of maps of poststorm precipitation
analysis from NHC—particularly with the 500-km
radius—while underestimating the most extreme rain-
fall values during individual events. Differences between
the two radii largely stem from storm characteristics
(e.g., storm size), indicating that storm-specific radii are
required to analyze individual events. In either case, this
is consistent with results from previous studies showing
that individual extreme events are not well represented
by URD on subseasonal to event-based time scales
(Ensor and Robeson 2008). Despite its underperformance
in this capacity, TCPDat still provides an accurate repre-
sentation of TCP climatology over longer time scales. Our
results (Figs. 1 and 2; see also Figs. S2-S7) support the
notion that the differences between this study and previous
TCP climatologies arise from our use of gridded data from
URD, and that TCPDat provides an accurate estimation
of the TC hydroclimate in the eastern United States.

We calculated the gradient in mean JJASON TCP
(Fig. 3) from the coast to ~300km inland to further il-
lustrate the utility of TCPDat in examining varying TCP
spatial patterns. Mean JJASON TCP contribution was
calculated but not shown because of its similarity to
mean JJASON TCP (Fig. 3). The TCP gradient for
North Carolina [16.06 mm (100km) ;7 = 0.9895] de-
creases more rapidly than the gradient in Louisiana
[15.01mm (100km)~'; ¥ = 0.9721; Fig. 3]. Similar to
previous studies (e.g., Khouakhi et al. 2017), both tran-
sects show that decreases in mean JJASON TCP re-
mains linear for approximately 300 km inland before
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FIG. 4. Mann-Kendall trend for seasonal JJASON TCP from 1948 to 2015. Contours and
hatching indicate regions of significance (p = 0.05).

transitioning to a plateau in TCP (not shown). While we
do not examine some of the more nuanced changes
possibly due to topographic interactions (e.g., Schwarz
1970; Harville 2009; Rostom and Lin 2015) or changes in
storm tracks (Rostom and Lin 2015; Liu et al. 2016), the
gridded nature of TCPDat allows for the examination of
spatial changes in TCP without requiring substantial
interpolation.

b. Trends in TCP

Our results do not show the same patterns in trends in
TCP as seen in previous studies (Knight and Davis 2007;
Nogueira et al. 2013). Except for small, isolated loca-
tions (i.e., negative trends in Florida and the Mississippi
River Valley), we did not find any trends in total
JTJASON TCP (Fig. 4) or JJASON percentage contri-
bution, which is not shown as it similar to Fig. 4. A more
varied pattern was reported by Nogueira et al. (2013),
where increasing (decreasing) TCP occurs at 75%
(25%) of stations with significant trends. Most stations
along the Gulf Coast indicate increasing TCP, while
trends along the East Coast are more varied (Nogueira
et al. 2013). South Florida is the only area showing a
significant trend in our results (Fig. 3) that spatially
overlaps with stations in Knight and Davis (2007) and
Nogueira et al. (2013), but our analysis indicates that the
trend there is negative, in contrast to previous findings.

c¢. TCP and climate: NASH

We found limited significant relationships between
interannual TCP variations and the NAO index (Li and
Wang 2003), with the summer (JJA) season showing no
significant correlations (not shown) and fall (SON)
season having spatially limited significance (Fig. 5).
Significant correlations are primarily located on the

edges of TCPDat (Fig. 5). While the NAO index may
exhibit an influence on TCP along the coast, the signif-
icant correlations observed well inland are likely spuri-
ous. Moreover, although the correlations between TCP
and the NAO Index along the coast are spatially limited
(Fig. 5), they occupy the same area as correlations be-
tween TCP and the index used for the NASH (Fig. 6).
Given that the NAO is calculated from the pressure
gradient between the Azores Islands and the Icelandic
low, and therefore indicates the midlatitude pressure
gradient of which the NASH is one component, we focus
on the NASH as it is the physical feature closer to the
main development region (Davis et al. 1997) and has a
strong influence on the overall hydroclimate of the
southeastern United States (Li et al. 2011, 2012;
Ortegren and Maxwell 2014).

The correlation analyses between the Bermuda high
index (BHI; Ortegren et al. 2011) and different TCP
metrics indicate a number of significant relationships.
Positive correlations between TCP and BHI are seen
throughout the eastern United States, with the excep-
tion of the north-central/morthwestern Midwest, New
England, and isolated locations in the southern Great
Plains and coastal Southeast (Fig. 6). A large spatially
continuous region of the eastern United States shows a
significant (p =< 0.05) positive correlation (0.2 = r < 0.5)
between the two variables, with the strongest correla-
tions (0.4 < r < 0.5) present in a portion of the U.S.
Southeast and the southern Appalachian highlands.
The strong correlation present along the southern
Appalachian Mountains may stem from precipitation
intensification due to orographic lift. However, this
could ultimately be a consequence of the NASH steer-
ing TCs (e.g., Vega and Binkley 1993; Elsner et al. 2000;
Colbert and Soden 2012). Another smaller region of
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FIG. 5. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and
the NAO index for September—November. Contours and hatching indicate regions of signifi-

cance (p = 0.05).

significance is present in south-central Florida, where
there is also a weak positive correlation between TCP
and BHI (0.1 = r = 0.2). Overall, this relationship sug-
gests that during periods when the western flank of the
NASH is displaced west of its mean location (i.e., BHI
becomes negative), TCP tends to be suppressed relative
to the mean. Conversely, when the western ridge of the
NASH is displaced eastward, TCP in our study area
tends to be greater than average. TCP contribution (not
shown) exhibits a virtually identical magnitude and
pattern as total seasonal TCP (Fig. 6).

Changes in NASH position and/or strength are fre-
quently identified as a control on TC track variability in
the North Atlantic (e.g., Vega and Binkley 1993; Elsner
et al. 2000; Colbert and Soden 2012). The NASH can

-100 -95 -90

-105

either act as a blocking or steering mechanism for TCs,
directing storms into different regions of the North
Atlantic (Vega and Binkley 1993; Elsner et al. 2000;
Colbert and Soden 2012). The position and/or strength
of the NASH yields environments conducive to partic-
ular TC tracks (Colbert and Soden 2012). When the
anticyclone moves east and is weak, TCs tend to recurve
out to sea without impacting the eastern United States
(Colbert and Soden 2012). Conversely, TCs tend to ei-
ther take a straight-line track or recurve before landfall
when the NASH is farther west and the sea level pres-
sure gradient (SLP) is stronger (Colbert and Soden
2012). To our knowledge, no study has explicitly ex-
amined the relationship between the NASH and TCP.
The findings of the influence of the NASH—especially

-85 -80 -75 -70

FIG. 6. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and
mean JJASON BHI. Contours and hatching indicate regions of significance (p =< 0.05).
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FIG. 7. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and
mean JJASON ENSO-BEST values. Contours and hatching indicate regions of significance

(p = 0.05).

the western flank—on increasing variability in sum-
mertime precipitation (Li et al. 2011, 2012) demonstrate
the importance of the NASH on the precipitation in the
Southeast. We find that the western flank of the NASH
has a significant influence on TCP, and that this could
contribute to the increased variability of hurricane sea-
son rainfall. However, as the BHI does not capture zonal
patterns of western flank position (Ortegren and
Maxwell 2014), which adds another dimension of pre-
cipitation variability in the Southeast United States (Li
etal. 2011, 2012), the relationship is likely more nuanced
than what we describe above.

d. TCP and climate: ENSO

The relationship between ENSO and North Atlantic
TCs is well documented (e.g., Gray 1984; Bove et al.
1998; Elsner et al. 2001; Smith et al. 2007; Yang et al.
2018). During the warm phase (EI Nifio), TC frequency
decreases in the North Atlantic primarily due to in-
creased vertical wind shear (e.g., Gray 1984; Bove et al.
1998). Conversely, the cool phase (La Nifia) weakens
vertical wind shear and produces a typically more fa-
vorable environment for tropical cyclogenesis in the
region (e.g., Gray 1984; Bove et al. 1998). Although
multiple studies have investigated the relationship be-
tween ENSO and TC activity, relatively few studies have
examined the influence of ENSO on TCP patterns in the
United States (e.g., Nogueira and Keim 2010, 2011;
Nogueira et al. 2013; Khouakhi et al. 2017; Aryal et al.
2018). Given the documented inverse relationship be-
tween ENSO and TC activity (e.g., Gray 1984; Bove
et al. 1998; Elsner et al. 2001; Smith et al. 2007), we
expect TCP to respond similarly to ENSO.

The eastern United States displays some spatially het-
erogeneous patterns between total seasonal TCP and
mean JJASON ENSO-BEST (Fig. 7). Much of the study
area is characterized by an insignificant relationship
(—0.2 = r = 0.2) between TCP and ENSO, which are
generally grouped together with the exception of isolated
corridors of opposing correlations (e.g., positive r values
in upstate New York surrounded by negative r values;
Fig. 7). The lack of significance across much of the eastern
United States is not surprising as TCs often have already
undergone extratropical transition when well inland
(Hart and Evans 2001). There are isolated areas of weak
to moderate significant inverse correlations (—0.4 =< r < 0)
between TCP and ENSO throughout the eastern
United States (Fig. 7), with the most pronounced inverse
relationship (—0.4 = r = —0.3) located in west-central
Texas. In addition to the increased spatial heterogeneity
in correlations compared to the NASH, a smaller portion
of the study area exhibits a significant relationship (p =
0.05). The North Carolina coastal plain, northern Mid-
Atlantic, northern Florida, and west-central Texas exhibit
an inverse relationship (—0.4 < r = —0.2) between TCP
and ENSO. Although the cool phase of ENSO is associ-
ated with increased TC frequency (e.g., Gray 1984; Bove
et al. 1998), we find that TCP has a weak to moderate
relationship with ENSO. The correlation between TCP
contribution and ENSO (not shown) is virtually identical
to total seasonal TCP in both magnitude and spatial
distribution.

e. Leading mode of variability

The correlation analyses discussed in previous sec-
tions are ideal for characterizing individual relationships



1 MARCH 2020

BREGY ET AL.

1813

14 ¢

-
(]

BHiz regressio
coefficients

L~ = =4
N ko @

o

-105 -100 95 90 -85 80 75 -70

0.3

0.25

0.2

0.1

0.05

45

I c
2 o BEE

35

S

o
SO regressil
coefficients

{Phor2
30 1 -0.8

25 T 4
105 100 -95 90 -85 80 75 .70

FIG. 8. (a) R* and (b),(c) regression coefficients for regression model incorporating BHI and ENSO, respectively.
Contours represent the areas of significance (p < 0.05). In (a) the hatching represents significant R values. In
(b) the green shading represents the regression coefficients for BHI, while hatching shows areas where ENSO is not
significant in the model. In (c) the green shading represents the regression coefficients for ENSO, while hatching

show areas where BHI is not significant in the model.

with TCP. This is not necessarily enough to illuminate
how the relationship changes in the presence of compet-
ing climatic controls. To better understand the connection
between TCP, NASH, and ENSO, we performed a linear
regression analysis, where the BHI and ENSO-BEST
were used as predictors (Fig. 8). Immediately, there are
two distinct regions of significant R* values (Fig. 8a): a
large swath of relatively high values that extends from the
Gulf Coast to the northern Mid-Atlantic, and a smaller
area in south-central Texas and northeast Florida. These
areas correspond to the BHI and ENSO, respectively.
Maps of the regression coefficients for BHI (Fig. 8b) and
ENSO (Fig. 8c) show similar regionalization as the R*
values (Fig. 8a). Interestingly, in areas where a significant
relationship is seen between BHI (ENSO) and TCP,
ENSO (BHI) is removed from the model, indicating that
it exerts a limited influence on TCP (Figs. 8b,c). There are
large areas where the influence of both BHI and ENSO is
nonexistent (Figs. 8b,c), which is corroborated by the low
R? values produced by the model (Fig. 8a). In either case,
our regression model further supports our findings that
the NASH, specifically the BHI, exhibits a greater influ-
ence on TCP variability in the study area.

We can further support these claims by examining
TCP in the context of empirical orthogonal functions
(EOFs). Eigenvector loading maps for total JJASON
TCP indicate that the leading mode of variability, EOF 1,

explains 17.9% of the total variance in the total sea-
sonal TCP (Fig. 9). We also examined the eigenvectors
of TCP contribution, which produced virtually identical
loading maps (not shown). Similar to mean JJASON
TCP and TCP contribution (Figs. 1 and 2), the highest
loadings on EOF 1 occur in coastal North Carolina with
slightly lower values occurring in southeast Louisiana
and the central coastal plain (i.e., Alabama and
Mississippi; Fig. 9). Beyond these locations, values are
substantially lower (=0.015) across the study region,
with the exception of isolated areas of intermediate
values (~0.025-0.030) along the coast. Distinct region-
ality is seen in EOFs 2-4, where the remaining EOFs
explain 15.4% (EOF 2), 9.20% (EOF 3), and 6.50%
(EOF 4) of the variability (Fig. 9). In EOF 2, the
Northeast and coastal Texas have the opposite sign to
much of the Southeast and Midwest. Additionally, the
two extrema are located in North Carolina (~—0.05)
and Alabama (=0.025). EOF 3 also shows a distinct
dipole pattern throughout the study area. Finally, EOF 4
shows a more spatially heterogeneous pattern, with
smaller regions of values of both signs.

Only the scores of EOF 1 had a significant correlation
with BHI and ENSO. BHI showed a significant moderate
correlation with the leading mode of variability (r =
0.4327; p <0.01). Likewise, a significant relationship
was observed between ENSO-BEST and EOF 1



1814

—EOF 1 (17.9 %)

30

30

25

-100 -95 -90 -85 -80 -75 -70

-105

JOURNAL OF CLIMATE

35

-105

VOLUME 33

EOF2{154 %}

-0.1

- 0.075

-0.05

-0.025

-100 -95 -90 -85

-0.025

-0.05

-0.075

0.1

-100 -95 -90 -85 -80 -75 -70

FI1G. 9. Loading map of leading unrotated EOFs for mean JJASON TCP (mm) from 1948 to 2015. EOFs 1-4
account for 49% of the total variability.

(r = —0.2816; p < 0.05). Our results suggest that both
the NASH and ENSO are significantly connected to the
distribution of seasonal TCP totals, with the former
having a greater influence on TCP by way of controlling
storm tracks.

The regionalization observed in the EOF analysis
(Fig. 9) is corroborated by the grid-based correlation
analysis between mean JJASON BHI/ENSO and total
seasonal TCP (Figs. 6 and 7) and TCP contribution
(not shown). Regions with the highest eigenvalues
(Fig. 9; EOF 1) coincide with significant, weak to
moderate positive correlations in similar locations in
Louisiana and North Carolina (Figs. 6 and 7). The
lowest eigenvalues (Fig. 9; EOF 1) coincide with weak
to moderate negative correlations in similar locations
in Texas (Figs. 6 and 7). Seasonal TCP totals (Fig. 6)
and contributions (not shown) are positively corre-
lated to BHI in southeast Louisiana and North
Carolina, while a significant inverse relationship with
ENSO is present in Texas (Fig. 7). Given that BHI and
ENSO only have a significant relationship with TCP in
Louisiana and North Carolina (Fig. 6) and Texas
(Fig. 7), respectively, while also being distinct features
in EOF 1 (Fig. 9), this could be indicative of a more
nuanced relationship between TCP and large-scale
circulation operating on regional scales or smaller.
Unlike previous studies employing EOF analysis (e.g.,
Nogueira et al. 2013), our results suggest that the role of
ENSO on TCP patterns is weaker and much more lim-
ited than BHI.

Nogueira et al. (2013) found a significant inverse
correlation between ENSO and EOF 6, explaining 8%
of the total variance. Our EOF analysis suggests that the
role of ENSO on TCP patterns is more limited. While
our use of a longer dataset could explain these differ-
ences, they are probably the result of dataset structure
(i.e., gridded vs point; Ensor and Robeson 2008). Our
linear regression model (Fig. 8) and EOF (Fig. 9) results
both indicate that the NASH is a more important con-
trol on TCP patterns than ENSO, supporting our cor-
relation analysis results (Figs. 6, 7). This is likely because
the NASH acts as a blocking or steering mechanism for
storm tracks (Vega and Binkley 1993; Elsner et al. 2000;
Colbert and Soden 2012). However, variables such as
North Atlantic SST patterns are also important controls
on TCP variability (Rodgers et al. 1994; Villarini et al.
2014), and thus further examination of TCP controls is
critical.

4. Conclusions

Precipitation from TCs is an integral component of
regional hydroclimates in the eastern United States,
where TCP can comprise a substantial percentage of
total precipitation (Cry 1967; Knight and Davis 2007,
Nogueira and Keim 2011). In this study we developed a
high-resolution, gridded (0.25° X 0.25°) dataset of TCP
from 1948 to 2015 and examined TCP climatology in the
eastern United States. The resulting spatial patterns
generally corroborate previous studies (e.g., Knight and
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Davis 2007; Nogueira and Keim 2011) with differences
between studies likely resulting from the length and
resolution/gridded nature of TCPDat and different TCP
extraction criteria. Our results highlight the strengths
and weaknesses of TCPDat. For example, the dataset
provides a uniformly distributed grid of time series with-
out missing values, which can be easily implemented into
numerical models. TCPDat is based on URD, which does
not represent individual extreme events well (Ensor and
Robeson 2008). As such, this combined with the conser-
vative search radius used in this study likely led to an
underestimation of TCP. Nevertheless, this is generally
not an issue when looking at TCP over seasonal, annual,
or longer time scales (Ensor and Robeson 2008). Despite
the fact that the gridded product underwent substantial
interpolation, it still provides the most spatially consistent
depiction of TCP. Finally, researchers can modify the
search radius criteria to match their needs upon accessing
the code via GitHub (https:/github.com/jbregy/TCPDat.git).
We also used TCPDat to identify possible relation-
ships between TCP patterns and large-scale atmospheric
variability (ENSO and NASH). Our results suggest that
spatiotemporal TCP variability is more closely linked to
variability in the NASH and less so with ENSO. We
found no studies examining a link between TCP and the
NASH. However, given the influence of the NASH on
TC tracks (e.g., Elsner et al. 2000) and hydroclimatic
variability in the southeastern United States (Li et al.
2011, 2012), it is likely that variations in the position or
strength of the NASH is a relatively important control
on TCP variability. Even so, environmental (e.g., SSTs)
and storm-specific variables likely exert a greater influ-
ence on TCP (Rodgers et al. 1994; Villarini et al. 2014;
Hernandez Ayala and Matyas 2016; Trenberth et al.
2018). As such, further examination of TCP controls is
essential to elucidate the role of TCs in regional hy-
droclimates as well as how TCP will vary in a changing
climate. Finally, TCPDat can be updated on an annual
basis and serve as an important tool for continued re-
search into the relationship between TCP and large-
scale circulation. Understanding TCP variability can
provide insight to additional areas including hazard
mitigation (e.g., landslides, floods), risk assessment for
insurance, or conservation/biodiversity practices. Fully
understanding TCP variability requires thorough explo-
ration of different TCP datasets, and is critical when pre-
paring vulnerable communities for a changing climate.
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