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Abstract10

We give conditions under which the generalized Davidson algorithm for eigenvalue computations is mesh-independent.11

In this case mesh-independence means that the iteration statistics (residual norms, convergence rates, for example) of a12

sequence of discretizations of a problem in a Banach space converge the statistics for the infinite-dimensional problem.13

We illustrate the result with several numerical examples.14
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1. Introduction17

The purpose of this paper is to give conditions under which the residual norms of the generalized Davidson algo-18

rithm when applied to a finite-dimensional problem which approximates a problem in an infinite-dimensional space,19

converge to the residual norms of the Davidson iteration for the infinite dimensional problem. This is called mesh-20

independence in the nonlinear solver community [Allgower et al., 1986, Allgower and Böhmer, 1987, Xue, 1995,21

Kelley and Sachs, 1991, 1992, Ferng and Kelley, 2000]. The idea is that one has an algorithm that makes some mea-22

sure of error, such as the norm of a residual or a gradient, small. One applies this algorithm to a sequence of problems23

indexed with a parameter h, where h is, for example, a mesh-width, and observes that, for a given ε ą 0, the number24

of iterations needed to make the measure of error ă ε is independent of h.25

We will use the algorithmic descriptions from [Hamilton, 2011, Sleijpen and van der Vorst, 2000]. In the classic26

Davidson algorithm the preconditioner is the inverse of the diagonal of A ´ λI. The generalized Davidson algorithm27

allows for any preconditioner M « A ´ λI. For simplicity we express Algorithm 1 as one designed to compute the28

smallest eigenvalue of A, an operator in a finite or infinite dimensional Hilbert space with scalar product p¨, ¨q and29

norm } ¨ }. In the case where A is only densely defined then the inverse of the preconditioner must map residuals to30

the domain of A.31

The generalized Davidson algorithm is given by Algorithm 1.32

In Algorithm 1 and for the rest of the paper we use bold faced fonts for vectors and operators which are finite33

dimensional or generic vectors and operators which can be either finite or infinite dimensional. We will use standard34

fonts for operators and vectors which are only defined in infinite dimensional spaces.35

We will work in the following framework. We consider a possibly unbounded operator A defined on an infinite36

dimensional Hilbert space H. We let the domain of A be a Banach space X and the range Y . We let H denote the Hilbert37

space in which the orthogonalization in the generalized Davidson algorithm takes place, p¨, ¨qH the inner product, and38

}u}2
H “ pu, uqH for u P H. Typically X is dense in H and the operatore A is unbounded. We require X Ă Y Ă H.39
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Algorithm 1 Generalized Davidson Algorithm
pu, λq “ davidsonpu0,A,M, τq

k “ 0
v0 “ u0{}u0}

V0 “ Spanpv0q

λ0 “ pv0,Av0q

r0 “ pA´ λ0qv0
while }rk} ą τ}r0} do

Solve Mktk “ ´rk

uk`1{2 “ uk ` tk

Obtain vk`1 from uk`1{2 and Vk by Gram-Schmidt using p¨, ¨q
Vk`1 “ SpanpVk, vk`1q

Let Pk`1 be the orthogonal projection onto Vk`1
Find smallest eigenvalue λk`1 and corresponding unit eigenvector w of the restriction of Pk`1APk`1 to Vk`1.
uk`1 “ w
k Ð k ` 1
rk “ pA´ λkquk

end while
λÐ λk; u Ð uk

Our only assumption on the preconditioner in this Hilbert space setting is that M is nonsingular and M´1 : Y Ñ X40

continuously. The example in § 3.1 illustrates this setting for an example in which H “ L2r0, 1s, X “ C2r0, 1s, and41

Y “ Cr0, 1s.42

The three spaces are needed to capture the consistency and stability properties of a finite difference approximation43

for a differential operator and the Hilbert space nature of the Krylov eigensolver. This, as we explain in § 1.1, is a44

different, and less straightforward, setting that one needs for nonlinear equations.45

In this paper we show that a well-designed (consistent and stable) sequence of approximate problems will track46

the performance of the infinite dimensional iteration. This is the mesh-independence property [Allgower et al., 1986,47

Allgower and Böhmer, 1987, Xue, 1995, Kelley and Sachs, 1991, 1992, Ferng and Kelley, 2000] which is well known48

in the nonlinear solver community.49

Mesh-independence theorems are different from convergence theorems. We will illustrate that with the classic50

result from [Allgower et al., 1986] for nonlinear equations in § 1.1 and again in § 2.1 where we compare a conver-51

gence theorem from [Oliveira, 1999] for the generalized Davidson algorithm in the Hermitian case with the mesh-52

independence in this paper. The convergence results in [Oliveira, 1999] make assumptions that are similar to our53

stability assumptions.54

1.1. Mesh-Independence Results for Nonlinear Equations55

Mesh-independence theorems are best known in the setting of nonlinear equations [Willert et al., 2015, Allgower56

et al., 1986, Allgower and Böhmer, 1987, Ferng and Kelley, 2000, Kelley and Sachs, 1991] and optimization [Kelley57

and Sachs, 1992, Hintermüller and Ulbrich, 2003]. To illustrate the ideas we will describe one of the results from58

[Allgower et al., 1986] on Newton’s method. The function space setting is simpler for nonlinear equations case than59

for the eigenvalue computation in this paper. The reason for this is that we need no scalar product for a Krylov solver60

in this application. There is only one space X and approximation space Xh.61

In the context of nonlinear equations we seek to approximate a nonlinear equation62

Fpuq “ 0, (1)

on a Banach space X by a sequence of finite dimensional problems63

Fhpuhq “ 0 (2)

2



on finite dimensional spaces Xh with norms } ¨ }h. We will refer to h as a mesh parameter. The idea is that the64

approximation becomes better as h Ñ 0. We will use a superscript of h for the infinite-dimensional equation when65

discussing issues that depend on h (Assumption 1.1, for example). We will assume that Fh is Fréchet differentiable for66

h ě 0 and denote the Fréchet derivative by DFh.67

Now assume that both the infinite dimensional problem and the sequence of finite dimensional problems satisfy the68

standard assumptions for quadratic convergence of Newton’s method in a mesh-independent manner. Assumption 1.169

makes this precise.70

Assumption 1.1. For all h ě 0 sufficiently small71

1. There is a solution uh˚ of Fhpuhq “ 0.72

2. Fh is Lipschitz continuously Fréchet differentiable with Lipschitz constant γ.73

3. DFhpuh˚q is nonsingular and there is M such that74

}pDFhqpuh˚q´1}h ď M.75

76

The classic quadratic convergence estimate [Kelley, 1995] then implies that if the initial error }uh ´ uh
0} is suffi-77

ciently small, then the Newton iteration,78

uh
n`1 “ uh

n ´ pDFhqpunq
´1Fhpunq,79

converges to uh˚ and80

}uh
n`1 ´ uh˚}h ď Mγ}uh

n ´ uh˚}2
h. (3)

The uniformity of the estimate (3) in h does not depend on the quality of the approximation, only on the uniform81

bound for the Lipschitz constant of the derivative and the norm of the inverse of the derivative. This is not a mesh-82

independent result, but only a (very useful) uniform bound. There is no need for any connection at all between the83

maps Fh to obtain (3) other than the uniform bounds on the Lipschitz constant of the derivative and the norm of its84

inverse.85

Mesh independence requires consistency of the approximations Fh to an underlying “exact” map F. The uniform86

bounds in Assumption 1.1 can be thought of as stability assumptions. Let Eh : X Ñ Xh be a “discretization” map. The87

consistency assumptions from [Allgower et al., 1986] are88

Assumption 1.2. There are p ě 1 and a neighborhood N of u˚ such that for all u P N and u, v P X ,89

1. }FhpEhuq ´ EhFpuq} “ Ophpq and90

2. }pDFhqpEhuqEhv´ EhpDFpuqqv} “ Ophpq.91

The theorem from [Allgower et al., 1986] synthesizes two ideas. One is that the consistency assumptions 1.2, the92

stability assumptions 1.1 for h “ 0, and the classical Kantorovich theorem [Kantorovich and Akilov, 1982, Kelley,93

1995, 2018] imply Assumption 1.1 for h sufficiently small. The other idea, and the core of mesh-independence results,94

is that the iterations themselves converge. The theorem from [Allgower et al., 1986] is95

Theorem 1.1. Let Assumptions 1.1 (for h “ 0 only) and 1.2 hold. Then Assumption 1.1 holds for all h ą 0. The96

estimate (3) holds, and for h ą 0 sufficiently small97

uh˚ ´ Ehu˚ “ Ophpq, (4)
98

Fhpuh
nq ´ EhFpunq “ Ophpq, and (5)

99

puh
n ´ uh˚q ´ Ehpun ´ u˚q “ Ophpq. (6)
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Our main result Theorem 2.1 is expressed in way similar to the statement of Theorem 1.1.100

The mesh-independence result from [Allgower et al., 1986] assumes convergence of the underlying exact iteration,101

but that is, in fact, not necessary to argue that the conclusions of Theorem 1.1 hold. Moreover, Theorem 1.1 shows102

that if the exact iteration converges faster than (3) predicts, especially in the early phases of the iteration, then the103

approximate iteration will reflect that.104

The estimates in Theorem 1.1 are only meaningful when the errors in the iteration are larger than the approximation105

error contained in the O-term. Because of this, many papers that followed [Allgower et al., 1986] express mesh-106

independence by saying that the index k for which uh
k satisfies a termination criterion of the form107

}Fhpuh
kq}{}F

hpuh
0q} ă τ (7)

is independent of h for h sufficiently small. Corollary 2.1 is our analog of this formulation of mesh-independence.108

Note that (7) does not depend on convergence order. While the results for nonlinear equations show that pth order109

accuracy in the equations implies pth order accuracy in the iteration statisticss, our results do not. One reason for this110

is that it is not clear to us how to show that for the preconditioner estimates. Another reason is that many applications,111

such as the one in § 3.3, do not use a spatial mesh.112

In § 2 we state and prove the mesh-independence result. Assumption 2.1 is similar to part 3 of Assumption 1.1113

(stability) and Assumption 1.2 (consistency). We do not assume that the operators are Hermitian, as many convergence114

results do [Ovtchinnikov, 2006, 2003b,a, Oliveira, 1999].115

In § 3 we illustrate the results with several examples. The first is a very simple problem that clearly satisfies116

the assumptions. The second is a non-Hermitian generalized eigenvalue problem from neutron transport theory. The117

final example is an electronic structure computation where one wants many eigenvalues. We point out that mesh-118

independence for eigen computations has been observed for certain finite element computations with AMG precondi-119

tioning in [Arbenz et al., 2005]. The examples in that paper are consistent with the theory in this paper.120

2. Mesh Independence Theorem for the Generalized Davidson Algorithm121

We consider a family of discretized finite dimensional linear operators tAhu and tMhu on finite dimensional spaces122

tHhu . We put a scalar product p¨, ¨qh and norm } ¨ }h on Hh . In most of our examples in § 3 the discretization will be123

nodal, but that is not essential. For example, the example in § 3.3 is a Fourier approximation.124

In § 1.1 we made the assumption that the range of F was also the domain of F. We will now consider unbounded125

operators A and therefore need to extend the evaluation map to Y , the range of A. So we need an evaluation map126

Eh : Y Ñ Hh in order to specify consistency conditions and a scalar product p¨, ¨qh on Hh for the orthogonalization in127

the generalized Davidson iteration.128

Our consistency and stability conditions are129

Assumption 2.1. The discretizations are consistent and stable in the sense that130

1. Consistency:131

(a) limhÑ0 }AhEhu´ EhAu}h “ 0 for all u P X.132

(b) limhÑ0pEhu,Ehvqh “ pu, vqH for all u, v P Y.133

(c) limhÑ0 }AhpMhq´1Ehu´ AhEhM´1u}h “ 0 for all u P Y.134

2. Stability: There is MS such that for all h sufficiently small135

(a) }pMhq´1Ah}h ď MS , }AhpMhq´1}h ď MS ,136

(b) }pAhq´1}h ď MS , and }pMhq´1}h ď MS .137

We will use the following lemma.138

Lemma 2.1. Let Assumption 2.1 hold. Let u P X with u ‰ 0. Then139

σhpuq ” Ah
ˆ

Ehu
}u}H

´
Ehu
}Ehu}h

˙

Ñ 0 as h Ñ 0 . (8)
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Proof. Since u ‰ 0140

}σhpuq} “
}AhEhu}h

}Ehu}h

ˇ

ˇ

ˇ

ˇ

}Ehu}h

}u}H
´ 1

ˇ

ˇ

ˇ

ˇ

.141

and the proof of (8) is complete by part 1b of Assumption 2.1 and the fact that }AhEhu}h is bounded as h Ñ 0 because142

u P X.143

We will make an assumption on the eigenvalue problem and on the eigensolver in Algorithm 1.144

Assumption 2.2. Assume that the eigenvalues λk from Algorithm 1 are simple and that the eigensolver used in Algo-145

rithm 1 returns a smallest eigenvalue and corresponding unit eigenvector that are continuous functions of the matrix.146

Since the eigenvalue is simple, continuity of the eigenvalue follows from standard perturbation theory [Golub147

and VanLoan, 1996] if the matrix is diagonalizable. The assumption on the unit eigenvector simply says that the148

eigensolver will not change the sign of the vector for a nearby problem.149

Theorem 2.1. Let Assumption 2.1 hold. Suppose the generalized Davidson Algorithm 1 in the infinite dimensional150

setting with initial iterate u0 such that }u0}H “ 1 has non-zero residuals for the first K ą 0 iterations.151

Let λh
k and rh

k be the eigenvalues and residuals one obtains from applying Algorithm 1 to the operators Ah and Mh
152

with the initial iterate Ehu0. Then, for all 0 ď k ď K,153

lim
hÑ0

}Ahpuh
k ´ Ehukq}h “ 0, (9)

154

lim
hÑ0

λh
k Ñ λk, (10)

and155

lim
hÑ0

}Ehrk ´ rh
k}h “ 0. (11)

Proof.156

We will verify (10) and (11) inductively. For k “ 0 the assumption that uh
0 “ Ehu0 implies that157

}Ahpuh
0 ´ Ehu0q}h “ 0, (12)

which implies (9) for k “ 0.158

Part 1a of Assumption 2.1 and (12) imply that159

λh
0 “ pAhvh

0, v
h
0qh “

pAhEhu0,Ehu0qh

}Ehu0}
2
h

“ pAhEhv0,Ehv0qh
}u0}

2
H

}Ehu0}
2
h

“

ˆ

pEhAv0,Ehv0qh ` ppAhEh ´ EhAqv0,Ehv0qh

˙

}u0}
2
H

}Ehu0}
2
h

(13)
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Hence160

ελ0 phq ” λh
0 ´ λ0 “ pAhvh

0, v
h
0qh ´ pAv0, v0qH

“

ˆ

pEhAv0,Ehv0qh ` ppAhEh ´ EhAqv0,Ehv0qh

˙

}u0}
2
H

}Ehu0}
2
h

´ pAv0, v0qH

“ pEhAv0,Ehv0qh ´ pAv0, v0qH
loooooooooooooooomoooooooooooooooon

I

`pEhAv0,Ehv0qh

ˆ

}u0}
2
H

}Ehu0}
2
h

´ 1
˙

loooooooooooooooooomoooooooooooooooooon

II

`ppAhEh ´ EhAqv0,Ehv0qh
}u0}

2
H

}Ehu0}
2
h

loooooooooooooooooooomoooooooooooooooooooon

III

.

(14)

We will show that limhÑ0 ε
λ
0 phq “ 0 by looking at the three components on the right side of (14).161

Beginning with I, since v0 P X Ă Y , part 1b of Assumption 2.1 implies that162

lim
hÑ0
pEhAv0,Ehv0qh ´ pAv0, v0qH “ 0.163

Part II is a product of two terms. Firstly164

}u0}
2
H

}Ehu0}
2
h

Ñ 1165

as h Ñ 0 by part 1b of Assumption 2.1. Since166

lim
hÑ0
pEhAv0,Ehv0qh “ pAv0, v0qH “ λ0167

by part 1b of Assumption 2.1, we obtain168

lim
hÑ0
pEhAv0,Ehv0qh

ˆ

}u0}
2
H

}Ehu0}
2
h

´ 1
˙

“ 0.169

Finally, we consider III. Since u0 P X, we have, using part 1a of Assumption 2.1170

lim
hÑ0

|ppAhEh ´ EhAqu0,Ehu0qh|ď lim
hÑ0

}AhEhu0 ´ EhAu0}h}Ehu0}h “ 0.171

We will complete the start of the induction by verifying (11) for k “ 0. Part 1a of Assumption 2.1 and (13) imply172

that173

rh
0 ´ Ehr0 “ εr

0phq ” pA
huh

0 ´ λh
0uh

0q ´ pE
hAu0 ´ λ0Ehu0q

“ pAhuh
0 ´ AhEhu0q

looooooooomooooooooon

I

`pAhEhu0 ´ EhAu0q
loooooooooomoooooooooon

II

` λ0pEhu0 ´ uh
0q

looooooomooooooon

III

`pλ0 ´ λh
0qu

h
0

looooomooooon

IV

.
174

To verify (11) for k “ 0 we must show that εr
0phq Ñ 0 as h Ñ 0. We do this by examining each of the four terms175

separately. The first term (I)176

Ahuh
0 ´ AhEhu0 “ 0177

since uh
0 “ Ehu0. This also implies that the third term (III)178

λ0pEhu0 ´ uh
0qh “ 0.179

This, in turn, implies that }uh
0} is bounded as h Ñ 0, so the fourth term (IV)180

pλ0 ´ λh
0qu

h
0 Ñ 0181
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as h Ñ 0 because we have already verified (10) for k “ 0. The second term (II)182

AhEhu0 ´ EhAu0 Ñ 0183

as h Ñ 0 by Part 1a of Assumption 2.1.184

Note Lemma 2.1 implies that185

}Ahvh
0 ´ AhEhv0}h Ñ 0186

as h Ñ 0. We will need this to complete the induction.187

We can now finish the induction. Assume that for all l ď k188

λh
l “ λl ` ελl phq, (15)

189

}Ahuh
l ´ AhEhul}h “ εu

l phq, (16)

and190

}Ahvh
l ´ AhEhvl}h “ εv

l phq, (17)

where191

lim
hÑ0

ελl phq “ lim
hÑ0

εu
l phq “ lim

hÑ0
εv

l phq “ 0. (18)

Similarly to the k “ 0 case, (15), (16), and (18) imply that for all 0 ď l ď k192

εr
l phq ” }r

h
l ´ Ehrl}h Ñ 0 (19)

as h Ñ 0. We will verify that (15) and (17) hold for iteration k ` 1 and thereby complete the proof.193

After computing rh
k we apply the preconditioner to obtain194

th
k “ ´pMhq´1rh

k “ ´pM
hq´1prh

k ´ Ehrkq ´ pMhq´1Ehrk

“ ´pMhq´1prh
k ´ Ehrkq ´ ppMhq´1Ehrk ´ EhM´1rkq ´ EhM´1rk

“ Ehtk ´ pMhq´1prh
k ´ Ehrkq ´ ppMhq´1Ehrk ´ EhM´1rkq.

(20)

Let195

εt
kphq “ }A

hpth
k ´ Ehtkq}h.196

We use (20) to obtain197

εt
kphq “ }AhpMhq´1prh

k ´ Ehrkq ´ AhppMhq´1Ehrk ´ EhM´1rkq}h

ď }AhpMhq´1prh
k ´ Ehrkq}h ` }pAhpMhq´1Ehrk ´ AhEhM´1rkq}h.

(21)

We will analyze the two components on the right side of (21) separately. Note that part 2 of Assumption 2.1 and (19)198

imply that199

lim
hÑ0

}AhpMhq´1prh
k ´ Ehrkq}h “ 0.200

Morevoer, since rk P Y , Part 1c implies that201

lim
hÑ0

}AhppMhq´1Ehrk ´ EhM´1rkq}h “ 0.202

Therefore εt
kphq Ñ 0 as h Ñ 0.203

The next step is orthogonalizing uk`1{2 “ uk` tk against the previous basis vectors. Using (21) and (16) we obtain204

205

lim
hÑ0

}Ahuh
k`1{2 ´ AhEhuk`1{2}h “ 0. (22)
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206

Now vk`1 “ wk`1{}wk`1}H where207

wk`1 “ uk`1{2 ´

k
ÿ

l“0

puk`1{2, vlqHvl. (23)

Similarly vh
k`1 “ wk`1{}wk`1}h where208

wh
k`1 “ uh

k`1{2 ´

k
ÿ

l“0

puh
k`1{2, v

h
l qhvh

l , (24)

and vh
k`1 “ wh

k`1{}w
h
k`1}h. Our next task is to show that209

}Ahpvh
k`1 ´ Ehvk`1q}h Ñ 0 as h Ñ 0. (25)

This will follow from210

}Ahpwh
k`1 ´ Ehwk`1q}h Ñ 0 as h Ñ 0, (26)

because (26) and (8) will imply (25).211

We begin by noting that212

lim
hÑ0
puh

k`1{2, v
h
l qh “ puk`1{2, vlqH (27)

for all 0 ď l ď k by the induction hypotheses, (16) (21). Then we may use (23), (24), and (17) to obtain (26).213

The eigenvalue λk`1 is the smallest eigenvalue of the matrixA with entries214

pAqi j “ pAvi, v jqH .215

Similarly λh
k`1 is the smallest eigenvalue of the matrixAh with entries216

pAqhi j “ pA
hvh

i , v
h
jqh.217

Convergence of the vs in the sense of (17) and (25) and parts 1a and 1b of Assumption 2.1 imply that218

lim
hÑ0
Ah

i j “ Ai j.219

Assumption 2.2 then implies that the eigenvalue converges220

lim
hÑ0

λh
k`1 “ λ,221

verifying (15) for l “ k ` 1. Moreover the eigenvector zh
k`1 corresponding to λh

k`1 also converges222

lim
hÑ0

zh
k`1 “ zk`1.223

This completes the proof since we can expand uh
k`1 and uk`1 as224

uh
k`1 “

k`1
ÿ

j“1

zh
jv

h
j and uk`1 “

k`1
ÿ

j“1

z jv j,225

where zk`1 “ pz1, . . . , zk`1q
T and zh

k`1 “ pz
h
1, . . . , z

h
k`1q

T . Therefore226

Ahpuh
k`1 ´ Ehuk`1q “

řk`1
j“1 z jAhpvh

j ´ Ehv jq

`
řk`1

j“1pz
h
j ´ z jqAhEhv j Ñ 0

(28)
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as h Ñ 0 by the convergence of the eigenvectors and (17).227

The mesh-independence result Theorem 2.1 requires the stability and consistency assumptions 2.1 and assumes that228

the infinite dimensional iteration converges. We now prove Corollary 2.1, which states that if the infinite dimensional229

iteration does terminate successfully with a small residual, then the approximate iteration will do so as well in the230

same number of iterations.231

Corollary 2.1. Let the assumptions of Theorem 2.1 hold. If the infinite dimensional Davidson iteration terminates232

for a given τ ą 0 after exactly K iterations with rK ‰ 0, Then for all h sufficiently small, the generalized Davidson233

algorithm applied to Ah with initial vector Ehu0 will also terminate after K iterations.234

Proof. Suppose K is the first index for which }rk}H ă τ}r0}H .235

We can use (11) from Theorem 2.1 implies that (11) holds to complete the proof since for all 0 ď k ď K236

|}rh
k}h ´ }rk}H| ď |}rh

k}h ´ }Ehrk}h| ` |}Ehrk}h ´ }rk}H| ď εr
kphq ` |}E

hrk}h ´ }rk}H| Ñ 0 (29)

as h Ñ 0 by (11) and Part 1b of Assumption 2.1. Hence (29) implies that K is also the first K for which }rh
k}h ă τ}rh

0}h.237

238

The stability assumption on the discretization (Part 2b of Assumption 2.1) is not used directly in the proof of The-239

orem 2.1, but an unstable discretization, even if consistent, will not converge and the theorem would be meaningless in240

that event. We also note that if one only considers a finite number K of iterations, then one can weaken the assumption241

on convergence of the infinite dimensional iteration (Assumption 2.2) to only assume that the infinite dimensional242

iteration does not terminate prematurely with a zero residual. In this way our results apply even to divergent iterations.243

2.1. Convergence Results are Different from Mesh Independence244

In the analysis for mesh-independence we do not assume any symmetry for A or M or even that the iteration245

converges. However, some convergence results make assumptions similar to ours and we will discuss one such result246

in this section. In [Oliveira, 1999] the objective is to find the smallest eigenvalue λ˚ and corresponding eigenvector247

u˚ for a symmetric positive definite matrix A with the generalized Davidson algorithm using the symmetric positive248

definite preconditioner M. The convergence result requires a stability assumption.249

Assumption 2.3. M and A are symmetric positive definite. M is held fixed for the entire iteration (i. e. independent of250

the current approximation to the eigenvalue). The smallest eigenvalue λ˚ of A is strictly less than the second smallest251

λ2. There is c ą 0 such that252

}M´1A} ď c and }pM´1Aq´1} ď c. (30)

Note that (30) implies that κppMq´1Aq ď c2.253

The result from [Oliveira, 1999] is254

Theorem 2.2. Let Assumption 2.3 hold. Then the generalized Davidson iteration ptλku, tukuq converges to pλ˚,u˚q255

in the sense that256

lim sup
kÑ8

|λk`1 ´ λ˚|

|λk ´ λ˚|
ď σ2 (31)

and257

lim sup
kÑ8

=puk`1,u˚q
=puk,u˚q

ď σ. (32)

Here =pu, vq is the angle between the subspaces spanned by the vectors u and v and258

σ “
1´ p1´ ρq{c2

1` p1´ ρq{c2 .259
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Part 2 of Assumption 2.1 is similar, but weaker, than Assumption 2.3. The convergence results in [Oliveira, 1999]260

only depend on stability of the preconditioner and the ratio of the smallest eigenvalue λ˚ and the next smallest λ2261

ρ “ λ˚{λ2.262

Our assumptions could be expanded to require that the bounds needed for Theorem 4.1 in [Oliveira, 1999] hold for all263

h. If we did that then, in the symmetric positive definite case, the convergence bounds for that theorem would be inde-264

pendent of h. However, these are worst-case bounds and are asymptotic results, similar to those for Newton’s methods,265

where the standard assumptions imply (3), which is an asymptotic bound. Contrast this to mesh-independence, where266

the result is that the performance of the first given number of iterations converges as h Ñ 0.267

Suppose the assumptions for Theorem 2.2 hold for the families of approximations tAhu and tMhu independently268

of h. Then the convergence of the generalized Davidson iterations will all have the asymptotic behavior given by (31)269

and (32). This does not imply mesh-independence, which is a property of the entire iteration. It is interesting to note270

that [Oliveira, 1999] presents results (Figure 1) that show mesh-independence, even though the theory only predicts271

asymptotic convergence rates. This paper explains those observations in more detail.272

The example in § 3.1 satisfies Assumption 2.3 in a mesh-independent way.273

2.2. Generalized Eigenvalue Problem274

The results in § 2 extend directly to the generalized eigenvalue problem275

Au “ λBu, (33)

where B is nonsingular. The convergence results in [Ovtchinnikov, 2003b,a] include Hermitian positive definite in-276

stance of this case.277

The unfortunately named generalized Davidson algorithm for the generalized eigenvalue problem [Morgan, 1990]278

is279

Algorithm 2 Generalized Davidson Algorithm for GEP
pv, λq “ davidson geppu0,A,B,M, τq

k “ 0
v0 “ u0{}u0}H

V0 “ Spanpv0q

λ0 “ pv0,Av0qH{pv0,Bv0qH
r0 “ pA´ λ0Bqv0
while }rk}H ą τ}r0}H do

Solve Mktk “ ´rk

uk`1{2 “ uk ` tk

Obtain vk`1 from uk`1{2 and Vk by Gram-Schmidt using p¨, ¨qH
Vk`1 “ SpanpVk, vk`1q

Let Pk`1 be the orthogonal projection onto Vk`1
Find smallest eigenvalue λk`1 and corresponding unit eigenvector w for the problem Pk`1APk`1w “

λk`1Pk`1BPk`1w.
uk`1 “ w
k Ð k ` 1
rk “ pA´ λkBquk

end while

Theorem 2.1 holds for this algorithm if we include B in the consistency and stability assumptions. We would280

assume that281

}BhEhu´ EhBu}h Ñ 0 as h Ñ 0 for all u P X. (34)

and282

}pMhq´1Bh}h is uniformly bounded in h. (35)
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3. Examples283

We present four examples to illustrate the theory. We begin in § 3.1 with a simple eigenvalue problem where284

Assumption 2.1 is trivially satisfied. The second in § 3.2 is a generalized eigenvalue problem from computational285

neutronics. The operator in § 3.2 is non-symmetric. The final examples are from electronic structure computations286

with two different approximations: a plane wave basis in § 3.3 and a real space discretization in § 3.4.287

3.1. Integro-differential Equation in One Dimension288

We will find the smallest eigenvalue of A, where289

Aupxq “ ´u2pxq `
ż 1

0
kpx, yqupyq dy.290

and291

kpx, yq “ ´e|x´y|{2.292

The domain of A is293

X “ tu | u P C2r0, 1s, up0q “ up1q “ 0u.294

The range is Y “ Cr0, 1s and the Hilbert space scalar product for orthogonalization is L2r0, 1s with the usual L2 scalar295

product. Our preconditioner is the inverse of the second derivative term in the operator.296

Mupxq “ ´u2pxq.297

Clearly M´1 : Y Ñ X as is needed for the terms in the generalized Davidson algorithm to be defined.298

We discretized the differential operator with the standard central difference scheme and used the trapezoid rule for299

the integral operator. We use an equally spaced grid with N interior grid points and h “ 1{pN ` 1q. The evaluation300

map Eh is evaluation at the nodes of the difference scheme. With these choices the consistency hypotheses hold with301

the norm on X being the L8 norm.302

Note that Ah and Mh are Hermitian and that M does not depend on the current approximation to λ. It is easy to303

verify that Assumption 2.3 holds with c and λ˚{λ2 independent of h for h sufficiently small. Similarly, Assumption 2.1304

follows from well-known properties of the central difference discretization [LeVeque, 2007] and the trapezoid rule305

discretization of integral operators [Anselone, 1971].306

The initial iterate was v “ u0{}u0}H where u0pxq “ xp1´ xq. v was discretized by evaluation at the mesh points.307

In Table 1 we report on the relative residual histories for the generalized Davidson iteration for five different values308

of the mesh spacing h. We terminated the iteration when the residual was smaller than 10´6. The mesh-independence309

of the iteration is clearly evident, even in the third figure of the residuals. We tabulate the residual histories in the310

discrete L2 norm311

}r} “

˜

h
N
ÿ

i“1

r2
i

¸1{2

.312

Table 1: Relative Residual Histories

h=1/1000 h=1/2000 h=1/4000 h=1/8000 h=1/16000
1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
6.0495e-02 6.0632e-02 6.0700e-02 6.0734e-02 6.0751e-02
1.3359e-03 1.3433e-03 1.3470e-03 1.3488e-03 1.3498e-03
1.5032e-05 1.5179e-05 1.5253e-05 1.5290e-05 1.5310e-05
1.0224e-07 1.0380e-07 1.0460e-07 1.0533e-07 1.0736e-07
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3.2. Neutron transport: Generalized Eigenvalue Problem313

In this section, we consider the solution of the k-eigenvalue form of the neutron transport equation. This equation314

can be written as315

Ω̂ ¨ ∇ψ` σψ “

ż 8

0
dE

ż

4π
dΩ̂σsψ`

1
k
χ

ż 8

0
dE

ż

4π
dΩ̂ νσ fψ , (36)

where Ω̂ is the neutron direction, E is the neutron energy, ψp~r, Ω̂, Eq is the angular flux, σp~r, Eq is the total cross316

section, σsp~r, Ω̂1 Ñ Ω̂, E1 Ñ Eq is the scattering cross section, χp~r, Eq is the fission energy distribution, νp~r, Eq is the317

number of neutrons produced per fission event, and σ f p~r, Eq is the fission cross section. The eigenvalue k represents318

the multiplication factor of the system—k less than one corresponds to a neutron population that is decreasing in time,319

k greater than one corresponds to a population increasing in time, and k exactly equal to one corresponds to a constant320

population. The quantity that is sought is the largest magnitude eigenvalue k (commonly known in the literature as321

k-effective) and the corresponding eigenvector. It is known that the dominant eigenvalue is real, positive, and simple322

and the corresponding eigenvector is everywhere nonnegative [Borysiewicz and Mika, 1972]. This problem can be323

written in operator notation as324

pT´ Sqψ “
1
k

Fψ, (37)

where T is the streaming-plus-collision operator, S is the scattering operator, and F is the fission operator. The operator325

T is guaranteed to be nonsingular [Faber and Manteuffel, 1988], which permits rewriting (37) in integral form as326

pI´ T´1Sqψ “
1
k

T´1Fψ . (38)

The transport equation must be discretized in energy, angle, and space. The multigroup approximation is the energy327

discretization employed by every major production radiation transport solver [Lewis and Miller, 1993], and will be328

used in this study. Radiation transport solvers are primarily classified by the type of angular discretization used. In329

the spherical harmonics, or PN, method, the angular dependence of the solution is expanded in spherical harmonic330

moments. The diffusion approximation to the transport equation can be derived from a two-term truncation of the331

spherical harmonics expansion. The other main angular discretization is the discrete ordinates, or SN, method [Carlson332

and Lathrop, 1965]. The discrete ordinates method is an angular collocation method where the transport equation is333

enforced for a finite number of directions. Integrals in angle are approximated using quadrature rules. Quadrature334

sets defining the discrete angles and corresponding quadrature weights are usually selected to satisfy certain symmetry335

and accuracy criteria (such as integrating the maximum possible number of spherical harmonic functions for a given336

number of angles). For discretization of the spatial variable, finite difference, finite element, and finite volume methods337

are all in widespread use [Hamilton, 2011].338

In this work we consider the method of characteristics (MOC) formulation of the radiation transport equation339

[Askew, 1972], which falls into the discrete ordinates family of methods. The MOC approach divides a problem340

geometry into a set of spatial cells in which the scattering and fission sources are assumed to be constant (although341

linear source versions of MOC do exist [Ferrer et al., 2012]). For each angle, a set of rays are traced from one domain342

boundary to the opposite boundary; the transport equation is solved analytically within each constant-source region.343

Because of its ability to naturally handle curvilinear and complex geometries, the MOC equations are commonly344

used for analysis of nuclear reactors, which commonly consist of numerous cylindrical fuel elements. The MOC345

formulation is almost exclusively used for two-dimensional problems, as the computational requirements for the three-346

dimensional extension render it uncompetitive with other methods.347

In the case of energy-independent transport, the integral operator pI ´ T´1Sq has been shown to be self-adjoint,348

positive, and a compact perturbation of the identity (cf. [Faber and Manteuffel, 1988] in a single spatial dimension and349

[Scheben and Graham, 2011] in multiple dimensions). Methods based on the discrete ordinates angular discretization350

generally do not maintain the self-adjoint property of the continuous problem, although Chang introduced an approach351

that allows the property to be retained with certain restrictions on the quadrature set [Chang, 2007]. This study also352

observed mesh-independent convergence for linear systems involving the energy-independent transport equation using353

the conjugate gradient method. The spectral radius of the operator T´1S is less than unity, as demonstrated in [Faber354

and Manteuffel, 1988] for the continuous problem, [Greenbaum, 1997] for a finite-difference discretized system, and355

[Chang, 2007] for a finite-element discretization. The energy-dependent case is not self-adjoint due to the structure of356
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(a) Scattering cross section in H2O.
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(b) Scattering cross section in UO2.
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Figure 1: 56-group cross section data for two common materials. Scattering cross section corresponds to S and the fission matrix corresponds to F
in (38). Energy group 1 represents the highest energy and group 56 is the lowest energy.

the matrices S and F. Examples of the cross section data for two materials are provided in Fig. 1. This data determines357

the block structure of the matrices S and F in (38). It is evident that the data introduces a significant amount of358

asymmetry into the system, with most entries in the scattering matrices being located on or below the main diagonal359

and all entries in the fission matrix beyond group 20 are zero. Also note that the fission matrix is identically zero for360

any spatial cell not containing a fuel material. As noted in § 2, our convergence results do not rely on the operators361

being Hermitian.362

For this work, we use the radiation transport solver within the POLARIS code [Jessee et al., 2014], a reactor363

analysis package developed at Oak Ridge National Laboratory. As a test problem, we choose a model of an assembly364

from the Takahama pressurized water reactor as described in [Radulescu et al., 2010]. Due to the presence of strongly365

absorbing materials, this was noted to be a challenging problem to converge. Five different problem resolutions are366

proposed in which the space and angular variables are simultaneously refined. These parameters, as well as the367

corresponding computed k-effective values, are provided in Table 2. A 56-group cross section library is used in all368

cases; this library is a standard choice for reactor analyses. The discretized problem geometries for two different spatial369

resolutions are shown in Fig. 2. A generalized Davidson eigensolver from the Trilinos library [Heroux et al., 2003]370

is used, solving (38) using Algorithm 2. The preconditioner is taken to be a fixed number of Richardson iterations,371

corresponding to the preconditioner372

M´1 “

N
ÿ

n“0

pT´1Sqn . (39)

The initial guess in all cases is a constant vector.373

The correspondence with the general description in § 2.2 is λ “ 1{k,374

A “ I´ T´1S, and B “ T´1F.375

Consistency properties equivalent to parts 1a and 1b of Assumption 2.1 for the discretized radiation transport equation376

are well documented for common discretizations [Lesaint and Raviart, 1974, Pitkäranta and Scott, 1983, Johnson and377

Pitkäranta, 1983]. These results also imply (34), as the only mesh dependence in B is contained in T, which appears378

identically in A and B. As noted previously, ρpI´ Aq ” ρpT´1Sq ă 1. Because M´1 only involves powers of the379

operator pI ´ Aq, parts 1c, 2, and the final statement in 2b of Assumption 2.1 will be satisfied, as will (35). For380

the purposes of this study, the energy discretization will be fixed and is therefore not a factor in the consistency and381

stability considerations.382

Table 3 shows the number of iterations required for convergence using either one or five iterations of Richardson383

iteration. The use of additional Richardson iterations in the preconditioner results in a smaller number of Davidson384

iterations. For both preconditioners, the iteration count is essentially independent of the level of resolution.385

Figure 3 shows the convergence behavior for the Davidson eigenvalue solver for three different mesh resolutions.386

The preconditioner for this case is five Richardson iterations. Some slight variation in behavior is observed, particularly387
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Table 2: Discretization parameters for Takahama PWR assembly problem.

Discretization level Cells Angles Ray spacing (cm) Total segments k-effective

1 807 4 0.08 13,167 1.118783
2 2009 16 0.04 80,572 1.113687
3 5716 32 0.02 552,494 1.116683
4 17,076 96 0.01 3,546,452 1.119555
5 58,598 192 0.005 24,524,659 1.121148

(a) Level 1 mesh. (b) Level 4 mesh.

Figure 2: Representative spatial meshes for Takahama PWR assembly.

in the first few iterations, but the average rate of convergence is nearly identical across all resolutions. This behavior388

is consistent with the expectation that the convergence of the Davidson method is asymptotically independent of the389

discretization level.390
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Table 3: Davidson eigenvalue iterations to convergence for Takahama PWR assembly.

Preconditioner

Discretization level 1 Richardson 5 Richardsons

1 32 13
2 31 12
3 31 12
4 31 12
5 31 13
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Figure 3: Davidson convergence history for solution of k-eigenvalue problem for three different mesh resolutions.
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3.3. Electronic Structure Computation: Plane Wave Discretization391

We consider solving the Kohn-Sham (KS) eigenvalue problem of the form392

Hpρqψiprq “ ψiprqεi, (40)

where ε1 ď ε2 ď ¨ ¨ ¨ εne are the ne algebraically smallest eigenvalues of the Kohn-Sham Hamiltonian Hpρq which is a393

function of the electron density ρ defined in term of desired eigenfunctions of H.394

ρprq “
ne
ÿ

i“1

|ψiprq|2.395

Because H depends on the eigenfunctions to be computed, this is a nonlinear eigenvalue problem that must be solved396

by a nonlinear iterative method. The most widely used method is the self-consistent field (SCF) iteration in which397

a sequence of linear eigenvalue problems for fixed electron densities ρ are solved. The computed eigenfunction398

approximations are used to update ρ for the subsequent SCF iteration.399

In this section, we solve the Kohn-Sham equation for the Buckminsterfullerene (i.e., the C60 molecule, see Fig-400

ure 4). We discretize the KS equation (40) by expanding ψi in planewaves eiG¨r, where G is a vector in the reciprocal401

space of a unit (super)cell Ω that contains the C60 molecule. We choose the supercell to be r0, 20s ˆ r0, 20s ˆ r0, 20s402

(in Bohr).403

Figure 4: The C60 molecule.

The accuracy of the discretization is determined by the planewave cutoff parameter Ecut. i.e., we only include404

planewaves that satisfy405

}G}2{2 ă Ecut.406

The larger the Ecut, the more accurate the discretization and the larger the dimension of the discretized problem.407

Because the KS Hamiltonian has the form408

H “ ´
1
2

L` Vpρprqq, (41)

where L is the Laplacian operator and V is a potential operator that consists of an low rank non-local ionic pseudo-409

potential term as well as local ionic pseudo-potential, Hartree and exchange-correlation terms, multiplying H with410
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a vector can be performed efficiently by representing L and the non-local part of the ionic pseudo-potential in the411

reciprocal space and the rest of V in the real space, and using the fast Fourier transform (FFT) to move the vector back412

and forth between these two spaces. We do not explicitly construct H as a matrix because it is dense in both the real413

and reciprocal space.414

It is well known that a suitable preconditioner T for the generalized Davidson algorithm is the inverse of a modified415

Laplacian [Teter et al., 1989] that can be efficiently applied in the reciprocal space.416

The a priori error analysis of the planewave approximation of the Kohn-Sham model using pseudopotentials has417

been analyzed in [Cancès et al., 2012]. For a fixed system size with increasingly refined mesh, we expect that the418

Assumptions 2.1 are satisfied with the preconditioner used here [Teter et al., 1989], as indicated from the mesh-419

independent results below.420

In the planewave discretization, Eh projects a function to the span of Fourier modes within a kinetic energy cutoff.421

Since the Fourier basis set is a complete basis set, Assumption 2.1 Consistency (a), (b) hold naturally. The Teter pre-422

conditioner M commutes with Eh, and furthermore EhM´1 “ pMhq´1Eh, which gives 2.1 consistency (c). Regarding423

the stability, the Teter preconditioner is again chosen so that the divergence of the Laplacian operator as h Ñ 0 is424

precisely canceled, so that Stability (a) is satisfied by design. It is also by design that the Teter preconditioner satisfies425

}pMhq´1} ď MS . Finally }pAhq´1} ď MS can always be satisfied by shifting the matrix Ah. This gives the Stability426

(b).427

We use the KSSOLV software package [Yang et al., 2009] to perform a spin-unpolarized calculation for the C60428

molecule using the Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotential [Hamann, 2013] to model the429

ionic core potential and the Perdue-Zunger local density exchange-correlation functional [Perdew and Zunger, 1981].430

Because each C atom has 4 valence electrons (two valence electron pairs), the total number of eigenvalues to be431

computed is 120.432

We use three different planewave energy cutoffs to discretize the Kohn-Sham equation: Ecut “ 6.25, 12.25, 25433

Hartree. For each disretized problem, we compute the 2-norm of the preconditioned Hamiltonian T´1H. We observe434

that in each case, }T´1H}2 is around 0.92.435

We demonstrate the convergence of the Davidson and LOBPCG algorithms [Knyazev, 2001] using the initial KS436

Hamiltonian constructed at the beginning of the SCF cycle. The initial approximation (iterate) is chosen to be a set437

of i.i.d, random numbers drawn from N(0,1) distribution, orthonormalized by a QR factorization.438

Our implementation of the Davidson algorithm only keeps the current approximation to the desired eigenvectors439

and the preconditioned residuals in the search space to reduce memory usage. The Davidson iteration is restarted440

with the most recent approximation to the desired eigenvectors in each step. LOBPCG is the default eigensolver in441

KSSOLV. It is equivalent to restarted Davidson that keeps two sets of previous approximations (setting maximum of442

k to 3 in Algorithm 1 and restart when convergence is not reached). These examples show that restart has no effect on443

mesh independence of convergence. The theory predicts this since the restarted iteration can be viewed as a separate444

iteration with a new initial iterate and Theorem 2.1 can be applied to that new iteration. The electron density ρ445

used to construct such a Hamiltonian is obtained by taking the superposition of atomic electron densities of all 60446

carbon atoms and normalizing the density to have the correct electron charge. A random starting guess is used in each447

Davidson/LOBPCG run.448

In Figure 5, we plot the change of eigenspace residual norm defined as449

}R}F “ }HX ´ XΛ}F ,450

where } ¨ }F is the Frobenius norm, X contains the reciprocal space representation of the approximated eigenvec-451

tors tψiprqu, i.e. their planewave expansion coefficients, and Λ is a diagonal matrix containing the corresponding452

eigenvalues, with respect to the number of Davidson iterations.453

We clearly see from this figure that the convergence rate of the generalized Davidson algorithm is nearly indepen-454

dent of the planewave cutoff value Ecut. The nearly Ecut-independent convergence rate can also be observed in Figure 6455

for the LOBPCG algorithm. The LOBPCG algorithm converges faster because its search space contains contributions456

from two most recent approximations to the desired eigenspace.457

3.4. Electronic Structure Computation: Real Space Discretization458

The Kohn-Sham (KS) equation (40) described in the previous section may be discretized using an alternate rep-459

resentation that uses regular real space grids in place of plane waves[Briggs et al., 1996]. This formulation allows460
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Figure 5: The Convergence of the Davidson algorithm for KS Hamiltonians with different planewave energy cutoff (Ecut).

Figure 6: The Convergence of LOBPCG for KS Hamiltonians with different planewave energy cutoff (Ecut).
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for the use of multigrid preconditioning techniques as well as eliminates the need for FFTs which can lead to better461

performance and scalability for large problems and distributed computing platforms.462

The multigrid preconditioner was developed especially for RMG [Briggs et al., 1996] and the complete descrip-463

tion of the discretization is in [Hodak et al., 2007]. There is no theoretical verification for Assumption 1c and 2. The464

discretization of the Hamiltonian is consistent and stable [Fornberg, 1988], so Assumptions 1a, and 1b. 2b hold. More-465

over, the numerical experience with RMG indicates that the all of the Assumptions hold. The RMG preconditioner is466

a V-cycle for the high-order term (kinetic energy) in the Hamiltonian. There is theory in other contexts [Manteuffel467

and Parter, 1990] that supports mesh-independence for this kind of preconditioner.468

The Laplace operator in the Kohn-Sham Hamiltonian (41) is not diagonal in real-space and is discretized using469

finite difference operators. In particular, for a regular 3-d grid with orthogonal coordinate axes and a spacing of h470

between grid points,a discrete Laplacian operator may be defined by471

∇2ψpxi, y j, zkq “c0ψpxi, y j, zkq`

p
ÿ

n“1

cn

”

ψpxi ˘ nh, y j, zkq ` ψpxi, y j ˘ nh, zkq ` ψpxi, y j, zk ˘ nhq
ı

,
(42)

with the triplet pxi, y j, zkq defining the coordinates of each grid point and xi “ x0 ` ih, y j “ y0 ` jh, zk “ z0 ` kh.472

Using this discretization, the Laplacian is not exact but accuracy may be improved by decreasing h and/or increasing473

p.474

We used the RMG electronic structure code to perform the same calculations for a C60 molecule as was done in475

section 3.3 with a plane wave basis. Instead of using a plane wave cutoff, RMG controls the accuracy of the discretiza-476

tion by varying the grid spacing h, with accuracy increasing as h decreases. The [0,20]x[0,20]x[0,20] supercell was477

represented by cubic grids of 323, 483 and 643 points. These correspond to grid spacings of h “ 0.625, h “ 0.417478

and h “ 0.3125 respectively. The pseudopotential used to model the carbon atoms was again an ONCV[Hamann,479

2013] potential but with the non-local terms represented by their values on the real space grid rather than a plane wave480

expansion in reciprocal space.481

RMG uses a multigrid based preconditioner for the Davidson algorithm that treats the current residual ri “ Hψi ´482

εiψi for a given approximate eigenvector as the right hand side of a Poisson equation.483

∇2si “ Hψi ´ εiψi (43)

Eq. (43) is then solved using a multigrid poisson solver for the preconditioned residual si.484

The initial electronic charge density ρ consisted of the sum of the individual atomic charge densities while the485

initial eigenvectors of the Kohn-Sham Hamlitonian were generated from a linear combination of the 2s and 2p atomic486

orbitals from each carbon atom. In Fig (7) we plot the convergence with respect to Davidson iteration count for the487

first SCF step as measured by the Frobenius norm of the residual vectors,488

}R}F “ }HX ´ XΛ}F .489

In real space X contains the approximate eigenvectors tψiprqu, represented by their values on the real space grid while490

Λ is a diagonal matrix containing the current approximations of the eigenvalues.491

The starting estimates from the linear combination of atomic orbitals (LCAO), are closer to the true eigenvectors492

than the random start used in the plane wave calculation which is reflected in the initially lower eigenspace residual493

norms.494

The RMG convergence rates shown in Fig 7 for hgrid 0.312 and 0.417 au are essentially identical, confirming495

the mesh independence of the Davidson algorithm. There are small differences in convergence rate for the first few496

iterations, as well as a somewhat different convergence rate for the significantly larger hgrid of 0.625 au. The differences497

are due to weaker convergence criteria automatically applied by the RMG code in the initial Kohn-Sham iterations498

when solving the Poisson equation, and different round-off errors when representing the Laplacian and the potential499

on discretized grids with different spacings.500
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Figure 7: Convergence of the Davidson algorithm in RMG with different mesh sizes (h).

4. Conclusions501

In this paper we prove a mesh-independence result for the generalized Davidson algorithm. We report on compu-502

tations that illustrate the theorem.503

5. Data504

The programs and input files for the results in § 3 are in the github repository505

https://github.com/ctkelley/DavidsonJCP506
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