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Abstract

We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent.
In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a
sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem.
We illustrate the result with several numerical examples.

Keywords: Generalized Davidson Algorithm; Mesh Independence; Neutron Transport; Electronic Structure
Computations

1. Introduction

The purpose of this paper is to give conditions under which the residual norms of the generalized Davidson algo-
rithm when applied to a finite-dimensional problem which approximates a problem in an infinite-dimensional space,
converge to the residual norms of the Davidson iteration for the infinite dimensional problem. This is called mesh-
independence in the nonlinear solver community [Allgower et al., 1986, Allgower and Bohmer, 1987, Xue, 1995,
Kelley and Sachs, 1991, 1992, Ferng and Kelley, 2000]. The idea is that one has an algorithm that makes some mea-
sure of error, such as the norm of a residual or a gradient, small. One applies this algorithm to a sequence of problems
indexed with a parameter s, where 4 is, for example, a mesh-width, and observes that, for a given € > 0, the number
of iterations needed to make the measure of error < € is independent of &.

We will use the algorithmic descriptions from [Hamilton, 2011, Sleijpen and van der Vorst, 2000]. In the classic
Davidson algorithm the preconditioner is the inverse of the diagonal of A — AI. The generalized Davidson algorithm
allows for any preconditioner M ~ A — Al. For simplicity we express Algorithm 1 as one designed to compute the
smallest eigenvalue of A, an operator in a finite or infinite dimensional Hilbert space with scalar product (-,-) and
norm | - ||. In the case where A is only densely defined then the inverse of the preconditioner must map residuals to
the domain of A.

The generalized Davidson algorithm is given by Algorithm 1.

In Algorithm 1 and for the rest of the paper we use bold faced fonts for vectors and operators which are finite
dimensional or generic vectors and operators which can be either finite or infinite dimensional. We will use standard
fonts for operators and vectors which are only defined in infinite dimensional spaces.

We will work in the following framework. We consider a possibly unbounded operator A defined on an infinite
dimensional Hilbert space H. We let the domain of A be a Banach space X and the range Y. We let H denote the Hilbert
space in which the orthogonalization in the generalized Davidson algorithm takes place, (-, )y the inner product, and
|ul?, = (u,u)y for u € H. Typically X is dense in H and the operatore A is unbounded. We require X = ¥ < H.

*Corresponding author
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hamiltonsp@ornl.gov (Steven Hamilton), 1inlin@math.berkeley.edu (Lin Lin), CYang@lbl.gov (Chao Yang)

Preprint submitted to Elsevier February 21, 2020



40

Ll

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Algorithm 1 Generalized Davidson Algorithm
(u, ) = davidson(ug, A, M, 1)

k=0

Vo = uo/|luo]|
Vo = Span(vp)
Ao = (vo, Avp)
ro = (A — A)vo

while ||r;| > 7|ro[| do
Solve Mktk = —TI%
Wy =W+t
Obtain vy from u;/, and V; by Gram-Schmidt using (-, -)
Viy1 = Span(Vi, Viq 1)
Let Py be the orthogonal projection onto Vi |
Find smallest eigenvalue A, and corresponding unit eigenvector w of the restriction of Py APy4 to Vi .
Upp] =W
k—k+1
re = (A — 4w
end while
A — /lk; u < ug

Our only assumption on the preconditioner in this Hilbert space setting is that M is nonsingular and M~! : ¥ — X
continuously. The example in § 3.1 illustrates this setting for an example in which H = L*[0, 1], X = C?[0, 1], and
Y = CJ[0,1].

The three spaces are needed to capture the consistency and stability properties of a finite difference approximation
for a differential operator and the Hilbert space nature of the Krylov eigensolver. This, as we explain in § 1.1, is a
different, and less straightforward, setting that one needs for nonlinear equations.

In this paper we show that a well-designed (consistent and stable) sequence of approximate problems will track
the performance of the infinite dimensional iteration. This is the mesh-independence property [Allgower et al., 1986,
Allgower and Bohmer, 1987, Xue, 1995, Kelley and Sachs, 1991, 1992, Ferng and Kelley, 2000] which is well known
in the nonlinear solver community.

Mesh-independence theorems are different from convergence theorems. We will illustrate that with the classic
result from [Allgower et al., 1986] for nonlinear equations in § 1.1 and again in § 2.1 where we compare a conver-
gence theorem from [Oliveira, 1999] for the generalized Davidson algorithm in the Hermitian case with the mesh-
independence in this paper. The convergence results in [Oliveira, 1999] make assumptions that are similar to our
stability assumptions.

1.1. Mesh-Independence Results for Nonlinear Equations

Mesh-independence theorems are best known in the setting of nonlinear equations [Willert et al., 2015, Allgower
et al., 1986, Allgower and Bohmer, 1987, Ferng and Kelley, 2000, Kelley and Sachs, 1991] and optimization [Kelley
and Sachs, 1992, Hintermiiller and Ulbrich, 2003]. To illustrate the ideas we will describe one of the results from
[Allgower et al., 1986] on Newton’s method. The function space setting is simpler for nonlinear equations case than
for the eigenvalue computation in this paper. The reason for this is that we need no scalar product for a Krylov solver
in this application. There is only one space X and approximation space X”.

In the context of nonlinear equations we seek to approximate a nonlinear equation

F(u) =0, (1)
on a Banach space X by a sequence of finite dimensional problems

Fi(u") = 0 )
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on finite dimensional spaces X" with norms | - |,. We will refer to & as a mesh parameter. The idea is that the
approximation becomes better as & — 0. We will use a superscript of & for the infinite-dimensional equation when
discussing issues that depend on 4 (Assumption 1.1, for example). We will assume that F” is Fréchet differentiable for
h = 0 and denote the Fréchet derivative by DF".

Now assume that both the infinite dimensional problem and the sequence of finite dimensional problems satisfy the
standard assumptions for quadratic convergence of Newton’s method in a mesh-independent manner. Assumption 1.1
makes this precise.

Assumption 1.1. For all h = 0 sufficiently small

1. There is a solution u* of F"(u") = 0.
2. F" is Lipschitz continuously Fréchet differentiable with Lipschitz constant .
3. DF"(u"*) is nonsingular and there is M such that

| (DF") (")~ < M.

The classic quadratic convergence estimate [Kelley, 1995] then implies that if the initial error [u" — u}|| is suffi-
ciently small, then the Newton iteration,

o', =u’— (DF")(u,) 'F'(u,),

converges to u* and

b — ], < Myful — o2, 3)

Hul‘l+]

The uniformity of the estimate (3) in /2 does not depend on the quality of the approximation, only on the uniform
bound for the Lipschitz constant of the derivative and the norm of the inverse of the derivative. This is not a mesh-
independent result, but only a (very useful) uniform bound. There is no need for any connection at all between the
maps F” to obtain (3) other than the uniform bounds on the Lipschitz constant of the derivative and the norm of its
inverse.

Mesh independence requires consistency of the approximations F” to an underlying “exact” map F. The uniform
bounds in Assumption 1.1 can be thought of as stability assumptions. Let E" : X — X" be a “discretization” map. The
consistency assumptions from [Allgower et al., 1986] are

Assumption 1.2. There are p > 1 and a neighborhood N of u* such that for allu e N and u,v € X ,

1. |F"(E"u) — E"F(u)| = O(h") and
2. | (DF")(E"u)E"y — EF(DF (u))v| = O(hP).

The theorem from [Allgower et al., 1986] synthesizes two ideas. One is that the consistency assumptions 1.2, the
stability assumptions 1.1 for # = 0, and the classical Kantorovich theorem [Kantorovich and Akilov, 1982, Kelley,
1995, 2018] imply Assumption 1.1 for % sufficiently small. The other idea, and the core of mesh-independence results,
is that the iterations themselves converge. The theorem from [Allgower et al., 1986] is

Theorem 1.1. Let Assumptions 1.1 (for h = 0 only) and 1.2 hold. Then Assumption 1.1 holds for all h > 0. The
estimate (3) holds, and for h > 0 sufficiently small

u* — EM* = o(h?), “4)
F'(u") — E"F(u,) = O(h?),and 5)
(u! —u"™) — E"(u, — u*) = O(hP). (6)
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Our main result Theorem 2.1 is expressed in way similar to the statement of Theorem 1.1.

The mesh-independence result from [Allgower et al., 1986] assumes convergence of the underlying exact iteration,
but that is, in fact, not necessary to argue that the conclusions of Theorem 1.1 hold. Moreover, Theorem 1.1 shows
that if the exact iteration converges faster than (3) predicts, especially in the early phases of the iteration, then the
approximate iteration will reflect that.

The estimates in Theorem 1.1 are only meaningful when the errors in the iteration are larger than the approximation
error contained in the O-term. Because of this, many papers that followed [Allgower et al., 1986] express mesh-
independence by saying that the index k for which uZ satisfies a termination criterion of the form

[F* () /¥ (wg) | < = ()

is independent of % for A sufficiently small. Corollary 2.1 is our analog of this formulation of mesh-independence.

In § 2 we state and prove the mesh-independence result. Assumption 2.1 is similar to part 3 of Assumption 1.1
(stability) and Assumption 1.2 (consistency). We do not assume that the operators are Hermitian, as many convergence
results do [Ovtchinnikov, 2006, 2003b,a, Oliveira, 1999].

In § 3 we illustrate the results with several examples. The first is a very simple problem that clearly satisfies
the assumptions. The second is a non-Hermitian generalized eigenvalue problem from neutron transport theory. The
final example is an electronic structure computation where one wants many eigenvalues. We point out that mesh-
independence for eigen computations has been observed for certain finite element computations with AMG precondi-
tioning in [Arbenz et al., 2005]. The examples in that paper are consistent with the theory in this paper.

2. Mesh Independence Theorem for the Generalized Davidson Algorithm

We consider a family of discretized finite dimensional linear operators {A"} and {M"} on finite dimensional spaces
{H"} . We put a scalar product (-, ), and norm | - |, on H" . In most of our examples in § 3 the discretization will be
nodal, but that is not essential. For example, the example in § 3.3 is a Fourier approximation.

In § 1.1 we made the assumption that the range of F' was also the domain of F. We will now consider unbounded
operators A and therefore need to extend the evaluation map to Y, the range of A. So we need an evaluation map
E" : Y — H" in order to specify consistency conditions and a scalar product (-, -), on H" for the orthogonalization in
the generalized Davidson iteration.

Our consistency and stability conditions are

Assumption 2.1. The discretizations are consistent and stable in the sense that

1. Consistency:

(a) limy,_o |A"E"u — E"Aul|;, = 0 for all u € X.

(b) limy,_o(E"u, M), = (u,v)y for allu,v e Y.

(c) limy_o |A"(M")~'E"u — A"E"M~'u|, = Oforalluey.
2. Stability: There is Mg such that for all h sufficiently small

@ [(M")7TA, < Mg, |APMY) 7, < Mg,

() [(A") =y < Ms, and |(M") =", < Ms.

We will use the following lemma.

Lemma 2.1. Let Assumption 2.1 hold. Let u € X withu # 0. Then

h < E'u E'u

h
=A"[—— —
W) Wl TPl

)HOashHO. (8)
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Proof. Since u # 0
|E"ulln

e

o AT
o \u)|| =
I @)l = gt

1.

and the proof of (8) is complete by part 1b of Assumption 2.1 and the fact that |A"E"u];, is bounded as 7 — 0 because
uelX.
O

We will make an assumption on the eigenvalue problem and on the eigensolver in Algorithm 1.

Assumption 2.2. Assume that the eigenvalues Ay from Algorithm 1 are simple and that the eigensolver used in Algo-
rithm 1 returns a smallest eigenvalue and corresponding unit eigenvector that are continuous functions of the matrix.

Since the eigenvalue is simple, continuity of the eigenvalue follows from standard perturbation theory [Golub
and VanLoan, 1996] if the matrix is diagonalizable. The assumption on the unit eigenvector simply says that the
eigensolver will not change the sign of the vector for a nearby problem.

Theorem 2.1. Let Assumption 2.1 hold. Suppose the generalized Davidson Algorithm 1 in the infinite dimensional
setting with initial iterate ug such that ||uo||p = 1 has non-zero residuals for the first K > 0 iterations.

Let /lZ and rZ be the eigenvalues and residuals one obtains from applying Algorithm 1 to the operators A" and M"
with the initial iterate E'ugy. Then, forall0 < k <K,

lim [| A" (u — E"ue) | = 0, ©)
li h N 1
hll»]})/lk /lk, ( O)
and
lim |E"r, — v}, = 0. (11)
h—0
Proof.

We will verify (10) and (11) inductively. For k = 0 the assumption that u’é = E’u, implies that
|A" (ug — Euo) s = 0, (12)

which implies (9) for k = 0.
Part 1a of Assumption 2.1 and (12) imply that

(AhEhu(), Ehu())h

/lh — (Ath,Vh)h _
0 0> Vo B
Juoll7
— AhEhv ,Ehv H 3
( 0, E"vo)n [ B2 (13)
2
u
= ((EhAvo,EhVO)h + ((A"E" — EhA)vo,E"vo)h> | OHHz
[E uol;
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Hence

661(/’1) = /lg — /10 = (Ath,Vg)h — (AV(), V())H

Juol
B — (Avo,vo)

((EhAvQ,Ehvo)h + ((A"E" — EhA)vo,Eth)h) p
[ uof;

u 2
= (EhAV(),EhV())h — (AV(),V())H + (EhAvo,Ehvo)h< H O”H — l)

+ (A"E" — E"A)vo, E"w),

[E uoll;

1

1I

ol
[E uol[;

I

We will show that lim,_,¢ eg(h) = 0 by looking at the three components on the right side of (14).
Beginning with I, since vy € X < Y, part 1b of Assumption 2.1 implies that

%in})(EhAvo,Ehvo)h — (Avo,vo)u = 0.

Part I1 is a product of two terms. Firstly

Juol 7
[E o

as h — 0 by part 1b of Assumption 2.1. Since

Ain}) (E"Avo, E"vo)i = (Avo, vo)ur = Ao

by part 1b of Assumption 2.1, we obtain

ol
lim (E"Avy, E"vg)), ( —1) =
h=0 |E"uo;

Finally, we consider III. Since uy € X, we have, using part 1a of Assumption 2.1

%iné |((AME" — E"A)ug, E"ug)| < llir% |A"E uy — B! Aug | ]| B o, = 0.

(14)

We will complete the start of the induction by verifying (11) for k = 0. Part 1a of Assumption 2.1 and (13) imply

that
I‘(h) — Eh}”() =

65(}1) = (Ahllg — /lgllg) — (EhAu() - /l()Ehu())

(A"af — A"Elug) + (A"EM'ug — E"Aug) + 2o (E'ug — ulb) + (2o — A)uj .

~~

1 I 1T v

To verify (11) for k = 0 we must show that €j(h) — 0 as h — 0. We do this by examining each of the four terms

separately. The first term (I)

A'uf — A"El'ug = 0

since uj = E"ug. This also implies that the third term (III)

/lo(EhM() — llg)h =0.

This, in turn, implies that ||ug|| is bounded as & — 0, so the fourth term (IV)

(4o — Ag)ug — 0
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as h — 0 because we have already verified (10) for k = 0. The second term (II)

A"E"uy — E"Aug — 0

as h — 0 by Part 1a of Assumption 2.1.
Note Lemma 2.1 implies that

||Ah g — AhEhVlo — 0

as h — 0. We will need this to complete the induction.
We can now finish the induction. Assume that for all / < k

A=+ €\(h),

HAhu;’ — A"EMy |, = €' (h),

and

A"V — AEM = € (1),

where

s A S I i | — Tim Y —
lim '(h) = lim ¢f'() = lim €] (h) = 0.

Similarly to the k = O case, (15), (16), and (18) imply that forall 0 < [/ < k

0

& (h) =[x} —E"n[y — 0

as h — 0. We will verify that (15) and (17) hold for iteration k + 1 and thereby complete the proof.

After computing rﬁ we apply the preconditioner to obtain

k

= —(Mh)_l(l'z — Ehrk) — ((Mh)_lEhrk — EhM_ll"k) — EhM_lrk

= Ehtk — (Mh)*l(rz — Ehl"k) — ((Mh)ilEh}"k — EhMilr‘k).

Let

th _ _(Mh)flrz — _(Mh)fl(rz _ Eh}"k) _ (Mh)flEhrk

e (h) = |A"(t; — E't) .

We use (20) to obtain

e(h) = |A"M")7 (e} — Elr) — AM(MP) "Bl — E"MT ) [

< |AM M)y — Efr s+ ([ (A" (M) T — AMEP M) |

5)

(16)

a7

(18)

19)

(20)

2L

We will analyze the two components on the right side of (21) separately. Note that part 2 of Assumption 2.1 and (19)

imply that

lim A" (M)~ (x! — "), = 0.

Morevoer, since r; € Y, Part 1c implies that

lim |A"(M")""E"r — E"M ') = 0.

h—0

Therefore €/ (h) — 0 as h — 0.

The next step is orthogonalizing w; > = w + t; against the previous basis vectors. Using (21) and (16) we obtain

lim |A’u
h—0

h
k+1/2

— A"E"uq1o]ln = 0.

(22)
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Now Vi+1 = Wk-&-l/HWk-&-l HH where

k
Wigl = Ugg1)2 — Z(uk+1/z,vl)f1v1- (23)
1=0
Similarly VZ-H = Wk+l/Hwk+1 Hh where
k
h h h ny oh
Wirt = Weprp — Z(uk+l/2’vl )n¥y 24
=0
and vy, = wp_ /|wi |5 Our next task is to show that
A" (Vi —E"ve) | — Oash — 0. (25)
This will follow from
A" (Wi, — E"wiir)|n — Oash — 0, (26)
because (26) and (8) will imply (25).
We begin by noting that
%i_l)ig)(ll,i'ﬂ/z,vfl)h = (Us1/2: V)1 27)

for all 0 < [ < k by the induction hypotheses, (16) (21). Then we may use (23), (24), and (17) to obtain (26).
The eigenvalue A is the smallest eigenvalue of the matrix A with entries

(A)ij = (Avi,v))n.

h

441 18 the smallest eigenvalue of the matrix A" with entries

Similarly A
ho_ (ARl h
(ﬂ)ij = (A Vi’vj)h'
Convergence of the vs in the sense of (17) and (25) and parts 1a and 1b of Assumption 2.1 imply that
: h
%l_r’r(l) ﬂi = A; e
Assumption 2.2 then implies that the eigenvalue converges
b
lim Ay y = 4,
verifying (15) for [ = k + 1. Moreover the eigenvector z’,: 41 corresponding to /lZ 4 also converges
%i_r)r(l)zliclﬂ = Zg+1-
This completes the proof since we can expand uZ 41 and uq g as

k1 k+1

ho_ hh - iy

w = szvj and ugy| = ZZJVJ,
j=1 j=1

where 1 = (z1,...,%41)" and 2} | = (2],...,z;, )" Therefore
k1
Al(up,, —Ehugyy) = 2 ZjAh(VI} —Elv;))

(28)

+ 2 (& = 2))AMEM; — 0
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as h — 0 by the convergence of the eigenvectors and (17). 0

The mesh-independence result Theorem 2.1 requires the stability and consistency assumptions 2.1 and assumes that
the infinite dimensional iteration converges. We now prove Corollary 2.1, which states that if the infinite dimensional
iteration does terminate successfully with a small residual, then the approximate iteration will do so as well in the
same number of iterations.

Corollary 2.1. Let the assumptions of Theorem 2.1 hold. If the infinite dimensional Davidson iteration terminates
for a given T > 0 after exactly K iterations with rg # 0, Then for all h sufficiently small, the generalized Davidson
algorithm applied to A" with initial vector E'ug will also terminate after K iterations.

Proof. Suppose K is the first index for which ||y |z < 7||rol|n-
We can use (11) from Theorem 2.1 implies that (11) holds to complete the proof since forall 0 < k < K

el = lrllerl < Hloegln = [E vl + [ reln — Irillul < € (R) + [ E"rilln — 7] — 0 29

as h — 0 by (11) and Part 1b of Assumption 2.1. Hence (29) implies that K is also the first K for which [r} |, < 7/r} ;.
0

The stability assumption on the discretization (Part 2b of Assumption 2.1) is not used directly in the proof of The-
orem 2.1, but an unstable discretization, even if consistent, will not converge and the theorem would be meaningless in
that event. We also note that if one only considers a finite number K of iterations, then one can weaken the assumption
on convergence of the infinite dimensional iteration (Assumption 2.2) to only assume that the infinite dimensional
iteration does not terminate prematurely with a zero residual. In this way our results apply even to divergent iterations.

2.1. Convergence Results are Different from Mesh Independence

In the analysis for mesh-independence we do not assume any symmetry for A or M or even that the iteration
converges. However, some convergence results make assumptions similar to ours and we will discuss one such result
in this section. In [Oliveira, 1999] the objective is to find the smallest eigenvalue A* and corresponding eigenvector
u* for a symmetric positive definite matrix A with the generalized Davidson algorithm using the symmetric positive
definite preconditioner M. The convergence result requires a stability assumption.

Assumption 2.3. M and A are symmetric positive definite. M is held fixed for the entire iteration (1. e. independent of
the current approximation to the eigenvalue). The smallest eigenvalue A* of A is strictly less than the second smallest
Ay. There is ¢ > 0 such that

IMT'A| < cand [(M7'A) 7| <. (30)

Note that (30) implies that x((M)~'A) < 2.
The result from [Oliveira, 1999] is

Theorem 2.2. Let Assumption 2.3 hold. Then the generalized Davidson iteration ({4}, {ui}) converges to (1*,u*)

in the sense that .
| A1 — A% 2

lim su <o 3D

k—>00p |/1k - /l*|

and , .
lim sup =t W) (32)

ko Z(u,u*)
Here Z(u,v) is the angle between the subspaces spanned by the vectors u and v and

1= (1-p)/c

R
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Part 2 of Assumption 2.1 is similar, but weaker, than Assumption 2.3. The convergence results in [Oliveira, 1999]
only depend on stability of the preconditioner and the ratio of the smallest eigenvalue 1* and the next smallest 1,

,02/1*//12.

Our assumptions could be expanded to require that the bounds needed for Theorem 4.1 in [Oliveira, 1999] hold for all
h. If we did that then, in the symmetric positive definite case, the convergence bounds for that theorem would be inde-
pendent of 4. However, these are worst-case bounds and are asymptotic results, similar to those for Newton’s methods,
where the standard assumptions imply (3), which is an asymptotic bound. Contrast this to mesh-independence, where
the result is that the performance of the first given number of iterations converges as &7 — 0.

Suppose the assumptions for Theorem 2.2 hold for the families of approximations {A”} and {M"} independently
of h. Then the convergence of the generalized Davidson iterations will all have the asymptotic behavior given by (31)
and (32). This does not imply mesh-independence, which is a property of the entire iteration. It is interesting to note
that [Oliveira, 1999] presents results (Figure 1) that show mesh-independence, even though the theory only predicts
asymptotic convergence rates. This paper explains those observations in more detail.

The example in § 3.1 satisfies Assumption 2.3 in a mesh-independent way.

2.2. Generalized Eigenvalue Problem
The results in § 2 extend directly to the generalized eigenvalue problem

Au = 1Bu, (33)

where B is nonsingular. The convergence results in [Ovtchinnikov, 2003b,a] include Hermitian positive definite in-
stance of this case.

The unfortunately named generalized Davidson algorithm for the generalized eigenvalue problem [Morgan, 1990]
is

Algorithm 2 Generalized Davidson Algorithm for GEP
(v,A) = davidson_gep(uy,A,B,M, 7)
k=0
vo = up/|uofn
Vo = Span(vy)
Ao = (Vo, Avo)/(Vo, Bvo) 1
rop = (A — ﬂQB)Vo
while |r;|g > 7|ro|y do
Solve Mktk = —TIy
W12 = W + b
Obtain vy from u;/; and V; by Gram-Schmidt using (-, -)x
Vk+] = Span(Vk,Vk_H)
Let Py be the orthogonal projection onto Vi
Find smallest eigenvalue A;.; and corresponding unit eigenvector w for the problem P AP W =
Ak 1P 1 BPpw.
Upp] = W
k—k+1
ry = (A — /1/(B)llk
end while

Theorem 2.1 holds for this algorithm if we include B in the consistency and stability assumptions. We would
assume that
|B"E"u — E"Bul;, — 0 as h — 0 for all u € X. (34)

and
|(M")~"B"|}, is uniformly bounded in A. (35)
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3. Examples

We present four examples to illustrate the theory. We begin in § 3.1 with a simple eigenvalue problem where
Assumption 2.1 is trivially satisfied. The second in § 3.2 is a generalized eigenvalue problem from computational
neutronics. The operator in § 3.2 is non-symmetric. The final examples are from electronic structure computations
with two different approximations: a plane wave basis in § 3.3 and a real space discretization in § 3.4.

3.1. Integro-differential Equation in One Dimension

We will find the smallest eigenvalue of A, where

Au(x) = —u"(x) + L k(x,y)u(y) dy.

and
k(x,y) = —el*172,

The domain of A is
X = {u|ue C*0,1],u(0) = u(1) = 0}.

The range is ¥ = C[0, 1] and the Hilbert space scalar product for orthogonalization is L?[0, 1] with the usual L? scalar
product. Our preconditioner is the inverse of the second derivative term in the operator.

Mu(x) = —u"(x).

Clearly M~! : Y — X as is needed for the terms in the generalized Davidson algorithm to be defined.

We discretized the differential operator with the standard central difference scheme and used the trapezoid rule for
the integral operator. We use an equally spaced grid with N interior grid points and 2 = 1/(N + 1). The evaluation
map E” is evaluation at the nodes of the difference scheme. With these choices the consistency hypotheses hold with
the norm on X being the L* norm.

Note that A” and M" are Hermitian and that M does not depend on the current approximation to A.

In Table 1 we report on the relative residual histories for the generalized Davidson iteration for five different values
of the mesh spacing 4. We terminated the iteration when the residual was smaller than 10~%. The mesh-independence
of the iteration is clearly evident, even in the third figure of the residuals. We tabulate the residual histories in the

discrete L2 norm
N 12
Ir[ = (hzrlz> :
i=1

Table 1: Relative Residual Histories

h=1/1000 h=1/2000 h=1/4000 h=1/8000 h=1/16000
1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
6.0495e-02  6.0632e-02  6.0700e-02  6.0734e-02  6.0751e-02
1.3359e-03  1.3433e-03  1.3470e-03  1.3488e-03  1.3498e-03
1.5032e-05  1.5179e-05  1.5253e-05  1.5290e-05  1.5310e-05
1.0224e-07  1.0380e-07  1.0460e-07  1.0533e-07  1.0736e-07
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3.2. Neutron transport: Generalized Eigenvalue Problem

In this section, we consider the solution of the k-eigenvalue form of the neutron transport equation. This equation
can be written as

A * A I A
Q-Vzp—f—m,bzf dEJ an’Sw—&-—)(J dEJ dQvo sy, (36)
0 4n k= Jo An

where Q is the neutron direction, E is the neutron energy, (7, Q, E) is the angular flux, o"(7 E) is the total cross
section, o7y(7, O S OFE S E ) is the scattering cross section, y (7, E) is the fission energy distribution, v(7, E) is the
number of neutrons produced per fission event, and o ¢(7, E) is the fission cross section. The eigenvalue k represents
the multiplication factor of the system—*k less than one corresponds to a neutron population that is decreasing in time,
k greater than one corresponds to a population increasing in time, and k exactly equal to one corresponds to a constant
population. The quantity that is sought is the largest magnitude eigenvalue k (commonly known in the literature as
k-effective) and the corresponding eigenvector. It is known that the dominant eigenvalue is real, positive, and simple
and the corresponding eigenvector is everywhere nonnegative [Borysiewicz and Mika, 1972]. This problem can be
written in operator notation as

1
(T—S)y = ald (37

where T is the streaming-plus-collision operator, S is the scattering operator, and F is the fission operator. The operator
T is guaranteed to be nonsingular [Faber and Manteuffel, 1988], which permits rewriting (37) in integral form as

I-T7'S)y = %T_lFlﬂ. (38)

The transport equation must be discretized in energy, angle, and space. The multigroup approximation is the energy
discretization employed by every major production radiation transport solver [Lewis and Miller, 1993], and will be
used in this study. Radiation transport solvers are primarily classified by the type of angular discretization used. In
the spherical harmonics, or Py, method, the angular dependence of the solution is expanded in spherical harmonic
moments. The diffusion approximation to the transport equation can be derived from a two-term truncation of the
spherical harmonics expansion. The other main angular discretization is the discrete ordinates, or Sy, method [Carlson
and Lathrop, 1965]. The discrete ordinates method is an angular collocation method where the transport equation is
enforced for a finite number of directions. Integrals in angle are approximated using quadrature rules. Quadrature
sets defining the discrete angles and corresponding quadrature weights are usually selected to satisfy certain symmetry
and accuracy criteria (such as integrating the maximum possible number of spherical harmonic functions for a given
number of angles). For discretization of the spatial variable, finite difference, finite element, and finite volume methods
are all in widespread use [Hamilton, 2011].

In this work we consider the method of characteristics (MOC) formulation of the radiation transport equation
[Askew, 1972], which falls into the discrete ordinates family of methods. The MOC approach divides a problem
geometry into a set of spatial cells in which the scattering and fission sources are assumed to be constant (although
linear source versions of MOC do exist [Ferrer et al., 2012]). For each angle, a set of rays are traced from one domain
boundary to the opposite boundary; the transport equation is solved analytically within each constant-source region.
Because of its ability to naturally handle curvilinear and complex geometries, the MOC equations are commonly
used for analysis of nuclear reactors, which commonly consist of numerous cylindrical fuel elements. The MOC
formulation is almost exclusively used for two-dimensional problems, as the computational requirements for the three-
dimensional extension render it uncompetitive with other methods.

In the case of energy-independent transport, the integral operator (I — T~!S) has been shown to be self-adjoint,
positive, and a compact perturbation of the identity (cf. [Faber and Manteuffel, 1988] in a single spatial dimension and
[Scheben and Graham, 2011] in multiple dimensions). Methods based on the discrete ordinates angular discretization
generally do not maintain the self-adjoint property of the continuous problem, although Chang introduced an approach
that allows the property to be retained with certain restrictions on the quadrature set [Chang, 2007]. This study also
observed mesh-independent convergence for linear systems involving the energy-independent transport equation using
the conjugate gradient method. The spectral radius of the operator T~!S is less than unity, as demonstrated in [Faber
and Manteuffel, 1988] for the continuous problem, [Greenbaum, 1997] for a finite-difference discretized system, and
[Chang, 2007] for a finite-element discretization. The energy-dependent case is not self-adjoint due to the structure of
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Figure 1: 56-group cross section data for two common materials. Scattering cross section corresponds to S and the fission matrix corresponds to F
in (38). Energy group 1 represents the highest energy and group 56 is the lowest energy.

the matrices S and F. Examples of the cross section data for two materials are provided in Fig. 1. This data determines
the block structure of the matrices S and F in (38). It is evident that the data introduces a significant amount of
asymmetry into the system, with most entries in the scattering matrices being located on or below the main diagonal
and all entries in the fission matrix beyond group 20 are zero. Also note that the fission matrix is identically zero for
any spatial cell not containing a fuel material. As noted in § 2, our convergence results do not rely on the operators
being Hermitian.

For this work, we use the radiation transport solver within the POLARIS code [Jessee et al., 2014], a reactor
analysis package developed at Oak Ridge National Laboratory. As a test problem, we choose a model of an assembly
from the Takahama pressurized water reactor as described in [Radulescu et al., 2010]. Due to the presence of strongly
absorbing materials, this was noted to be a challenging problem to converge. Five different problem resolutions are
proposed in which the space and angular variables are simultaneously refined. These parameters, as well as the
corresponding computed k-effective values, are provided in Table 2. A 56-group cross section library is used in all
cases; this library is a standard choice for reactor analyses. The discretized problem geometries for two different spatial
resolutions are shown in Fig. 2. A generalized Davidson eigensolver from the Trilinos library [Heroux et al., 2003]
is used, solving (38) using Algorithm 2. The preconditioner is taken to be a fixed number of Richardson iterations,
corresponding to the preconditioner

N
M =Y (TT's)" (39)
n=0

The initial guess in all cases is a constant vector.
The correspondence with the general description in § 2.2 is A = 1/k,

A=I-T7'S, and B=T'F.

Consistency properties equivalent to parts 1a and 1b of Assumption 2.1 for the discretized radiation transport equation
are well documented for common discretizations [Lesaint and Raviart, 1974, Pitkéranta and Scott, 1983, Johnson and
Pitkdranta, 1983]. These results also imply (34), as the only mesh dependence in B is contained in T, which appears
identically in A and B. As noted previously, p(I — A) = p(T~!S) < 1. Because M~! only involves powers of the
operator (I — A), parts lc, 2, and the final statement in 2b of Assumption 2.1 will be satisfied, as will (35). For
the purposes of this study, the energy discretization will be fixed and is therefore not a factor in the consistency and
stability considerations.

Table 3 shows the number of iterations required for convergence using either one or five iterations of Richardson
iteration. The use of additional Richardson iterations in the preconditioner results in a smaller number of Davidson
iterations. For both preconditioners, the iteration count is essentially independent of the level of resolution.

Figure 3 shows the convergence behavior for the Davidson eigenvalue solver for three different mesh resolutions.
The preconditioner for this case is five Richardson iterations. Some slight variation in behavior is observed, particularly
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Table 2: Discretization parameters for Takahama PWR assembly problem.

Discretization level =~ Cells  Angles Ray spacing (cm) Total segments  k-effective
807 4 0.08 13,167 1.118783

2009 16 0.04 80,572 1.113687

5716 32 0.02 552,494 1.116683

17,076 96 0.01 3,546,452 1.119555

58,598 192 0.005 24,524,659 1.121148
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Figure 2: Representative spatial meshes for Takahama PWR assembly.
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sss  in the first few iterations, but the average rate of convergence is nearly identical across all resolutions. This behavior
sss  1s consistent with the expectation that the convergence of the Davidson method is asymptotically independent of the
a0 discretization level.
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Table 3: Davidson eigenvalue iterations to convergence for Takahama PWR assembly.

Preconditioner

Discretization level 1 Richardson 5 Richardsons

1 32 13
2 31 12
3 31 12
4 31 12
5 31 13

Residual Norm
S )
- N

N

S
)
T

10-8 1 I
0 5 10 15

Iteration Count

Figure 3: Davidson convergence history for solution of k-eigenvalue problem for three different mesh resolutions.
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3.3. Electronic Structure Computation: Plane Wave Discretization
We consider solving the Kohn-Sham (KS) eigenvalue problem of the form

H(p)yi(r) = ¢i(r)e;, (40)

where & < & < - - - &, are the n, algebraically smallest eigenvalues of the Kohn-Sham Hamiltonian H(p) which is a
function of the electron density p defined in term of desired eigenfunctions of H.

p(r) = Y ()P

Because H depends on the eigenfunctions to be computed, this is a nonlinear eigenvalue problem that must be solved
by a nonlinear iterative method. The most widely used method is the self-consistent field (SCF) iteration in which
a sequence of linear eigenvalue problems for fixed electron densities p are solved. The computed eigenfunction
approximations are used to update p for the subsequent SCF iteration.

In this section, we solve the Kohn-Sham equation for the Buckminsterfullerene (i.e., the C60 molecule, see Fig-
ure 4). We discretize the KS equation (40) by expanding i; in planewaves ¢’*, where G is a vector in the reciprocal
space of a unit (super)cell Q that contains the C60 molecule. We choose the supercell to be [0,20] x [0,20] x [0,20]
(in Bohr).

Figure 4: The C60 molecule.

The accuracy of the discretization is determined by the planewave cutoff parameter E.,. i.e., we only include
planewaves that satisfy
IG|I?/2 < Eeu.

The larger the E.,;, the more accurate the discretization and the larger the dimension of the discretized problem.
Because the KS Hamiltonian has the form

H= —%L + V(p(r)), 41)

where L is the Laplacian operator and V is a potential operator that consists of an low rank non-local ionic pseudo-
potential term as well as local ionic pseudo-potential, Hartree and exchange-correlation terms, multiplying H with
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a vector can be performed efficiently by representing L and the non-local part of the ionic pseudo-potential in the
reciprocal space and the rest of V in the real space, and using the fast Fourier transform (FFT) to move the vector back
and forth between these two spaces. We do not explicitly construct H as a matrix because it is dense in both the real
and reciprocal space.

It is well known that a suitable preconditioner 7 for the generalized Davidson algorithm is the inverse of a modified
Laplacian [Teter et al., 1989] that can be efficiently applied in the reciprocal space.

The a priori error analysis of the planewave approximation of the Kohn-Sham model using pseudopotentials has
been analyzed in [Cances et al., 2012]. For a fixed system size with increasingly refined mesh, we expect that the
Assumptions 2.1 are satisfied with the preconditioner used here [Teter et al., 1989], as indicated from the mesh-
independent results below.

In the planewave discretization, E" projects a function to the span of Fourier modes within a kinetic energy cutoff.
Since the Fourier basis set is a complete basis set, Assumption 2.1 Consistency (a), (b) hold naturally. The Teter pre-
conditioner M commutes with E", and furthermore E"M~! = (M")~'E", which gives 2.1 consistency (c). Regarding
the stability, the Teter preconditioner is again chosen so that the divergence of the Laplacian operator as 1 — 0 is
precisely canceled, so that Stability (a) is satisfied by design. It is also by design that the Teter preconditioner satisfies
|(M")=Y| < Ms. Finally ||(A")~!| < My can always be satisfied by shifting the matrix A". This gives the Stability
(b).

We use the KSSOLV software package [Yang et al., 2009] to perform a spin-unpolarized calculation for the C60
molecule using the Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotential [Hamann, 2013] to model the
ionic core potential and the Perdue-Zunger local density exchange-correlation functional [Perdew and Zunger, 1981].
Because each C atom has 4 valence electrons (two valence electron pairs), the total number of eigenvalues to be
computed is 120.

We use three different planewave energy cutoffs to discretize the Kohn-Sham equation: E.,, = 6.25,12.25,25
Hartree. For each disretized problem, we compute the 2-norm of the preconditioned Hamiltonian 7~ H. We observe
that in each case, |T~!H||, is around 0.92.

We demonstrate the convergence of the Davidson and LOBPCG algorithms [Knyazev, 2001] using the initial KS
Hamiltonian constructed at the beginning of the SCF cycle. The initial approximation (iterate) is chosen to be a set
of i.i.d, random numbers drawn from N(0, 1) distribution, orthonormalized by a QR factorization.

Our implementation of the Davidson algorithm only keeps the current approximation to the desired eigenvectors
and the preconditioned residuals in the search space to reduce memory usage. The Davidson iteration is restarted
with the most recent approximation to the desired eigenvectors in each step. LOBPCG is the default eigensolver in
KSSOLV. It is equivalent to restarted Davidson that keeps two sets of previous approximations (setting maximum of
k to 3 in Algorithm 1 and restart when convergence is not reached). These examples show that restart has no effect on
mesh independence of convergence. The theory predicts this since the restarted iteration can be viewed as a separate
iteration with a new initial iterate and Theorem 2.1 can be applied to that new iteration. The electron density p
used to construct such a Hamiltonian is obtained by taking the superposition of atomic electron densities of all 60
carbon atoms and normalizing the density to have the correct electron charge. A random starting guess is used in each
Davidson/LOBPCG run.

In Figure 5, we plot the change of eigenspace residual norm defined as

IRlF = |HX — XAF,

where | - | is the Frobenius norm, X contains the reciprocal space representation of the approximated eigenvec-
tors {;(r)}, i.e. their planewave expansion coefficients, and A is a diagonal matrix containing the corresponding
eigenvalues, with respect to the number of Davidson iterations.

We clearly see from this figure that the convergence rate of the generalized Davidson algorithm is nearly indepen-
dent of the planewave cutoff value E,,,. The nearly E.,,-independent convergence rate can also be observed in Figure 6
for the LOBPCG algorithm. The LOBPCG algorithm converges faster because its search space contains contributions
from two most recent approximations to the desired eigenspace.

3.4. Electronic Structure Computation: Real Space Discretization
The Kohn-Sham (KS) equation (40) described in the previous section may be discretized using an alternate rep-
resentation that uses regular real space grids in place of plane waves[Briggs et al., 1996]. This formulation allows
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Figure 5: The Convergence of the Davidson algorithm for KS Hamiltonians with different planewave energy cutoff (E,;).
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for the use of multigrid preconditioning techniques as well as eliminates the need for FFTs which can lead to better
performance and scalability for large problems and distributed computing platforms.

The multigrid preconditioner was developed especially for RMG [Briggs et al., 1996] and the complete descrip-
tion of the discretization is in [Hodak et al., 2007].

The Laplace operator in the Kohn-Sham Hamiltonian (41) is not diagonal in real-space and is discretized using
finite difference operators. In particular, for a regular 3-d grid with orthogonal coordinate axes and a spacing of &
between grid points,a discrete Laplacian operator may be defined by

V2 (xis yj 2) =cod (¥, > 26) +
P (42)
Z Cn I:w(xi + nh,)’j’ Zk) + w(xi’ Yj + I’lh, Zk) + l/’(xi’yj’ Tk =+ I’lh)];
n=1
with the triplet (x;,y;,z) defining the coordinates of each grid point and x; = xo + ih,y; = yo + jh,zx = 20 + kh.
Using this discretization, the Laplacian is not exact but accuracy may be improved by decreasing 4 and/or increasing
p.

We used the RMG electronic structure code to perform the same calculations for a C60 molecule as was done in
section 3.3 with a plane wave basis. Instead of using a plane wave cutoff, RMG controls the accuracy of the discretiza-
tion by varying the grid spacing A, with accuracy increasing as & decreases. The [0,20]x[0,20]x[0,20] supercell was
represented by cubic grids of 323, 48 and 643 points. These correspond to grid spacings of 4 = 0.625, h = 0.417
and & = 0.3125 respectively. The pseudopotential used to model the carbon atoms was again an ONCV[Hamann,
2013] potential but with the non-local terms represented by their values on the real space grid rather than a plane wave
expansion in reciprocal space.

RMG uses a multigrid based preconditioner for the Davidson algorithm that treats the current residual r; = Hy; —
€, for a given approximate eigenvector as the right hand side of a Poisson equation.

V2S,' = Hy; — eY; (43)

Eq. (43) is then solved using a multigrid poisson solver for the preconditioned residual s;.

The initial electronic charge density p consisted of the sum of the individual atomic charge densities while the
initial eigenvectors of the Kohn-Sham Hamlitonian were generated from a linear combination of the 2s and 2p atomic
orbitals from each carbon atom. In Fig (7) we plot the convergence with respect to Davidson iteration count for the
first SCF step as measured by the Frobenius norm of the residual vectors,

IRl = [HX — XA F.

In real space X contains the approximate eigenvectors {¢;(r)}, represented by their values on the real space grid while
A is a diagonal matrix containing the current approximations of the eigenvalues.

The starting estimates from the linear combination of atomic orbitals (LCAO), are closer to the true eigenvectors
than the random start used in the plane wave calculation which is reflected in the initially lower eigenspace residual
norms.

The RMG convergence rates shown in Fig 7 for A4 0.312 and 0.417 au are essentially identical, confirming
the mesh independence of the Davidson algorithm. There are small differences in convergence rate for the first few
iterations, as well as a somewhat different convergence rate for the significantly larger hg,;y of 0.625 au. The differences
are due to weaker convergence criteria automatically applied by the RMG code in the initial Kohn-Sham iterations
when solving the Poisson equation, and different round-off errors when representing the Laplacian and the potential
on discretized grids with different spacings.
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Figure 7: Convergence of the Davidson algorithm in RMG with different mesh sizes (h).

4. Conclusions

In this paper we prove a mesh-independence result for the generalized Davidson algorithm. We report on compu-
tations that illustrate the theorem.

5. Data

The programs and input files for the results in § 3 are in the github repository

https://github.com/ctkelley/Davidson]CP
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