Privacy Amplification from Non-malleable Codes

Eshan Chattopadhyay*  Bhavana Kanukurthi **
Sai Lakshmi Bhavana Obbattu *** Sruthi Sekar!

Abstract. Non-malleable Codes give us the following property: their
codewords cannot be tampered into codewords of related messages. Pri-
vacy Amplification allows parties to convert their weak shared secret
into a fully hidden, uniformly distributed secret key, while communicat-
ing on a fully tamperable public channel. In this work, we show how to
construct a constant round privacy amplification protocol from any aug-
mented split-state non-malleable code. Existentially, this gives us another
primitive (in addition to optimal non-malleable extractors) whose opti-
mal construction would solve the long-standing open problem of building
constant round privacy amplification with optimal entropy loss and min-
entropy requirement. Instantiating our code with the current best known
NMC gives us an 8-round privacy amplification protocol with entropy loss
O(log(n) + xlog(x)) and min-entropy requirement (2(log(n) + xlog(k)),
where k is the security parameter and n is the length of the shared weak
secret. In fact, for our result, even the weaker primitive of Non-malleable
Randomness Encoders suffice.

We view our result as an exciting connection between two of the most fas-
cinating and well-studied information theoretic primitives, non-malleable
codes and privacy amplification.

1 Introduction

The classical problem of Privacy Amplification was introduced by Bennett, Bras-
sard and Robert in [BBRS8S]. In this setting, we have two parties, Alice and Bob,
who share a common string w, that is only guaranteed to be entropic. The main
question that is asked is the following: How can Alice and Bob use w to com-
municate over a public channel that is fully controlled by a computationally-
unbounded adversary, Eve, and still agree on a key K whose distribution is
close-to-uniform? This problem has received renewed attention in recent years.
While building privacy amplification protocols, there are two main objectives
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that researchers have tried to meet: a) build protocols with as low a round com-
plexity as possible and b) extract a key K that is as long as possible. To achieve
the latter objective, a natural goal is therefore to minimize the “entropy loss”
that occurs due to the protocol.

In the recent times, another interesting information-theoretic primitive that
has seen exciting research is Non-malleable codes, which were introduced in the
work of Dziembowski, Pietrzak and Wichs [DPW10]. NMCs provide an encod-
ing mechanism with the following guarantee: errors caused to the codeword will
render the underlying data either independent of the original encoded message
or leave it unchanged. They are defined with respect to a class of tampering
families F. The class of tampering families most relevant to this work is the “2-
Split-state” family where the codeword consists of two states L and R and the
tampering family consists of two functions f and g, each acting independently
on L and R respectively. A parameter of importance for any non-malleable cod-
ing scheme is its rate (= %). Of late, there has been a lot of research
on building non-malleable codes with low-rate for various tampering function
families, in particular, the 2-Split-state model. Researchers have also explored
connections of other primitives, such as “2-source Non-malleable Extractors” to
NMCs. In spite of the exciting research in NMCs, there is no known application
of NMCs to information-theoretic primitives which require arbitrary tampering.
This isn’t surprising: after all, NMCs are secure only with respect to a restricted
class of tampering functions (such as 2-split state tampering); when an applica-
tion requires arbitrary tampering, it is understandably difficult to leverage the
usefulness of NMCs. In this work, we overcome this challenge.

Our main result in this work is that we show how to build privacy amplifi-
cation protocols from non-malleable codes, specifically those with the so-called
“augmented” security which we explain later. The protocol has 8 rounds and
its entropy loss of is related to the rate of the non-malleable code. Furthermore,
even though our main protocol is presented in terms of non-malleable codes
we can also use the weaker notion of Non-malleable Randomness Encoders in
the place of non-malleable codes and get the same parameters. Non-mallebale
Randomness Encoders (NMRESs) were introduced by Kanukurthi, Obbattu and
Sekar [KOS18] and, informally, allow for non-malleable encoding of “pure ran-
domness”. There is evidence to suggest that it is easier to build NMREs (with
good parameters) than NMCs: specifically, while we know how to build constant-
rate NMREs in the 2-Split State Model, a similar result for NMCs has proven
elusive in spite of significant interest and effort in the research community. In-
formally, following are the key results we obtain:

Informal Theorem A: Assuming the existence of constant rate two-state
augmented non-malleable code with optimal error 2~2") | there exists a 8-round
privacy amplification protocol with optimal entropy loss O(log(n) + k) and min-
entropy requirement §2(log(n) + k) (where k is the security parameter).

Informal Theorem B: Assuming the existence of constant rate, two-state aug-
mented non-malleable randomness encoder with optimal error 2~(%) there exists
a 8-round privacy amplification protocol with optimal entropy loss O(log(n) + k)
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and min-entropy requirement §2(log(n) + k).

Further, we instantiate our construction (which gives the above existential results
as well) with specific underlying protocols to obtain the following parameters for
the privacy amplification protocol:

Informal Theorem C: Instantiating our construction with the current best
known augmented non-malleable code for 2-split-state family [Lil7], we get a
8-round privacy amplification protocol with entropy loss O(log(n)+klog(k)) and
min-entropy requirement §2(log(n) + klog(k)).

1.1 Related Work

Recall that the goal of privacy amplification is to enable two parties with a weak
(entropic) secret w to agree on a random key K whose distribution is close to
uniform. The protocol communication takes place in the presence of a computa-
tionally unbounded adversary, Eve, who has complete power to insert, delete or
modify messages. Intuitively, a privacy amplification protocol is considered to be
secure if any such adversarial tampering of the communication is either detected
by one of the honest parties or, if undetected, both parties do agree on the same
“secure” key, i.e., one that is guaranteed to be close to uniform from the Eve’s
point of view. It is no surprise that strong randomness extractors (introduced
by Nissan and Zuckerman [NZ96]), which transform non-uniform randomness
into uniform randomness by using a short uniformly chosen seed, play a huge
role in the design of privacy amplification protocols. Specifically, in the setting
where Eve is a passive adversary [Mau93,BBR88,BBCM95], strong randomness
extractors offer a one round solution to the above problem, which is optimal (in
terms of entropy loss and min-entropy requirements).

In the setting where Eve is an active adversary, a one-round solution to the
problem was first given by Maurer and Wolf [MW97] with min-entropy require-
ment of kp,in > 2n/3, where ky,;p is the starting min-entropy requirement and
n is the length of w. This was later improved in Dodis, Katz, Reyzin and Smith
[DKRS06] (with min-entropy requirement of k., > n/2). The negative results
by [DS02,DW09] show that there is no non-interactive (one-round) solution for
this problem when the entropy of the weak secret is k.. < n/2. Hence, for
kmin < n/2, researchers explored the use of interaction to design privacy ampli-
fication protocols.

In the interactive setting with an active adversary, there are two major lines
of work. The first line of constructions began with the protocol given by Ren-
ner and Wolf [RW03] who gave a protocol with an entropy loss of ©(x?) and
takes ©(k) rounds of communication, where x is the security parameters. This
was generalized by Kanukurthi and Reyzin [KR09]. In [CKOR10], Chandran,
Kanukurthi, Ostrovsky and Reyzin, used optimal-rate codes for the edit dis-
tance metric to achieve the first protocol with an entropy loss of ©(k). The
high-level approach of Renner and Wolf’s protocol, which was followed in sub-
sequent works, was to first build an “interactive authentication protocol” which
authenticates the message bit-by-bit. This authentication protocol is then used
to authenticate a seed to a randomness extractor which is then used to extract
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the final key K, thereby achieving privacy amplification. A natural limitation of
this approach is that it is highly interactive and requires ©(x) rounds.

The second line of constructions began with the privacy amplification proto-
col given by Dodis and Wichs [DW09]. They give an efficient two-round construc-
tion (i.e., with optimal round complexity) which has an entropy loss of ©(x?).
This work also introduces “seeded Non-malleable extractors (NME)”, which has
the property that the output of the extractor looks uniform, even given its value
on a related seed. Their approach for building two-round privacy amplification
protocols roughly works as follows: first, they send a seed to a NME which is
used to extract the key (k) to a non-interactive one-time message authentication
code. k is then used to authenticate a seed s to an extractor. The final shared key
K is evaluated by both parties, unless any tampering is detected, to be Ext(w; s).
In short, the approach of Dodis and Wichs leads to a Privacy amplification pro-
tocol with optimal round complexity of 2. Further, [DW09] give an existential
result that if one can efficiently construct non-malleable extractors with optimal
parameters, we get a two-round privacy amplification protocol with entropy loss
O(k) and min-entropy requirement O(k + logn). Subsequent to the existential
construction of Privacy Amplification given in [DW09], there was focus on im-
proving the parameters by giving explicit constructions of seeded non-malleable
extractors [DLWZ11,CRS12,Li12a,Li12b,Li15,CGL16,CL16,Coh16,Li17]. While
all these constructions give a 2-round privacy amplification protocol with opti-
mal entropy loss, the min-entropy requirement is not optimal (the best known
being O(k log k + logn) by [Lil7]).

Even with these existing connections , there is a significant gap between pa-
rameters of existing protocols and optimal parameters. In this work, we approach
to solve the privacy amplification problem with the use of “Non-malleable Ran-
domness encoders (NMRE)” (or “Non-malleable Codes (NMC)”). We explain
more about the connection in Section 1.3. As NMREs are seemingly “easier”
to build than NMCs (indeed, we already know how to build 2 state rate-1/2
NMREs from [KOS18]) and NMEs, we only need to additionally make these
NMREs have optimal error as well as “augmented” security, in order to conclu-
sively solve the long-standing open problem of building constant round privacy
amplification protocols with optimal entropy loss. In fact, the NMRE scheme
given in [KOS18] does satisfy the augmented property (as pointed out by [Sri]).

Concurrent and Independent Work. In a recent concurrent and independent
work [Lil8], Li obtains a 2 round privacy amplification protocol with optimal
entropy loss and optimal min entropy requirement, by building a seeded non-
malleable extractor with better parameters. This work lies in the second line
of constructions that we mentioned in Section 1.1. On the other hand, in this
work, we provide an alternate construction of a constant round (8 rounds) pri-
vacy amplification protocol using NMCs/NMRESs, which achieves the optimal
parameters when the underlying NMCs/NMREs have optimal parameters. The
novelty in our construction technique is that, we provide a way of leveraging the
non-malleability of NMCs in the split-state model, to achieve non-malleability
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in the arbitrary tampering setting of privacy amplification, which might be of
independent interest.

While Li’s result in [Lil8] supersedes our result with respect to the number
of rounds, at the expense of an additional 6 rounds, our construction aims to
provide a novel connection between privacy amplification with optimal param-
eters and NMCs/NMREs, which are seemingly “easier” to build than NMEs.
Now that the long standing open problem of achieving asymptotically optimal
parameters for privacy amplification protocols has been solved (through Li’s re-
sult), the next interesting problem would be to optimize the concrete parameters
further. Through an approach which is different from all the existing solutions
for privacy amplification protocols, we hope to provide a useful way towards
achieving this goal.

1.2 Overview of Research on NMCs and NMREs

We now give a brief overview of Non-malleable Codes. NMCs, introduced by
Dziembowski, Peitrzak and Wichs, guarantee that a tampered codeword will
decode to one of the following:

— 1 i.e., the decoder detects tampering.
— the original message m itself i.e., the tampering did not change the message
— something independent of m

Since, as observed in [DPW10], NMCs cannot be built to be secure against
arbitrary, unrestricted tampering, researchers have explored the problem of
building NMCs for various classes of tampering families F. The most well-
studied model is the “t—split state” model where a codeword consists of ¢ states
(C1,...Ct) and the tampering functions consists of ¢ functions fi,..., f;. The
model permits independent tampering of each C; via the function f;. (Each f; it-
self is not restricted in any way and, therefore, the model enables arbitrary but in-
dependent tampering of each state.) Over a series of works researchers have built
NMCs for varying values of ¢, where ¢ = 2 represents the least restrictive model
of tampering and ¢t = n, for codeword length n, represents the most restrictive
model [DPW10,CG14,ADL14,CZ14,ADKO15,AGM*15,Li17,KOS17,KOS18].
At the same time, researchers have also focused on building constructions
with good (low) rate. To this date, the problem of building constant rate
non-malleable codes in the 2-split state model remains open. In [KOS18], the
authors introduced a notion called “Non-malleable Randomnes Encoders”
which allow for non-malleably encoding “pure randomness”. Furthermore, they
also present a construction of an NMRE with a constant rate of % in the 2-split
state model. As we will explain later, the rate of our NMCs/NMREs is closely
linked to the entropy loss of the resulting privacy amplification protocol.

Researchers have also explored connections of NMCs to other primitives, as
demonstrated by the following picture.
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However, somewhat surprisingly, to the best of our knowledge, there isn’t a single
application of Non-malleable Codes to any information-theoretic primitive in the
non-split-state model !. One of the reasons for this is that the split-state model
doesn’t allow for arbitrary tampering when the whole codeword is visible, which
most natural applications might require. In this work, we present an application
of augmented NMCs (and NMREs) to Privacy Amplification. (Augmented non-
malleable codes are secure even if one of the states is leaked to the adversary
after the tampering.) We now give an overview of our techniques to build privacy
amplification.

1.3 Technique for Building PA from NMC

In this work, we deviate from the approaches due to Renner and Wolf (of bit-wise
authentication) as well as Dodis and Wichs (of using Non-malleable Extractors)
and present a new technique to obtain privacy amplification from (augmented)
Non-malleable Codes. (We will use certain elements of Renner and Wolf’s ap-
proach, which we will describe shortly.) Just as in prior works, the heart of the
protocol consists of an authentication protocol from which we can easily obtain
a privacy amplification protocol. So for the rest of this discussion, we restrict our
attention to interactive authentication and describe our protocol for the same
at a high level. Suppose Bob wants to authentically send a message m to Alice.
Alice intiates the protocol by picking a random key k for the MAC, encodes it
into (L, R) using a non-malleable code and sends it to Bob. Bob can then au-
thenticate his message using the received key for the MAC and send the message
and the tag to Alice. In order to be able to use the MAC security, we must ensure
that the MAC key k looks uniform even given the information leaked through
the communication channel. It seems natural that the use of non-malleable codes
would ensure that even if Eve tampers the channel, Bob would either get the
original key or an independent key k. In such a case, the tag evaluated using
the MAC key k' will not help Eve in successfully forging a tag for a modified
message. While this might seem natural, herein lies the first challenge. In or-
der to use the non-malleability of the NMC, the tampering done by Eve must

! Recently, in [GK18], Goyal and Kumar introduce a new information theoretic primi-
tive called Non-malleable secret sharing and obtain a construction for the same from
Non-malleable codes.
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look like a split-state tampering. If the two states of the non-malleable code are
sent directly, the tampering of at least one of them would be dependent on the
other, and hence will not be a split-state tampering. Hence, we must find a way
to capture this tampering in the interactive setting as a split-state tampering.
More intuitively, we need to “amplify” the limited two-state non-malleability
to arbitrary unbounded non-malleability. This is the major challenge and the
reason for our protocol being a bit complex.

To understand how we overcome this challenge, for the sake of simplicity, we
will, for now, assume that the adversary is synchronous. Recall that the protocol
starts with Alice encoding a MAC key k into (L, R). Since she can’t send both
simultaneously to Bob (as it would violate split-state tampering), suppose she
first sends the state R. The idea then is that Alice will mask R with a one-time
pad that she extracts. Specifically, in this modified protocol, Alice initiates the
protocol by picking a seed xr and sending it to Bob. She then uses this seed (as
well as her secret w) to extract a mask yr to hide R. Alice sends this masked
string Zr = R @ Ygr to Bob. In the next round, Alice sends the other state
L. Finally, Bob uses the received seed in the first step to unmask and get R’
and decodes the codeword received to get k’. The main challenge in the security
proof is to show that the tampering on L and R can now be captured as two-
split-state tamperings. Further, as L is revealed to the adversary, we require the
non-malleability to hold, even given the state L. Hence, we require an augmented
non-malleable code.

Showing that the above protocol is secure against a synchronous adversary
is in itself non-trivial. However, more complications arise when the adversary is
asynchronous. Specifically, the order in which the messages are sent to Bob might
be altered and hence, the tampering of R itself may end up being dependent on L.
To resolve this issue, we borrow the concept of “liveness tests” which was implicit
in the protocol due to [RW03] and made explicit in [KR09]. A “Liveness Test” is
a two round protocol played between Alice and Bob to ensure that Bob is alive in
the protocol. It works as follows: Alice sends the seed to a randomness extractor x
as a challenge. Bob is expected to respond with Ext(w;x). The guarantee, which
follows from extractor security, is that if Bob doesn’t respond to the liveness
test, then Eve can’t respond to Alice on her own. It can be used to ensure
synchrony in the presence of an asynchronous adversary as follows: at the end of
each round from Alice to Bob, Bob will be expected to respond to the liveness
test. While this is the high level approach, this interleaving of the liveness test
and the choice of the messages sent in each round, needs to be done with care
to prevent dependency issues from arising.

With high-level intuition behind our construction described above we are able
to derive the results (Informal theorems A, B and C) mentioned in the beginning.

1.4 Overview of the Proof Technique

The major challenge in the security proof is to capture the tampering made by
Eve as a split-state tampering of the two states. In order to justify this, our first
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step is to prove that Eve is guaranteed to be caught with high probability, if
she behaves asynchronously and gains no more advantage than the synchronous
setting. We structure the protocol, so that all the useful information is sent
by Alice. This means we only have to ensure, through the liveness tests, that
Bob remains alive in between any two messages sent by Alice. Specifically, the
protocol begins by Alice sending a liveness test seed for a long extractor output.
At every subsequent step, Alice sends a message across to Bob only after Bob
responds to the liveness test correctly. Intuitively then, Eve cannot gain any
additional advantage in the asynchronous setting than in the synchronous setting
because of the following reasons. Firstly, as the useful information (seed of the
mask, the masked right state and then the left state) is only sent by Alice, Eve
can gain additional advantage if she manages to fool Alice by getting responses
from her, acting as Bob. But by extractor security, we show that Eve will not
be able to respond to the liveness tests on her own and hence cannot fool Alice
except with a negligible probability. On the other hand, if Eve tries to fool Bob
by acting as Alice and getting responses from him, then she actually gains no
additional information than what she would have in the synchronous setting.
This is because, by the nature of the protocol, the only information Bob sends
(until the last step) are liveness test responses, which gives no information about
the encoded message k.

Once we move into the analysis for the synchronous setting, we wish to
use the extractor security to guarantee that Zg (which is the masked right
state, i.e., R® Ext(W; X)) looks uniform and hence the tampering on L can be
defined independent of R. While intuitively this looks straight forward, the proof
requires a careful analysis of the auxiliary information (which are, for example,
the liveness test responses), and a suitable use of extractor security to carefully
define the correct tampering functions acting on the two states. In particular,
once Zp is replaced by a uniformly chosen string and not the output of an
extractor, a challenge is to make the tampering of R consistent with the desired
tampering function. We accomplish this by carefully redefining the tampering
function acting on R so that it still remains split-state and, at the same time,
produces a consistent output as the original tampering function. Once this is
done, we use the non-malleability of the underlying NMCs to ensure that the
modified key k', if altered, is independent of k. This helps us use the MAC
security for the desired robustness.

1.5 Organization of the Paper

We explain the preliminaries and the building blocks required for the main pro-
tocol in Sections 2 and 3. Then, we explain the construction of the protocol in
Section 4 and give a detailed security analysis in Section 5. Further, we discuss
a variant of the construction from NMREs in Section 6.
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2 Preliminaries

2.1 Notation

k denotes security parameter throughout. s € S denotes uniform sampling from
set S. r + X denotes sampling from a probability distribution X. The notation
Prx[z] denotes the probability assigned by X to the value z. z||y represents
concatenation of two binary strings x and y. |x| denotes length of binary string
x. U, denotes the uniform distribution on {0, 1}!. All logarithms are base 2.

2.2 Statistical distance and Entropy

Let X7, X5 be two probability distributions over some set S. Their statistical
distance is

1
SD (X1, X5) & Ij{lgg({Pr[Xl €T -PrlX, e T)} = ;S
S

S

(they are said to be e-close if SD (X7, X5) < ¢ and denoted by X; ~. X5).

For an event E, SDg(A; B) denotes SD (A|E; B|E)

The min-entropy of a random variable W is Hoo (W) = — log(max,, Pr[W = w]).
For a joint distribution (W, E), following [DORSO08|, we define the (average)
conditional min-entropy of W given E as

H.o(W | E) = —log( B (27 H=(VIE=0)

(here the expectation is taken over e for which Pr[E = e] is nonzero).
For a random variable W over {0,1}", W is said to be a (n,t)-source if
Hoo (W) = t.

2.3 Definitions

We now define an interactive authentication protocol. Let Alice and Bob share a
secret w, chosen from a distribution W. Through an interactive authentication
protocol, the goal is for Alice to be able to authentically send a message my,
to Bob, in the presence of an active adversary Eve. Let m; denote the message
received by Bob. Alice and Bob output “accept” or “reject” after the execution
of the protocol, which we denote by t4 and tp respectively.

Definition 1. ([CKOR10]) An interactive protocol (A, B) played by Alice and
Bob on a communication channel fully controlled by an adversary Eve, is a
(hw, k)-interactive authentication protocol if Ym, it satisfies the following
properties whenever Hoo (W) > hw and m, = m:

1. Correctness. If Eve is passive, Pr[m, = mp] = 1.
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2. Robustness. For any Eve, the probability that the following experiment out-
puts “Eve wins” is at most 27": sample w < W ; let received,, received,,
be the messages received by Alice and Bob upon execution of (A, B) with
Eve actively controlling the channel, and let A(w,received,,rq,my) = ta,
B(w, receivedy, ry,) = (mp,tp). Output “Eve wins” if (mp # ma Atp =
“accept”).

Further, we define a privacy amplification protocol. Let Alice and Bob share
a secret w, chosen from a distribution W. The goal of a privacy amplification
protocol is for Alice and Bob to agree on a uniform key, in the presence of an
active adversary Eve. Let k4 and kp denote the output of Alice and Bob, after
the execution of the protocol.

Definition 2. (/CKOR10]) An interactive protocol (A, B) played by Alice and
Bob on a communication channel fully controlled by an adversary Eve, is a
(hw, Ak, 0, €)-privacy amplification protocol if it satisfies the following prop-
erties whenever Hoo (W) > hyy :

1. Correctness. If Eve is passive, Prlka = kp] = 1.

2. Robustness. For any Eve, the probability that the following experiment out-
puts “Eve wins” is at most 270 : sample w from W ; let received,, received,
be the messages received by Alice and Bob upon execution of (A, B) with

Eve actively controlling the channel, and let A(w,received,,r,) = ka,
B(w, receivedy, ry) = kp. Output “Eve wins” if (ka # kg Nka # L Nkp #
1).

3. Euxtraction. Define purify(r) to be a randomized function whose input is
either a binary string or L. If r = L, then purify(r) = L; else, purify(r)
is a uniformly chosen random string of length \y. Let Sent,, Sent, be the
messages sent by Alice and Bob upon execution of (A, B) in presence of Eve.
Note that the pair Sent = (Sent,, Sentp) contains an active Eve’s view of
the protocol. We require that for any Eve,

SD ((ka, Sent), (purify(ka), Sent)) < e
SD ((kp, Sent), (purify(kg), Sent)) <

We now define “Non-malleable randomness encoders”(NMRE), introduced
in [KOS18]. NMREs can be viewed as samplers, that would sample a uniform
message along with its non-malleable encoding. The security guarantee given by
NMREs is that the uniform message output by the NMRE, looks uniform even
given the tampered uniform message. The formal definition is given below.

Definition 3. Let (NMREnc, NMRDec) be s.t. NMREnc : {0,1}" — {0,1}F x
({0,1}™ x {0,1}™2) is defined as NMREnc(r) = (NMREnc; (r), NMREncy(r)) =
(m, (z,y)) and NMRDec : {0,1}™ x {0,1}"2 — {0,1}*.

We say that (NMREnc, NMRDec) is a e-non-malleable randommness encoder
with message space {0,1}* and codeword space {0,1}™ x {0,1}"2, for the dis-
tribution R on {0,1}" with respect to the 2-split-state family F if the following
1s satisfied:
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— Correctness:

Pr [NMRDec(NMREncy(r)) = NMREnc; (r)] = 1

r<—R

— Non-malleability: For each (f,g) € F, 3 a distribution NMRSimy , over
{0,1}* U {same*, L} such that

NMRTamper , =~ Copy(Uy, NMRSim¢ ;)

where NMRTamper - denotes the distribution
(NMREnc; (R), NMRDec((f, 9)(NMREnc2(R)))? and Copy(Uy, NMRSimy.,)
is defined as:

u < Uy; m < NMRSimy 4

(u,w),  if m = same*

Copy(u, ﬁl) = {

(u,m), otherwise
NMRSim¢ , should be efficiently samplable given oracle access to (f,g)(.).
Further, the rate of this code is defined as k/(n1 + na)

We now define a stronger variant of NMREs called “augmented” NMREs. NM-
REs provide the guarantee that the tampered message can be simulated in-
dependent of the original uniform message (barring the same* case). We now
strengthen this guarantee, by requiring that not only the tampered message but
also one of the states of the non-malleable encoding, can be simulated indepen-
dent of the original uniform message.

Definition 4. Let (NMREnc, NMRDec) be s.t. NMREnc : {0,1}" — {0,1}F x
({0,1}™ x {0,1}"2) is defined as NMREnc(r) = (NMREnc; (), NMREncy(r)) =
(m, (,y)) and NMRDec : {0,1}™ x {0,1}"2 — {0,1}*.

We say that (NMREnc, NMRDec) is a e-augmented non-malleable random-
ness encoder with message space {0,1}* and codeword space {0,1}™ x{0,1}"2,
for the distribution R on {0,1}" with respect to the 2-split-state family F if the
following is satisfied:

— Correctness:

Pr [NMRDec(NMREncs(r)) = NMREnc; (r)] = 1
T

— Non-malleability: For each (f,g) € F, 3 a distribution NMRSimy , over
{0,1}™ x {{0,1}* U {same*, L}} such that

NMRTamper; , ~. Copy(Uy, NMRSim7 )

2 Here (f, g)(NMREnc2(R)) just denotes the tampering by the split-state tampering
functions f and g on the corresponding states.
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where NI\/IRTamper}r’ denotes the distribution
(NMREnc; (R), L, NMRDec((f(L), g(R))) where (L, R) = NMREncy(R) and
Copy(Ug, NMRSim}:g) is defined as:

u < Uy; L,m < NMRSim} |

(u,L,u),  if m = same*

COpy(“) ﬁl) = {

(u, L,m), otherwise

NMRSim}*‘)g should be efficiently samplable given oracle access to (f,g)(.).

2.4 Some Preliminary Lemmata and Propositions

We state and prove some of the preliminary lemmata and propositions which
will be used in the security proof.

Lemma 1. Let A, B be any two independent distributions on A, B respectively.
Let C be the distribution defined by C := f(A,B) for some deterministic
function f. Then, the following distributions will be identical:

Dl.' DQ.’

—a<+ A a+ A

- b+ B - b+ B

— ¢ = f(a,b) — c¢= f(a,b)

— Qutput a,b,c —ad + A|lf(Ab) =c
Output a’,b, c

Lemma 2. For any random variables A, B,C if (A, B) =. (A,C), then B ~. C

Lemma 3. For any random variables A, B if A =, B, then for any function f,
f(A) = f(B)
Lemma 4. [DORS08] Let A, B,C be random variables. Then

(a) For any & > 0, the conditional entropy Hoo (A|B = b) is at least Hoo (A|B) —
log(1/6) with probability at least 1 — & over the choice of b.

(b) If B has at most 2* possible values, then Hoo(A | B) > Hoo(A, B) — A
H..(A) — X. and, more generally, Hoo(A | B,C) > Hoo(A, B | C) — X
H.(A|C)— .

2
2

Proposition 1. Let Aq,..., A, be mutually exclusive and exhaustive events.
Then, for random variables X1, Xo taking values in S, we have:

SD (X1, X2) < > Pr[4;] - SD (X1]A;, X»|A;)

i=1

where X;|A; is the random variable X; conditioned on the event A,.
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Proof.

2SD (X1, X3) = » | Pr[X; = s] — Pr[X; = s]

ses
( Pl“[Xl = S|A ] [Az} PY[XQ = S|Az]> ’
seS  i=1
<ZZP1" Pr[X; = s|A;] — Pr[Xs :8|Ai]|
seS i=1
= Pr[A] > | Pr[X; = s|A;] - Pr[Xy = s|A;] |
i=1 ses

= 22131« - SD (X1|A;, X3|4))

Proposition 2. Let A, B be random variables taking values in A. Let C be any
random variable taking values in C.

IfVe e C, SDe=.(A;B) <e, then SD ((A,C);(B,C)) <e¢
Proof.

28D ((A,C); (B,C))=> |Pr[A=a,C =c - Pr[B=0a,C =

= PrlC=d> |Pr[A=alC =] - Pr[B=alC =

Proposition 3. Let Ay, As, ..., A, be mutually exclusive and exhaustive events.
Let B be any (possibly correlated to A;’s) event with non-zero probability. Then

> Pr4|B] =1
1=1
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Proof.

n

Z PrA4i|B] = ) Prﬁ"[g]B]

> i1 Pr[Ai A B]
B Pr[B]
Pr[B]
~ Pr[B
=1

The third equation follows because A;’s are mutually exclusive and exhaustive
events.

Proposition 4. Let A, B be random variables taking values in A, B respectively.
Let F be some event with non-zero probability. Let C be the random variable B|F .
Suppose A is independent of the event F', then

Va e A,be B, Pr]A=a,B =b|F]=Pr[A=a,C =b| and
SD ((A, B); (A,C)) <1 —Pr[F]
Proof. Define random variable D as A|F. Then

Pr[A =a,B =b|F] =Pr[D =a,C =)
=Pr[A=aqa,C =]

The above equation follows because A is independent of F' and therefore, D = A.
Let F be the complement event of F'.

2SD ((A, B); (A, ()
:Z|Pr[A:a,B:b] — Pr[A =a,C =1b]|
= i | Pr[F] Pr[A = a, B = b|F] + Pr[F]Pr[A = a, B = b|F] — Pr[A = a,C = }|
- i | Pr[F] Pr[A = a,C = b] + Pr[F| Pr[A = a, B = b|F] — Pr[A = a,C = b]|
b

<> |Pr[F]Pr[A=q,C =b] — Pr[A =a,C =b]| + Pr[F] Y Pr[A=a, B =b|F]
a,b a,b
= (1—Pr[F])> (Pr[A=a,C =1b])+Pr[F]-1
a,b
= (1 — Pr[F]) - 1 + Pr[F]
=2(1 — Pr[F))
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Proposition 5. Let A, B,C be random wariables and F be some event with
non-zero probability. Suppose (A,C) are independent of (B,F) and A =, C,
then (A, B)|F =~. (C, B)|F.

Proof. Let A', B',C" denote the random variables (A|F), (B|F),(C|F). (4,C)
are independent of (B, F'). Therefore, A" and C’ are independent of B’. For the
sake of completeness we just show A’ is independent of B’.
Pr[A" = a,B' = b = Pr[A = a, B = b|F]

=Pr[A=a,B =0, F]/Pr[F|

= (Pr[A = a] Pr[B = b, F])/ Pr[F]

= Pr[A = o] Pr[B = b|F]

= Pr[A = a|F]Pr[B = b|F] = Pr[A’ = a] Pr[B’' = 0]

2SD (A, B)|F;(C, B)|F) = Y | Pr[A = a, B = b|F] — Pt[C = a, B = b|F] |

a,b
= Pr[A’ = a,B' =b] — Pr[C’' = a, B’ = }] |
a,b
=> Pr[B' =1 |Pr[A =a] - Pr[C’ =]
b a
= ZPr[B’ =] Z Pr[A = a] — Pr[C = d]
b a

The above equations follow because A,C' are independent of F' and therefore,
A =Aand C'=C.

3 Buliding Blocks

We use information-theoretic message authentication codes, strong average case
extractor and an augmented non-malleable code for 2-split-state family , as build-
ing blocks to our construction. We define these building blocks below.

3.1 Augmented Non-malleable Codes

Augmented NMCs provide a stronger guarantee (than NMCs) that, both the
tampered message and one of the states of the non-malleable encoding of the
original message can be simulated independent of the original message. We define
augmented non-malleable codes for the 2-split-state family as below.
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Definition 5 (Augmented Non-malleable Codes). [AAGT16] A coding
scheme (Enc, Dec) with message and codeword spaces as {0,1}%,({0,1}")2 re-
spectively, is e- augmented-non-malleable with respect to the function family
F = {(fi,fo) :+ fi : {0,1}% — {0,138} if V (f1, f2) € F, 3 a distribution
Simy, 1, over ({0,1}7) x ({0,1}* U {same*, L}) such that ¥V m € {0,1}*

Tamper}'Lf2 ~. Copyg”imhh

where Tamper’, 5  denotes the distribution (L,Dec(fi(L), f2(R))), where
Enc(m) = (L, R). Copygiy,,, , is defined as

(L, ﬁl) — Simfth

(L,m) if (L,m) = (L, same*)
Copy, =
OPYsimy, 1, {(Lm) otherwise

Simyg, ¢, should be efficiently samplable given oracle access to (f1, f2)(.). 3 We
say an e- augmented non-malleable code has optimal error, if € < 2= We ex-
press the rate, of an augmented non-malleable code as a function of a. We say the

rate is a function r(.), if 28 = (a/r(a)) i.e codeword length = %

Similarly, the e-non-malleable code has error 2=%0) if e < 279()

3.2 Information-theoretic One-Time Message Authentication Codes

Message Authentication Codes comprise of keyed functions, Tag and Vrfy. To
authenticate a message m, the Tag function is applied on m, which would output
tag t. The Vrfy function takes a message m and tag ¢, outputs either 0 (reject) or
1 (accept). The security guarantee of an information-theoretic one-time message
authentication code is that, even an all powerful adversary who has seen atmost
one valid message-tag pair, cannot forge a tag that verifies on a different message.
The formal definition is as follows:

Definition 6. A family of pair of functions {Tag;, :{0,1}” — {0, 1}9, Vrfy,, -
{0,117 x {0,1}° — {0,1}}r.ef0,1}- is said to a p — secure one time MAC if

1. Fork, € {0,1}7, ¥Ym € {0,1}", Pr[Vrfy, (m,Tag, (m)) =1]=1
2. For any m # m/,t,t, lgr[Tagka(m) = t|Tagy, (m') = t'] < p for k, €gr

{0,137

3.3 Average-case Extractors

Extractors output an almost uniform string from a (n,t)-source, using a short
uniform string, called seed, as a catalyst. Average-case extractors are extractors
whose output remains close to uniform, even given the seed and some auxiliary
information about the source (but independent of the seed), whenever the source
has enough average entropy given the auxiliary information.

3 For simplicity in the proof, we may assume here that the decoder Dec never outputs
L. This can be done by replacing 1 with some fixed string, like 00..0.
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Definition 7. [DORS0S, Section 2.5] Let Ext : {0,1}" x {0,1}¢ — {0, 1} be
a polynomial time computable function. We say that Ext is an efficient average-
case (n,t,d, 1, €)-strong extractor if for all pairs of random variables (W, I) such
that W is an n-bit string satisfying ﬁoc(WH) > t, we have

SD ((Ext(W; X), X, I),(U, X, 1)) < €, where X is uniform on {0,1}<.

We further need the following lemmata, which give some properties of random-
ness extractors.

Lemma 5. Let W be a source with min-entropy t and Ext be an (n,t,d,l,¢€)-
strong extractor. Then the following distributions are e-close.

— x€g {0,1}¢ — x€g {0,1}¢

—w+ W —y’ER{O,l}l

— y = Ext(w; z) — If 3w"*® € Support(W), such that y' = Ext(w; x)
— Output: x,y,w w' — WIExt(W;z) =/

else w™® = L

— Output: x,y ,w

Tes

Proof. We now define sets Good and Bad as follows.

Good = {z,y : 3 w € Support(W), such that Ext(w;x) = y}

Bad = {z,y : 3 w € Support(W), such that Ext(w;z) = y}
To keep the space of values taken by W and W"¢® same, we set Pr[IW = 1] = 0.
28D ((X,Y,W); (X, Y, W"))
=> IPrX =2,V =y W=1]-Pr[X =2,V =y W = 1]

z,y
+ Y PX =2, Y =y, W=uw] - Pr[X =2,V =y, W' = u]

x,y,w
= > IPX =2y =y -PrX =0 =y
(z,y)€Bad
+ Z [Pr[X =2,V =y, W =w] — Pr[X =2,V =y, W™ = )| (1)
(z,y) €Good,w
= Z |Pr[X =2,Y =y] - Pr[X =z,Y' =y
(x,y)€Bad
+ Y IPX=2Y =y -PrX =x,Y =y]| - > Pr[W = w|Ext(W;z) = y]
(x,y)€Good w

(2)
= 28D ((X,Y); (X,Y")) < e.
Equation 1 follows because (X,Y’) € Bad with probability zero (in fact Pr[W = 1] = 0)

and W"* = L if and only if (X,Y’) € Bad. Equation 2 follows from the definition of
WT'CS.
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Lemma 6 (Lemma 1, [KRO09]). Let Ext be an (n,t,d,l €)-strong ex-
tractor, W be a random wvariable over {0,1}", with Hoo(W) > t. Then
INIOO(Ext(W;X)|X) > min(l,log%) — 1. More generally, if Ext is an average-case
(n,t,d,l,€)-strong extractor and ﬁw(W|E) > t, then i:IOO(Ext(W;X)|X7 E) >
min(l, log1) — 1.

The following remark immediately follows from Lemma 6.

Remark 1. If Ext is an average-case (n,t,d,l,¢)-strong extractor and

I:ioo(W|E) > t, Y be a substring of Ext(W;X) with length ¢, then
H.(Y|X, E) > min(q,log:) — 1.
4 Protocol

4.1 Notation

— Let Ext’ be an (n,t',d,3l',¢;)- average case extractor.

— Let Ext be an (n,t,d, [, e3)- average case extractor.

— Let Enc,Dec be an €3- secure two-state augmented non-malleable code with
message, codeword spaces being {0,1}7 and {0, 1}%.

— Let Tag, Vrfy be an e4-secure one-time MAC with key, message and tag spaces
being {0,1}7, {0,1}%, and {0,1}° respectively.

— Let Ext” be an (n,t”,d, 1", e5)- average case extractor.

— Let A denote the security parameter w.r.t to the underlying protocols used.
We will set the security parameter x of the main protocol in terms of this A.

4.2 Protocol

We now describe the Privacy Amplification Protocol below. w is drawn from
the entropic source W, and is shared between Alice and Bob. We denote the
Interactive Authentication Protocol to authenticate a message m by ﬂfn%H and
the Privacy Amplification Protocol by 7PA.

As described in the introduction, the idea behind the protocol is as follows:
For the synchronous setting: Alice picks a MAC key, encodes it using the NMC
and sends across the states to Bob. Now, in order to ensure that the tampering
done by Eve is captured as a split-state tampering on the states, Alice uses an
extractor and masks one of the states before sending it. In the next round, the
other state is sent in clear. We require the augmented nature of the NMC to
guarantee security even when one state is sent in clear. For the asynchronous
setting, we need to add “liveness tests” to the protocol (where an extractor seed
is sent by one party as a challenge and the other party has to respond to this
correctly). By the nature of the protocol, as the communication is unidirectional
(all the “useful information” is only sent by Alice), we only need to include
liveness tests to ensure that Bob is alive. For this, Alice sends a liveness test
seed for a long extractor output in the first step. This challenge seed is reused
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PA
7Tw
Alice(w) Bob(w)
e Set my =L e meg {0,1}¢
e Set mp = L
AUTH
T w
e ker{0,1}7 Eve
Vo
o 2g €5 {0,1}% zpjve € {0,137 Tive  Tlivg o
Y1 yi® Yillvallys = Yie = Ext'(w;2;.)
L4 y1||y2|‘y3 = Ylive = EXt/(w; Ilive)
o If y} # y; then abort TR @l
Else continue oy b
o If y5 # yo then abort &~ 2

Else continue

e Enc(k) = (L, R)

e yr = Ext(w;xR) /
ZR_ZR, o Y = Ext(w;a’)
e Zp=R®yr Y3 Y3
< e R =Z,dyy
o If y§ # y3 then abort I I ) o
Else contir}ue/ —— > o k' =Dec(L', I)
.varfyk(mvt):]' m',t m,t e t=Ta m
Set maq =m’ — i (m)
Else abort e Set mp=m
oIfmA;éJ_ .Ime#J_
ka = Ext”’(w;my4) kg = Ext” (w;mp)

o Else kg =L

Else kp = L

Fig. 1. Privacy Amplification Protocol

for the liveness test responses. The reuse of liveness test seed reduces the number
of rounds in the protocol. But, in addition, it is also crucial that this is done to
guarantee security of protocol, else dependencies arise.

Theorem 1 Let (Enc,Dec), (Tag,Vrfy) , Ext’ and Ext be as in Section 4.1.
Then, the 8-round sub-protocol ™AV in Figure 1 is a an (', k)-interactive mes-
sage authentication protocol.

Theorem 2.A Let (Enc,Dec), (Tag, Vrfy) , Ext’ and Ext be as in Section 4.1.
If (Enc,Dec) is a two-state, constant rate augmented non-malleable code with
optimal error 2= °(%)  then the 8-round protocol T in Figure 1 is a (t',1", K, K —
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1)-secure privacy amplification protocol with optimal entropy loss O(log(n) + k)
and with min-entropy requirement t' = 2(log(n) + k).

Theorem 2.B Let (Enc, Dec), (Tag, Vrfy) , Ext’ and Ext be as in Section 4.1. If
(Enc, Dec) is instantiated with the augmented non-malleable code given in [Lil7]
, then the 8-round protocol ©™” in Figure 1 is a (t',1", K,k — 1)-secure privacy
amplification protocol with entropy loss being O(log(n) + klog(k)) and with min-
entropy requirement t' = 2(log(n) + klog k).

5 Security Proof of Our Protocol

5.1 Proof of Theorem 1

We first prove that 7AY™ is an interactive authentication protocol.
Correctness: The correctness of 7Y™ follows easily.
Robustness: We need to show that

Pr[Eve wins| = Prlma #mp Ama # L Amp # 1] < 27",

If Bob didn’t receive any messages during the protocol, then mp = | and Eve
doesn’t win. Further, for Eve to win, all the liveness test checks must have verified
correctly. Hence, from now on, we assume Bob receives and sends messages and
that the liveness test checks go through. We now analyze Eve’s success probability
by considering the asynchronous and synchronous case separately. We define the
following events for the same.

— Let Sync denote the event that Eve is synchronous and doesn’t interleave.

— Async denote the complement of the event Sync, i.e., where Eve interleaves.

— Pass denote the event that Eve passes all initial checks done by Alice and Bob.
It denotes the event “(yy||y%||y5 = Yiive)”. Pass also implies mp =m # L.

Then, we get:

Pr[Eve wins| < Pr[Eve wins|Sync] + Pr[Eve wins|Async]
< Pr[Eve wins|Sync, Pass] + Pr[Eve wins|Async] (3)

This is because, the event Eve wins implies that Pass has occured. To prove
robustness we will now bound each of the above summands.

Lemma 6. Pr[Eve wins|Async] < Pr[Eve wins|Sync, Pass| + 274+1
Proof. We first introduce the following notations:

— Let msg; denote the message received by Eve in the actual i-th round
(i.e., in the synchronous world) of the protocol (msg; = Zype, msga =
y,17 ,msgg =m,t )

— Let msg; denote the modification of msg; sent by Eve to Bob/Alice (msg] =
T}ine, MSGy =y, -+ ,msgg = m’,t'. In the asynchronous setting these mod-
ified messages may depend on messages received by Eve in later rounds).
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We split the event Async into the following two mutually exclusive and exhaustive
events:

— Casel : This event is defined as the union of the following two events.
a Eve sends msg, to Alice before receiving msg; from Bob, where i €
{2,4,6}
b Eve sends msgj(z};,,) to Bob before receiving msg: (zyive) from Alice.
— Case2 : This event is defined as the union of the following two events.
a Eve sends msg, to Bob before receiving msg; from Alice, where i €
{3,5,7} and Casel® happens .
b Eve sends msgj to Alice before receiving msgs from Bob and Casel®
happens.

These events are clearly exhaustive because Async happens if and only if there
exists some ¢ € [8], such that msg, is sent to Alice(Bob) before receiving msg;
from Bob(Alice). Then, we have:

Pr[Eve wins|Async] < Pr[Eve wins|Casel] + Pr[Eve wins|Case2] (4)

We now bound each of the summands above separately.

Claim 1 Pr[Eve wins|Casel] < 27%'+1

Proof. The intuition behind the claim is that, given Casel, Eve doesn’t have
enough information to pass all the liveness tests. For example, consider Caselb.
Before passing all the liveness tests, Eve’s view(barring xiy., xiiw) is is a func-
tion of xR, zg, 3y, m,t’, of which only ¢’ may be dependent on ;.. (for example:
where Eve sends e as 2z and completes interaction with Bob, before sending
y4 or y4 to Alice). This information can atmost reduce the average entropy of
Y given Eve’s view by § bits(length of the tag). By the way we set parameters,
we will ensure that this average entropy is atleast {’. Hence Eve can only pass
the liveness tests with very low probability.

Similary, consider Casela and i = 4. Eve’s view before answering the first and
second liveness test, atmost depends on y, zg(barring xj;ye, 2}, ), of which only
y} may be dependent on ;.. By average entropy arguments, we will show that
the probability of guessing both y; and ys correctly, given gy} is very low. The
arguments are similar for ¢ = 2, 6.

Let the liveness test y; = y; be indexed by j where j € {1,2,3}. Formally,
let Ejnq denote information (excluding zj,,.) that Eve sees at the most before
answering the jth liveness test, that is independent of zjpe, Fqep denote in-
formation (excluding xj,,.) that Eve sees at the most before answering the jth
liveness test, that might depend on x;y., @ denote the substrings of Y, which
we want Eve to be able to guess only with low probability. We now formally see
what each of the above random variables are in each of the sub cases written
below.

—Fori=1, j=3, Eijna = (Xg,Zr,Y',m), Egep = (T), Q=Y
—Fori=2,j=1, Ejpg = Null, Egep, = Null, Q=Y
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- FOTi:4,j:2, EindEXRa EdepE}qy QEYLYQ
—Fori=6,j=3, Eina = (Xr,ZRr), Eiep =Y{,Y5, Q=Y

where i is the index corresponding to the subcase we are in 4 and j corresponds
to the liveness test being answered by Eve. We will show that in each subcase
i, Q@ = Y1,---,Y; will have high enough entropy given all the information that
Eve sees.

From here on the proof is same for all i € {1,2,4,6}°.

ﬁw (Q|Xli1167 Einda Xl/'ivw Edep) (5)
> Hoo (Q| Xitive, Find> X/ipe) — | Edep| (follows by Lemma 4b)
= ﬁoo(Q|Xlivea Eznd) - ‘Edep| (6)

1
> min(|Q|, log g) — 1 — |Eqep| (follows by Remark 1)
>0 -1 (7)

Equation 6 holds because, if Caselb happens, then X, . is independent of
W, Xiive and if Caseldb does not happen, then Xj;,_ is a function of Xj;ye, Eing-
By the way we set parameters in Section 5.3, the last inequality holds. Let A
denote (XliU67 Eind7 Xl/ive7 Edep)~

Pr[Eve wins|Casel] < Pr[@Q = f(A)]
=Y Pr[A=a] - Pr[Q = f(A)|A =d]

= ZPr[A = a] - maz, Pr[Q = q|A = a)]
— 9-H<(Ql4) < 9-1'+1

f is an arbitrary randomized /deterministic function chosen by Eve (f(A) repre-
sents the guess made by Eve for Q). The last inequality follows from Inequality
7.

Claim 2 Pr[Eve wins|Case2] < Pr[Eve wins|Sync, Pass|

Proof. We aim to prove that given Case2, Eve only gains as much advantage in
winning, as in the synchronous setting. To prove this, we first define the function
family Fcase2, which captures the modifications made (to the transcript) by Eve
given Case2. Then, we will prove that for any tampering made by Eve using
(f1,++, fs) € Fcase2, We can capture it by a function in the synchronous setting
(post removing the liveness test checks, which can only give more advantage to

4 Subcase i: Eve sends msg] to Alice (if i € {2,4,6}) or msg} to Bob (if i = 1) before
receiving msg;

5 For a random variable X over set X, | X | denotes length of bit representation of an
element in X. For example, when Q = Y1, |Q| = |Y1| =1’
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Eve).6. This would prove that the probability of Eve winning given Case2 is at
most the probability of her winning given (Sync, Pass). Here, by slight abuse of
notation, we also use Pass to denote that the liveness test checks are removed.
Now, we describe inputs and outputs of tampering functions (fi,-- -, fs) from
Fase2:

- Xl/ive = fl(Xlive)

- 1/1” = fQ(Xlw&}/{,}él,Yél,mL’TL)

X}{ = fS(Xliv57Y1/7XIJ§)
- }/2// = f4(Xlive7lelaXR7Yv2/7Y3:J_va_»TL>
- Z}% = f5(Xliv€7Y{aXIJ%_a}/QﬂZIJ%_)

Y?,” = fG(Xli'Uev}/{; XR7}/2/7ZR7Y3,7mL7TL)

- L/ = f?(Xlivea}/1,7X}%7Y2/7Z}$7Y3,alfl)
- (mlvT,) = fS(XlivevylleRﬂx/Q/uZRa}/gaLme7TJ_)

Here, for a random variable A we use A+ to represent the random variable which
may be just A oris L if the function does not depend on the corresponding input.
Given Case2, we know that Case1” has occurred. This means that ], is sent by
Eve only after she sees 2;5,c. Further, each of 27;, ., 2;, Z}; are sent by Eve to Bob
before she receives the subsequent messages x g, Zr, L, respectively, from Alice.
Hence the function description of f; is exactly as in the synchronous setting
and that of f3, fs5, f7, fs only differs from their synchronous counterpart in that,
these functions may not depend on certain messages in their input (we used L
to denote this).

Now, if we assume that Pass occurs and hence remove the liveness test checks
in the game, then clearly, it can only increase the advantage of Eve in winning.
Hence

Pr[Eve wins|Case2] < Pr[Eve wins|Case2, Pass]
Two key observations below will complete the proof of this claim:

1. Post the liveness test checks are removed (both in case of asynchronous and
synchronous), the functions fo, f4 and fg, which give modifications of the
liveness test responses by Bob, are no longer used in generating the view of
Eve. So, given that Pass occurred, the view of Eve in both the asynchronous
and synchronous world does not depend on the functions fs, f4 and fg.

5 As Eve is information theoretic, we can assume that Eve gives the functions she is
going to use for modifications a priori
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2. The current descriptions of f3, f5, f7, fs in Fcase2 can be captured by defining
functions fi, fi, f7, f§ (whose domains do not include L) such that if a certain
input for f; is L, replace it with a dummy string and use f/ to get the
modification. If all inputs of f; are # L, f/ is same as f;. The function
descriptions of f4, f£, f4, f4 are as in the synchronous setting.

Observations 1. and 2. above show that post removing the liveness test checks,
i.e., assuming Pass occurred, the function descriptions of f1, f3, f5, f7.fs can be
captured by function descriptions in the synchronous setting. Hence, it follows
that:

Pr[Eve wins|Case2] < Pr[Eve wins|Case2, Pass]
< Pr[Eve wins|Sync, Pass] (8)

Combining the above claims 1 and 2 in Equation 4, we get:
Pr[Eve wins|Async] < Pr[Eve wins|Sync, Pass] + 2711
Lemma 7. Pr[Eve wins|Sync, Pass] < 27 + 2e5 + €3 + €4

Proof. Let us define the random variable corresponding to the view of Eve con-
ditioned on the event Sync happening. We introduce the following notations for
that.

— Let m denote the message being authenticated by Bob through 7AVTH.

— As Eve is information theoretic adversary, we assume that she chooses the
tampering functions of each round apriori. We denote these functions with

the literals f13f27f37f47f57f6uf77f8‘

—w+ W
— Tlive €ER {Oa 1}da
k er {0, 1}d,xR €ER {0,1}d
- ajgi'ue = fl (:Elive)
- y1||y2||y3 = Ylive = EXt/(w; xlive)
= yllvallys = Yrive = BXY (w; ;)
- CU/R = f3(Ttive, Y1, TR)
— yr = Ext(w; zR)
— (L, R) < Enc(k)
— 2rR=YRD®R
- Z;% = f5(xliv67y/17xRayéazR)
~ Yp = Ext(w; 2p)
- K=oy,
- L'= f7($livevy/1’ vayé’ ZR’yé7L)
— k' = Dec(L', R')
— t = Tagy,/ (m)
- (mlvt/) =
f8($live7 ylla TR, ?/27 ZR, yé7 La m, t)
— Output Tijve, Yjiper TRy 2R, L, M,
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The random variable ViewO?”l”)__, fs is defined as
Viewo}?,“7f8 = (Xlivea }/l/i'uw XR7 ZR7 L7 m, T)

where the capital letters on the right denote the distributions corresponding to
the respective small letters (as described in the figure above). Then, we have:

Pr[Eve wins|Sync, Pass]
= Pr[(m/,t') < Eve(View0F, . ;) Am' #mAVrfy(m',t') =1  (9)

where the probability is over the randomness used to generate ViewO"lm, fo?
namely W, Xj;,e, K, Xg and the randomness used in Enc. To bound this probabil-
ity, we use a hybrid argument. We now define the views of Eve in the subsequent
hybrids. Then, we prove that the success probability of Eve given View()}'z,_w fo
(Equation 9) is upper bounded by its success probability given the final view

Viewd, , upto a small error.

Vz'ewl?l__’fsz ViBWQ;?,__,fsf

—w< W —w<W
— Tlive €R {07 1}d7 — Tlive ER {0, 1}d,ZR €ER {07 1}1,

ker {07 1}daxR €Rr {Oa 1}d ker {0, l}d,l‘R €ER {0, 1}d
- x;we =fi (xlive) - ZL‘;we = fi (l‘live)
= willyallys = vrive = Ext'(wiiive) || = y1lyallys = rive = Ext! (w3 21ive)
= vill9allvs = Yiive = BEXX(wi2ti0) || = vl llwbllvh = 0] = Ext'(w;2),,,,)
- u:' — W - llR - fB(II'i'U(::yllv “LR)

W is the conditional source, — (L, R) < Enc(k)

W = W|(EXt/(W;xlive) = Ylive, —Yyr=2rDPR

EXt,(W; ZE;ive) = yl/ive) - Z}% = f5 ('/I;lh/'e', ?/4 y LR, Ué ZR)
— 2% = f3(Tiive, Y1, TR) — If b € Support(W) such that
— yr = Ext(w;zR) Ext(W;xg) = ygr , then set 0 =
— (L, R) + Enc(k) 1 and Output L
—2r=YrDPR else  « W|(Ext(W;zr) = yr)
— 2k = f5(Ziive, Y1, TR, Y5, ZR) VE/ is the conditional source,
— yp = Ext(w; 2%) W = W|(Ext'(W; Ziive) = Yiive,
- RI = Z}% & y}% EXt/(W; x;ive) = y;ive)
= L" = f1(%ive, Y1, TR: Yas 2R, Y3, L) || — v = Ext(w; 2'p)
— k' = Dec(L, R') - R =z, dyh
- t:Tagk/(m) - L= f7<xlivezylpvaylzazRayé?L)
— k' = Dec(L', R')
— t = Tag(m)

- (m, ) = - (') =

f8(Xtive, Y1 TR, Yh, 2R, Ysy Lym, t) fs(Ztive, Y1, TR, Y5, 2R, Y5, Ly M, 1)
— OUtPUt Tiive, Yisper TRy 2R, Lymyt || — OUEDUE Tiive, Yjjper TRy 2R, Lym,t
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View3},

—w+ W

— Tlive €R {0, 1}d,ZR €ER {0, 1}1,
k er {0, l}d,xR €r {0, l}d
x;ive = fl (xlive)

- y1|‘y2”y3 = Ylive = EXt/(w;xlive)

- yllHyéHyé = yl/ive = EXt/(w;x;ive)
— L,k + Tamperjf’g
“f,g will be hardwired with
Llijver Ylives yl/we» TR, ZR
— t = Tagy (m)
_ (m,7tl) —

/ ! /
f8(ml7ﬁveay17xR7y2>ZR7y37L7m7t)
/
- OUtPUt Llives Yiiver TRy ZR7L7mat

* f, g are described in Claim 5

Viewdy,

—w<+ W

— Zlive €ER {0, 1}d,zR €Rr {O, 1}1,
k er {0, l}d,l‘R €r {0, l}d
zgme = fl(zlive)

- y1||y2||y3 = Ylive = EXt/(w; xlive)

- yl1||yé||yé = yl/ive = EXt/(w; x;ive)
— L, k' = Copy(k, Simy 4)
“f,g will be hardwired with
Tlive, Ylives yl/ivev TRy ZR
— t = Tagy,/ (m)
- (m/vt/) =

/ / /
fS(:Eli'ue7 Y1, TR, Y2,ZR, Y3, La m, t)
/
- OUtput Llives Ylives TRy ZR L7 m7t

* f,g are described in Claim 5

We define the random variables corresponding to the views described above as
follows”.

— \/ieu)l%’“j8 = (Xiive, Yiper Xry Zjs Lym, T)
- Vi6w2¢’%7._7f8 = (Xlme}weyXRyzR7L m TZ)
— View3£%’_,’f8 = (Xtives Viiger Xry Z3y L, m, T?)
— Viewdy = (Xlwe,Ylwe,XR,ZR,L‘l,m,T‘l)

In the above description, we superscript a random variable with the correspond-
ing view number i, wherever there is a change in distribution from the previous
view.

We consider the following claims to complete the hybrid argument and then
bound the success probability of Eve given the final view (Viewd’; ) to com-
plete the proof.

Moving from View07, . , to Viewl .. : In the first hybrid, we wish to
analyze Eve’s success probability, given an identical view, where we use a con-
ditional source W = W|(Ext'(W; Ziive) = Ytive, EXt'(W;2}:0.) = Yhine) (DOSE
drawing the liveness test responses and seed from the same distribution as in
View(0';; and then fixing them) for further extractions. The use of a different
sample of w for the liveness test is crucial and the reason for doing this becomes
clear when we move to View3 o fe We show how the two views are identical

and then show why Eve’s success probability remains the same.
Claim 3
Pr[(m’,t") <= Eve(View0%, . ;) Am #m' AVrfyg(m/,t') =1]
= Pr[(m/,t') <= Eve(Viewl, . ;) Am #m' AVrfyg(m',t') =1]

" Red colored text in the description of any view signifies the portion that will be
changed in the next View. The blue colored text in a view signifies the portion that
was different different from the previous view.
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where the probabilities are taken over the randomness used to generate
View0%, . s and Viewl’ . 4 respectively, i.e., W, Xjive, Xr, K, the random-
ness used in Enc and W, W, Xjive, Xr, K, the randomness used in Enc respec-
tively.

Proof. Taking A = W, B = Xjjpe and C = (Ve = Ext/(W; Xpive), Ve =
Ext'(W; X/,..)) = f(A, B) in Lemma 5, we get:

live

W, Xlive; )/livev le/ive = W, Xlivea }/livea Y'l/ive
where W = W |Ext' (W; Xive) = Yiive, Ext' (W; X[;,,.) = Y7,

live live®
Xp is independent of the random variables above, we get:

KaXR’I}V?XliUe)}/li’U€7K = KavawaXliva'live’}/l;ve

Further, as K and

/
ive
The randomness used in Enc is independent of the random variables above.

Hence, Zr, L and T can be obtained as functions of the above random variables
(and the randomness used in Enc). Then, by using Lemma 3, we get:

Ka Xliveayvl/ivea XRa ZRa LvmaT = K7 Xlive; }/E/iveaXRa le{a L7m7T1
K, View0%, .. ;. = K,Viewl} .

Again as Eve’s output and the verification check are a function of the above
random variables, by use of Lemma 3, it follows that

Pr[(m,t") <= Eve(View0F . ;) Am #m' AVrfy, (m',t') = 1]
= Pr[(m/,t') <= Bve(Viewl}, . ;) Am#m' AVrfy,(m/,t') = 1]

Moving from Viewly, .. ; to View2} . : Wereplace Zr with U and then

sample the source consistently (upto some error) in View2}’i7,,, f- This reverse
sampling of the source becomes a little complicated as it has to be not only
consistent with the zp sampled but also has to be consistent with the liveness test
responses. This is why we would consistently reverse sample from the conditional
source W here. Now, showing that Eve’s success probability in Viewly, .., is
at most her success probability in this view (upto some error) captures that R
remains hidden from Eve.

Claim 4 If Ext is an (n,t,d,l,e2)- average case extractor, then

Pr((m’,t') < Eve(Viewl}, . ;) Am #m' AVrfyg(m',t') =1]

< Pr[(m/,t') + Eve(View2} . ;) Am#m AVrfy(m/, ') =1]+27" + e
where the probabilities are taken over the randomness used to generate

Viewl?;_”’fs and View2?})_”’f8 respectively.

Proof. In order to use the extractor security, we first need to ensure that W has
“high enough entropy”. We define the following good set:

G= {(xlivmyli’ueayl/ive) : Hoo(W) =
HOO(WlEXt/(W7 wli’ue) = Ylive; EXt/(W; x;ive) = yl/ive) 2 t'—6l' — )‘}
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We now define the good event:
Good : (Xli'ueayiivey }/llive) S g
Here, Yy and Y
}/l/ive
Proposition 1
SD (K, Viewl} . ); (K, View2} . .))
< SDgood (K, Viewl; . r); (K, View2Y; . ;). Pr[Good]

+ SDgooqc (K, Viewly, .. 1 ); (K, View2y) . ;). Pr[Good®] (10)

' denote the random variables Yi;,. = Ext'(W; Xjipe) and
= Ext/(W; X}, ). Let Good® denote its complement event. Consider, by

live

where the subscript notation is used to denote the statistical distance conditioned
on the specific event (in the subscript). By Lemma 4, we get:

PI‘[GOOdC] = Pr[(Xlivea Yiive? Yilive) ¢ g}

= Pr [HOO (WD/lwe = Ylive }/l/i'ue = yZive) < t/ - 6l/ — A}
Yiive, Y,

live

< Pr  [Hoo(W|Yiive = ylivevyl/ive = y{ive) < ITIOO(W|Ylivea Yl/ive) -

T VYiiwe,Y]
<27 (11)

’
ive

Let W7 denote the random variable:

— If $ € Support(W) such that Ext(W;zg) = yr , then set @ = L and
Output L ~
— else W <~ W|Ext(W;zRr) = yr

By setting parameters appropriately, we ensure Ho, (W) > ¢, where ¢ is the min
entropy required for using Ext(.). Then, by Lemma 5, we know that

v(:17live; Ylive, Z/fwe) S g7 W? XRa Y]—% Re, Wl> XR? YRg
where the distributions which change in the two views have been super-
scripted with the corresponding view number. Then, by using Proposition
2, with A = ((W,Xg,Y3)|Good), B = ((W1,Xg,Y3)|Good) and C =
((Xliv67 }/li'uev Yigye”GOOd)a we get:
Xiive: Yiives Yiives Wo X, Y[Good %, Xive, Yiive: Yiiwes Wi, Xr, Y| Good
Xlive7 )/l{i'uev Wa XRa Y}%|G00d Rey Xlivev 1/l/ivea W17 XR7 YRg‘GOOd
Further, as K is independent of the above random variables, we get:

K, Xiive, Yllz‘vea Wa XRr, Y}%|G00d Re, K, Xiive, Yl/z'vev Wi, Xk, YI%|GOOd

The randomness used in Enc is independent of the above random variables.

Hence, Z}27 L and T" can be obtained as a function of the above random variables

(and the randomness used in Enc). Then, by using Lemma 3, we get:

Ka Xli'uea Y};Ue’ XR7 Z}{) La m, Tl ‘GOOd %62 Ka Xliv€7 }/lg;yea XRa Z}2%a La m, T2|G00d
K, Viewl’ .. ;|Good ~, K, View2], . ; |Good (12)

Al
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Then, by using Equations 11 and 12 in Equation 10, we get:
SD ((K,Viewl} . ;)i (K, View2}  ;)) <2 +e
Finally, by use of Lemma 3, we get the desired bound:

Pr[(m/,t') < Eve(Viewl}, . ;) Am #m/ AVrfy(m',t') = 1]
< Pr[(m/,t') + Eve(View2 ;) Am#m/ AVrfyg(m/ t) =1]+27" + e

Moving from View??”l”7___7f8 to View?)}i_,,hfgz In Vz'ewS?Z’”_)fg, we want to

capture the tampering on k£ by the tamper random variable of the augmented
NMC, Tamper’fy 4 To be able to to do this, we have to first capture the tamper-
ing on L and R as a correct split-state tampering by (f, g). In order to describe
the functions, we would need to hardwire the liveness test seed and responses, g
and zg. Now, to get the tampering of R, a w consistent with the hardwired values
has to be sampled. But this sampler might return . However, as the function g
cannot output L, we replace @ with an arbitrary string, whenever the sampling
returns L. We now analyze Eve’s success probability in this modified view.

Claim 5
Pr[(m/,t') < Eve(View2, . ;) Am#m/ AVrfy(m',t') =1]
< Pr[(m/,t") < Eve(View3T, . ;) Am #m' AVrfy(m/,t') = 1] + e

where the probabilities are taken over the randomness wused to generate
ViewZ;[;,_“’f and View3;c’i_’_“,f8 respectively.

8

Proof. We  define the tampering functions f,¢g hardwired with
Tlives Ylive, Ylipes TR, 2R 85 follows.

fwlive:ylivcvyl,i,ue7wR7zR (L): Ix1ive Ylive Yy s0e TRIZR (R):
— Output — 1« W|Ext(W;zr) = 2r ® R
L' = f?(xlivea Z/i7$R’ yév ZRvyéa L) —Ifw= J., set w := 0.

— Z;% = f5(xliv67y/17‘TR’yé’ZR)
— Output R’ = 2, D v}

The function ¢ is a randomized function here (atypical to tampering function
descriptions). But, the randomness required for this sampling can be sampled a
priori and hardwired in g, along with the other values, making it a deterministic
function. Hence, while we use the above description of g for simplicity, it is
simple to convert it to a deterministic function. For the sake of simplicity we
avoid explicitly writing the hardwired values while referring to the tampering
functions.

Let W; be the following distribution
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— If $ € Support(W) such that Ext(W;mR) = ygr , then set w = L and
Output L ~
— else w «+ WIExt(W;zR) = yr

Observe that
(Viewdy, .. g IW1 # L) = (View2}, . ;|[W1# 1)

Hence, as K is independent of the event W7 # L, ((K, View3}’i,‘,.,f8)|W1 #
1) = (K,(Viewd} . (W1 # 1)) = (K, (View2},  ,|Wi # 1)) =
(K, View2: . )|Wi# L1). Hence, Proposition 1, we get:

SD (K, View2} . ;); (K, View3} . )

< SD ((K,View2} . ;); (K, View3} . ;)|[W1# L) +Pr[Wy = 1]

=0+Pr[W; = 1]

<€

The last inequality follows from Lemma 5 where W7 is Wj.

Moving from View?)?lm s to View4}’17m et To use MAC security, it is cru-

cial that we argue the non-malleability of the MAC key. For this, we use the
non-malleability of (Enc, Dec). To do this, we observe that tampering functions
f, g are indeed split-state, as the hardwired values (Zjive; Ytives Yjine, TRy ZR) AL€
independent of the two states L and R.® Then we analyze Eve’s success proba-
bility in this modified view.

Claim 6 If (Enc,Dec) is an e3- augmented non-malleable code, then

Pr[(m/,t') <= Eve(View3T, . ;) Am#m/ AVrfy(m',t') =1]
< Pr[(m/,t") < Eve(Viewd}, . ;) Am #m' AVrfy,(m/,t') = 1] + e3

where the probabilities are taken over the randomness used to generate
View?)?i_”,f and View4}’l’m,f respectively.

8 8

Proof. As already mentioned the tampering functions are split-state. Hence, by
the security of (Enc, Dec) we have

v(mlivcﬁ Ylive, yl/ivm TR, ZR)7 Vk> Tampe’r?,g %63 COpy(k7 Ssz,g)

where the message to be encoded is k and the split-state tampering functions are
hardwired with (Ziive, Yiives Yjspes TRs ZR)- Hence, by Proposition 2 with A, B, C
being Tamperfg, Copy(K, Simy,g), (K, Xiive, Yiives Yiipe, X Ry Z3) Tespectively,
we have

K7 Xlivey }/livm : XR; Z%, Tamperrff(,g

lives

Reg K7 Xlivea Yiive; }/l;vw XR7 ZIP’% Copy(K, Sszﬂ)

8 As mentioned while describing ¢ in View3¥) .. s, although the given description of
g is randomized, but by fixing the randomness it can be made deterministic.
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For clarity, we denote the random variables (L, K',T) of View3 and View4 by
(L, K 3,T%) and (L*, K *,T*) respectively.

K, Xiive, Yitve, Ve, Xis 23, L K ® e, K, Xiive, Yiive: Yijger Xny Zip, L K
K7 XliU67 }/livea l/ivey XR: Z%, L7 m, T3 Reg K, Xliv67 }/livev }/l;ve? XR7 Z?% L4, m, T4
K, View?);fi’m’fg Re, K, View4}’i’__’f8
Above implications follow from Lemma 3. Therefore
Pr[(m’,t") <= Eve(View3% . ;) Am #m' AVrfyg(m/,t') =1]
< Pr[(m/,t') < Eve(Viewd}, . ;) Am#m' AVify(m/,t') = 1] + €3

We now combine the above claims with MAC security and show how to get the
desired bound on Eve’s success probability in the synchronous case.

Claim 7 If (Tag,Vrfy) is an e4- one time MAC (the auxiliary information vari-
ant defined in Section 3) then

Pr[(m’,t') + Eve(ViewOF _ ;)Am # m/AVrfyg(m' 1) = 1] < 27 4263 +€3+€4

where the probability is taken over the randomness used to generate Vz'ewOZZ”l”’“_ s
respectively.

Proof. Combining Claims 3,4,5,6 we get
Pr[(m/,t') <= Eve(View0F, . ;) Am #m' AVrfy(m',t') =1]
< Pr[(m/ ') + Eve(Viewd} ;) Am#m/ AVrfy(m' 1) =1]+27" 4 2e5 + €3

(13)
We now consider the following events with respect to View47i’_“ s
Casel: Simy 4 does not output same”
K=U-
K7 Xl'i'ue7 )/livu Yl;vev XR7 ZI337 Simf’g|ca361 = UTy Xli’uey leivea Yl;‘ue» XR7 Z?%v Simf,g |CCLS€1
(14)

K: m, Xlivey 1/l/ivea XR7 Z?%y L47 K,4 = UTy m, Xlivey K;ve7 XR7 Z%a L47 K,4
K7 m, Xli'ue7 )/l{i'ma XR7 Z%7 L4, TagK’4 (m) = UT7 m, Xli'ue: Yl:ﬁvev XR7 Z13?,7 L47 TagK’4 (m)

Implication 14 follows from Proposition 5 with A, B, C, E being
K, (Xiive, Yiive, Yiive, XR, Z5, Simy 4), U, Casel respectively. Therefore, given Casel,
Eve’s view is Viewd™|Casel = (m, Xiive, Yiiwes Xr, Zi, L, Tag,./4(m)) is independent
of MAC key K. This is because the randomness used to generate View4™|Casel, which
is Xiive, Xr, W, W, the randomness used in Simy g4, are all independent of K. Then,
as E = Viewd™|Casel is independent of K, by the MAC security we get:

Pr[(m/,t") + Eve(Viewd™) Am # m' A Vrfy(m',t") = 1|Casel]

= I;r[Tagk(m') =t' A (m#m)|E = (M, Ttive, Yiive, TRs 2R, L, Tag (m))]

<e (15)
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Case2: Simy, 4 outputs same™
K=U;

K, Xiive, Yiive, Vive, Xr, Zi, Simy g|Case2 = Uy, Xiive, Yiive, YViie, Xr, Zi, Simy.g|Case2
(16)

/ 3 4 _ / 3 4
Ka m, Xlz've, i/livew)(Rv ZR7 L |Ca’362 = UTa m, Xlive, Y'livevXRv ZRv L |Ca862

Implication 16 follows from Proposition 5 with A, B, C, E being

K, (Xtive, Yiive, Yiive, Xr, Z3, Simy 4),Ur, Case2 respectively. Therefore, given
Case2, Eve's view is Viewd™|Case2 = (m, Xiive, Yiives Xr, Zi, L*, Tagy (m)).
The only information Eve has regarding K is Tagx(m). Then, as E =
(m, Xtive, Yiives Xr, Z3, L*)|Case2 is independent of K, by MAC security we
get:

Pr[(m/,t') « Eve(Viewd™) Am # m' A Vrfy(m',t") = 1|Case2]
= Il’cr[Tagk(m') =t' A (m' # m)|Tag,(m) = t, E = (M, Ttive, Yiive, TRy 2R, L)]

= Pr[Tog,(m') = ' A (m' # m)| Tog, (m) = 1
<e (17)
Combining inequalities 15,17 with the inequality 13 gives
Pr[(m,t') < Eve(View0™) Am # m' AVrfy(m/,t') =1] <27 4+ 262 + €3 + €4
Using Claim 7 and Equation 9, we get:
Pr[Eve wins|Sync, Pass] < 27 + 2e5 + €3 + €4
Hence, Lemma 7 is proved.
Now, combining Lemmata 6 and 7, Equation 3 gives:
Pr[Eve wins] =< 2.(2_1, + 272 4 265 + €3+ €4)

We set & such that 277 = 2.(27" + 27 + 2¢, + €3 + ¢4). Thus robustness of
message authentication protocol is proved.

5.2 Proof of Theorem 2

We now prove that 7™ is a Privacy Amplification protocol.
Correctness The correctness of 7™ follows by the correctness of 7
Robustness: We need to show

PI‘[KA#KB/\KA#L/\KB#L]SQ_R
PTU(A #:f(B/K}(AI#.lJN}(B #:ll

:PI‘[MA#MB/\MA#J_/\MB#J_].PI‘[KA#KBUWA#MB/\MA#J_/\MB#J_]
AUTH)

AUTH

< 27" (by robustness of 7

Extraction: Sent,, Sent, denote the messages sent by Alice and Bob upon
execution of 77 in presence of Eve, the pair Sent = (Sent,, Sent;,) contains an
active Eve’s view of the protocol. For extraction we need to show
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— If Kp # 1, then Kp, Sent =, Uy, Sent
— If K4 # L, then K4, Sent =, U, Sent

If Kp # 1, Kp is the extractor output on an independent uniform seed Mp #
1. As Mp is independent of Xive, Yiive, Yiiper Xr: Zr, L, K, K', by the use of
average case extractors we have,
KBaMBaX”Uev}/li’vﬂale/ive7XR7ZRaL7Ka K, %55 Ul”7MBaXlivev}/li’vﬂale/ive7XR7ZRaLaK7 K/
KBa MBleivev Y—livev lelivea XRa ZR: La K7 K/aT Res Ul”a M37 Xlive7}/li1)67 Y'l/ivevXRv ZRa L: K: KlvT
Kg, Sent ., Uy, Sent

Ka# 1= Ma#1LANMp# 1.
We can write, SD ((K 4, Sent); (U, Sent))

= PI‘[MA =MpAMs#1LANMp# L]SDMA:MB((KA,Sent); (Uln,Sent))

+ PT[MA #* MpANMa# LANMp # J_]SDMA¢MB((KA, Sent); (Ulu,Sent))
<SD ((KB,Sent); (Ulu,Sent)) —‘rPI“[MA 7& Mp N Ma 3& 1 AMgp # J_]
<es+27"

5.3 Analysis of Entropy Loss and Other Parameters

To get desired parameters as in Theorem 2, we use optimal constructions of building
blocks given in following theorems.

Lemma 20. [GUV07] For every constant v > 0 all integers n >t and all € > 0, there

is an explicit (efficient) (n,t,d,l, €)—strong extractor with | = (1 — v)t — O(log(n) +
1

log(g)) and d = O(log(n) + log(-)).

Now, as we give some auxiliary information about the source, we require the secu-

rity of the extractor to hold, even given this information. Hence, we use average case
extractors, given in the following lemma.

a | =

Lemma 21. [DORS08] For any p > 0, if Ext is a (worst case)(n,t,d,l, €)—strong

extractor, then Ext is also an average-case (n,t +log(=),d,l, e+ u) strong extractor.
I

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma [JKS93]:

Lemma 22. For any n’,e2 > 0 there is an efficient ea—secure one time MAC with

5 < (log(n') + log(~

—)), 7 < 28, where T,n’,§ are key, message, tag length respectively.
€2

We now set the parameters:

— For the MAC, we set:
® ¢4 = 2>
e Tag length: § = ¢\, for some 2 > ¢o > 1
e Key length: 7 = 2§ = 2cA
e Message length: d, will be set below.
— For the liveness test Extractor, we set:
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o ¢ =2 4>
e Seed length: d = O(logn + 4.))
e output length: 31" = 3\
— Now, we calculate the entropy loss:
e From the transcript of the protocol, the entropy loss that occurs is: 31’ +1+3 =
' +14+ 0N
e Additional leakage results in a loss: O(X) + 30’
e Hence, we require Hoo (W) — (61" + 1+ O(N)) > maz{t,t',t"}
e Then, by setting €5 = 27>, u = 27, we know I = (1 — pu)t"" — O(logn+ \), we
get a total entropy loss = 61’ +1+O(X\)+O(logn+A) = O(A)+I+O(logn+X) =
I+ O(logn + A)

To finally evaluate the entropy loss, we set parameters for the NMC:

2A: If we consider a constant rate optimal error NMC, we set:

e We know message length: 7 = coA
P - 9—92(X)
e Codeword length: 21 = O(\)
Then entropy loss = (I 4+ O(logn + X)) = O(A\) + O(logn + ) = O(logn + A)
2B: If we instantiate our construction using the NMC [Lil7], we set:
e We know message length: 7 = coA
® €3 = 2700\)
e Codeword length: 21 = O(Alog \)
Then entropy loss = (I + O(logn + X)) = O(Alog A) + O(logn + A) = O(logn +
Alog \)

— Finally, as we set 27" = 2.(271' + 27 + 262 + €3 + €4). By setting e2 = 27, in
both 2A and 2B, we get 27" = 277%™ We set, k = O()).
— The error in Extraction property of 7" = 5 + 27" =27 4 27% = 27 +1

6 Privacy Amplification from Augmented-NMREs

As mentioned in the introduction, we can get the same parameters from our protocol
if we replace the use of NMCs by Augmented-NMREs.

Theorem 3 If (Enc,Dec) in 7AUTH s a two-state, constant rate augmented non-
malleable randomness encoder with optimal error 27°") then the 8-round protocol
7™ in Figure 1 is a #',1", k, k — 1)-secure privacy amplification protocol with optimal
entropy loss O(log(n) + k) with min-entropy requirement 2(log(n) + k).

Proof. The only modification made in this protocol is that instead of picking the MAC
key k uniformly at random and then encoding it using NMCs, we use the key k and its
encoding output by the NMRE. As augmented-NMREs guarantee the K looks uniform
even given L and the modified key K’, the proof structure of this theorem follows on
the same lines as the security proof in Sections 5.1 and 5.2.
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7 Conclusion

In this work, we establish the first concrete connection between non-malleable codes and
privacy amplification. Further, we provide a framework for obtaining optimal parame-
ters for the privacy amplification protocol from non-malleable codes with appropriate
parameters. The novelty in our result is that it gives the first known application (in the
information theoretic setting) of NMCs in the restricted split-state model to achieve
non-malleability in the arbitrary tampering setting of privacy amplification. We believe
that this technique might be of independent interest.
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