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This paper employs an input-output based approach to analyze convective veloc-
ities and the transport of fluctuations in turbulent channel flows. The convective
velocity for a fluctuating quantity associated with streamwise—spanwise wave-
length pairs at each wall-normal location is obtained through the maximization
of the power spectral density associated with the linearized Navier-Stokes equa-
tions with a turbulent mean profile and delta-correlated Gaussian forcing. We
first demonstrate that the mean convective velocities computed in this manner
agree well with those reported previously in the literature. We then exploit the
analytical framework to probe the underlying mechanisms contributing to the
local convective velocity at different wall-normal locations by isolating the contri-
butions of each streamwise—spanwise wavelength pair (flow scale). The resulting
analysis suggests that the behavior of the convective velocity in the near-wall
region is influenced by large-scale structures further away from the wall. These
structures resemble Townsend’s attached eddies in the cross—plane, yet show in-
complete similarity in the streamwise direction. We then investigate the role of
each linear term in the momentum equation to isolate the contribution of the
pressure, mean shear, and viscous effects to the deviation of the convective veloc-
ity from the mean at each flow scale. Our analysis highlights the role of the viscous
effects, particularly in regards to large channel spanning structures whose influ-
ence extends to the near-wall region. The results of this work suggest the promise
of an input-output approach for analyzing convective velocity across a range of
flow scales using only the mean velocity profile.

Key words: Convective velocity; Turbulent channel; Taylor’s hypothesis; Linearized
Navier-Stokes

1. Introduction

Taylor’s frozen turbulence hypothesis (Taylor 1938) and its variants have proven
invaluable in the study of high Reynolds number wall-bounded turbulent flows
(Marusic et al. 2010; Smits et al. 2011; LeHew et al. 2011). However, its under-
lying assumption that the motion of turbulent fluctuations can be modelled as
passive advection by the local mean velocity is known to break down in certain
flow regimes (Lin 1953; Dennis & Nickels 2008; Squire et al. 2017). In order to
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compensate for these known errors, the local mean velocity is often replaced by
a convective velocity that better represents the spatio-temporal development of
the fluctuations (Zaman & Hussain 1981; Hutchins ef al. 2011). This convective
velocity can be computed from simulation data (Kim & Hussain 1993; del Alamo
& Jiménez 2009; Chung & McKeon 2010; Lozano-Duran & Jiménez 2014; Geng
et al. 2015; Renard & Deck 2015) or obtained from spatio-temporally resolved ex-
perimental measurements (Krogstad et al. 1998; LeHew et al. 2010; LeHew et al.
2011; de Kat & Ganapathisubramani 2015). However, questions remain regard-
ing how to obtain an accurate estimate of this quantity, particularly in situations
where the relevant data are unavailable; e.g., in experiments using hotwire mea-
surements or planar PIV. In addition, there is not yet a full understanding of the
mechanisms contributing to the convective velocity in each region of the flow.
Such knowledge is required both to characterize the transport properties of fluc-
tuating quantities, and to identify when direct application of Taylor’s hypothesis
with the mean velocity is insufficient.

An early work by Lin (1953) suggests that Taylor’s hypothesis works well when
the mean flow is approximately spatially uniform and when turbulence intensities
are low, but breaks down in regions of high shear. Lumley (1965) further refines
this spatial uniformity requirement, suggesting that weak interactions between
eddies of different sizes are also needed to ensure the validity of Taylor’s hypothe-
sis. Geng et al. (2015) provide support for the break down of Taylor’s hypothesis
in highly sheared regions of the flow by explicitly computing the contribution of
advection by the mean flow (Taylor’s hypothesis) to convective velocity in the
viscous sublayer using Direct Numerical Simulation (DNS) data from channel
flows at Re; = 205 and 932. In particular, they compute the average amplitudes
of different terms in the momentum equation through DNS and illustrate that
advection by the mean flow provides less than 50% of the streamwise momentum
flux in the viscous sublayer. Taylor’s hypothesis has also proven to inadequately
describe the convection of large-scale components of the flow. Dennis & Nickels
(2008) compare the spatial evolution of a turbulent flow inferred from the tem-
poral information using Taylor’s hypothesis with those obtained using Particle
Image Velocimetry (PIV) at a wall parallel plane sufficiently removed from the
wall so that the assumptions of Lin (1953) are satisfied. The authors find that
even though the PIV fields are qualitatively similar, several large-scale features
are not reproduced in the fields generated using Taylor’s hypothesis.

The validity of Taylor’s hypothesis across a range of flow scales is explored by
Fisher & Davies (1964) who use two-point space-time correlation for statistically
stationary turbulence to compute the convective velocity of streamwise velocity
fluctuations as a function of streamwise spatial and temporal separation; i.e., a
streamwise (or temporal) scale-dependent convective velocity. Fisher & Davies
(1964) and subsequently Favre et al. (1967); Zaman & Hussain (1981) show that
the convective velocity computed in this manner does not coincide with the local
mean velocity and can be strongly dependent on the streamwise spatial or tem-
poral separation. A similar phenomenon has also been observed in measurements
of wall-pressure (Willmarth & Wooldridge 1962).

This scale dependence, particularly the increasing deviation of the convective
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velocity from the mean flow as spatial separation is increased, was identified as a
possible explanation for the known discrepancy between the convective and mean
velocities near the wall. In particular, the larger convective velocity versus the
local mean velocity in the near-wall region has been attributed to faster mov-
ing structures centered further away from the wall whose influence extends to
the wall due to their large size (Dinkelacker et al. 1977; Kreplin & Eckelmann
1979; Farabee & Casarella 1991; Kim & Hussain 1993; Hutchins et al. 2011). del
Alamo & Jiménez (2009) find that fast and wide streamwise elongated struc-
tures, coherent up to the core region, provide a consistent contribution to the
energy-weighted average convective velocity close to the wall. They relate these
structures to the large modes (Bullock et al. 1978; del Alamo et al. 2004) remi-
niscent of Townsend’s ‘inactive’ eddies (Townsend 1961; Bradshaw 1967) and the
very large-scale motions (Guala et al. 2006; Balakumar & Adrian 2007; Hutchins
& Marusic 2007; Monty et al. 2007), which have been shown to modulate small-
scale structures (Mathis et al. 2009a,b; Ganapathisubramani et al. 2012; Yang
& Howland 2018). Although these works provide evidence that scale interactions
contribute to the breakdown of Taylor’s hypothesis at the wall, a full understand-
ing of the underlying mechanisms across the full range of flow regimes has yet to
be realized.

In this paper, we explore the mechanisms underlying the convective velocity of
fluctuating quantities in wall-bounded turbulence using a spatio-temporal trans-
fer function that enables us to isolate the contributions and interactions across
the full range of flow scales. This approach allows us to compute quantities for a
range of Reynolds numbers given an associated turbulent mean velocity profile.
Our analytical framework is based on stochastically-forced Linearized Navier-
Stokes (LNS) equations, which have a long history in the study of wall-bounded
shear flows; e.g., in characterizing energy amplification associated with stochastic
disturbances (Farrell & Ioannou 1993; Bamieh & Dahleh 2001) and isolating the
most sensitive input-output paths (Jovanovi¢ & Bamieh 2005). The LNS equa-
tions have also proven useful in characterizing coherent structures (Smits et al.
2011; McKeon 2017; Jiménez 2018). For example, low rank approximations of the
resolvent operator (McKeon & Sharma 2010) have been used to explain the scal-
ings of the very large-scale motions and to reconstruct the packet hairpin vortices
(Sharma & McKeon 2013). Luhar et al. (2014) also use the resolvent framework to
predict the high-amplitude wall-pressure previously observed in experiments and
simulations. Moarref et al. (2013) combine this framework with term balancing
arguments to reproduce the inner, outer, and geometrically self-similar scalings
of the streamwise energy density in turbulent channel flows. Input-output anal-
ysis of the NS equations linearized about a base profile with an eddy viscosity
term (Reynolds & Hussain 1972) leads to accurate predictions of the spanwise
spacing of near-wall streaks (del Alamo & Jiménez 2006; Cossu et al. 2009; Pujals
et al. 2009; Hwang & Cossu 2010a,b) and large-scale structures (Illingworth et al.
2018; Madhusudanan et al. 2019; Morra et al. 2019). Related work employing the
impulse response (Vadarevu et al. 2019) of the LNS transfer function has led to
self-similar vortex structures.

The transfer function of the LNS has previously been used to compute quan-
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tities associated with the convective velocity of a fluctuating quantity in wall-
bounded turbulent flows. For example, the resolvent framework was used to show
that the phase speed of streamwise velocity fluctuations with peak contribution
to the energy density deviates from the mean velocity in the near-wall region
(Moarref et al. 2013). Luhar et al. (2014) also used the resolvent framework
to investigate the scale dependence of wall-pressure propagation speed, which
showed agreement with the empirically determined convective velocity (Panton
& Linebarger 1974). Zare et al. (2017) also computed the convective velocity of
streamwise velocity fluctuations for one specific flow scale based on the LNS equa-
tion with temporally correlated (colored) stochastic forcing. Their results show
qualitatively similar behavior to convective velocities obtained by del Alamo &
Jiménez (2009). These works demonstrate the utility of transfer function based
approaches in computing the convective velocity. However, none of these works
employed input-output analysis to investigate the underlying mechanisms that
lead to the deviation of convective velocity from the local mean velocity.

This work takes steps in that direction by using an input-output framework
to systematically investigate the scale-dependent convective velocity of velocity
fluctuations in turbulent channels. We begin by demonstrating that the proposed
approach provides good agreement with the mean convective velocity predictions
for fluctuations of the three velocity components previously published in the lit-
erature (Kim & Hussain 1993; Geng et al. 2015). We then direct our attention
to the streamwise velocity fluctuations and exploit the analytical framework to
compute the convective velocity for each streamwise—spanwise wavenumber pair
at different wall normal locations and to examine interactions between different
scales. The results of our scale-dependent analysis are consistent with those ob-
tained using DNS data (del Alamo & Jiménez 2009). In particular, the convective
velocities predicted using the input-output based approach employed here show
more variation with scale closer to the wall, with the largest variation occurring
in the viscous sublayer. Our analysis suggests that this viscous sublayer behav-
ior arises due to structures that are self-similar in the spanwise and wall-normal
plane and scale with wall-normal height, which supports Townsend’s attached
eddy hypothesis regarding the dominant dynamical structures in wall-bounded
flows.

Finally, in the spirit of Lin’s (1953) term—by—term analysis of the momentum
equation, we examine how each linear term in the momentum equation con-
tributes to the deviation of the convective velocity from the mean. A linear anal-
ysis is expected to yield insight in this regard because both the mean shear term
and the viscous term, which play critical roles in the dynamics of the near-wall
region, are linear. Moreover, it was recently shown that resolvent analysis retains
the fast pressure component arising from the linear interaction between the mean
shear and turbulent wall-normal velocity (Luhar et al. 2014), and therefore our
computations also include these phenomena. Our analysis employs an expression
for scale-dependent convective velocities derived by del Alamo & Jiménez (2009),
who did not further analyze the various terms. This work also builds upon that
of Geng et al. (2015) who quantify each term’s contribution to the convective
velocity at different wall-normal locations. Our results indicate that the viscous
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term provides the largest contribution to the deviation of the convective velocity
from the mean in the near-wall region. Based on these observations, we propose
a viscous correction to Taylor’s hypothesis, and demonstrate that the revised
model accurately reproduces the behavior of the near-wall convective velocity for
large—scale structures.

The remainder of the paper is organized as follows. Section 2 describes the
problem setup. We detail our transfer function based approach and numerical
scheme for calculating the convective velocities in sections 3 and 4, respectively.
In section 5, we apply the input-output based approach using mean velocity
profiles from turbulent channel flows obtained from Lee & Moser (2015) at three
different Reynolds numbers (Re, = 550, 1000, and 5200). We then discuss the
physical origin of the near-wall convective velocities. Section 6 explores the wall-
normal coherence of the structures contributing to the convective velocities at a
particular wall-normal location. Section 7 analyzes the contribution of each of the
linear terms in the momentum equation to the total convective velocity for each
streamwise—spanwise wavenumber pair (flow scale). Based on this term-by-term
analysis, a viscous correction to Taylor’s hypothesis is proposed and discussed.
Section 8 concludes the paper.

2. Problem setup

We consider incompressible flow between two infinite parallel plates driven
by a streamwise pressure gradient as shown in figure 1(a), where z,y, z are the
streamwise, wall-normal, and spanwise directions, respectively. We decompose the
velocity field, u = [u v w]T, with T indicating the transpose, and the pressure
field, p, into mean and fluctuating quantities; i.e., w = u(y)i +u’ with ¢ denoting
the streamwise unit vector and p = p + p/, where the overbars indicate time
averaged quantities, ¢ = limyp_ o % fOT ¢(t) dt, and primes indicate fluctuating
quantities. The dynamics of the fluctuations «’ and p’ are governed by

Oy’ + w0 u’ +Vp' + U’?i - Rl Au' = —u/ - Vu' +u/ - V!, (2.1a)
y €
V-u' =0. (2.1d)

The spatial variables are normalized by the half channel height §; e.g., y = y./d €
[—1,1], where the subscript * indicates dimensional quantities. The velocity is
normalized by the friction velocity U, = /7w /p, where 7y, is the time-averaged
mean shear stress at the wall, and p is the density of the fluid, which leads
to u := ut = wu,/U,.t Time and pressure are normalized by 6/U;, and pU2,
respectively. We define the inner unit length scale as é, = v/U; and use the

superscript + to denote the distances measured in inner units; i.e., y© = y,/d,.
The friction Reynolds number is defined as Re, = 6U, /v = §T.

1 Note, in (2.1), we omit the + superscripts for the velocity fluctuations for notational con-
venience.
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Figure 1: (a) Turbulent flow between two infinite parallel plates with mean profile @(y).

(b) The fluctuations u’ are decomposed into traveling waves with wavelengths A, A\, in
the z, z directions and downstream phase speed ¢ = —Azw /27 using equation (2.2).

Invariance to shifts in (z, z, t) of equations (2.1) allows us to employ the (z, z, t)
spatio-temporal Fourier transform,

© oo 00

ﬁ(y;km,kz,c} =Fy) = / / / U(z,y, z, t)e 1ke(@—c)+ka2) 4t 4z dz, (2.2)
—00 —00 —00

where k, = 2w/A; and k, = 2w /), are the respective dimensionless z and z

wavenumbers normalized by the channel half-height §. The transform (2.2) de-
composes the flow into traveling waves with wavelengths A;, A, in the z, z di-

rections and downstream phase speed ¢ = —w/k; = —Ayw/27, where w is the
frequency; see figure 1(b). Applying the Fourier transform to (2.1) and denoting
the nonlinear term as: f'(z,y,z,t) = —u' - Vu' + o/ - Vu/ yields
X dii 1 - .
ko (@ — c)it! +Vp +i/ —i———Ad = f (2.3q)
N dy Rer ~—
I [la “S=—————— 111
ITb Ilc
V-a =0, (2.3b)

where V = [ikm Oy ikz]T and A = Oyy — (k2 + k2). The corresponding no-slip
boundary conditions are given by

@ (y = +1; kg, k) = [0 0 0], Vhy, ky,c € R. (2.4)

The terms in (2.3a) can be grouped into: (I) advection of the fluctuations by the
mean velocity in the frame of reference of the traveling wave fluctuations, terms
(ITa)-(ILc), which capture the respective effects of pressure, shear, and viscosity,
and (III) fluctuation-fluctuation nonlinear interactions.

Taylor’s frozen turbulence hypothesis states that for sufficiently low turbulence
intensities (|u}|co/% — 0), the spatio-temporal development of turbulent fluc-
tuations can be described as downstream advection by the mean velocity u(y)
(Taylor 1938). This statement is equivalent to setting all terms except (I) in (2.3a)

to zero, which reduces the equation (2.3a) to the passive advection model:
iky (i — c)a’ = 0. (2.5)
As previously discussed, the direct application of Taylor’s hypothesis tends to
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be inaccurate in regions near the wall, where the terms in (Ila)-(Ilc) and (III)
in (2.3a) provide non-negligible contributions; see e.g., Lin (1953); Geng et al.
(2015). It is well-known that the model in (2.5) can be improved by replacing
the mean velocity, #, with an empirically determined mean convective velocity
1, (Zaman & Hussain 1981; Hutchins et al. 2011) for the fluctuating quantity
of interest. In the next section, we describe an input-output based approach to
computing such a ..

3. Method for calculating scale-dependent convective velocities

In this section, we describe the employed input-output approach to comput-
ing spatio-temporal convective velocities of fluctuating quantities given a mean
velocity profile u(y). First we rewrite (2.3) in the form

c[;f] - 87, (3.1)
where
: — 1 A du =
[_: = (lk&.’“(u - C) - -@e'r A)I3X3 + @S V , B e I3X3 , (3.2)
vT 0 O1x3

and j?, is parameterized as input forcing. In equation (3.2), Inxn and Opxp are
respective identity and zero matrices with their sizes indicated by their subscripts,

01 0
and S := [0 0 0]. A non-bold symbol represents a scalar; e.g., the 0 appearing
0

0 0
in (3.2) is a scalar quantity. We then define an output variable
. i
wf — C’d‘}! [ﬁ,] s (3.3)

where Cﬂ,}, = Cﬂa,(y; kz, k) is a linear operator that maps the state variables to

the output of interest. Here, we use the primitive variables 4’ and p’ as states
rather than the wall-normal velocity and vorticity coordinates of the commonly
studied Orr-Sommerfeld and Squire equations because this form of the equations
provides direct information about the pressure (Luhar et al. 2014), which we will
later exploit in the term-by-term analysis in section 7.

We define the input-output map g@, between the input j?, and the output ;l:",

in the manner of McKeon & Sharma (2010); Luhar et al. (2014); McKeon (2017)
as

W =Cy L7 BF = Gy, (yika kzr ) f (3.4)

The convective velocity of a fluctuating variable 1’ can be computed using the
following two-point space-time correlation for statistically stationary turbulence:

RT‘E.!(E; T; :B} = (11);(:3? t)w!(m + 631 t + T})a "»b = H, U: w;wrawyawz:p? (35)

where £ and 7 are the respective streamwise and temporal separation between
two points. Convective velocities for fluctuations 7/’ at some x are computed from
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(3.5) by fixing either £ or 7 and varying the other separation variable to maximize
R@;),(& ,7;x) (Wills 1964; Fisher & Davies 1964; Kim & Hussain 1993; Zaman &
Hussain 1981; Krogstad et al. 1998). We adapt this idea to our approach by
computing the Power Spectral Density (PSD) (Wills 1964; del Alamo & Jiménez
2009) for the input-output map (3.4) as

B, (v ke, bz, 0) = (W) = Go (F )5, = 65,65 (3.6)

with f/(z, v, z, t) parametrized as spatio-temporal delta-correlated Gaussian noise
with unit variance; i.e., noise that is white in space and time (Jovanovi¢ & Bamieh
2005). The superscript * in (3.6) denotes the complex conjugate, and the angle
brackets ( ) indicate an ensemble averaging operation.

The convective velocity 1, is then obtained as

'd)c(y; kz, kz} = arg maXC(I’tE_,('y; kz, k2, C}? (3-7)

which represents convective velocities of the coherent structures with (z, z) spatial
extents of Ay = 27 /ky and A, = 2w /k, as a function of wall-normal location.
This definition of convective velocity based on (3.7) neglects the distribution
of the PSD for a given (A, A\;) pair, which is expected to contain energy at a
range of temporal frequencies. The distribution of the spectrum could be partially
accounted for by instead defining the convective velocity in terms of the center
of gravity of the PSD. That quantity is commonly used to compute convective
velocity in simulation (DNS and LES) studies as it requires time-averaging instead
of Fourier transforming in the time domain; see e.g., del Alamo & Jiménez (2009);
Chung & McKeon (2010); Renard & Deck (2015). Our approach can be adapted
to accommodate such a definition (and others) through a suitable modification of
equation (3.7). In the current work, we recomputed a subset of the results using
the center of gravity method to ensure that the main conclusions of our study
are not altered by our choice of definition.

Assuming that f/(z,y,z,t) is spatio-temporal delta-correlated Gaussian noise
with unit variance implies that the velocity itself is Gaussian. This is clearly not
true as velocity probability density functions are known to have heavy tails and
odd-order moments that do not vanish (Frisch & Kolmogorov 1995). Colored-
in-time forcing has been shown to produce more accurate statistics (Zare et al.
2017). However, the Gaussian white-noise parametrization is appealing because
it is a simple, analytically tractable forcing that has been widely used to provide
important insights into the dynamics; e.g., Farrell & Ioannou (1993); Bamieh
& Dahleh (2001); Jovanovié & Bamieh (2005). Therefore, this type of forcing
provides a good starting point for understanding the role of linear mechanisms
in determining the convective velocity and simplifies analysis because it does not
introduce a preferential forcing in any of the spatial or temporal directions.

We focus on streamwise, wall-normal, and spanwise velocity fluctuations which
are computed based on the respective output operators

Cw=[1 000, Ch=[0 10 0], and Cy=[0 0 1 0] (3.8)
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in (3.4). However, we note that the approach can be generalized to the calcu-
lation of the convective velocity for any fluctuating quantity, v/, whose Fourier
transform can be written in the form (3.3) with an appropriate choice of C e For

example, the output operators corresponding to the vorticity fluctuations @&/, (;J;,
W}, and the pressure p’ are given by:

Cor, = [0 —ik; 8y 0], Cg = [ik; 0 —iky 0]
Coy = [0y ikz 0 0], Cy=1[0 0 0 1], (3.9)

¥

respectively. An analysis of the convective velocity of vorticity fluctuations is
carried out in Liu & Gayme (2019).

In the next section, we describe the numerical implementation of the input-
output based approach for channel flow at three different Reynolds numbers.
The resulting convective velocities are analyzed in subsequent sections.

4. Numerical approach

The operators in (3.6) are discretized using the Chebyshev differentiation ma-
trices generated by the MATLAB routines of Weideman & Reddy (2000). We
denote the discretization of Qﬁ, as (_:;';5,. The resulting discretized expression for
the PSD at wall-normal location y = ¥; is given by

6,1{,!(%'; ky k., C) = (?i’u?); (y; ky, ks, C))t = (Q;?), (Y; ky, ks, C)gﬂi;(y; ky k., C)) I (4'1)
i

where y = {y1,¥s,...} are the discrete grid points in the wall-normal direction,
and (A);; indicates the (i,j) element of the matrix A. The convective velocity
at a fixed (y; ks, k,) can then be approximated through the discretized analog
of (3.7). In computing this quantity, we employ the Clenshaw—Curtis quadrature
(Trefethen 2000) to obtain the Ly inner product for the Chebyshev spaced wall-
normal grid. We implement the no slip boundary condition @'(y = +1) = 0
explicitly following the approach of Luhar et al. (2014). This implementation
allows us to use primitive variables @' and p’, which as previously discussed
offers us direct information regarding the fast pressure. We performed the same
analysis using the Orr-Sommerfeld and Squire form described in Jovanovi¢ &
Bamieh (2005) and verified that results do not change.

The turbulent mean velocities in (2.1a) are obtained from the DNS of Lee &
Moser (2015) at Re, = 550, 1000, and 5200, which all use simulation domains
with L., /6 = 87 and L,,/d = 3w. For the Re; = 550 and Re, = 1000 cases, our
calculations use 122 collocation points in the wall-normal direction. We employ
192 collocation points for the Re; = 5200 calculations. We compute the optimal
value of equation (3.7) by computing the PSD for 201 uniformly spaced points
over the phase speed range ¢* € [0,30] for each wavenumber pair (kz, k;). We
then select the single ¢t that maximizes the PSD. This phase speed range and
90 x 90 logarithmically spaced points in the spectral range k; € [1072,10%] and
k. € [1072,10%] are employed for all three Reynolds numbers. We verified that
doubling either the number of collocation points in the wall-normal direction
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or the number of Fourier modes in the horizontal directions does not alter the
results, indicating grid convergence.

5. Convective velocity in turbulent channels

In this section, we use the method described in sections 3 and 4 to compute
the convective velocity of the velocity fluctuations for turbulent channel flow
at Re; = 550, Re; = 1000, and Re; = 5200. We first validate the approach
by computing the mean convective velocities and comparing our results to those
computed from DNS data (del Alamo & Jiménez 2009; Geng et al. 2015). We then
take advantage of the analytical framework to further analyze the contribution
of different length scales to the local convective velocity.

5.1. Validation of the input-output based approach

The weighted average convective velocity [1).], of a fluctuating quantity ¢’ can
be computed as:

fQ wc(y; kg, kz)h(y; ke, kz) dk,dk,

[Yeln(y) = Joy h(w; Kz, kz) dkpdk,

(5.1)

with an averaging domain Q over (kg, k;) and a weighting function h(y; ks, k) =
(| Fez(¥")|?) k2, where Fy, is the z-z Fourier transform:

Faz (V) (y; kay b2y ) = / /w'(m,y,z,t)e_i(k“’ﬁkzz)dmdz. (5.2)

—00 —00

We compute this average quantity for each of the three fluctuating velocity com-
ponents by first computing the convective velocity of each component using (3.6)
and (3.7) with the corresponding output operators given in (3.8). These quantities
are then filled into (5.1) with an averaging domain Q : (A\f, \}) > (500, 80). The
weighting function h(y; kz, k) in equation (5.1) is selected to provide the least-
squares fit to the passive advection model: 81’ + [0z = 0, ¥’ = v/, v, w' as
discussed by del Alamo & Jiménez (2009). This choice allows a direct comparison
with Geng et al. (2015), who explicitly employed this fit in their computations.

The averaging domain 2 : (A, A\]") > (500, 80) was chosen to include the sub-
layer streaks proposed as the source of the elevated near-wall convective velocity
(Kim & Hussain 1993) but to avoid the nonlinear effects that dominate at smaller
scales, where our linear analysis is not expected to be valid. The limitations of
our input-output based approach at these smaller scales can be understood by
examining the energy spectrum that is compared to that of DNS data in figure
2. Here it is clear that the spectrum for DNS falls off much faster with decreasing
wavelength than the spectrum obtained using the input-output based approach
in this work. The relatively heavier weighting at the small scales (wavelength)
structures imposed through the present approach results in a lower overall con-
vective velocity in these regions. Our choice of averaging domain eliminates the
effect of this heavier weighting and implicitly assumes that smaller wavelengths
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Figure 2: Premultiplied two-dimensional spectral density of streamwise velocity fluctua-
tions kzk, [ ®a(y; ks, k2, c)dc at y* =~ 5 for Reynolds number Re; = 1000. Contours are
shown for 0.2 (A); 0.5 (0); 0.8 (0) times the maximum value computed using the present
approach. Results are plotted with the premultiplied spectral density of streamwise ve-
locity fluctuations computed from DNS data. Contours are plotted at 0.2 (A); 0.5 (m);
0.8 (@) times the maximum value from DNS data at Re, = 934 (del Alamo et al. 2004)
(https://torroja.dmt.upm.es/channels/data/spectra/).

100 10! 102 108 10° 10! 10? 10°
Es yt

Figure 3: (a) The average convective velocity of velocity fluctuations, [¥.]} (y): ' = o’
(A); ¢ =" (O); ¥ = w (0) computed using the present approach and (5.1) with
their corresponding weighting functions h = (|F,.(¥')[?)k2 and an averaging domain
of (AF,A}) > (500,80) at Re, = 1000. Results are plotted with convective velocities
computed from DNS data (Geng et al. 2015) at Re, = 932: ¢/ = o' (—); ¢ = o'
(==); ¥ = w' (--). (b) The model-based average convective velocity for streamwise
fluctuations ¢’ = u’ computed from (5.1) with the weighting function h = (|F ., (u')|?)k2
over averaging domain (A}, A}) > (500, 80) at Re; = 550 (x); Rer = 1000 (+); Re, =
5200 (). The black dashed lines in both (a) and (b) are the turbulent mean velocity
profile at Re; = 1000 from Lee & Moser (2015).

are energetically negligible. Therefore, these small wavelength components do not
contribute to the average convective velocity computed using our input-output
approach.
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The performance of the input-output based model at small scales may be im-
proved by integrating known correlations from DNS or experimental data, e.g.,
shaping the forcing based on spatial or temporal correlations obtained via sim-
ulation data (Moarref et al. 2014; Zare et al. 2017). Improvements could also
potentially be realized by using an eddy viscosity based enhancement of the LNS
equations (Reynolds & Hussain 1972), which Zare et al. (2017) have shown can
provide similar improvements to the input-output response as the introduction
of colored-in-time forcing. Understanding the relative benefits of each of these
approaches over the current model is a topic of ongoing work.

Figure 3(a) compares the resulting mean convective velocities to those ob-
tained from the DNS data based computations of Geng et al. (2015). The plot
demonstrates that the model-based average convective velocities of the stream-
wise, wall-normal, and spanwise velocity fluctuations show good agreement with
those computed from DNS data (Geng et al. 2015).

Figure 3(b) replots the results for the streamwise velocity fluctuations in inner
units for Re; = 550, Re; = 1000, and Re; = 5200. The results collapse with the
average convective velocities computed from the input-output based approach at
different Reynolds numbers all tending to a constant value ~ 10u; near the wall.
This Reynolds number invariance of convective velocities is consistent with the
results reported in figure 3 of Geng et al. (2015).

The Reynolds number dependence can be analyzed by rewriting equations
(2.3a) and (2.3b) using the following change of variables k, = ki Re,;, V =
V*Re,, g—g = Re,,;;_—ﬁ and A = At Re2, which gives:

_ Al
ik} (@ —o)a/ — At + @’c;—iii + V= }%, (5.3a)
vt.a =o0. (5.3b)

As neither the mean velocity profile @ nor the mean shear du/dy*t at a specific
yT vary over the Reynolds number in the near-wall region (see e.g., Chapter 7.1.4
of Pope (2000)), the left hand side of equation (5.3a) does not significantly vary
over Reynolds number. The right hand side of equation (5.3a) is related to Rer,

but the Reynolds number only influences the magnitude of stochastic forcing f .
According to equation (3.6) and (3.7), the phase speed, ¢, at which ®; peaks
does not change, and thus, the convective velocity of the streamwise fluctuations,
u,. remains unaffected. This leads to the Reynolds number independence observed
in the right panel of figure 3.

This inner units scaling was also previously observed by Moarref et al. (2013)
for streamwise energy density and further generalized by Sharma et al. (2017)
in the framework of resolvent analysis. They end up with the same Re; ! scaling
for the spatio-temporal transfer function as shown in equation (A4) of Moarref
et al. (2013), and they also pointed out that Re; independence of turbulent mean
profile #(y) for y™ < 100 is necessary for this inner units scaling.

Having validated the ability of the input-output based computations to repro-
duce the mean trends, we next investigate the scale dependence of the convective
velocity.
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5.2. Scale-by-scale analysis of convective velocity

The model-based approach employed herein allows one to calculate the contribu-
tion of each individual (A, A,) wavelength pair to the local convective velocity at
each wall-normal location; i.e., u.(y; kg, k,). We now take advantage of this feature
to investigate the scale-dependence of the convective velocity and examine which
scales contribute to its deviation from the local mean velocity in various regions of
the flow. Figure 4 shows the convective velocity of the streamwise velocity fluctu-
ations normalized by the local mean velocity: u.(y; kz, k) /u(y) for (a) Re; = 550,
(b) Re; = 1000, and (c) Rer = 5200, as a function of the streamwise-spanwise
wavelengths (A}, A\]) at wall-normal locations associated with the viscous sub-
layer (y* & 5), the buffer layer (y* = 15), and the log-law region (y* =& 100). As
expected, the results in the viscous sublayer show the most significant deviations
from the mean velocity, whereas there is little difference in the log-law region,
which is consistent with the data in figure 3.

In figure 4, the convective velocities of structures in the intermediate scale
range A, ~ 2 show a discontinuity as the streamwise wavelength A, varies. This
phenomenon was also observed for the scale-dependent convective velocity of wall-
pressure in pipe flow predicted using resolvent analysis with broadband forcing;
see figure 12(a) in Lubar et al. (2014). In the term-by-term analysis in section 7,
we will further confirm that the convective velocity of structures associated with
these scales is highly influenced by the pressure.

Figure 5 shows the PSD, @4 (y; ks, k-, ¢) computed from equation (3.6), of the
streamwise velocity fluctuations for Re; = 1000 as a function of wall-normal
location yT and phase speed ¢t at six different streamwise-spanwise wavelength
pairs. Figures 5(a) and (b) show that the energy of the large wavelength structures
at example points <1 (AF, A\]) = (133052,857) and > (Af, \}) = (133052, 14756),
are concentrated near (y1,c™) & (200,18.4), and that structures traveling at
¢t = 18.4 provide the largest contribution to the spectral density in the near-
wall region. Figure 5(c) indicates that structures traveling at a higher velocity
than the local mean also contribute most to the PSD in the near-wall region for
the intermediate-scale structures. In contrast, the PSD distributions over (¢*,y™)
for structures with small streamwise wavelengths are more concentrated near the
mean velocity profile u as shown in figures 5(d), and (e) for example points
O (AF,AF) = (11,14756), and < (AL, Af) = (11,11).

Figure 5 indicates that the PSD distribution over phase speed is nearly sym-
metric about its peak in figures 5(a), (b), (d), and (e), which indicates close
correspondence between the center of gravity and peak of the PSD definitions
of convective velocity. For the representative intermediate flow scale plotted in
figure 5(c), the PSD distribution over the phase speed shows skewness, which is
expected to lead to differences in the convective velocity obtained by considering

the distribution. In order to evaluate the differences, we recomputed the results in
fc'ﬁgﬁ’(y;kz,kz ,c)de
f'i"f,’(y;kz7kz7c)dc
found that there are indeed differences for these scales. Specifically, the discon-
tinuity in the convective velocity as streamwise wavelength A, varies over larger
A; is smoothed. Differences also occur at the flow scales that are very small in

figure 4(b) using a center of gravity definition ¥ (y; ks, k) = and
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Figure 4: Scale-dependent convective velocity normalized by the local mean velocity
ue(y; Azs Az)/(y) at (a) Rer = 550, (b) Re; = 1000, and (c) Re; = 5200. The black
dashed lines are given by (A, A;) = (2,0.4), which are identified by del Alamo & Jiménez
(2009) as the lower-bound of the large-scale convective velocity. The black dash-dot lines

are A} = x\;,,"%, which fit through the knee of these contours.
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the spanwise direction but very long in the streamwise direction; e.g., the struc-
tures indicated by O (Af,\}) = (133052,11) in figure 5(f). These differences
are not surprising because figure 5(f) demonstrates that the PSD is quite flat
and therefore advection does not dominate at these flow scales. Here, neither
definition of convective velocity is physically meaningful, as the maximum is not
associated with a clear peak and the center of gravity definition merely selects
the center point of the computational domain. The comparison verified that the
overall trends that are highlighted in this manuscript, such as the influence of the
large-scale structures in the near-wall and buffer regions as well as the slope of
the knee through the contours indicated by dash-dot lines in the panels of figure
4 were unchanged when we used the center of gravity in our computations. We
therefore proceed with the definition in terms of the peak of the PSD in equation
(3.7) in the remainder of the manuscript.

Both figures 4 and 5 indicate that large channel spanning structures have an
influence on the convective velocity in both the viscous sublayer and the buffer
layer. This phenomenon was investigated by del Alamo & Jiménez (2009), who
identified large scales as structures of size (Az,A;) > (2,0.4). This large-scale
cut-off is identified by horizontal and vertical dashed lines in each panel of figure
4.

Figure 6(a) plots the mean convective velocities obtained for the averaging
domain (Az,A;) > (2,0.4) for Re; = 550 and Re; = 1000. A comparison to
DNS data indicates that the model produces qualitatively and quantitatively
similar behavior to results computed from DNS data (figure 5(a) in del Alamo &
Jiménez (2009)). Note the results in figure 6(a) are scaled by the bulk velocity;
ie., Uy = % f_ll u(y)dy for direct comparison with del Alamo & Jiménez (2009).

In figure 6(b), we further analyze the influence of the large scales by comparing
the scale-dependent convective velocity at y* ~ 16 with Re; = 1000 from our
approach to figure 3(a) in del Alamo & Jiménez (2009). The darker blue region of
the largest A\]" and moderate to largest A} in figure 6(b) indicates the influence of
large and very large-scale motion on the convective velocity in this region, which
supports previous studies (Kim & Hussain 1993; Krogstad et al. 1998) indicating
that fast moving structures centered further away from the wall (where the local
mean velocity is larger) have an influence very near the wall due to their large
size (Dinkelacker et al. 1977; Kreplin & Eckelmann 1979; Farabee & Casarella
1991; Kim & Hussain 1993; Hutchins et al. 2011).

A linear fit through the knee of the contour plot in figure 6(b) shows self-similar

structures with a ratio A} ~ /\I% in both our results and those reported in del
Alamo & Jiménez (2009). This type of z—z similarity in energy spectra density has
been previously observed in the context of geometric self-similarity (del Alamo
et al. 2004; Chandran et al. 2017). For example, del Alamo and co-authors (del
Alamo & Jiménez 2003; del Alamo et al. 2004) found that the isocontours of the
pre-multiplied energy spectrum of «’ form a corner centered along A\, ~ A with
% < n < 1. In that work, the value of n changed over the wall-normal location
with lower bound on n near the buffer layer (y™ & 15), increasing to n = % in
the log-law region and reaching n = 1 in the outer region of the flow. Recent
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Figure 5: Normalized power spectral density of streamwise velocity fluctuations
B (Uika ks,
Hgy(lzbi?(y;kz,kz),e))
sent locations associated with large-scale structures at (a) <1 (A}, A\]) = (133052, 857)
and (b) > (A}, A}) = (133052, 14756); (c) intermediate-scale structures A (A}, A\}) =
(2746,14756), and structures with small streamwise or spanwise wavelengths, respec-
tively: (d) O (AF,Af) = (11,14756), (e) © (AF,Af) = (11,11), and (f) © (AL, A}) =
(133052, 11). The color is in base 10 logarithmic scale. The black solid lines represent
the mean streamwise velocity profile and the black dashed lines are convective velocites
computed using the method in section 3. The middle panel, which is reproduced from

figure 4(b) at y* =~ 5 for Re; = 1000, indicates the locations corresponding to each

over wall-normal location y* and phase speed ¢t. The symbols repre-
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Figure 6: (a) The average convective velocity of streamwise fluctuations [u.],/Up over
(Az, Az) > (2,0.4). Model based results at Re; = 550 (/) and Re, = 1000 (O) are
compared to convective velocities computed from DNS data (del Alamo & Jiménez 2009)
at Re; = 547 (—) and Re; = 934 (- -—). For direct comparison with del Alamo & Jiménez
(2009), the results in (a) are scaled by the bulk velocity; i.e., Uy = % f_ll u(y)dy. The
black dashed line is the mean velocity profile at Re; =~ 1000 from Lee & Moser (2015).
(b) Model based scale-dependent convective velocity at y™ = 16 for Re, = 1000: contour
lines uc(y; kz, k2 ) /u(y) = 1.40 (—A); uc(y; bz, k2)/2(y) = 1.21 (——); are compared to
convective velocities computed from DNS data at y™ = 15 and Re, = 934 (del Alamo
& Jiménez 2009) u.(y; kg, k. ) /u(y) = 1.40 (A); u(y; bz, k) /a(y) = 1.21 (m). The black
dashed lines are given by (Az, A;) = (2,0.4). The black solid lines are A} ~ )\i% , which fit
through the knee of model based convective velocity and DNS data contours (del Alamo
& Jiménez 2009), respectively.

experimental measurements of two-dimensional spectra in zero-pressure gradient
boundary layers indicate a A\, ~ \/A; (Re; = 2430) and A, ~ A; (Re; = 26090)
relationship in the start of the log-law region (Chandran et al. 2016, 2017).

The scaling law of convective velocity explored here is closely related to the
temporal self-similarity previously observed in the literature. More specifically,
Lozano-Duran & Jiménez (2014) showed that tall attached structures are both
geometrically and temporally self-similar with lifetimes proportional to their
distance from the wall. They also attribute the lifetime and deformation of
these structures to the vertical gradient of their convective velocity. Long life-
times, which require low dispersion, have been associated with coherent structures
(Adrian 2007); e.g., hairpin vortices that are observed to propagate downstream
with small velocity dispersion (Adrian et al. 2000). Non-dispersive coherent struc-
tures are implied by the isocontour lines of the scale dependent convective ve-

locities in figures 4 and 6(b), which forms a A} ~ AI% knee. Based on this
observation, we conjecture that the x—z similarity observed here is closely related
to the scaling laws of energy spectra.

To explain the A} ~ (AI)Z/ 3 scaling, we employ a simple model involving the
bending of streamlines in the cross-plane due to the presence of a streamwise
vortex. This simple model was originally proposed by Jiménez et al. (2004) to
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explain the contribution of high-momentum streaks to the energy spectrum. Con-
sider convection of %' due to a point vortex with circulation ~ in the cross-plane
o’ + %}% = 0 where (r, ) is the polar representation of the (y, z) plane, cen-
tered on the vortex. For a homogeneous shear initial condition, u/(t = 0,7,60) ~
Sy = Srsinf, with shear rate S, we have u/(t,r,0) ~ Srsin(f — yt/2nr?). At a

given time, t, setting 6 = 7 yields the ‘size’ of the vortex-distorted region as:

R, = \/~t/2m2. (5.4)

Moreover, the length of streak is determined by the velocity difference between
its top and bottom with shear rate S5, which can be roughly estimated as:

A.T == Sth? (5.5)

if we assume that the streak height is roughly equal to its width. We estimate
the meandering magnitude of streaks by approximating the spanwise drift of the
vortices under the induction of their reflected images across the wall, which leads
to

A, = 2V2u't, (5.6)

where w’ denotes a spanwise velocity fluctuation of the order of w't ~ 1 (Kim
et al. 1987). Combining equations (5.4), (5.5), and (5.6) gives the scaling:

AF ~ (AD)5. (5.7)

Although this is an idealized analysis, it leads to the trends observed both
here and in DNS based convective velocity analysis. The assumptions underlying
this scaling are also consistent with the existence of structures at a wide variety
of scales extending into the channel; i.e., structures reminiscent of Townsend’s
attached eddies (Townsend 1976; Perry et al. 1986; Marusic & Monty 2019). We
next calculate the wall-normal coherence of these structures to further examine
this connection.

6. Wall-normal coherence of viscous sublayer structures

The convective velocity at each (Agz, ;) wavelength pair, u.(y; ks, k), is ob-
tained via the maximization in (3.7), so we refer to the spectral component of u’
defined by (Az, Az, u.) as the ‘characteristic structure’. We hypothesize that the
characteristic structure at a given wall-normal location, g, is responsible for the
dominant convection at that location, and that it also contributes to the ener-
getics elsewhere in the channel due to its wall-normal extent. In this section, we
investigate this wall-normal extent using the spectral coherence between signals
at two different wall-normal locations. We focus on the characteristic structures
that provide the dominant convection in the viscous sublayer and on wavelength
pairs along the knee of the isocontours of u. in figure 4; i.e., along A\} = ()\I}%

The ' frequency-wavenumber spectrum, &y = (|@'|2) of streamwise fluctua-
tions in the viscous sublayer (y* =& 5) for Re; = 1000, is shown in figure 7 in
terms of phase speed and wavelengths along A} = ()\;f)% The autocorrelation
maxima defining the convective velocity are plotted as a dashed line. The ridge
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Figure 7: Isocontours of ®; in the viscous sublayer (y*+ =~ 5) along Af = (A\})3 at
Re; = 1000, calculated using (3.6). The red dashed line indicates the ¢t at which ®4
peaks for each A}, and the blue solid line indicates the region of logarithmic increase.
It therefore defines the convective velocity u. as in (3.7). The markers (e) indicate the
locations where we evaluate the two-point wall-normal coherence in figure 8.

corresponding to these maximum values asymptote to constants at both the large
and small wavelength limits, but show a region of linear growth followed by a re-
gion of logarithmic increase (blue solid line) between two red circle markers. The
logarithmic behavior is similar to the variation of the mean velocity profile u(y)
with y and is consistent with the assumption that the dominant viscous sublayer
convection at streamwise wavelength A, arises due to a structure advecting at
the local mean velocity at y ~ A7} for some n > 0.

The spectral coherence between two wall-normal locations 3/ and y, defined for
a fluctuating variable 1) is defined as:

. 2
|¢)1ﬁ:,cross(yf: Y km kz 3 C)| <1 (61)

0 < xur-yry(ke, kz, =
X'y (ke Kz, €) (I}"E_,('y";kx,kz,C)i’ﬁ);(y;kfmkmC)

where 'I’,I), is the cross-spectral density of 1)/ between locations 3/ and y; i.e.,

,CTOSS

By cross (Vs U kas bz, €) = (U (s Kz bz, )Y (3 i, Kz, €)). (6.2)

The cross-spectral densities are the off-diagonal components of the matrix ob-
tained from the finite-dimensional representation (4.1) of '1)»-,5" Figure 8 shows
the two-point spectral coherence for streamwise velocity fluctuations X,y for

two characteristic structures along A\ = (AI)% in the near-wall region: (a) a
short wavelength component, (A}, A\}) ~ (22,8), and (b) a long wavelength com-
ponent, (AF,A}) ~ (2 x 10°,3 x 10®). The phase speeds associated with these
characteristic structures are indicated in figure 7 by circle markers. The shorter
wavelength component is associated with the smaller convective velocity and the
longer wavelength component with the larger convective velocity.

In figure 8, we see a wall-normal coherence that extends from the wall; i.e., it
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Figure 8: Two-point spectral coherence of streamwise velocity fluctuations xy.yy for
data at Re; = 1000, as defined in (6.1) at (A}, A]) = (22,8) (left) and (A\],\]) =~
(2 x 10%,3 x 10%) (right) indicated by circle markers in figure 7. Both points are along
A= (/\'I")%, and their phase speeds in friction units are approximately ¢t ~ 5 for the
small-scale structure and ¢t = 20 for the large one. Perfectly coherent signals have a
spectral coherence of 1, and incoherent signals have a spectral coherence of 0.

does not involve any wall-detached patches, consistent with Townsend’s attached-
eddy hypothesis (Townsend 1976; Perry et al. 1986; Marusic & Monty 2019). As
predicted by del Alamo & Jiménez (2009), the long wavelength component is
more coherent further into the channel towards the core than the short wave-
length component with its coherence falling to 0 in the core. This growth of
coherence away from the wall with increasing wavelength suggests that the struc-
tures contributing to the convective velocity in the viscous sublayer extend from
the wall deep into the log-law region, but only weakly into the wake region, rem-
iniscent of the long meandering structures in the log-law region whose footprint
extends to the near-wall region (Jiménez et al. 2004; Hutchins & Marusic 2007;
Monty et al. 2007; Guala et al. 2006; Balakumar & Adrian 2007).

Calculations (not presented here for brevity) indicate that components with
identical convective velocity as determined by figure 4 also have nearly identical
wall-normal coherence. This behavior, also suggested by del Alamo & Jiménez
(2009), agrees with the hypothesis that a random arrangement of similar basic

structures with dimensions given by A} = (A}) %, leads to the long-tailed behavior
of the contours in figure 4.

Figure 9 shows the spectral coherence with respect to the Viscous sublayer lo-
cation (yf, = =5) xw ysumayery(k:rakzac) along A\ = (/\+) The monotonic
behav1or of tile spectral coherence in figure 9 1mphes that structures larger in
(z,z) are also larger in y. The wall-normal coherence for A} > 200 indicated
by the dashed lines overlain on the (red) solid contours representing spectral

coherences of 0.1 and 0.5 shows an aspect ratio y* (A+) The minimum wall-
normal coherence length associated with these larger wavelengths is ~ 15 wall
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Figure 9: Two-point spectral coherence of streamwise velocity fluctuations x,r., at
Re, = 550, Re; = 1000, and Re, =~ 5200, as defined in (6.1), between y’+ R y:];blayer =5
and wall-normal locations above it for wavelengths defined by A¥ = (A\})3 and phase
speeds indicated by the dashed maxima line in figure 7. The solid red lines serve to
indicate the boundaries of regions of high/low coherence and are isocontours of spectral
coherence with values 0.1 and 0.5. The white dashed lines are y* = 0.55(A\} )3 and the
black dashed lines are y+ = 0.43(A\})3 and they serve as fits to the red lines. Perfectly
coherent signals have a spectral coherence of 1, and incoherent signals have a spectral
coherence of 0.

units, which is the approximate location of the buffer layer and also the location
of the well-known peak in the root-mean-square (RMS) streamwise velocity fluc-
tuations; see for example, Lee & Moser (2015). This self-similarity represented by
a power-law relationship at larger wavelengths is also suggestive of the attached-
eddy structures proposed by Townsend (1976); Perry et al. (1986); Marusic &
Monty (2019).

From the power-law behavior y ~ (/\I)% for A\ > 200 shown in figure 9, we
can also extract the structure inclination angle contributing to this self-similar
behavior. The 0.1 and 0.5 spectral coherence contour is fitted by yt = o:()\;,f)%
with @ = 0.55 (white dash lines) and @ = 0.43 (black dash lines), respectively.
We select the spectral coherence contours as 0.1 and 0.5 to fit the scaling laws
because we observe significant variation of coherence between this range in figure
9, while outside of this range, the coherence show saturation. Such a saturation
phenomenon is also observed in the coherence computed from the experimental
data; see e.g., figure 4 of Baars et al. (2016) and figure 5(b) of Baars et al.
(2017). Furthermore, the contours of two-dimensional spectral coherence of 0.1,
0.3, and 0.5 are shown to collapse when scaled with the wall-normal height of
the structures; indicating the presence of self-similar structures, see figure 4 of
Madhusudanan et al. (2019).

Thus, y* ~ AJ with a constant of proportionality o between 0.55 and 0.43,
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Figure 10: The structures of height /width aspect ratio 1 with an inclination angle 5 in
analogy with Perry & Chong (1982).

respectively, imply that the projection of the structures onto the cross-stream
plane has a smaller height than width. If we assume the structures contributing
to the spectral coherence have a height/width aspect ratio of 1 as depicted in
the cartoon in figure 10, then the dimensions of the cross-plane projection of the
structure represented by spectral coherence between 0.1 and 0.5 implies a tilt
angle § = arcsin(a) between approximately 25° and 33°.

Townsend (1976) suggests an inclination angle of ~ 30° for attached double
roller eddies (a pair of counter-rotating, inclined, approximately streamwise vor-
tex structures) to explain the experimental observations of Grant (1958). Experi-
mental observations in turbulent boundary layers, on the other hand, have yielded
inclination angles between 15° and 20° (Brown & Thomas 1977; Marusic & Heuer
2007; Carper & Porté-Agel 2004). The latter inclination angles were calculated
using two-point temporal correlations and Taylor’s hypothesis. In turbulent chan-
nel flows, hairpin vortices have been the focus of considerable interest. Although
a single well-defined inclination angle cannot be associated with hairpin vortices,
the inclinations of hairpin like structures vary from 12° (elongated legs) to 45°
(hairpin heads) (Adrian 2007). The present work does not restrict the structures
contributing to the convective velocities to any one of the structures discussed
above, but does provide an inclination angle, assuming structures are roughly of
aspect ratio 1, which is within the range of previous observations.

In figure 9, the structure inclination angle predicted by this model also shows
Reynolds number invariance, which is consistent with experimental observations
(Marusic & Heuer 2007). For different Reynolds numbers, y* = a(/\;f)% with
a = 0.55 and a = 0.43, corresponding to tilt angles 25° and 33°, always give
good approximations for 0.1 and 0.5 spectral coherence, respectively. Structure
inclination angles inferred from the cross correlation of x in the experimental
studies of Marusic & Heuer (2007) are found to be invariant over 3 orders of
magnitude change in Reynolds number.

Our results reveal that the contributions from the relatively larger scale struc-
tures lead to the elevated velocities in the viscous sublayer seen in figure 3 and
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that these structures have dimensions given by y* ~ A} ~ (/\I)% with a minimum
size /s 15 friction units, which is the approximate location of the buffer layer. The
inclination angles of these structures do not vary with Reynolds number, which
is consistent with experimental observations. These observations are consistent
with the attached-eddy hypothesis in that they predict wall-attached structures
that are self-similar in the cross-plane and contribute to the dominant convec-
tion. However, the attached-eddy hypothesis predicts that these structures are
also self-similar in the streamwise direction, which our approach does not show.

7. Term-by-term analysis of scale-dependent convective velocities

We next use the input-output framework to analyze the contribution of different
linear mechanisms to the scale-dependent convective velocity of the streamwise
velocity fluctuations.

We follow the method shown in equation (2.11) of del Alamo & Jiménez (2009)
to obtain the normalized deviation of the convective velocity from the mean veloc-
ity contributed from various terms. In particular, we multiply the z-momentum
in equation (2.3a) by @* and take the imaginery part of the result to obtain:

Ila 11b 1lc 111

~f - du, ., ., T - 1 02 A;"_*A'T\
B O o e et
u(y) ke (y)(@'a') S

Here Re{-} and Im{-} represent the respective real part and imaginary part of
the argument. The terms in equation (7.1) represent the relative contributions of
the pressure term (Ila), the mean shear term (IIb), and the viscous term (Ilc),
each normalized by kyu(y) (@' 4"*).

We compute each term in (7.1) by modifying the output operator in (3.4) and
then computing the cross-spectra through an appropriate modification of (3.6).
For example, we can use the output operator corresponding to the fluctuating

pressure in (3.9) to obtain Gy and then compute the cross-spectra as

i) = Gy (F FGy = GG (7.2)

The other terms in (7.1) can be computed in a similar manner.

Figure 11(a), (b), and (c) show the respective contributions from the pressure
term (IIa), the mean shear term (IIb), and the viscous term (Ilc) to the scale-
dependent convective velocity of the streamwise velocity fluctuations (Re, =
1000) at the same three wall-normal locations as in figure 4. As shown in figure
11(a), the pressure plays an important role for the intermediate scale structures
(Az = 2 and A\, > \;), which supports our conjecture that the discontinuity in
these scales shown in figure 4 is related to the pressure. Luhar et al.’s (2014) figure
12(a) also showed a discontinuity of the scale-dependent convective velocity of
wall-pressure computed using resolvent analysis and the maximum of the PSD to
define the convective velocity. As discussed in Section 5, using the center of gravity
of the PSD to define the convective velocity eliminates the discontinuity. A similar
smoothing effect resulting from the use of the center of gravity definition versus
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the maximum value of the PSD was also observed in figures 12(a) and (b) of Luhar
et al. (2014), where the authors compared these two convective velocity definitions
for pressure fluctuations. The overall convective velocity of these intermediate-
scale structures also includes contributions from both the mean shear (figure
11(b)) and the viscous terms (figure 11(c)), which indicates that multiple physical
mechanisms are at play.

For the large-scale structures with (Az, A;) > (2,0.4), the deviation of convec-
tive velocity from the mean is primarily due to the viscous and the mean shear
terms. In the viscous sublayer (y* & 5), the viscous term provides a relatively
larger contribution to the deviation of the convective velocity from the mean
than the mean shear term, whereas these two terms provide approximately equal
contribution to the convective velocity in the buffer layer (y* = 15).

For structures with small streamwise and spanwise wavelengths; i.e., Al < 10
and A} < 10, all of the terms in (7.1) are negligible (as indicated by the white
region of the colormap). This suggests that they convect at the local mean ve-
locity or that their convective velocity is not captured through the linear terms
retained in our approach. However, as previously noted, the nonlinear fluctuation-
fluctuation interactions likely dominate at these scales, so linear analysis is un-
likely to fully explain the mechanisms at play. Understanding the effects of non-
linearity is beyond the scope of the current paper, so we leave this as a topic of
future work.

To gain more insight into the effect of each term, we next compute the con-
vective velocities by neglecting the contribution of different terms in the linear
dynamics that form the spatio-temporal transfer function in (3.4). In each case,
we first describe how neglecting the term(s) of interest alters these operators and
then evaluate the effect on the convective velocity. Setting the mean shear term
to zero reduces the linear operator in (3.2) to

(ika(i — €) — - A)laxs V

L=
vT 0

(7.3)

In this case, the operators B and C in (3.8) remain the same. We note that
although the mean shear term is zero, u(y) is still a function of wall-normal
location; therefore there is still shear imposed by the mean flow. Figure 12(a)
shows that the convective velocities of the large scales continue to deviate from
the mean velocity even when we eliminate the linear term associated with the

mean shear. However, the knee occurring at A\ = g A+ shown in figure 12(a)

is different from that at A} = )‘I% in figure 4 based on the full linear approach.
This is consistent with figure 11(b), which indicates that the mean shear term
plays a role in the self-similarity predicted in this approach.

We next isolate the role of the pressure. For this analysis we group the ef-
fect of the pressure gradient and the mass conservation terms because they
both contribute to the nonlocality of the turbulent flow. This relationship can
be understood by viewing the pressure in the momentum equation as the La-
grange multiplier that enforces the divergence-free velocity field; see e.g., section
5.6.2 in Schmid & Henningson (2001). Neglecting both the pressure term and
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Figure 11: Different linear terms’ contributions to scale-dependent convective velocities
(ue(y; ki, kz) — u(y))/u(y) quantified using equation (7.1): (a) the pressure term (Ila),
(b) the mean shear term (IIb), and (c) the viscous term (Ilc). All terms are normalized
by kz@(y)(@'a"™). The Reynolds number is Re; = 1000. The black dashed lines are given
by (Az, A;) = (2,0.4), and the black dash-dot lines in (a) and (b) are A\] = A}. Note: the

white region of the color map represents a value close to zero.
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Figure 12: u.(y, Az, Az)/@(y) at Re; = 1000 (a) neglecting the mean shear term as (7.3),
(b) neglecting the coupling from the pressure and mass conservation as (7.4), and (c)
neglecting the mean shear term, the pressure term and mass conservation together as

(7.5). The black dashed lines are given by (Az,A;) = (2,0.4). The black dash-dot lines
are \] = g A+, which fit through the knee of these contours.
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the divergence free constraint reduces the operators in the input-output map

Gy = Cﬁ,rﬁ_lB to:
Cor = [1 Orxa) L= [(ikm(ﬂ —¢)— - A)aa + g—gs] Bi=1Iy. (74)

The resulting convective velocities in figure 12(b) are similar to those in figure
12(a) with the mean shear term set to zero. Neither of these terms appear to
be responsible for the influence of the large-scale structures that leads to the
observed behavior of the conwzctive velocity in the near-wall region. They also
do not reproduce the A\J = A\}'% scaling, but they do emit self-similar structures
with a different scaling exponent, A\ = %/\I%

In order to evaluate their combined effect, we next neglect the contributions of
both the mean shear and pressure terms, leaving only the advective and viscous
terms. The resulting input-output based approach for the streamwise velocity
fluctuations is given by @' = Cy L1 Bf, with

Coi=[1], L:= [ikm(ﬁ— ¢) — R%A}] , B:=11]. (7.5)

Figure 12(c) shows the resulting convective velocity contours, which are similar to
the results in panels (a) and (b). In particular, they reproduce the influence of the
large-scale structures in the near-wall and buffer regions seen in the full LNS based
approach. Figure 13 plots the power spectral density of the streamwise velocity
fluctuations at different phase speeds ¢ and wall-normal locations y* computed
using the model in equation (7.5). Although there are some differences from the
results obtained using the full LNS system shown in figure 5, the phase speed that
maximizes the energy spectrum; i.e., the convective velocity, still asymptotes to
a constant value near the wall for large wavelength structures.

The main difference between these results and the full LNS based approach

is that they show the same A\l = %/\I% scaling as the previous model in (7.5)
with the influence of the pressure and mean shear removed. The inability to
reproduce the correct aspect ratio for the self-similar structures suggest that
their morphology is due to interactions between viscous mechanisms and other
inviscid mechanism arising due to the interaction of the fluctuations with the
mean shear duz/dy and the pressure, such as the lift-up effect (Brandt 2014) and
the Orr mechanism (Farrell 1987; Jiménez 2013). However, the prediction of the
main trends and scale interactions suggest that this type of model may provide a
good balance between accuracy and simplicity. We next explore its potential as
a viscous correction to Taylor’s hypothesis.
We obtain this correction by rewriting equation (7.5) as

i = fo. (7.6)

LET
Figure 14 compares the average convective velocity of streamwise velocity fluctu-
ations computed using the viscous correction (7.6) with its corresponding weight-
ing functions h = (| F,(u')|?)k2 and an averaging domain of (A}, A]) > (500, 80)
at Re; = 1000 to the results from the full LNS based approach and convec-
tive velocities obtained from DNS data at Re; = 932 from Geng et al. (2015).
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Figure 13: Power spectral density of streamwise velocity fluctuations over wall-normal

location yt and phase speed ¢ maf(‘ié(‘?;(ﬁf,;kz,;c) 5y at Rer = 1000 from model (7.5)
T u yrEyvEY

for representative large-scale structures <1 (AF,A]) = (133052,857), > (Af,A\f) =
(133052, 14756), and intermediate-scale structures A (A}, A}) & (2746, 14756). The color
is in base 10 logarithmic scale. The black solid lines represent the mean streamwise veloc-
ity profile, and the black dashed lines are convective velocites, which are defined in (3.7) as
the phase speed that maximizes the PSD of the streamwise fluctuations @y (y; kg, k2, ¢).

This figure shows that the average convective velocity predicted from the viscous
correction shows excellent agreement with results obtained from DNS data for
yT € [5,15], but begins to deviate for y* < 3. We therefore conclude that this
viscous correction provides a potential dynamical modification on Taylor’s hy-
pothesis to improve the convective velocity estimates for use with experimental
data.

This viscous correction introduced in equation (7.6) could be augmented us-
ing an eddy viscosity, in the spirit of the eddy viscosity enhanced LNS equa-
tions introduced in Reynolds & Hussain (1972). Such a dynamical correction was
previously shown to provide similar improvements in model-fidelity for certain
structures as the inclusion of colored-in-time forcing (Zare et al. 2017). This type
model enhancement may be particularly relevant in this context because the per-
tinent terms would all be retained in the associated modification of the viscous
correction proposed in equation (7.6). Assessing the potential benefits of such an
approach is a topic of future work.

The convective velocities computed with this viscous correction to Taylor’s
hypothesis for a range of Reynolds numbers are compared in figure 15. The results
indicate that the regions in (A}, A]) where the convective velocities deviate from
the local mean velocity are very similar across these Reynolds numbers, which is
consistent with the observations in figure 4 indicating that the viscous correction
preserves the previously observed Reynolds number invariance.

The viscous correction proposed here may also be applicable to input-output
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100 i 101 i 102 i 1[}3

Figure 14: The average convective velocity of streamwise velocity fluctuations, [uc]x(y):
(0O); computed using the viscous correction (7.6) with their corresponding weighting
functions h = (| Fy.(v')|?)k2 and an averaging domain of (A}, A}) > (500, 80) at Re, =
1000. Results are plotted with convective velocities of streamwise velocity fluctuations
computed from both the LNS based approach described herein for Re, = 1000: (A) and
DNS data (Geng et al. 2015) at Re; = 932: (—). The black dashed line is the turbulent
mean velocity profile at Re; ~ 1000 from Lee & Moser (2015).

based computations of convective velocities for other fluctuating quantities due
to the similarity in the behavior of the near-wall convective velocities of velocity
and vorticity components previously reported in the literature; see e.g., figures 3
and 5 of Geng et al. (2015); figures 1 and 2 of Kim & Hussain (1993) and the
results in Liu & Gayme (2019). Exploring this notion is a topic of ongoing work.

8. Conclusion

In this work, we analyze convective velocities of fluctuating quantities based
on the stochastically-forced linearized Navier—Stokes equations with a given tur-
bulent mean velocity profile. This approach allows for a detailed investigation of
the scale-dependent convective velocities at all wall-normal locations, which en-
ables a comprehensive examination of the mechanisms at play in the generation
of convective velocities.

The convective velocities of velocity fluctuations obtained using the input-
output based model reproduce trends previously observed in the literature, such
as the deviation of the average convective velocity from the mean velocity and
its tendency toward a constant value in the near-wall region. The model-based
results indicate that the convective velocity of the streamwise velocity fluctua-
tions closer to the wall show a stronger dependence on wavelength. The model
predicted convective velocities show Reynolds number invariance when normal-
ized in inner units, which is connected to the inner unit scaling of the resolvent
operator (Moarref et al. 2013) and consistent with observations from DNS data
(Geng et al. 2015) and experimental measurements (Marusic & Heuer 2007).

Our analysis also indicates that a wide range of structures contribute to the
convective velocity especially in the viscous sublayer, where the convective veloc-
ity has been shown to be strongly scale-dependent.
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Figure 15: u.(y, Az, Az )/4(y) predicted using the viscous correction to Taylor’s hypothesis
in equation (7.6) at (a) Re, = 550, (b) Re, = 1000, and (c) Re, = 5200. The black dashed
lines are given by (Az,A;) = (2,0.4). The black dash-dot lines are A7 = 31/AZ, which
fits through the knee of these contours.
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The primary structures contributing to the near-wall convective velocity based
on the model are larger than the height of the buffer layer and are inclined at
an angle between 25° and 33°. These predictions confirm the findings of Kim
& Hussain (1993), who suggested that buffer layer structures are responsible for
elevated convective velocities near the wall. However, our analysis suggests that a
range of larger structures also contribute to this near-wall convective velocity. We
demonstrate that these structures are self-similar in the cross-plane, similar to
Townsend’s attached-eddies, yet scale as the % power of a cross-plane dimension in
the streamwise direction. Our model suggests that there is a connection between
the convective velocity and structures whose signatures in measurements of power
spectra scale as A\ ~ /\I%

We isolate and quantify the contributions from the pressure, mean shear, and
viscous terms to the deviation of convective velocity from the local mean velocity.
Based on this term- by-term analysis, a viscous correction to Taylor’s hypothesis
is proposed. The proposed correction leads to a simplified model that accurately
reproduces the behavior of near-wall convective velocity of the streamwise velocity
fluctuations of large-scale structures.

The results presented here could be extended in a number of ways. For example,
the representation of the forcing could be more closely tied to the nonlinearity
observed in experimental or numerical simulation results by e.g., using simulation
data to generate correlations for colored forcing (Moarref et al. 2014; Zare et al.
2017). Introducing an eddy viscosity based LNS representation (Reynolds & Hus-
sain 1972) is another direction of ongoing work. The present approach has been
specifically developed for wall-bounded flows with two homogenous spatial direc-
tions, and its efficacy has been demonstrated in the particular case of turbulent
channel flow. The applicability of such a model, and other stochastically-forced
models based on the linearized Navier—Stokes equations to a broader class of tur-
bulent flows, including turbulent boundary layers, is the subject of ongoing work.
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