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ABSTRACT

Tropical cyclones (TCs) are an important source of precipitation for much of the eastern United States.

However, our understanding of the spatiotemporal variability of tropical cyclone precipitation (TCP) and

the connections to large-scale atmospheric circulation is limited by irregularly distributed rain gauges and

short records of satellite measurements. To address this, we developed a new gridded (0.258 3 0.258)
publicly available dataset of TCP (1948–2015; Tropical Cyclone Precipitation Dataset, or TCPDat) using

TC tracks to identify TCP within an existing gridded precipitation dataset. TCPDat was used to charac-

terize total June–November TCP and percentage contribution to total June–November precipitation. TCP

totals and contributions had maxima on the Louisiana, North Carolina, and Texas coasts, substantially

decreasing farther inland at rates of approximately 6.2–6.7 mm km21. Few statistically significant trends

were discovered in either TCP totals or percentage contribution. TCP is positively related to an index of

the position and strength of the western flank of the North Atlantic subtropical high (NASH), with the

strongest correlations concentrated in the southeastern United States. Weaker inverse correlations be-

tween TCP and El Niño–Southern Oscillation are seen throughout the study site. Ultimately, spatial

variations of TCP are more closely linked to variations in the NASH flank position or strength than to the

ENSO index. The TCP dataset developed in this study is an important step in understanding hurricane–

climate interactions and the impacts of TCs on communities, water resources, and ecosystems in the

eastern United States.
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1. Introduction

Tropical cyclone precipitation (TCP) is an important

part of the hydroclimate in the southeastern United States

(Knight and Davis 2007). However, inland flooding from

excessiveTCP is awidespread natural hazard.Onenotable

example of TCP-induced flooding is Hurricane Harvey

(2017), which produced record-breaking rainfall that ex-

ceeded 1500mm in some locations in Texas (Risser and

Wehner 2017; Trenberth et al. 2018; Zhang et al. 2018). In

addition to flooding, excessive rainfall from tropical cy-

clones (TCs) can trigger other hazards including mass

wasting along saturated slopes (e.g., Lin et al. 2008;

Wooten et al. 2008; Antinao and Farfán 2013; Kuo et al.

2013; Cogan et al. 2018; Yanites et al. 2018), outbreaks of

infectious diseases (e.g., Lin et al. 2012; Kim et al. 2013;

Deng et al. 2015; Fredrick et al. 2015; Zheng et al. 2017),

and infrastructure damage and failure (Guiney 2007;

Czajkowski et al. 2013; Mondoro and Frangopol 2018;

Yang et al. 2019). While excess TCP is hazardous, TCP is

also an important contributor to annual water budgets in

the region (Cry 1967; Knight and Davis 2007; Nogueira

and Keim 2011), can expedite drought cessation (Maxwell

et al. 2012, 2013, 2017; Kam et al. 2014; Brun and Barros

2014), and can be an important abiotic control on biodi-

versity and ecosystem structure (Walls et al. 2013; Chi et al.

2015; Goulding et al. 2016; Knapp et al. 2016). The di-

chotomous nature of TCP underlines the importance of

understanding TCP variability and determining connec-

tions to large-scale atmospheric variability to elucidate

spatiotemporal patterns in TCP–climate interactions.

Numerous studies have examined individual storms or

TCs over smaller spatial scales to understand the at-

mospheric circulation patterns and ambient conditions

(e.g., sea surface temperatures) giving rise to anomalous

amounts of TCP (e.g., Zhu and Zhang 2006; Konrad and

Perry 2010; Chien and Kuo 2011; Hall et al. 2013;

Hernández Ayala and Matyas 2016; Matyas 2017;

Trenberth et al. 2018). Relatively few studies have ex-

amined TCP from the context of regional or global hy-

droclimates. Cry (1967) provided one of the earliest

TCP climatologies (1931–60) for the East Coast of the

United States using surface observations from locations

frequently impacted by TCs. Building on the work of

Cry (1967), Knight and Davis (2007) developed a TCP

climatology (1980–2004) in the mid-Atlantic and south-

eastern United States using first-order surface observa-

tions and the Cooperative Observer Program (COOP).

However, they did not distinguish between TCP and ex-

tratropical precipitation (Knight andDavis 2007),making

the two studies difficult to compare. Importantly, Knight

and Davis (2009) found that the frequency of TCP events

and their contribution to extreme precipitation events in

the southeasternUnited States were increasing. Nogueira

and Keim (2011) show broadly similar spatial patterns in

the eastern United States, with the greatest annual av-

erage TCP located in south Florida (120–130 cm), while

additional areas of high values (90–120 cm) occur in

central/north Florida, southeast North Carolina, and the

northern Gulf Coast. Generally, their estimates of TCP

contributions to seasonal precipitation were similar to

the results in Cry (1967). However, contributions of TCP

to seasonal precipitation farther inland were greater

than previous estimates (Cry 1967) by;2%yr21, which

Nogueira and Keim (2011) attribute to a different study

period (1960–2007) and greater station density. The

difference between studies becomes more apparent in

the mean monthly TCP contribution; Nogueira and

Keim (2011) report TCP contributions that are ap-

proximately half of the values shown in previous work

(Knight and Davis 2007). In addition to the aforemen-

tioned factors, selection criteria (e.g., inclusion/exclusion

of extratropical cyclones) and storm track density may

explain differences in mean monthly TCP contributions

between studies (Nogueira and Keim 2011).

While gauge-based studies have helped to understand

historical TCP variability, missing observations and the

irregular distribution of rain gauges limit interpretabil-

ity. Efforts to address this problem often employ satel-

lite or radar measurements of TCP (e.g., Rodgers et al.

1994; Rodgers and Pierce 1995; Rodgers et al. 2001;

Lonfat et al. 2004; Benedetti et al. 2005; Shepherd et al.

2007; Jiang and Zipser 2010; Jiang and Ramirez 2013;

Prat and Nelson 2013a,b; Zhu and Quiring 2017; Rios

Gaona et al. 2018; Tang and Matyas 2018). Using

satellite measurements improves data coverage. For

example, the Tropical Rainfall Measuring Mission

(TRMM)Multisatellite PrecipitationAnalysis 3B42 and

3B43 provide subdaily measurements from 508N to 508S
at a resolution of 0.258. These improvements have

prompted multiple studies examining recent changes in

TCPwithin and beyond the spatial coverage provided by

most stations (e.g., Lonfat et al. 2004; Jiang and Zipser

2010; Prat and Nelson 2013a,b; Xu et al. 2014; Zick

and Matyas 2015; Zhu and Quiring 2017). However,

satellite-based TCP climatologies are currently limited

by a short record length (e.g., Defense Meteorological

Satellite Program Special Sensor Microwave Imager:

1987–present; TRMM: 1997–2015; Global Precipitation

Measurement: 2014–present), making them less useful

for assessing TCP interactions with low-frequency

climate oscillations (Ashouri et al. 2015; Zhu and

Quiring 2017).

The influence of El Niño–Southern Oscillation

(ENSO) on tropical cyclone activity for the North

Atlantic is well documented, with the warm (El Niño)
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and cool (La Niña) phases associated with decreased

and increased TC frequency, respectively (e.g., Gray 1984;

Bove et al. 1998; Elsner et al. 2001; Smith et al. 2007). The

few studies that have examined the relationship between

TCP and large-scale atmospheric–oceanic variability

focus onENSO, theAtlanticmultidecadal oscillation, or

the North Atlantic Oscillation (Nogueira et al. 2013;

Khouakhi et al. 2017; Aryal et al. 2018), but no studies

have examined the connection between TCP patterns

and the North Atlantic subtropical high. Nogueira

et al. (2013) found that ENSO was driving increased

spatial variability in TCP for certain regions of the

easternUnited States, particularly in Texas. This pattern

is attributed to the change in landfall frequency in re-

sponse to shifts in ENSO phases (Nogueira et al. 2013).

Likewise, Khouakhi et al. (2017) demonstrated that La

Niña is generally responsible for the increased extreme

precipitation arising from TCs. They suggest that what

underlies the control ENSO has on TCP is the fact that

there is a heightened probability of TCs impacting the

United States simply due to the increased number of

storms generated during La Niña.
Relative to ENSO, less attention has been focused on

the role of the North Atlantic subtropical high (NASH;

often referred to as the Azores or Bermuda high) on

TCP. Instead, studies often use the North Atlantic

Oscillation (NAO) to represent atmospheric circulation

patterns in the North Atlantic (e.g., Elsner et al. 2000,

2001; Aryal et al. 2018). However, the NAO is consid-

ered to be the dominant mode of circulation only during

the winter. The NASH is a semipermanent anticy-

clone that migrates between Bermuda and the Azores

(Sahsamanoglou 1990; Davis et al. 1997). It is the dom-

inant form of circulation during summer and fall (Davis

et al. 1997); consequently, it can directly influence

summer precipitation in the southeastern United States

(Li et al. 2011, 2012). Several studies suggest that shifts

in the position, size, or intensity of the NASH have a

strong influence on TC tracks (Liu and Fearn 2000;

Elsner et al. 2000, 2001; Glaser et al. 2013), which can

impact spatiotemporal patterns of TCP.

To overcome the limitations of gauge- and satellite-

based analyses, we developed a long-term, high-resolution,

gridded dataset of TCP that is publicly available (see

section 4). Using an existing gridded (0.258 3 0.258)
precipitation dataset, we extracted TCP for the eastern

United States by integrating TC track information on a

subdaily basis. We used this newly developed Tropical

Cyclone Precipitation Dataset (TCPDat) to 1) examine

the spatial patterns of TCP and the contribution of TCP

to seasonal rainfall for the eastern United States, 2) test

for trends in TCP, and 3) identify the role of large-scale

atmospheric–oceanic variability on TCP patterns.

2. Materials and methods

a. Tropical cyclones

To determine the position and intensity of TCs, we

used the tropical cyclone best track data from the

Hurricane Database (HURDAT2) (Landsea et al. 2004;

Landsea and Franklin 2013), available from the World

Meteorological Organization’s International Best Track

Archive for Climate Stewardship initiative v03r09

(Knapp et al. 2010). The regularly updated database

includes best track data from the season preceding the

current Atlantic hurricane season and extends to 1851.

The accuracy and completeness of the dataset prior to

aircraft reconnaissance (pre-1944) and satellite moni-

toring (pre-1972) is limited because of uncertainties in

the best track parameters (e.g., position, intensity, wind

radii; Hagen et al. 2012; Torn and Snyder 2012; Landsea

and Franklin 2013; Landsea et al. 2014) used in the re-

analysis. The precipitation data that we used, and con-

sequently our study period, begin in 1948, so we also

avoided many of the problems that come with using pre-

1944 reanalyses (Vecchi and Knutson 2011). While a

portion of our study period lacked satellite observations

(1948–71), tropical cyclones that impacted the eastern

conterminous United States (CONUS) were well ob-

served by in situ data sources during this period.

We defined a TC as a tropical depression, tropical

storm, or hurricane. Following this definition, storms

that were entirely extratropical or subtropical were re-

moved from the dataset. We also excluded any portions

of the life cycle of a given TC during which it was in the

subtropical or extratropical phase. Likewise, we ex-

cluded any nontropical precursor classification. In all

cases, we used the system status (e.g., tropical depres-

sion [TD], hurricane [HU], extratropical cyclone [EX],

subtropical storm [SS]) fromHURDAT2 to identify and

remove nontropical cyclones and nontropical stages.

Given that the initiation of storm transition is not

identified in HURDAT2, our selection criteria for a TC

include the transition period during which storms are a

hybrid between tropical and nontropical cyclones.

While transitioning storms have both tropical and non-

tropical characteristics (Evans andHart 2003; Hart et al.

2006), we assume that the system status indicated by

HURDAT2 is the most accurate characterization of the

storm. We further refined the dataset by removing any

storms that were not within 223km of any landmass, in

accordance with the average precipitation radius of a TC

(Matyas 2010). This radius allowed us to capture TCP

over the CONUS for nearshore TCs that never made

landfall. Finally, HURDAT2 storm entries are recorded

at 6-h intervals. Consequently, fast-moving TCs can

move large distances between entries. To address this,
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we used a cubic spline to spatially interpolate TC posi-

tion (i.e., eye coordinates) between observations, dou-

bling the number of position entries per TC.

b. Precipitation

We used daily precipitation data from the Climate

Prediction Center (CPC) U.S. Unified Precipitation

(URD) dataset (Higgins et al. 2000a) provided by

NOAA/OAR/ESRL Physical Sciences Division. A

comprehensive discussion about the development of

the CPC gridded precipitation dataset can be found in

Higgins et al. (2000b). URD is updated daily (21200 to

1200 UTC) to provide high-resolution (0.258 3 0.258)
gridded precipitation over the CONUS since 1948

(Higgins et al. 2000b, 2008). Precipitation data from

more than 8000 stations in the CPC unified rain gauge

dataset are interpolated to a grid using an optimal in-

terpolation (OI; Gandin 1965) scheme (Chen et al. 2008;

Higgins et al. 2008; Higgins and Kousky 2013). Grid

points are built using the weighted mean of observed

and first-guess value differences among stations within

the specified search distance (Gandin 1965; Chen et al.

2008). The weighted coefficient used inOI is determined

using the precipitation field variance and covariance

structures (Gandin 1965; Chen et al. 2008). This is

unique because unlike the Cressman and Shepard

techniques (Cressman 1959; Shepard 1968), OI does not

solely rely on the distance between grid points and sta-

tion gauges to determine the weighted coefficient

(Gandin 1965; Chen et al. 2008). Rather, OI constructs

fields of daily precipitation climatologies based on his-

torical station observations (Xie et al. 2007; Chen et al.

2008). The resulting gridded fields consist of interpo-

lated ratios between the daily precipitation and daily

climatologies, which are then multiplied by the daily

climatology to yield daily precipitation analyses (Xie

et al. 2007; Chen et al. 2008). Interpolating with the ratio

makes the OI technique especially powerful for char-

acterizing the spatial patterns of precipitation (Chen

et al. 2008). Moreover, analysis of different interpola-

tion techniques indicates that OI consistently outper-

forms other techniques when applied to daily precipitation

analysis and representing spatial patterns of precipitation

(Chen et al. 2008).

URD is widely used in hydroclimatological studies as

it is perhaps the most spatiotemporally complete daily

precipitation dataset covering the CONUS (Atallah

et al. 2007; Corbosiero et al. 2009; Higgins and Kousky

2013; Aryal et al. 2018; Luitel et al. 2018). While indi-

vidual intense precipitation events are often not accu-

rately represented by URD due to smoothing, the

differences between gauge-based and URD-based sea-

sonal and annual rainfall totals are small (Atallah et al.

2007; Ensor and Robeson 2008). Presumably, the simi-

larities between gauge- and URD-based seasonal and

annual totals persist over longer (e.g., decadal or mul-

tidecadal) intervals. Ultimately, while smoothing is an

issue with URD, which can limit its utility in certain

applications where gauge-based data are preferred (e.g.,

recurrence intervals; Ensor and Robeson 2008), the lack

of missing data and the gridded structure of URD are

strengths that result in a spatiotemporally complete

dataset.

URD has been successfully applied to the eastern

Pacific to understand the TC hydroclimate of the south-

west United States (Corbosiero et al. 2009). Despite

;10% of Pacific TCs occurring in the eastern Pacific,

URD has shown that these TCs are an important water

source for regional hydroclimates, contributing between

5% and 20% of annual precipitation throughout the

southwestern United States (Corbosiero et al. 2009).

Further, the results presented by Corbosiero et al. (2009)

demonstrate that the use of gridded data such as URD

can yield a robust climatology of TCP, in spite of the

difficulty URDhas with capturing mesoscale phenomena

(Atallah et al. 2007; Archambault et al. 2008; Ensor and

Robeson 2008). We focused on TCP during the North

Atlantic hurricane season, from 1 June to 30 November

(JJASON), used in many North Atlantic TCP studies

(e.g., Knight and Davis 2007, 2009; Nogueira and Keim

2010; Zhou and Matyas 2017) as seasonal TCP values

should largely reflect annual TCP values. Hence, values

for total TCP and its contribution to total rainfall repre-

sent JJASON rather than an entire year.

c. Tropical cyclone precipitation extraction

To extract TCP from the precipitation dataset, we

identified all grid points within a 223-km radius (Matyas

2010) from the interpolated TC position. Although the

shape of the TC rain field changes after landfall and

cannot be fully captured with a circle (Matyas 2007,

2013; Villarini et al. 2011), we used the average size of a

TC rain field (223 km;Matyas 2010) to construct a search

radius, reducing the probability that nontropical pre-

cipitation is captured in TCPDat. Other approaches

have been employed by examining TCP over multiple

radii (e.g., Konrad et al. 2002) as well as using a liberal

search radius (e.g., 500 km; Nogueira and Keim 2011).

While these approaches have yielded invaluable infor-

mation on the TCP hydroclimate, we elected to use a

more conservative radius (223 km) to examine variable

minima in extreme precipitation.

Using subdaily interpolated TC tracks risks precipi-

tation at a given grid cell being counted multiple times.

To account for this, we built a gridded Boolean

presence–absence matrix for each daily precipitation
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period. At each grid point, we then calculated multiple

metrics, including total JJASON TCP, monthly total

TCP, mean JJASON TCP, and JJASON TCP contri-

bution to total seasonal precipitation. We performed a

monotonic trend analysis on the total sum of JJASON

TCP and the JJASON TCP contribution using the

nonparametric Mann–Kendall test, which is widely used

in climate studies for its resistance to outliers (e.g.,

Tabari et al. 2011; Gocic and Trajkovic 2013; Ficklin

et al. 2015;Maxwell et al. 2017; Aryal et al. 2018). Setting

the significance threshold at a 5 0.05, we used the

Mann–Kendall z scores to identify locations with in-

creasing (z . 0) and decreasing (z , 0) TCP. Before

trend analysis, we tested for autocorrelation and found

that TCP values were not autocorrelated.

d. Climate indices

To examine the role of large-scale atmospheric cir-

culation and climate modes on TCP, we targeted climate

indices known to influence TC genesis, development,

and/or tracks. Specifically, we selected mean monthly

index values representative of the NASH and ENSO.

While the Atlantic multidecadal oscillation is thought to

influence TCs (Klotzbach and Gray 2008; Wang et al.

2008; Enfield and Cid-Serrano 2010), there are only a

limited number of complete cycles over our period of

record, and therefore we elected to focus on indices with

important roles on interannual TC variability. Despite

the influence of the NAO on TCs (Elsner and Kocher

2000; McCloskey et al. 2013), the NASH is a direct

representation of atmospheric circulation in the region

of the North Atlantic where TCs develop and track

(McCloskey et al. 2013). While the central core of the

NASH is usually positioned in the central or eastern

Atlantic, the center of circulation typically moves west

during summer, positioning the western edge of the

NASH over the southeastern United States. Summer

precipitation patterns may shift in response to this mo-

tion (Stahle and Cleaveland 1992; Davis et al. 1997; Katz

et al. 2003; Li et al. 2011; Li et al. 2012). The magnitude

of western migration often is quantified using the

Bermuda high index (BHI), which represents the

normalized sea level pressure gradient between New

Orleans (Louisiana) andBermuda (Stahle andCleaveland

1992; Katz et al. 2003; Ortegren et al. 2011). Negative

(positive) values indicate that the western flank of the

NASH is positioned farther west (east) closer to New

Orleans (Bermuda) (Ortegren and Maxwell 2014).

The BHI does not provide information regarding the

position of the NASH or its strength; rather, it ex-

plicitly defines meridional variations in the western

ridge of the anticyclone. Furthermore, it does not

entirely capture zonal variations in western flank

position (Ortegren and Maxwell 2014), which can be

an important control on precipitation variability in

the southeastern United States (Li et al. 2011, 2012).

We also retrieved index values for the NAO index for

September–October from Li and Wang (2003). This

index extends back to 1948 and represents the stan-

dardized pressure gradient between the Azores and

Iceland. Finally, we used the bivariate ENSO time

series (BEST; Smith and Sardeshmukh 2000) index

(1948–2015; 3-month moving average) from NOAA/

OAR/ESRL PSD. We selected the BEST dataset as it

fully represents oceanic and atmospheric processes by

combining the Niño-3.4 SST index with the Southern

Oscillation index (SOI).

To identify potential relationships between the large-

scale forcings of TCP, we conducted a spatial field cor-

relation between the gridded TCP metrics and the

climate indices using Kendall’s tau-b. To examine the

combined effect of ENSO and BHI, we used both indi-

ces as predictors in a linear regression model against

logged TCP. To account for the multiple zeros, we

added 1mm to every year of TCP prior to taking the

natural log of TCP. Finally, we used empirical orthog-

onal function (EOF) analysis to identify spatial patterns

associated with the primary modes of variability. Using

the seasonal total TCP and TCP contribution, EOF

analysis produced eigenvectors, principal component

(PC) time series, and eigenvalues that we used to iden-

tify primary modes of variability and potential climate

connections. We tested whether the first five PC time

series (which indicate the amplitudes of the leading

modes of variability) were correlated with the contem-

poraneous ENSO and BHI values using Spearman’s

rank correlation. The color schema of our maps were

created using ‘‘cmocean mfiles’’ (Thyng et al. 2016).

3. Results and discussion

a. Total JJASONTCP andTCP contributions to total
JJASON precipitation

Our TCP and TCP contribution results show the ex-

pected major features presented in previous studies

(Knight and Davis 2007; Nogueira and Keim 2011), but

with gridded data at high spatial resolution over a long

period of time (Figs. 1 and 2). The highest values of

mean JJASON TCP (Fig. 1) and mean JJASON TCP

contribution (Fig. 2) are concentrated along the Gulf

and Southeast Coasts, which have the greatest number

of years with at least one TC ($40 years; see Fig. S1 in

the online supplemental material). Generally, our mean

TCP (Fig. 1) and mean TCP contributions (Fig. 2) are

lower than previous studies (e.g., Knight andDavis 2007;
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Nogueira and Keim 2011), sometimes by approximately

50% in areas with higher contributions.

Our results differ slightly from previous studies

(Knight and Davis 2007; Nogueira and Keim 2011)

likely because of data and methodological differences,

including different search radii and the inclusion or ex-

clusion of extratropical precipitation. At 68 years (1948–

2015), our study period was the longest. The increase in

record length alone provides more reliable estimates of

TCP patterns. Another possible explanation is the dif-

ference between gridded and point data (Ensor and

Robeson 2008). Two studies used precipitation data

from either the United States Historical Climatology

Network (USHCN; Nogueira and Keim 2011) or first-

order station datasets/COOP (Knight and Davis 2007).

While these approaches use reliable data, TCP patterns

are not fully represented due to nonuniform station

coverage. Although our precipitation dataset relies on

station data (Higgins et al. 2000a), an interpolation

scheme is applied beforehand (Higgins et al. 2007; Xie

et al. 2007; Higgins and Kousky 2013), producing a high-

resolution dataset with no missing values. As such, the

use of a gridded dataset could produce slightly different

results from those seen in point-based data (Ensor and

Robeson 2008). Finally, extraction techniques can

affect TCP patterns by over- or underestimating TCP

(Hewitson and Crane 2005; Ensor and Robeson 2008),

particularly if precipitation from extratropical cyclones

or frontal systems is included. Knight and Davis (2007)

included precipitation from extratropical cyclones and

FIG. 1. Map of the mean seasonal (JJASON) TCP (mmyr21) during 1948–2015 for

0.258 3 0.258 grid.

FIG. 2. Map of the mean seasonal (JJASON) contribution (% yr21) of TCP to seasonal

precipitation during 1948–2015 for 0.258 3 0.258 grid.
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potentially frontal (nontropical) systems in their analy-

sis. Nogueira and Keim (2011) avoided collecting ex-

tratropical precipitation by only including storms given a

‘‘tropical’’ rating in HURDAT. However, considering

the extreme changes in TCP distribution that occur

postlandfall (Atallah et al. 2007; Matyas 2007, 2010), the

larger 500-km search radius used by Nogueira and Keim

(2010, 2011) to extract TCP could have included frontal

and other nontropical precipitation. While our selection

of a 223-km radius (Matyas 2010) could lead us to un-

derestimate actual TCP, it increases the probability that

the extracted precipitation arises primarily from TCs

rather than non-tropical-cyclogenic sources.

To determine whether the difference between previ-

ous studies and this one was related to the conservative

search radius, we analyzed mean TCP and mean TCP

contributions using a similar search radius (500 km) and

study period (1960–2007) as Nogueira and Keim (2011).

Mean TCP from TCPDat was consistently less than

previous studies (Figs. S2 and S3). The spatial patterns

predominantly match our results using a 223-km radius

(Fig. 1), such as maxima located along much of the Gulf

Coast, Florida, and North Carolina. TCP contribution

also increased substantially (Figs. S4 and S5) and were

closer to the values presented by Nogueira and Keim

(2011) and Knight and Davis (2007). Additionally, there

was no difference in TCP contribution between the two

different study periods using TCPDat (i.e., 1948–2015

and 1960–2007; Figs. S4 and S5). The spatial patterns of

TCP contributions using a 500-km radius (Figs. S4 and

S5) and a 223-km radius (Fig. 2) were virtually identical.

Furthermore, our analysis of rainfall from Hurricane

Georges (Figs. S6, S7) using two different radii, 223 and

500 km, reveals that TCPDat generally mirrors the

spatial patterns of maps of poststorm precipitation

analysis from NHC—particularly with the 500-km

radius—while underestimating the most extreme rain-

fall values during individual events. Differences between

the two radii largely stem from storm characteristics

(e.g., storm size), indicating that storm-specific radii are

required to analyze individual events. In either case, this

is consistent with results from previous studies showing

that individual extreme events are not well represented

by URD on subseasonal to event-based time scales

(Ensor and Robeson 2008). Despite its underperformance

in this capacity, TCPDat still provides an accurate repre-

sentation of TCP climatology over longer time scales. Our

results (Figs. 1 and 2; see also Figs. S2–S7) support the

notion that the differences between this study and previous

TCP climatologies arise from our use of gridded data from

URD, and that TCPDat provides an accurate estimation

of the TC hydroclimate in the eastern United States.

We calculated the gradient in mean JJASON TCP

(Fig. 3) from the coast to ;300 km inland to further il-

lustrate the utility of TCPDat in examining varying TCP

spatial patterns. Mean JJASON TCP contribution was

calculated but not shown because of its similarity to

mean JJASON TCP (Fig. 3). The TCP gradient for

North Carolina [16.06mm (100km)21; r2 5 0.9895] de-

creases more rapidly than the gradient in Louisiana

[15.01mm (100km)21; r2 5 0.9721; Fig. 3]. Similar to

previous studies (e.g., Khouakhi et al. 2017), both tran-

sects show that decreases in mean JJASON TCP re-

mains linear for approximately 300 km inland before

FIG. 3. Spatial gradients for mean JJASON TCP from the coast to ;300 km inland along a

constant parallel for North Carolina (black; starting coordinates: 34.98N, 76.38W; R2 5 0.9895)

and a constant meridian for Louisiana (red; starting coordinates: 29.38N, 89.48W; R25 0.9721).

TCP beyond ;300 km inland plateaus (not shown).
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transitioning to a plateau in TCP (not shown). While we

do not examine some of the more nuanced changes

possibly due to topographic interactions (e.g., Schwarz

1970; Harville 2009; Rostom and Lin 2015) or changes in

storm tracks (Rostom and Lin 2015; Liu et al. 2016), the

gridded nature of TCPDat allows for the examination of

spatial changes in TCP without requiring substantial

interpolation.

b. Trends in TCP

Our results do not show the same patterns in trends in

TCP as seen in previous studies (Knight and Davis 2007;

Nogueira et al. 2013). Except for small, isolated loca-

tions (i.e., negative trends in Florida and the Mississippi

River Valley), we did not find any trends in total

JJASON TCP (Fig. 4) or JJASON percentage contri-

bution, which is not shown as it similar to Fig. 4. A more

varied pattern was reported by Nogueira et al. (2013),

where increasing (decreasing) TCP occurs at 75%

(25%) of stations with significant trends. Most stations

along the Gulf Coast indicate increasing TCP, while

trends along the East Coast are more varied (Nogueira

et al. 2013). South Florida is the only area showing a

significant trend in our results (Fig. 3) that spatially

overlaps with stations in Knight and Davis (2007) and

Nogueira et al. (2013), but our analysis indicates that the

trend there is negative, in contrast to previous findings.

c. TCP and climate: NASH

We found limited significant relationships between

interannual TCP variations and the NAO index (Li and

Wang 2003), with the summer (JJA) season showing no

significant correlations (not shown) and fall (SON)

season having spatially limited significance (Fig. 5).

Significant correlations are primarily located on the

edges of TCPDat (Fig. 5). While the NAO index may

exhibit an influence on TCP along the coast, the signif-

icant correlations observed well inland are likely spuri-

ous. Moreover, although the correlations between TCP

and the NAO Index along the coast are spatially limited

(Fig. 5), they occupy the same area as correlations be-

tween TCP and the index used for the NASH (Fig. 6).

Given that the NAO is calculated from the pressure

gradient between the Azores Islands and the Icelandic

low, and therefore indicates the midlatitude pressure

gradient of which theNASH is one component, we focus

on the NASH as it is the physical feature closer to the

main development region (Davis et al. 1997) and has a

strong influence on the overall hydroclimate of the

southeastern United States (Li et al. 2011, 2012;

Ortegren and Maxwell 2014).

The correlation analyses between the Bermuda high

index (BHI; Ortegren et al. 2011) and different TCP

metrics indicate a number of significant relationships.

Positive correlations between TCP and BHI are seen

throughout the eastern United States, with the excep-

tion of the north-central/northwestern Midwest, New

England, and isolated locations in the southern Great

Plains and coastal Southeast (Fig. 6). A large spatially

continuous region of the eastern United States shows a

significant (p# 0.05) positive correlation (0.2# r, 0.5)

between the two variables, with the strongest correla-

tions (0.4 # r , 0.5) present in a portion of the U.S.

Southeast and the southern Appalachian highlands.

The strong correlation present along the southern

Appalachian Mountains may stem from precipitation

intensification due to orographic lift. However, this

could ultimately be a consequence of the NASH steer-

ing TCs (e.g., Vega and Binkley 1993; Elsner et al. 2000;

Colbert and Soden 2012). Another smaller region of

FIG. 4. Mann–Kendall trend for seasonal JJASON TCP from 1948 to 2015. Contours and

hatching indicate regions of significance (p # 0.05).
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significance is present in south-central Florida, where

there is also a weak positive correlation between TCP

and BHI (0.1 # r # 0.2). Overall, this relationship sug-

gests that during periods when the western flank of the

NASH is displaced west of its mean location (i.e., BHI

becomes negative), TCP tends to be suppressed relative

to the mean. Conversely, when the western ridge of the

NASH is displaced eastward, TCP in our study area

tends to be greater than average. TCP contribution (not

shown) exhibits a virtually identical magnitude and

pattern as total seasonal TCP (Fig. 6).

Changes in NASH position and/or strength are fre-

quently identified as a control on TC track variability in

the North Atlantic (e.g., Vega and Binkley 1993; Elsner

et al. 2000; Colbert and Soden 2012). The NASH can

either act as a blocking or steering mechanism for TCs,

directing storms into different regions of the North

Atlantic (Vega and Binkley 1993; Elsner et al. 2000;

Colbert and Soden 2012). The position and/or strength

of the NASH yields environments conducive to partic-

ular TC tracks (Colbert and Soden 2012). When the

anticyclone moves east and is weak, TCs tend to recurve

out to sea without impacting the eastern United States

(Colbert and Soden 2012). Conversely, TCs tend to ei-

ther take a straight-line track or recurve before landfall

when the NASH is farther west and the sea level pres-

sure gradient (SLP) is stronger (Colbert and Soden

2012). To our knowledge, no study has explicitly ex-

amined the relationship between the NASH and TCP.

The findings of the influence of the NASH—especially

FIG. 5. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and

the NAO index for September–November. Contours and hatching indicate regions of signifi-

cance (p # 0.05).

FIG. 6. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and

mean JJASON BHI. Contours and hatching indicate regions of significance (p # 0.05).
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the western flank—on increasing variability in sum-

mertime precipitation (Li et al. 2011, 2012) demonstrate

the importance of the NASH on the precipitation in the

Southeast. We find that the western flank of the NASH

has a significant influence on TCP, and that this could

contribute to the increased variability of hurricane sea-

son rainfall. However, as the BHI does not capture zonal

patterns of western flank position (Ortegren and

Maxwell 2014), which adds another dimension of pre-

cipitation variability in the Southeast United States (Li

et al. 2011, 2012), the relationship is likely more nuanced

than what we describe above.

d. TCP and climate: ENSO

The relationship between ENSO and North Atlantic

TCs is well documented (e.g., Gray 1984; Bove et al.

1998; Elsner et al. 2001; Smith et al. 2007; Yang et al.

2018). During the warm phase (El Niño), TC frequency

decreases in the North Atlantic primarily due to in-

creased vertical wind shear (e.g., Gray 1984; Bove et al.

1998). Conversely, the cool phase (La Niña) weakens

vertical wind shear and produces a typically more fa-

vorable environment for tropical cyclogenesis in the

region (e.g., Gray 1984; Bove et al. 1998). Although

multiple studies have investigated the relationship be-

tweenENSOandTC activity, relatively few studies have

examined the influence of ENSO on TCP patterns in the

United States (e.g., Nogueira and Keim 2010, 2011;

Nogueira et al. 2013; Khouakhi et al. 2017; Aryal et al.

2018). Given the documented inverse relationship be-

tween ENSO and TC activity (e.g., Gray 1984; Bove

et al. 1998; Elsner et al. 2001; Smith et al. 2007), we

expect TCP to respond similarly to ENSO.

The eastern United States displays some spatially het-

erogeneous patterns between total seasonal TCP and

mean JJASON ENSO–BEST (Fig. 7). Much of the study

area is characterized by an insignificant relationship

(20.2 # r # 0.2) between TCP and ENSO, which are

generally grouped together with the exception of isolated

corridors of opposing correlations (e.g., positive r values

in upstate New York surrounded by negative r values;

Fig. 7). The lack of significance acrossmuch of the eastern

United States is not surprising as TCs often have already

undergone extratropical transition when well inland

(Hart and Evans 2001). There are isolated areas of weak

tomoderate significant inverse correlations (20.4# r, 0)

between TCP and ENSO throughout the eastern

United States (Fig. 7), with the most pronounced inverse

relationship (20.4 # r # 20.3) located in west-central

Texas. In addition to the increased spatial heterogeneity

in correlations compared to the NASH, a smaller portion

of the study area exhibits a significant relationship (p #

0.05). The North Carolina coastal plain, northern Mid-

Atlantic, northern Florida, and west-central Texas exhibit

an inverse relationship (20.4 , r # 20.2) between TCP

and ENSO. Although the cool phase of ENSO is associ-

ated with increased TC frequency (e.g., Gray 1984; Bove

et al. 1998), we find that TCP has a weak to moderate

relationship with ENSO. The correlation between TCP

contribution and ENSO (not shown) is virtually identical

to total seasonal TCP in both magnitude and spatial

distribution.

e. Leading mode of variability

The correlation analyses discussed in previous sec-

tions are ideal for characterizing individual relationships

FIG. 7. Correlation analysis (Kendall’s tau-b) between time series of seasonal total TCP and

mean JJASON ENSO–BEST values. Contours and hatching indicate regions of significance

(p # 0.05).
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with TCP. This is not necessarily enough to illuminate

how the relationship changes in the presence of compet-

ing climatic controls. To better understand the connection

between TCP, NASH, and ENSO, we performed a linear

regression analysis, where the BHI and ENSO–BEST

were used as predictors (Fig. 8). Immediately, there are

two distinct regions of significant R2 values (Fig. 8a): a

large swath of relatively high values that extends from the

Gulf Coast to the northern Mid-Atlantic, and a smaller

area in south-central Texas and northeast Florida. These

areas correspond to the BHI and ENSO, respectively.

Maps of the regression coefficients for BHI (Fig. 8b) and

ENSO (Fig. 8c) show similar regionalization as the R2

values (Fig. 8a). Interestingly, in areas where a significant

relationship is seen between BHI (ENSO) and TCP,

ENSO (BHI) is removed from the model, indicating that

it exerts a limited influence on TCP (Figs. 8b,c). There are

large areas where the influence of both BHI and ENSO is

nonexistent (Figs. 8b,c), which is corroborated by the low

R2 values produced by the model (Fig. 8a). In either case,

our regression model further supports our findings that

the NASH, specifically the BHI, exhibits a greater influ-

ence on TCP variability in the study area.

We can further support these claims by examining

TCP in the context of empirical orthogonal functions

(EOFs). Eigenvector loading maps for total JJASON

TCP indicate that the leading mode of variability, EOF 1,

explains 17.9% of the total variance in the total sea-

sonal TCP (Fig. 9). We also examined the eigenvectors

of TCP contribution, which produced virtually identical

loading maps (not shown). Similar to mean JJASON

TCP and TCP contribution (Figs. 1 and 2), the highest

loadings on EOF 1 occur in coastal North Carolina with

slightly lower values occurring in southeast Louisiana

and the central coastal plain (i.e., Alabama and

Mississippi; Fig. 9). Beyond these locations, values are

substantially lower (#0.015) across the study region,

with the exception of isolated areas of intermediate

values (;0.025–0.030) along the coast. Distinct region-

ality is seen in EOFs 2–4, where the remaining EOFs

explain 15.4% (EOF 2), 9.20% (EOF 3), and 6.50%

(EOF 4) of the variability (Fig. 9). In EOF 2, the

Northeast and coastal Texas have the opposite sign to

much of the Southeast and Midwest. Additionally, the

two extrema are located in North Carolina (’20.05)

and Alabama ($0.025). EOF 3 also shows a distinct

dipole pattern throughout the study area. Finally, EOF 4

shows a more spatially heterogeneous pattern, with

smaller regions of values of both signs.

Only the scores of EOF 1 had a significant correlation

with BHI and ENSO. BHI showed a significant moderate

correlation with the leading mode of variability (r 5
0.4327; p , 0.01). Likewise, a significant relationship

was observed between ENSO–BEST and EOF 1

FIG. 8. (a)R2 and (b),(c) regression coefficients for regressionmodel incorporating BHI andENSO, respectively.

Contours represent the areas of significance (p , 0.05). In (a) the hatching represents significant R2 values. In

(b) the green shading represents the regression coefficients for BHI, while hatching shows areas where ENSO is not

significant in the model. In (c) the green shading represents the regression coefficients for ENSO, while hatching

show areas where BHI is not significant in the model.
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(r 5 20.2816; p , 0.05). Our results suggest that both

the NASH and ENSO are significantly connected to the

distribution of seasonal TCP totals, with the former

having a greater influence on TCP by way of controlling

storm tracks.

The regionalization observed in the EOF analysis

(Fig. 9) is corroborated by the grid-based correlation

analysis between mean JJASONBHI/ENSO and total

seasonal TCP (Figs. 6 and 7) and TCP contribution

(not shown). Regions with the highest eigenvalues

(Fig. 9; EOF 1) coincide with significant, weak to

moderate positive correlations in similar locations in

Louisiana and North Carolina (Figs. 6 and 7). The

lowest eigenvalues (Fig. 9; EOF 1) coincide with weak

to moderate negative correlations in similar locations

in Texas (Figs. 6 and 7). Seasonal TCP totals (Fig. 6)

and contributions (not shown) are positively corre-

lated to BHI in southeast Louisiana and North

Carolina, while a significant inverse relationship with

ENSO is present in Texas (Fig. 7). Given that BHI and

ENSO only have a significant relationship with TCP in

Louisiana and North Carolina (Fig. 6) and Texas

(Fig. 7), respectively, while also being distinct features

in EOF 1 (Fig. 9), this could be indicative of a more

nuanced relationship between TCP and large-scale

circulation operating on regional scales or smaller.

Unlike previous studies employing EOF analysis (e.g.,

Nogueira et al. 2013), our results suggest that the role of

ENSO on TCP patterns is weaker and much more lim-

ited than BHI.

Nogueira et al. (2013) found a significant inverse

correlation between ENSO and EOF 6, explaining 8%

of the total variance. Our EOF analysis suggests that the

role of ENSO on TCP patterns is more limited. While

our use of a longer dataset could explain these differ-

ences, they are probably the result of dataset structure

(i.e., gridded vs point; Ensor and Robeson 2008). Our

linear regression model (Fig. 8) and EOF (Fig. 9) results

both indicate that the NASH is a more important con-

trol on TCP patterns than ENSO, supporting our cor-

relation analysis results (Figs. 6, 7). This is likely because

the NASH acts as a blocking or steering mechanism for

storm tracks (Vega and Binkley 1993; Elsner et al. 2000;

Colbert and Soden 2012). However, variables such as

North Atlantic SST patterns are also important controls

on TCP variability (Rodgers et al. 1994; Villarini et al.

2014), and thus further examination of TCP controls is

critical.

4. Conclusions

Precipitation from TCs is an integral component of

regional hydroclimates in the eastern United States,

where TCP can comprise a substantial percentage of

total precipitation (Cry 1967; Knight and Davis 2007;

Nogueira and Keim 2011). In this study we developed a

high-resolution, gridded (0.258 3 0.258) dataset of TCP
from 1948 to 2015 and examined TCP climatology in the

eastern United States. The resulting spatial patterns

generally corroborate previous studies (e.g., Knight and

FIG. 9. Loading map of leading unrotated EOFs for mean JJASON TCP (mm) from 1948 to 2015. EOFs 1–4

account for 49% of the total variability.
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Davis 2007; Nogueira and Keim 2011) with differences

between studies likely resulting from the length and

resolution/gridded nature of TCPDat and different TCP

extraction criteria. Our results highlight the strengths

and weaknesses of TCPDat. For example, the dataset

provides a uniformly distributed grid of time series with-

out missing values, which can be easily implemented into

numerical models. TCPDat is based onURD, which does

not represent individual extreme events well (Ensor and

Robeson 2008). As such, this combined with the conser-

vative search radius used in this study likely led to an

underestimation of TCP. Nevertheless, this is generally

not an issue when looking at TCP over seasonal, annual,

or longer time scales (Ensor and Robeson 2008). Despite

the fact that the gridded product underwent substantial

interpolation, it still provides the most spatially consistent

depiction of TCP. Finally, researchers can modify the

search radius criteria to match their needs upon accessing

the code via GitHub (https://github.com/jbregy/TCPDat.git).

We also used TCPDat to identify possible relation-

ships between TCP patterns and large-scale atmospheric

variability (ENSO and NASH). Our results suggest that

spatiotemporal TCP variability is more closely linked to

variability in the NASH and less so with ENSO. We

found no studies examining a link between TCP and the

NASH. However, given the influence of the NASH on

TC tracks (e.g., Elsner et al. 2000) and hydroclimatic

variability in the southeastern United States (Li et al.

2011, 2012), it is likely that variations in the position or

strength of the NASH is a relatively important control

on TCP variability. Even so, environmental (e.g., SSTs)

and storm-specific variables likely exert a greater influ-

ence on TCP (Rodgers et al. 1994; Villarini et al. 2014;

Hernández Ayala and Matyas 2016; Trenberth et al.

2018). As such, further examination of TCP controls is

essential to elucidate the role of TCs in regional hy-

droclimates as well as how TCP will vary in a changing

climate. Finally, TCPDat can be updated on an annual

basis and serve as an important tool for continued re-

search into the relationship between TCP and large-

scale circulation. Understanding TCP variability can

provide insight to additional areas including hazard

mitigation (e.g., landslides, floods), risk assessment for

insurance, or conservation/biodiversity practices. Fully

understanding TCP variability requires thorough explo-

ration of different TCP datasets, and is critical when pre-

paring vulnerable communities for a changing climate.
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