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ABSTRACT: The first example of metal-free cyanomethylenation from
alkyl nitriles of sp3 C−H bonds to afford quaternary carbon centers is
described. This oxidative protocol is operationally simple and features
good functional group compatibility. This method provides a novel
approach to highly functionalized fluorene and oxindole derivatives, which
are commonly used in material and pharmaceutical areas. Control
experiments provide evidence of a radical reaction process.

Nitriles are versatile functional groups in organic synthesis.
In addition to being a very useful functional group in

biologically active compounds, they can be readily converted
into amines, carboxylic acids, ketones, and even heterocycles.1

Compounds containing nitrile groups are frequently employed
as building blocks in drug-discovery programs.2 The
introduction of a nitrile group by the activation of the α-
hydrogen of simple aliphatic nitriles is one of the most efficient
and environmentally benign entries to this class of structure.
For example, the generation and reaction of stable α-nitrile
anions is well-explored with a range of electrophiles.3 The
nitrile group also stabilizes radicals arising from α-hydrogen
atom abstraction, and these radicals permit bond disconnec-
tions4 complementary to those available from the α-nitrile
anions. Among these reactions, there are relatively few
involving the C−H activation of a second component, that
is, oxidative fragment coupling. Building off of our prior efforts
in the dual-C−H activation of two components (Scheme 1a),5

the use of acetonitrile was investigated with oxindoles and
fluorenes. To the best of our knowledge, there are no examples
of cross-coupling between sp3 C−H bonds and alkyl nitriles
under metal-free conditions. Herein we communicate our
efforts, culminating in the facile, metal-free oxidative
cyanomethylenation of oxindoles and fluorenes with alkyl
nitriles through C(sp3)−H oxidative radical functionalization
using t-BuOOt-Bu as the oxidant (Scheme 1b,c).
As an important structural unit, 2-oxindoles with a

quaternary carbon center at the C3 position are a class of
heterocycles existing in many natural products, pharmaceut-
icals, and drug candidates (Figure 1a).6 Their importance has
prompted considerable interest in developing new construction
methods.
Similarly, fluorenes have attracted much attention for a

variety of applications involving advanced materials, including

those used in semiconductors,7 optoelectronics,8 and solar
cells.9 In addition, fluorene derivatives have also been playing
an increasing role in pharmaceuticals and biochemistry10 as
seen by the incorporation of fluorene moieties into bioactive
compounds (Figure 1b).11 As a consequence, the development
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Scheme 1. Dual C−H Activation of Oxindoles and
Fluorenes with Toluenes or Alkylnitriles to Generate
Quaternary Centers
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of practical synthetic methods for the construction of
functionalized fluorenes is in demand.
The asymmetric cyanomethylenation of three-substituted

oxindoles using prefunctionalized cyanomethyl halides has
been reported by different groups (Scheme 2a).12 Recently,

many studies focused on the atom-transfer radical addition
reactions of nitriles with olefins.13 Among them, the Zhu group
has made significant contributions to this research field.14 In
2016, the Ge group reported the first example of the
palladium-catalyzed cross-coupling of sp3 C−H bonds with
acetonitrile.15 Thereafter, Wu16 and Shen17 independently
reported the direct oxidative cyanomethylenation reactions by
adding acetonitrile to 1,3-dicarbonyls and tetrahydroisoquino-
lines respectively; however, other alkyl nitrile coupling partners
were unsuccessful.
In 2015, the Liu group developed a simple and efficient

synthesis of 9-arylfluorenes via the metal-free reductive
coupling of arylboronic acids and N-tosylhydrazones.18 Also,
extensive attention has been paid to generating fluorenes via
transition-metal-catalyzed cyclizations or direct dehydrogen-
ative aryl−aryl coupling via C−H bond activation.19 In 2016,
the Ji group developed a copper-mediated radical alkylarylation
of unactivated alkenes with acetonitrile, leading to methylene-
disubstituted fluorenes, which are not easily accessed by
conventional methods (Scheme 2b).20 Nonetheless, this
transformation still suffered from some drawbacks, such as
the use of transition metals and ligands, a narrow substrate
scope (acetonitrile only), and only access to 9-alkyl-substituted
fluorenes, thus limiting its further applications.
With a clear need for alternative strategies to construct

highly functionalized oxindoles, we initiated our investigations
by screening various metal sources (Cu, Fe, Pd, Co, Mn, and
Sc) and reaction conditions (see the Supporting Information
(SI)) for the t-BuOOt-Bu-mediated coupling of three-

substituted oxindoles with acetonitrile (Scheme 3, eq 1).
Notably, the protocols employed by Zhu and Li14a,21 involving

metal catalysts to generate acetonitrile radicals for additions to
alkenes were not effective in these couplings. After an extensive
investigation of the reaction conditions (see the SI), control
reactions revealed that the metal catalyst was unnecessary,
leading to a very straightforward oxidative method for
introducing the cyanomethylene functionality to an oxindole.
The optimum reaction conditions entailed heating a solution
of 1a in acetonitrile (0.1 M) in the presence of t-BuOOt-Bu (4
equiv) to 130 °C for 24 h, which provided 3aa in 48% yield.
Subsequently, a range of 3-substituted oxindoles were

explored for the cyanomethylenation at the C3 position with
acetonitrile (Scheme 3). Electron-neutral (3aa), electron-
donating (3ba, 3ca, 3ea, 3fa), and electron-withdrawing
(3da) substituents on the phenyl ring were all well tolerated
under the optimal reaction conditions. Substituents at the
different positions did not affect the yields significantly. The 6-
chloro-oxindole also gave the corresponding product 3ga in
63% yield. The N-benzyl-substituted oxindole also exhibited
good reactivity, providing 3ha in 52% yield.
The cyanomethylenated products derived from three-

substituted oxindoles are versatile intermediates in organic
synthesis and can be readily converted into other important
building blocks including phenyl-substituted pyrroloindo-
lines.22 To show the utility of this method in producing useful
precursors, a further transformation was carried out on product
3aa (Scheme 4). First, the 2-mmol-scale synthesis of product

Figure 1. Structures of bioactive compounds with (a) oxindole or (b)
fluorene moieties.

Scheme 2. Approaches to Cyanoalkyl Oxindoles and
Fluorenes

Scheme 3. Reaction of 3-Monosubstituted Oxindoles with
Acetonitrilea

aConditions: 1 (0.15 mmol), 2a (1.5 mL, 0.1 M), t-BuOOt-Bu (4
equiv), 130 °C, under Ar, 24 h.

Scheme 4. Scale-Up and Synthetic Transformation of the
Cyanomethylenated Product 3aa
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3aa proceeded successfully, delivering 3aa in 45% yield. The
reductive cyclization of oxindole 3aa using LiAlH4 provided
pyrroloindoline 4 in 52% yield. Overall, this route provides
comparable or better efficiencies relative to other routes for
generating target 4 with aryl substitution at the angular
carbon.23

The application of the above conditions to the coupling of 9-
phenyl-9H-fluorene 5a24 and acetonitrile 2a provided product
6aa (eq 2) in 49% yield (see the SI). Further experimentation
(see the SI) ultimately revealed that carboxylic acid additives
enhanced the outcome. The optimum conditions were t-
BuOOt-Bu (6 equiv) with PivOH (2 equiv) at 125 °C for 23 h,
which provided 6aa in 65% yield (Scheme 5).
With these conditions in hand, the scope of the reaction

with respect to the fluorene component and alkyl nitrile was
evaluated (Scheme 5). First, different para-substituted aryl

groups at C9 on the fluorene were explored. With either
electron-donating or electron-neutral substituents, the prod-
ucts were formed in good yield (6aa−da). Those bearing an
electron-withdrawing chloro, fluoro, trifluoromethyl, or phenyl
group gave the corresponding products in a slightly lower yield
(6ea−ha). C9-Aryl groups with either methoxy or fluoro
groups at the meta position reacted smoothly with 2a to give
6ia and 6ja in 51 and 61% yield, respectively. A range of
bulkier aryl groups could be tolerated at C9 of the fluorene,
including acetal-derived, naphthyl, and para-carbazolylphenyl
groups, affording the corresponding products in 34−49% yield
(6ka−ma). Of particular note, 9-butylfluorene can also react
with acetonitrile to afford 6na in 51% yield.
Notably, functional groups such as methoxy, halogen, and

nitro can be employed in different positions on the fluorene
component (6oa−qa). 9-Phenyl-9H-xanthene 5r also success-
fully reacted with acetonitrile, albeit with 20% yield (6ra).
Next, other alkyl nitriles, such as propionitrile, n-butyronitrile,
n-valeronitrile, and 2-methoxyacetonitrile, were discovered to
be effective in this reaction, affording the corresponding
fluorenes in 42−75% yield (6ab−ae). The steric hindrance of
these compounds is manifest as judged by the proton and
carbon NMR spectra, where the phenylfluorene is desymme-
trized from hindered rotation. Tertiary nitriles, such as
isobutyronitrile 2f and cyclohexanecarbonitrile 2g, smoothly
underwent oxidative C−H activation at the α-position to give
6af and 6ag in 42 and 61% yield, respectively. Notably, these
adducts arise from the approach of two hindered tertiary
centers and give rise to compounds with two adjacent
quaternary centers. However, some other nitriles were
unreactive, including cyanocyclopropane, 2-methoxypropioni-
trile, bromoacetonitrile, and ethyl cyanoacetate.
Some control experiments were carried out to gain a better

understanding of the mechanism (Scheme 6). The cyanome-

Scheme 5. Reaction of Various 9-Substituted Fluorenes with
Alkyl Nitrilesa

aConditions: 5 (0.15 mmol), 2 (1.5 mL, 0.1 M), t-BuOOt-Bu (6
equiv) PivOH (2 equiv), 125 °C, under Ar, 23 h.

Scheme 6. Control Experiments
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thylenation reaction was completely inhibited when 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO) or 2,6-di-tert-butyl-4-
hydroxytoluene (BHT) was added into the reaction system
(Scheme 6a). Moreover, the corresponding adducts 7 and 8
were detected in the reaction mixture by ESI-MS (see the SI).
In addition, we found that compound 10 was isolated in 33%
yield from (1-cyclopropylvinyl)benzene 9 (Scheme 6b). This
adduct arises from sequential ring opening of a cyclo-
propylmethyl radical intermediate and cyclization,13cb and
this intermediate presumably arises from the addition of a
cyanomethylenyl radical to the alkene. Together, the above
experiments suggest that the current reaction is triggered by a
free-radical process. Moreover, all of the experiments point to
formation and reaction of a cyanomethylenyl radical. Next, an
intermolecular kinetic isotopic effect (KIE) experiment was
performed in a mixture of acetonitrile (0.75 mL) and
acetonitrile-d3 (0.75 mL). As a result, a kH/kD = 6.7 was
obtained (Scheme 6c), indicating that the acetonitrile C−H
bond cleavage is involved in a product-determining step.
The lack of adducts from either the fluorene or the oxindole

with any of the radical traps described above (Scheme 6a,b),
implies that these stabilized radicals are less reactive than the
cyanomethyl radical. It is likely that the resting states of the
fluorenyl or oxindole radicals are the dimers, as we5,25 and
others26 have observed previously under oxidative conditions.
Integrating the formation of the dimer with reports of related
systems,13f,16,27 we propose the mechanism outlined in Scheme
7. First, t-BuOOt-Bu decomposes to give the tert-butoxyl

radical (A) at high temperature. The oxindole27 or fluorene
undergoes facile hydrogen atom abstraction due to the weak
C−H bonds (71 and 72 kcal/mol, respectively)5b forming tert-
butanol and the corresponding radical B, which is in
equilibrium with its dimer C. Substrates lacking the 9-phenyl
groups (e.g., fluorene) were not reactive, presumably due to
the greater barrier to formation of the corresponding radical C,
consistent with this hypothesis. In addition, the dimers of 1a
(C′)5b and 5a (C)28 both gave rise to the product under the
reaction conditions (see the SI). At this stage, the excess t-
BuOOt-Bu may cause the alkyl nitrile (CH bond dissociation
energy = 96 kcal/mol)29 to undergo a hydrogen atom
abstraction to generate the radical. Subsequent recombination
with the oxindole or fluorene radical or dimer would generate
the product (e.g., 6aa in Scheme 7). Alternately, the dimer (C)
may react directly with the nitrile to generate one equivalent of
product (6aa) and one equivalent of the starting material (5a).
Regardless, very hindered forms of the radical B are not

expected to be able to react, which is supported by the lack of
reactivity with 9(2′-methylphenyl)fluorene.
In summary, we have developed a novel and efficient metal-

free method to activate the C(sp3)−H bond of alkyl nitriles for
the synthesis of highly functionalized fluorene and oxindole
derivatives. On the basis of the control experiments, the
transformation is proposed to proceed via a radical process.
None of the compounds described herein have been previously
reported, illustrating the absence of methods to generate such
hindered nitrile-derived structures. In particular, there are few
examples in the literature of any nitrile-derived fluorenes.18−20

Thus this method contributes to new chemical space as well as
provides a means to generate highly hindered quaternary
centers, including compounds with adjacent quaternary/
tertiary or quaternary/quaternary centers.
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