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ABSTRACT
Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs)
generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are
their delimiting lipid bilayer membranes. To evaluate research progress onmembranes and EVs, the
International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in
Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who
were selected on the basis of submitted applications. The workshop was accompanied by two
scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion;
technologies and strategies used to study EV membranes; and EV transfer and functional assays. In
this ISEV position paper, we synthesize the results of the workshop and the related surveys to
outline important outstanding questions about EV membranes and describe areas of consensus.
The workshop discussions and survey responses reveal that while much progress has been made in
the field, there are still several concepts that divide opinion. Good consensus exists in some areas,
including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to
no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells.
Further research is needed in these key areas, as a better understanding of membrane biology will
contribute substantially towards advancing the field of extracellular vesicles.
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Introduction

Extracellular vesicles (EVs) are delimited by double-
leaflet lipid membranes and released by cells of most,
if not all, organisms. EVs remove waste components
from the cell, can be used to share nutrition, and serve
as cell-to-cell communicators by carrying and transfer-
ring bioactive enzymes and molecules and molecular
information [1,2]. These mechanisms are important for
normal homeostasis and regulatory functions, includ-
ing development. EVs also play roles in disease pro-
cesses, responding to and mediating inflammation and
contributing to the development and progression of
diseases [3–6]. These characteristics of EVs are also
promising for theranostic applications [7–10], and for
disease detection [11–18].

The generic term “EV” covers a broad range of vesi-
cles [19], but it is not yet certain whether phenotypic
heterogeneity is mirrored by functional heterogeneity.
Two potential classes of EVs are determined by two
major cellular sites of EV biogenesis [20,21]: the plasma
membrane (PM) and the endosomal system. Although
“exosome” was initially used for vesicles shed from the
PM [22], the term was later adopted to specifically refer
to intraluminal vesicles (ILVs) formed in the multivesi-
cular body (MVB) that were released from the cell by
fusion of the MVB with the PM [23–25]. In contrast, the
terms “microvesicle,” “ectosome,” and “microparticle”
are used to describe vesicles shed directly from the PM
[26]. In addition to their biogenesis, EV subclasses may
also be defined by size, shape, density, surface molecules,
internal cargo, membrane components, cell type of ori-
gin, or function.

Membranes are central to the identity and function
of EVs. Specific lipids and membrane proteins in EVs
may be used to reveal the cell type or the subcellular
site of origin [27–29]. Bioactive lipids and integral or
otherwise membrane-associated proteins may directly
engage signalling pathways of cells and influence
target cell-specificity of some EV populations [8].
Membrane-associated proteins also appear to be
involved in EV uptake into cellular compartments,
such as the endosomal/lysosomal system [30,31].
The EV membrane protects internal contents, mainly
derived from the parent cell cytosol that may be
transferred to recipient cells if EV-cell fusion occurs.
From an experimental perspective, to show that EVs
are present in a preparation, one must demonstrate
the presence of an intact lipid bilayer that encloses
cytosolic material [32,33] and maintains its integrity.

In order to reconcile and stimulate discussion on
membranes and EVs, the International Society for
Extracellular Vesicles (ISEV) conducted two targeted
surveys and convened a workshop in March 2018
(Baltimore, MD) to collect and synthesize the input
of EV and membrane biology scientists. The goal of
this process was to gather expert opinions and define
questions for future research. Four specific topics of
interest, corresponding to four sessions and round-
table discussions at the Workshop, were; 1) the roles
of membranes in EV biogenesis and release; 2) mem-
branes and EV uptake and fusion; 3) technologies
and strategies used to study EVs and membranes;
and 4) EV functional transfer and functional assays
(Text box 1). An overarching goal was to learn how
better to utilize existing technologies for the study of

Text Box 1. Roundtable topics, moderators, and descriptions.

Roundtable #1: Biogenesis and Release
Moderators: Matias Ostrowski, Hang Yin, Roosmarijn Vandenbroucke
EV subpopulations are commonly defined by site or mechanism of biogenesis. Roundtable 1 aimed to identify outstanding questions about how various
molecules and pathways influence formation and release of EVs.

Roundtable #2: Uptake and Fusion
Moderators: Pieter Vader, Jeanne Sisk, David Carter
After release, EVs may exert effects through autocrine, paracrine, or endocrine processes, all of which require interaction of EV membranes with target
cells. This roundtable focused on current knowledge of EV-cell interactions, including uptake and fusion, and experimental approaches needed to
dissect mechanisms.

Roundtable #3: Technologies and Strategies
Moderators: Marca Wauben, Paolo Bergese

Since unique technologies and approaches may be needed to study EVs and their membranes, this roundtable discussion sought to identify technologies,
experimental methods, and models that have not yet been well applied to EV studies or should be further developed to enable more sophisticated
analysis of EVs and membranes.

*Roundtable #4: Transfer and Functional Assays
Moderators: Jan Lötvall, Daniel Anthony
How EVs transfer cargo to recipient cells and how to assess effects of transfer were the considerations for this roundtable discussion. Also discussed were
best practices for conducting and reporting EV studies (especially visualization), use of in vitro generated EVs for in vivo uptake studies, and the future
of EV-based therapeutics.

*Because of substantial content overlap of Roundtable 4 with Roundtables 1–3, information from this roundtable has been integrated into other sections below.
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EV membranes, and to understand what novel tech-
niques might be required. In addition to 55 junior
and senior membrane biologists and engineers who
contributed to the Workshop on-site, other ISEV
scientists were in close communication with the orga-
nizers to ensure a balanced, interdisciplinary
approach. This position paper was drafted to sum-
marize current perceptions and opportunities as well
as important questions in the study of EVs and their
membranes. Areas of relative consensus are identified
within the field, and areas where there is broader
disagreement have also been highlighted. A number
of specific recommendations are made for topics that
require further study or technological development,
which should help to focus and drive the field
forward.

Membranes and EVs workshop pre- and
post-surveys

An important part of the Workshop was gathering the
opinion of experts who participated or were involved
in the organization. Prior to the Workshop, a seven-

question survey was circulated to planners and regis-
trants to obtain opinions about the state of the field
and identify outstanding questions (Table 1).

Following the Workshop, a 42-question survey was
released to assess opinions post-Workshop using ques-
tions in a Likert-scale format: participants were asked
to read a statement and rate on a scale of 0–10 whether
they disagreed (0–4), agreed (6–10), or did not feel
there was enough evidence to support or refute the
statement (5). Participants were asked to refrain from
entering responses for questions if they felt they lacked
sufficient knowledge to answer. Three tables were con-
structed listing the survey questions pertaining to each
overarching discussion topic; EV biogenesis, uptake,
and technologies for studying EVs (Table 2–4).

Shown in Table 2 are 16 questions focusing on the
fundamentals of EV biogenesis, the ways in which EV
sub-populations are identified, the influences of mem-
brane composition on EV biogenesis, and EV cargo
packaging mechanisms. Table 3 outlines 16 questions
used to gauge participants’ views on EV uptake, fusion,
and stability. Ten questions pertaining to the necessity
of novel assay development and the future of EV

Table 1. Workshop pre-survey questions.
Pre-Workshop Survey Questions

What, in your opinion, are the top publications (up to 3) in the last five years that have addressed important questions of EV/membrane biology?
What are the most pressing current questions in EV biogenesis? (Up to 4)
What are the most pressing questions surrounding EV uptake and/or fusion? (Up to 4)
What important questions remain about EV component loading (natural or artificial) – this includes lipids, proteins, internal cargo? (Up to 4)
What are the most important unanswered questions about EV function as related to target cell interaction/uptake/fusion? (Up to 4)
To help answer outstanding EV/membrane questions, are there any technologies, methods, or models that have not yet been developed or fully applied? If
so, what are they? Or what are the capabilities you would want? (Open response)

Do you have any position or opinion related to this workshop that you suspect some of your colleagues would disagree with? If so, what? (Up to 3)
Other comments or suggestions? (Open response)

Table 2. Survey questions regarding EV biogenesis.
EV Biogenesis Survey Questions

Figure 1 Budding into the multivesicular body (MVB) as intraluminal vesicles (ILVs) and budding from the plasma membrane are the two major EV
biogenesis pathways, with at least partially independent molecular machinery of biogenesis.

It is possible that what we refer to as MVBs are actually physical extensions of the plasma membrane and not late endosomes.
It is currently possible to distinguish, using protein, lipid, or other markers, an “exosome” (former ILV in the MVB) from a “microvesicle” (from the
plasma membrane) after the respective vesicle has left the cell.

Size can be used to separate EVs by biogenesis pathway.
EVs from the endosomal system are smaller, on average, than EVs that bud from the plasma membrane.
We know the basic size distribution of EVs from biofluids and cell culture.

Figure 2 Excluding apoptotic bodies and other “macrovesicles”, the average diameter of most EV populations is: Significantly smaller than 100 nm
Roughly in the 100–150 nm range
Significantly larger than 150 nm

Figure 3 Asymmetric distribution of lipids (inner, outer leaflet) is the same in EVs as in the cell membrane of origin and remains stable over time.
The inner and outer sides of the EV membrane are revealed by inner and outer domains of proteins in the expected orientation relative to the
cell. That is, the cellular membrane topology is maintained by EVs.

Figure 4 The weight of the evidence supports preferential packaging of certain miRNAs or other RNA cargo into specific subsets of EVs.
The RNA Cargo of larger EVs correlates with cellular expression, but that of small EVs does not.

Figure 5 It is possible to create cells or organisms that do not produce EVs.
EV biogenesis is essential for life, as evidenced by lethality of TSG101 knockouts and knockouts of multiple biogenesis-linked proteins.

Figure 6 Lipid-raft domains (endosome-like domains, rich in cholesterol, etc.) play a role in EV biogenesis; without them, many EVs would not form.
nSMase2 is not involved in biogenesis of all EV subtypes in all cells, hence discrepant results of nSMase2 blocking.
Energetic requirements of EV biogenesis are largely unknown.

JOURNAL OF EXTRACELLULAR VESICLES 3



engineering are shown in Table 4. A summary of the
responses, along with specific recommendations that
emerged from the Workshop survey and discussions,
is presented in Table 5. The table indicates areas of
consensus, broad agreement, non-consensus, and
recommendations for future EV research.

EV biogenesis and release

The Pre-Workshop survey returned many questions
about biogenesis. Cell biology approaches have identi-
fied members of the endosomal sorting complex
required for transport (ESCRT) pathway that contri-
bute to EV biogenesis, but what are the requirements
for these factors at different subcellular sites? Might
molecular redundancies make it necessary to knock

out or modulate multiple components of the biogenesis
machinery to fully understand how EVs are formed?
What about ESCRT-independent pathways? Do differ-
ent biogenesis pathways give rise to vesicles with dis-
tinct functions, or conversely, does shared machinery
at different locations (PM vs endosome) give rise to
vesicles with comparable function? Another set of
questions involves the molecular composition of
released EVs. Do EVs released by a single cell have
a diversity of form and function? What molecular
associations are driven by proximity and random
incorporation versus active loading, even energy-
dependence? Do reports of specific incorporation of
cargo molecules rely too much on non-physiologic
experimental manipulations, or do they reflect physio-
logic realities? Some questions even addressed what

Table 3. Survey questions regarding EV uptake.
EV Uptake Survey Questions

Figure 7 Most cell types, sooner or later, internalize at least a proportion of stained EVs, seemingly regardless of the cells of origin.
EV-cell fusion is most likely to occur through endosomal uptake and acidification.
Proteins on the EV surface are required for most fusion events between EVs and cellular membranes.
EV-cell fusion events are actually quite rare in vivo, and may involve minority subpopulations of EVs and specific uptake pathways.
Current in vitro studies of uptake (anything involving 2D tissue culture plastic substrates) are not worthwhile as unrepresentative of in vivo
biology.

Figure 8 Rank the following from 1 (most likely) to
5 (least likely). Interacting with target
cells, EVs exert effects by:

Signalling through proteins displayed on the target cell surface or in the endosomal lumen
Transferring functional proteins
Transferring functional lipids
Transferring functional RNA molecules
Serving as a form of nutrition/molecular recycling for the recipient cell

Figure 9 Current technologies are adequate to measure both functional and physical stability of EVs.
Physical stability of EVs (defined here as the tendency to maintain vesicular form) is related to size.

Figure 10 Regarding freeze-thaw of EVs: All EVs are generally resistant to freeze-thaw damage
Small EVs are generally resistant to freeze-thaw damage
EVs are damaged both physically and functionally
EVs are damaged functionally, but may show the same physical characteristics
We still don’t know enough to answer this question

Figure 11 In vitro EV transfer experiments are highly time-dependent, and the relevance to timing/EV stability in vivo is often unclear.
Dose-response studies are essential in establishing any effect of EVs.
Most EVs in vivo are bioactive.
EVs in circulation (blood) are less likely to be bioactive and are cleared rapidly.
EVs are most likely to have a signalling function in tissue, i.e. locally.
Tumour-bearing mice accumulate more EVs in cancer tissue mostly because of vascular leakiness.
The apparently low rates of EV:cell fusion indicated by systems such as the Cre/lox stoplight system may reflect sensitivity or idiosyncrasies of
the assay and not imply that fusion is really so rare.

Table 4. Survey questions regarding current technologies for studying EVs.
EV-Technology Survey Questions

Figure 12 Different measurement technologies are biased to certain EV size ranges.
Optical scattering methods of EV measurement such as nanoparticle tracking are not specific to EVs.
Lipid dyes form artefactual particles on their own and with non-EV materials; results of lipid dye experiments are unreliable unless one can
effectively separate EVs and artefacts by flotation gradients.

Figure 13 With which statement do you agree more? High-resolution single EV analysis by flow cytometry is now possible for labs
with access to a standard flow cytometer.

It remains necessary to have specialized equipment, reagents, and expertise
to perform single EV flow analysis for EVs below about 500 nm in diameter.

Figure 14 Fluorescence triggering in EV flow cytometry allows better resolution than scatter.
Better generic dyes of EVs are needed for flow cytometry and other investigations.
Development of reagents such as single chain antibodies, aptamers, and less bulky fluorophores is needed to improve sensitivity of EV flow.

Figure 15 It is currently possible to make artificial EVs that faithfully mimic genuine EVs
It is currently possible to affect EV distribution to tissues by manipulating EV surface features.
New animal models and more relevant in vitro systems are needed to address questions about production and function of subsets of EVs.
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might be called “limited” release, when some vesicles
remain at or near the surface of the parent cell, held in
place by tethering or adhesion proteins [34,35]. These
questions portray a field that has clearly taken large
strides forward, but in which ample opportunities
remain for additional discovery.

Based on the survey, six overarching questions were
formulated to guide the roundtable discussion during
the workshop. Consensus positions and additional
research needs are presented in Sections 3.1–3.6.

How are EVs formed, and what are their defining
characteristics?

A long-held assumption is that EVs form chiefly at
two subcellular sites: the PM (microvesicles, ecto-
somes, microparticles), and the endosomal system/
MVB (i.e. exosomes). Almost all survey respondents
agreed to some extent with this concept (94%,
Figure 1). ISEV standardization efforts [32,33] suggest
that multiple membrane-associated proteins should be
measured to demonstrate the presence of the lipid
bilayer and thus EVs. Beyond this necessary, yet gen-
eral EV characterization, questions remain about the
existence of biogenesis-specific membrane markers,
and whether they can be generalized to EVs from
many cell types. Several workshop participants sug-
gested TyA, C1q, Arrestin domain-containing protein
1 (ARRDC1), and CD73 as putative markers of PM-
derived EVs, while several tetraspanins, including
CD61, CD63, CD81, ESCRT proteins, such as
TSG101, and Alix, as well as syntenin, flotillin, and
heat shock proteins were proposed as specific markers
of endosome-derived EVs. However, the subcellular
distribution of tetraspanin markers can be cell type-
specific and many endosomal proteins traffic through
the plasma membrane on the way to the endosome.
Furthermore, ESCRT proteins have been shown to be
released in PM-derived EVs, as well as MVB-derived
EVs, questioning their specificity as markers. One
useful suggestion for studying EV-specific protein
markers was combining techniques, e.g. western blot,
electron microscopy (EM), live imaging combining pH
sensors with EV markers such as tetraspanins (e.g.
pHLuorin-TSPAN systems [36]), and proteomics. It
is recommended that substantial additional work will
be undertaken to identify specific markers of EV sub-
types released across cell types or even within specific
cell types.

Size is also commonly used to distinguish EV sub-
populations, following the assumption that exosomes
are smaller than ectosomes; however, even if this
assumption is valid for the average EV, small EVsTa
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(e.g. <100 nm in diameter) can be shed from the PM,
and larger ILVs have been observed in MVBs, which
could give rise to larger exosomes. Some groups have
observed cell-type-specific differences in the size of
ILVs in MVBs, further complicating the relationship
between EV size and biogenesis. The majority (78%)
of post-workshop survey respondents agree that size
alone cannot be used to definitively categorize EV
subpopulations (Figure 1). To further complicate
matters, the field has not yet reached a consensus
regarding the overall size distribution of EVs, as
about half (48%) of the survey respondents believe
that the average diameter is between 100 and 150
nm, while the other half (45%) believe it is less than
100 nm (Figure 2). This difference of opinion could
arise from separation and characterization technolo-
gies that do not adequately recover or detect very

small or very large EVs, or the employment of differ-
ent techniques across laboratories. Recent technologi-
cal advancements, such as the use of asymmetric flow
field-flow fractionation for EV characterization, have
revealed that some cell types release two distinct sub-
populations of small EVs (sEVs; 60–80 nm and
90–120 nm), as well as a third population of small
(~35 nm), non-membranous nanoparticles, referred
to as “exomeres” [37].

The results of the survey confirm that to aid in our
understanding of EV biogenesis, we must address sev-
eral considerations. How are EVs different from their
parent cell in terms of membrane architecture and
cargo? Can we identify key regulators or signalling
pathways necessary for biogenesis through the use of
genetic manipulations? What are the physiological con-
sequences of inhibiting EV biogenesis? What is the
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EEV Identification and Size

Budding into the multivesicular body (MVB) as intraluminal vesicles (ILVs) and budding from the plasma

membrane are the two major EV biogenesis pathways, with at least partially independent molecular

machinery of biogenesis.

It is possible that what we refer to as MVBs are actually physical extensions of the plasma membrane and not

late endosomes.

It is currently possible to distinguish, using protein, lipid, or other markers, an “exosome” (former ILV in the 

MVB) from a “microvesicle” (from the plasma membrane) after the respective vesicle has left the cell.

Size can be used to separate EVs by biogenesis pathway.

EVs from the endosomal system are smaller, on average, than EVs that bud from the plasma membrane.

We know the basic size distribution of EVs from biofluids and cell culture.

Strongly 

Disagree 

Neutral Strongly 

Agree 

Total # 

Responders 

33 

24 

32 

32 

31 

27 

Figure 1. EV Identification and size. Six questions regarding EV identification and sizing were administered in the post-workshop
survey. For each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting
of the number of responders at each point on the scale. Most responders believe that there are multiple distinct pathways for
vesicle biogenesis that result in heterogeneity in terms of size. Identifying vesicles from these pathways based on size, protein or
lipid markers remains difficult.
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relative contribution (quantitatively) of PM vs MVB
pathways for EV biogenesis? Researchers should con-
sider the entire trafficking landscape of intracellular
vesicular organelles which can directly, or indirectly
affect EV biogenesis and secretion.

Does the topology of EV membrane lipids and
proteins reflect that of the cell?

Phospholipids are distributed asymmetrically across
cellular lipid bilayers, and intracellular compartments
can differ in their lipid composition (e.g. differences in
PM and MVB membranes). This distribution deter-
mines, among other things, curvature, and the fluidic
and electrostatic properties of lipid membranes [38].
Phosphatidylserines (PS), phosphatidylethanolamines
(PE), and phosphatidylinositols (PI) are ubiquitous
phospholipids located predominantly in the inner leaf-
let (cytosolic side) of the PM, due to the action of
phospholipid flippases. Interestingly, PS and PE have
been reported in the outer leaflet of EV membranes
[35,39], which may be a by-product of their biogenesis
and may be important for their function. PS exposure
is known to serve as an “eat me” signal for engulfment
and may, therefore, influence EV uptake. Workshop
participants had contrasting opinions about whether
EV phospholipid distribution mirrors that of the cell,
and whether lipid distribution remains stable over time
(Figure 3).

The majority of workshop participants (61%) sug-
gested that the membrane topology of the cell is

maintained in EVs (Figure 3). However, there is evi-
dence that some EV membrane proteins have an
“inside-out” topology [40]. Protease digestion assays,
membrane permeabilization, and antibodies targeting
outer or inner epitopes of specific membrane-
associated EV proteins may be useful to investigate
the topology and subcellular origin of specific EV pro-
teins, and reveal whether this is a result of EV biogen-
esis or an artefact of EV purification methods.

How do membranes influence EV cargo loading or
sorting?

Despite considerable interest, specific EV cargo sorting
mechanisms are still unclear, although several have
been proposed [41,42]. Ubiquitin-dependent ESCRT
sorting mechanisms [43] and tetraspanin-enriched
microdomains (TEMs) have been proposed to sort
proteins into EVs [44]. Sorting of RNAs has also been
postulated (reviewed in [45]). While the majority
(61%) of Workshop survey respondents believe that
the packaging of certain RNAs into EV subsets occurs
(Figure 4), this is still an area of intense ongoing
research. Conceptually, the larger the EV, the more
likely it is to incorporate a given cytoplasmic entity,
whereas sEV contents are more likely to be restricted to
molecules in close proximity to membranes. This con-
cept is supported by some data, such as the finding that
large EVs (lEVs) and their parent cells have highly
correlated RNA expression profiles, while RNA expres-
sion of sEVs differs significantly from that of the

45%

48%

7%

AAverage Diameter of Most EV Populations
(Excluding Apoptotic Bodies and Other "Macrovesicles")

Significantly smaller than 100 nm;

current techniques have missed the

"submerged part of the iceberg"

Roughly in the 100-150 nm range

Significantly larger than 150 nm

Total # 

Responders 

29 

Figure 2. The average diameter of EVs (Excluding apoptotic bodies and other “macrovesicles”). In the post-workshop survey,
participants were asked to choose from the three listed options. Responders believe that most EV populations are less than 150 nm
in size. Those vesicles less than 100 nm in size are difficult to detect using techniques based on light scattering.
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EEVMembrane Topology

Asymmetric distribution of lipids (inner, outer leaflet) is the same in EVs as in the cell membrane of origin

and remains stable over time.

The inner and outer sides of the EV membrane are revealed by inner and outer domains of proteins in the

expected orientation relative to the cell. That is, the cellular membrane topology is maintained by EVs.

Strongly 

Disagree

ylgnortSlartueN

Agree

Total # 

Responders 

28 

28 

Figure 3. EV membrane topology. Two questions regarding EV membrane topology were administered in the post-workshop
survey. For each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting
of the number of responders at each point on the scale. Responders are uncertain as to whether the lipid distribution of EV
membranes is the same as the original cell membrane.
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MMembrane Involvement in EV Cargo Packaging

The weight of the evidence supports preferential packaging of certain miRNAs or other RNA cargo into

specific subsets of EVs.

The RNA Cargo of larger EVs correlates with cellular expression, but that of small EVs does not.

Strongly 

Disagree

ylgnortSlartueN

Agree

Total # 

Responders 

28 

24 

Figure 4. Membrane Involvement in EV cargo packaging. Two questions regarding the involvement of membranes in EV cargo
packaging were administered in the Post-Workshop survey. For each question, participants’ answers are depicted horizontally on
a Likert-scale from 0 to 10, with bubble size reflecting of the number of responders at each point on the scale. Responders are not
sure whether miRNA or RNA cargo is specific to certain subtypes of EVs.
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source cell [46]. Likewise, larger cargo, such as full-
length mRNAs with associated proteins, may not easily
fit into sEVs without efficient packaging mechanisms.
On the other hand, enveloped viruses can fit nucleic
acids of up to 30 kb into vesicles of ~80 nm in dia-
meter. Thus, size constraints apply, but perhaps the
organization of the packaged materials is even more
relevant.

Related to understanding how protein–RNA inter-
actions may allow for specific cargo loading into EVs,
standing questions in the field revolve around the
involvement of ribonucleoproteins (RNPs) like
Argonaute2 (Ago2) [47], ELAV-like protein 1/human
antigen R (HuR) [45,48], and hnRNPA2B1 [49], and
the sequence-specificity of effects. If RNA loading is
sequence-specific, it may also be dependent on cell type
and altered during stress conditions. Assessing physio-
logical relevance is also important. For example, intro-
ducing high concentrations of highly purified proteins
or synthetic RNAs into cell lysates may result in asso-
ciations that are physiologically irrelevant, and/or
induce off-target effects. Finally, perhaps not all EV
“cargo” is contained inside the EV. RNA and DNA
alike have been reported in association with the outside
of the membrane as well; however, this may be an
artefact of the isolation procedure [45]. The impor-
tance of developing reproducible in vitro assay systems
to study EV cargo loading which closely mimics the
physiological context cannot be overemphasized.
Successful adaptation of such working models is
recommended as it will help answer many questions
related to the targeting and packaging of EV cargo
molecules.

Which proteins and lipids control EV biogenesis
and secretion?

Genetic or epigenetic manipulation has implicated sev-
eral families of proteins in EV biogenesis and release,
such as Rab GTPases, ARRDC1, and ESCRT complexes
[50,51]. The Rab family of small GTPases plays
a critical role in intracellular trafficking, and several
Rabs, including Rab27a, Rab27b, Rab35, and Rab11,
have been implicated in EV release [52–58]. In the
case of exosomes, it should be considered that their
release machinery will include both molecules affecting
the formation of ILVs, the transport of MVBs to the
PM, and the fusion of MVBs with the PM. In the case
of microvesicles, the machinery includes proteins
involved in trafficking to the PM, as well as factors at
or in the PM [59]. ARRDC1 mediates the release of
a subpopulation of PM-derived EVs known as ARMMS
(ARRDC1-mediated microvesicles) [60] and possibly

endosome-derived EVs [61]. Gut explants from
ARRDC1 and ARRDC4 knockout animals showed
markedly reduced EV release [62], while in vitro over-
expression of ARRDC1 significantly increased EV
secretion [63].

To what extent can knockout or knockdown of EV
biogenesis proteins abrogate EV release, and what con-
sequences does this have for the cell or organism? The
majority (59%) of Workshop participants do not
believe it is possible to create an organism or cell that
does not produce any EVs (Figure 5). Knockout of
TSG101 appears to be lethal in some models [64,65],
as the protein is essential for many important cellular
functions, such as endosomal receptor sorting indepen-
dent of EV secretion [66]. Not all knockouts of EV
proteins are lethal or produce overt phenotypes; how-
ever, the lack of overt phenotypic changes in a mouse
does not necessarily equate with a lack of important
function. For example, in vivo knockout of ARRDC1
reduces EV plasma concentrations by ~50% in mice
and confers no behavioural differences in normal set-
tings; however, a phenotype may emerge after induc-
tion of non-physiological conditions. Overall, the data
support the existence of independent and redundant
biogenesis pathways with multiple components.
Unbiased genetic screens and small molecule modula-
tor screens may be needed to resolve unappreciated
contributors to EV biogenesis. Similarly, manipulating
multiple factors may be necessary to understand some
mechanisms involved in EV biogenesis.

Aside from membrane proteins, lipids are also
believed to influence EV formation. PE is thought to
play a critical role in regulating membrane fusion and
curvature, and therefore may be involved in EV bio-
genesis or function [35,59]. PI has also been implicated
in EV release through one of its by-products.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate
(PIP2) yields inositol trisphosphate (IP3) and diacyl-
glycerol (DAG); DAG contributes to MVB formation,
and to the secretion of EVs [67,68].

Sphingomyelin is a sphingolipid normally found in
the outer leaflet of membranes (extracellular or luminal
side). Enzymes such as neutral sphingomyelinase
(nSMase) and acid sphingomyelinase (aSMase) convert
sphingomyelin into phosphocholine and ceramide,
which alters membrane fluidity and promotes microdo-
main formation. Interestingly, 62% of survey respon-
dents believe that lipid rafts/microdomains contribute
to the formation of vesicles [69,70] (Figure 6). nSMase
inhibitors, such as GW4869, have been shown to signifi-
cantly reduce small EV release from some [71], but not
all systems [72], and even results in a compensatory
increase in large EVs in some systems [73]. Conversely,
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RRequirements for EV Biogenesis

Lipid-raft domains (endosome-like domains, rich in cholesterol, etc.) play a role in EV biogenesis;

without them, many EVs would not form.

nSMase2 is not involved in biogenesis of all EV subtypes in all cells, hence discrepant results of

nSMase2 blocking.

Energetic requirements of EV biogenesis are largely unknown.

Strongly 

Disagree

ylgnortSlartueN

Agree

Total # 

Responders 

26 

22 

26 

Figure 6. Requirements for EV Biogenesis. Three questions regarding requirements for EV biogenesis were administered in the post-
workshop survey. For each question, participants’ answers are depicted horizontally on a likert-scale from 0 to 10, with bubble size
reflecting of the number of responders at each point on the scale. Responders believe that the roles of lipid-raft domains, nSMase2,
and the energetic requirements of EV biogenesis need to be further explored.
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IImportance of EVs for Life

It is possible to create cells or organisms that do not produce EVs.

EV biogenesis is essential for life, as evidenced by lethality of TSG101 knockouts and knockouts of

multiple biogenesis-linked proteins.

Strongly 

Disagree

ylgnortSlartueN

Agree

Total # 

Responders 

22 

29 

Figure 5. Importance of EVs for Life. Two questions regarding the importance of EVs for life were administered in the post-
workshop survey. For each question, participants’ answers are depicted horizontally on a likert-scale from 0 to 10, with bubble size
reflecting of the number of responders at each point on the scale. The majority of responders believe that EV production is
necessary for cell and organism survival.
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overexpressing nSMase2 increases ILV formation, which
is thought to occur via an ESCRT-independent biogen-
esis pathway [71]. More than half (59%) of ISEV work-
shop participants doubted nSMase2 involvement in the
biogenesis of all EV subtypes (Figure 6), but there is also
evidence that aSMases are involved in EV release [74].
Thus, the roles of various sphingomyelinases, ceramide,
and lipid rafts in EV biogenesis require further
investigation.

How are external signalling agents and membrane
components involved in EV release?

Beyond genetic manipulation, biogenesis pathways can
be altered by external signals. For example, serotonin
stimulates EV release from microglia [75], and histamine
induces EV release from cervical carcinoma cells.
Inflammatory signals generally alter EV release [76].
For example, dendritic cells exposed to lipopolysacchar-
ide (LPS) produce significantly more, and more immu-
nogenic EVs compared with non-exposed controls
[77,78]. Exposure to dsDNA has also been shown to
induce inflammation and EV release [79], and IgE-
mediated mast cell activation leads to the rapid release
of a distinct EV subset [27]. Despite low levels of con-
stitutive EV release by B cells, upon stimulation via
CD40 and IL4 receptor, EVs displaying MHCI, MHCII,
and surface antibodies were released, likely participating
in immune responses [80]. Similarly, stimulation of toll-
like receptors (TLRs) induces the release of exosomes
with pro-inflammatory activity [81]. Thus, EV biogenesis
is also influenced by external factors.

What are the energetic requirements of EV
biogenesis?

The field has yet to determine the energetic require-
ments for biogenesis and release of EVs. Is metabolic
adaptation required to provide energy for EV secretion
and/or precursors for the biosynthesis of the lipids,
proteins, etc. that will be incorporated into EVs?
Indeed, there are very few studies that show the rela-
tionship between cellular metabolism and EV release.
One recent study suggests that EV secretion from
tumour cells heavily relies on aerobic glycolysis [82].
Others have shown that activation of hypoxia-inducible
factor-1α (HIF-1α) can induce transcription of both
Rab22a [83] and Rab27a [84], and indirectly leads to
increased EV secretion. Thus, metabolic regulators play
an important role in EV production, and further
research is needed to directly link metabolism and EV
production.

Contact, uptake, and fusion

In the Pre-Workshop survey, planners and registrants
were asked about outstanding questions regarding EV
uptake and/or fusion. From the responses, one can
clearly appreciate that this topic is greatly understu-
died, as the field has yet to find answers to some basic
questions. For example, it remains largely unclear how
EVs interact with cells, and what dictates the next step
(signalling, uptake or fusion) of the bound EVs. The
molecular drivers (e.g. proteins, lipids, sugars, nucleic
acids) of EV-cell interactions are largely unknown,
including how these vary among cell types, with cell
state, or among EV subtypes. What molecules or con-
ditions drive EV endocytosis, and how do they affect
EVs’ intracellular destination? Do EVs deliver their
cargo into the cytosol after membrane fusion in
a similar manner to viruses and if so, does this occur
at the plasma membrane or an endosomal membrane?
How often do fusion events occur and what determines
this? Is the field focusing too much on fusion at the
expense of lysosomal degradation or signalling, giving
the perhaps false impression that fusion is the main
fate of EVs and that cargo delivery to the cytosol is
their most important role?

Based on this list of questions from the survey respon-
ders, we formulated four overarching questions that
formed the basis of the roundtable discussion during the
Workshop, and of the Post-Workshop survey. Consensus
on these topics is presented in sections 4.1–4.4.

The most important unanswered questions about
EV function focused mainly on EV tissue distribution
and their ability to cross anatomic barriers, and on
their true importance for life under physiological and
pathological conditions. These questions were dis-
cussed during the roundtable on transfer and func-
tional assays. Consensus on these topics based on this
discussion and the Post-Workshop survey is presented
in sections 4.5 and 4.6, and recommendations stem-
ming from the survey and Workshop discussions are
summarized in Table 5.

What are the general mechanisms of cell-EV
uptake?

EVs might exert effects on cells by contact, uptake,
fusion, degradation, or a combination of these modal-
ities. As an example of each, “contact” would include
interactions between EV surface proteins and cell surface
proteins; “uptake” would be internalization of the EV
into the endosomal system (for example); “fusion” would
be fusion of EV and cellular membranes, with EV con-
tents being released into the cell cytoplasm. The latter
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might occur at the plasma membrane or only after
“uptake.” While there are many reports demonstrating
EV contact, endocytosis, and endolysosomal degrada-
tion, direct evidence for EV fusion with cellular mem-
branes is scarce. General mechanisms for cell-EV uptake
remain unclear, with many questions arising:

Is cellular uptake of EVs mediated by specific pro-
cessing mechanisms? Is the primary purpose of EV
uptake cellular communication and signalling, or is
uptake just a byproduct of clearance or homeostatic
mechanisms? Does uptake also confer function? Are
there differential uptake pathways for different subpo-
pulations of EVs (small vs large EVs)? Where do EVs
go once they are endocytosed by individual cells; do
they fuse with endo/lysosomal membranes to reach the
cytoplasm, go to the ER [85], end up being degraded in
lysosomes, or do something completely different? How
is EV cargo unloaded into a cell? How does EV-based
transfer of genetic material and cellular signals differ
from that mediated by tunnelling nanotubes?

Three quarters of survey responders agreed that
most cell types eventually internalize at least
a proportion of EVs, seemingly regardless of the cell
of origin (Figure 7). Despite the possibility of non-
specific uptake, three-quarters of responders agreed
that proteins on the EV surface are required for most
fusion events between EVs and cellular membranes
(Figure 7). Cells could also recognize lipids on the
surface of the EVs, allowing for non-specific uptake
or fusion events to occur. However, specificity likely
determines many of the interactions between EVs and
their target cells, so it is plausible that many of these
interactions are mediated by receptor-ligand binding.

How specific are EV-cell interactions, and how can
we experimentally investigate them?

The EV-cell interaction is likely a handshake: factors
on the surface of both membranes contribute.
Molecules exposed on the EV surface, including fibro-
nectin, PS, and integrins, interact with heparan sul-
phate proteoglycans [86], T-cell immunoglobulin-
and mucin-domain-containing molecules [87], and
cell-associated extracellular matrix [8] present on
recipient cells. Chemokines and their receptors may
act as bridges linking the two membranes together, as
they are expressed on both EVs and cells [88,89].
Although follicular dendritic cells do not express
MHC-II, their surface can become fully decorated
with vesicles that do (likely derived from B-cells)
[90]. Additionally, the charge or reactivity of EVs,
glycolipids on the EV surface, and even membrane

curvature can all influence how EVs interact with
certain recipient cells.

Survey participants were asked to rank several
potential mechanisms of EV-cell interaction through
which EVs exert their effects from the most (1) to
least (5) likely (Figure 8). Signalling through membrane
proteins was ranked as the most likely mechanism. The
next two most likely mechanisms were considered to be
the delivery of functional proteins and RNAs, respec-
tively. Transfer of functional lipids and nutrition
(molecular recycling) were the next most likely.

Certain conditions may need to be met before EV
uptake can occur. For example, dendritic cell-derived
EVs can only bind activated T-cells that express high-
affinity LFA1 [91]. Cellular uptake of EVs may also be
regulated by competitive mechanisms. For example,
when working with unfractionated peripheral blood
mononuclear cells (PBMC), MSC-EVs are mainly
taken up by monocytes and only scarcely by T and
NK cells; yet adding EVs to singularly cultured T or
NK cells increases uptake significantly [92].
Furthermore, small and large EVs may have different
membrane compositions that could give rise to diver-
gent uptake mechanisms.

EV uptake in vivo also shows selectivity. Red blood
cells are the most abundant cells in the body and
produce a high number of EVs that contain unique
miRNAs [93,94]. These EVs are only found in blood/
serum and are usually not observed in the surrounding
tissue. EVs present in the circulation and interstitial
fluid of zebrafish are taken up only by endothelial cells
and macrophages, but not muscle cells (despite being
bathed in EVs) [95]. These observations support the
notion that there are likely differential uptake mechan-
isms for EVs, depending on cell type and/or EV
subpopulation.

Specific proteins or lipids that may prevent uptake
in one cell type versus another by inhibiting docking,
fusion, or internalization of EVs have not been identi-
fied. An interesting consideration is how the extracel-
lular matrix (ECM) may influence EV processing or
uptake in neighbouring cells. Unlike cell culture mod-
els, the in vivo ECM may contain proteins and pro-
teases that contribute to or prevent EV uptake. As
such, experiments conducted in vitro likely do not
recapitulate in vivo uptake mechanisms accurately.

How do variables such as dose, time, pH, and
temperature affect EV uptake?

“One dose does not fit all”. EV uptake by cells should
be determined through specific, well-designed dose-
dependent experiments. Comparison of dose-
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dependent uptake profiles of human serum small EVs
by murine and human cell lines showed that EVs from
the same source could be internalized by one, several
or all of the cell lines depending on the dose [96].
Therefore, considering a fixed EV dose for different
target cell lines may entail misleading results.

With respect to time, EV uptake has been
reported in as little as 15 min [87], which is consis-
tent with endocytosis rates, while lysosomal degrada-
tion of EVs has been reported within hours [85,97].
If EV cargo is delivered to cells so rapidly, a rethink
of days-long experiments after a single addition of
EVs may, depending on the functional readout, be in
order.

Considering pH, ILVs are formed in the acidic
lumen of the MVB, so exosomal proteins should be

somewhat pH resistant. Nevertheless, pH can alter EV
interactions with cells. For example, some viral mem-
brane fusion proteins are inactive at pH 7, but undergo
conformational changes at pH 5, leading to membrane
fusion [98]. An EV that has entered the endosomal
pathway will also undergo progressive acidification.
As a fusion of EVs and cellular membranes would
lead to the delivery of the EV content into the cell
cytoplasm [9], understanding how pH influences the
cell–EV interactions is an interesting avenue of
research that requires further work.

Regarding temperature, it was previously shown that
EVs are taken up by cells at 37°C, but EVs can bind to the
cell surface when endocytosis is blocked at 4°C [99,100].
Experimental manipulation of temperature might pro-
vide valuable mechanistic clues into EV uptake.
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EEV-Cell Fusion

Most cell types, sooner or later, internalize at least a proportion of stained EVs, seemingly regardless of the

cells of origin.

EV-cell fusion is most likely to occur through endosomal uptake and acidification.

Proteins on the EV surface are required for most fusion events between EVs and cellular membranes.

EV-cell fusion events are actually quite rare in vivo, and may involve minority subpopulations of EVs and

specific uptake pathways.

Current in vitro studies of uptake (anything involving 2D tissue culture plastic substrates) are not worthwhile

as unrepresentative of in vivo biology.
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Neutral Strongly 
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Total # 
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Figure 7. EV-cell fusion. Five questions regarding EV-cell fusion were administered in the post-workshop survey. For each question,
participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting of the number of
responders at each point on the scale. Responders agree that recipient cells internalize EVs from different cell types through
endosomal uptake and acidification, and that proteins on the EV surface are responsible for fusion events. Survey participants are
not sure how frequent EV-cell fusion events are in vivo.
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Membrane fusion and stability

In the context of EV uptake and function, it is important to
define EV structural and functional stability. Structural
stability is the tendency of an EV to remain intact over
time and under different conditions. Functional stability is
the retention of a particular effect. On questions of EV
stability, over half (67%) of survey respondents agreed that
current technologies for studying EVs are not adequate to
measure both functional and physical stability of EVs
(Figure 9). When asked how freeze-thaw cycles may affect
EV stability, 50% felt that more must be learned about
potentially detrimental effects (Figure 10).

What about the relationship between fusogenicity
and stability? Is an EV that fuses with a cellular mem-
brane inherently “unstable”? Here, the molecular com-
position is likely to define membrane stability and
tendency to fuse. Although membranes are coated
with sugars and proteins, it is the lipid composition
that most heavily dictates thermodynamic favourability
for fusion. In principle, all vesicle-cell membrane
fusions are thermodynamically favourable. The barriers
to fusion are however kinetic, which may be lowered in
relation to lipid compositions. For example, the inser-
tion of cholesterol influences curvature and fusion
properties of small vesicles [101–103]. Cone-shaped

phospholipids induce high curvature, while those of
cylindrical shape are found in more planar membranes.
Fusion is thermodynamically favourable for more
curved vesicles, as it brings the vesicles to a lower
energy state. Small vesicles have a higher curvature
and tighter membranes, lending to a very high-energy
state and a possible predisposition for fusion.
Supporting this likelihood, a portion of synthetic
small unilamellar vesicles fuses with each other given
enough time [104,105]. Contrastingly, the recovery of
EVs as small as 30–50 nm in diameter from biological
and culture fluids suggests a certain stability of even
small EVs or subsets thereof. EVs may be more likely
to fuse after isolation than when in a complex mixture
such as plasma. However, current techniques cannot
easily distinguish between a large EV and a similarly-
sized EV that formed by the fusion of several smaller
vesicles. When asked about the relationship between
EV size and stability, 50% of respondents believed that
size has a large impact on physical stability (Figure 9).
EV-cell fusion is thermodynamically favourable but
high kinetic barriers prevent spontaneous membrane
coalescence. Lowering kinetic barriers can alter lipid
membranes, including increased bilayer curvature, and
the presence of protein-based fusion catalysts.

Total #

Responders 

30 

30 

29 

28 

29 

Figure 8. EV-cell interactions. In the post-workshop survey, participants were asked to rank order the most to least likely ways in
which EVs interact with target cells. Answers are depicted in a heat map, with pink shades indicating a higher number of
responders, and blue indicating a lower number of responders. Responders believe that EVs primarily interact with target cells by
signalling through proteins displayed on the target-cell surface or endosomal lumen. Transferring functional RNA, proteins and
lipids is seen as a secondary effect. Most believe that EVs are indirectly a form of nutrition or molecular recycling for recipient cells.
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The functional capacity of an EV is likely dependent
on membrane protein topology. Overall, membrane
protein composition appears to be heavily influenced
by EV size, the cell type of origin and cellular activation
state. One technique to study EV membrane composi-
tion is free radical incorporation or electron-dense
lipid labelling. Incorporating free radicals in membrane
samples can provide useful topological information on
both the membrane and/or associated/integral proteins

based on the preferential localization of the radical
used [106,107]. On the other hand, using lipids con-
taining radicals at different positions in the tail could
help provide information about the transmembrane
region itself [108]. Some new techniques to make
pseudo-membranes containing differently shaped
phospholipids can allow for further study of how com-
position can influence membrane curvature and fusion
by using nuclear magnetic resonance (NMR) [109].
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RRegarding Freeze-Thaw of EVs:

All EVs are generally resistant to

freeze-thaw damage

Small EVs are generally resistant

to freeze-thaw damage

EVs are damaged both physically

and functionally

EVs are damaged functionally,

but may show the same physical

characteristics

We still don't know enough to

answer this question

Total # 
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32 

Figure 10. Storage of EVs. In the post-workshop survey, participants were asked to choose from five options whether or not they
believe freeze-thawing causes damage to EVs. Responders agree that we do not know enough about how freeze-thawing affects EV
stability, uptake, and functionality.
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EEV Stability

Current technologies are adequate to measure both functional and physical stability of EVs.

Physical stability of EVs (defined here as the tendency to maintain vesicular form) is related to size.
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Figure 9. EV stability. Two questions regarding EV stability were administered in the post-workshop survey. For each question,
participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting of the number of
responders at each point on the scale. While EVs are physically stable, most survey participants believe that current technologies
need to be improved to simultaneously measure the functional and physical stability of EVs.
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Many questions remain to be answered about EV
functional stability: Is the physical structure or the
encapsulated content most important? If the structure
of an EV has been compromised, does that necessarily
affect its carrier/delivery function? Also, does the pre-
sence or absence of cargo reciprocally influence EV
stability?

Finally, it is worth noting that our knowledge on EV
membrane interactions with inorganic nanostructures
and surfaces is poor and fragmented, albeit of key
importance for future EV processing and engineering
technologies (e.g. colloidal gold nanoplasmonic assays
[110], microfluidics/lab-on-chip applications [111], EV
supported lipid bilayers [112]).

In vivo administration of EVs: how membrane
components and associates affect distribution

One of the most alluring aspects of EVs is the potential
for the delivery of therapeutic drugs/molecules, which
requires an understanding of the biodistribution of EVs
introduced to healthy and diseased organisms. When
introducing EVs to in vivo models, many factors need
to be considered, including dose, route of administra-
tion, source of the administered EVs, and techniques
for assessing biodistribution (i.e. labelling).

An overwhelming majority (87%) of workshop sur-
vey respondents suggested that EV transfer experi-
ments are highly time dependent, and that the in vivo
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BBioactivity of EVs

In vitro EV transfer experiments are highly time-dependent, and the relevance to timing/EV stability in vivo is

often unclear.

Dose-response studies are essential in establishing any effect of EVs.

Most EVs in vivo are bioactive.

EVs in circulation (blood) are less likely to be bioactive and are cleared rapidly.

EVs are most likely to have a signaling function in tissue, i.e., locally.

Tumor-bearing mice accumulate more EVs in cancer tissue mostly because of vascular leakiness.

The apparently low rates of EV:cell fusion indicated by systems such as the Cre/lox stoplight system may reflect

sensitivity or idiosyncrasies of the assay and not imply that fusion is really so rare.
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Figure 11. Bioactivity of EVs. Seven questions regarding the bioactivity of EVs were administered in the post-workshop survey. For
each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting of the
number of responders at each point on the scale. Responders believe that the use of EVs for in vitro transfer experiments is time-
dependent, that dose–response studies are important, and that EVs have a greater functional impact in the local tissue environ-
ment. Survey participants are undecided on how to determine and identify bioactive EVs. The survey reveals the need for improved
technology for the study of EV-cell fusion.
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relevance is often unclear (Figure 11). Since the local
physiological concentrations of EVs are often unknown
and may change depending on disease state, dose–
response studies to optimize EV concentrations for
the creation of uptake profiles is critical; 90% of parti-
cipants agreed (see also MISEV2018 [33]) on the
importance of dose-response to establish any effect of
EVs for both in vitro and in vivo studies (Figure 11).
The half-life of exogenously administered EVs in cir-
culation has been reported to be relatively short (in the
range of tens of minutes), so serial or differential dos-
ing may be necessary and will likely require optimiza-
tion. By increasing the half-life of EVs, for example,
through PEGylation [113] or by incorporation of
a “don’t eat me” signal such as CD47 [114], higher
plasma and/or tissue levels may be reached.

Administration route (e.g. intraperitoneal (i.p.), tail
vein, intramuscular, or interventricular injection or
intranasal inhalation) can also influence EV biodistribu-
tion, and thereby the concentration that reaches the
desired target. Subcutaneous injections lead to accumu-
lation of EVs in the lymphatic system [115,116], while
those injected directly into the tail vein are cleared by
the liver and spleen [117,118]. These data are consistent
with previous work in the field of synthetic nanomedi-
cine, which indicate that the vast majority of injected
nanoparticles aggregate in liver and spleen, with only
very subtle accumulation in specific tissues [119,120].

The concept of “targeting” is perhaps somewhat
misleading for EVs under normal conditions, necessi-
tating careful descriptions [121]. Unlike cells, EVs can-
not actively seek targets via signal gradients, reports of
motility notwithstanding [122]. Instead, passive accu-
mulation, which is mainly driven by EVs’ physiochem-
ical properties, seems the likely dominant distribution
mechanism, with “targeting” determined by different
affinities for cells with which chance interaction occurs.

Nevertheless, in inflammatory conditions including
certain cancers, injected nanoparticles may accumulate
in inflamed tissue due to vascular leakiness [114]. For
example, in vivo targeting of EVs to the heart is diffi-
cult because of the intact endothelial barrier; yet, if the
tissue is infarcted, the chance of infiltration will
increase due to vascular leakiness [123]. Similarly,
EVs are more likely to enter the brain when it is
inflamed [124], and EV accumulation within kidneys
is significantly increased in animal models of acute
kidney injury [125]. Nevertheless, only about 44% of
Workshop survey respondents felt that EVs accumulate
in cancerous tissue (Figure 11).

To study EV biodistribution, EV labelling or some other
method is needed for tracking and visualization.
Theoretically, a membrane labelling dye may largely

disappear upon fusion, making it challenging to study
functional EV biodistribution. An alternative approach
might be to trace EV cargo, e.g. through measuring deliv-
ery of Cre recombinase mRNA or protein via EVs, using
animals harbouring reporter systems such as a Cre-
sensitive colour-switch reporter [126]. A clear recommen-
dation stemming from the Workshop is the need for an
improved methodology to study EV biodistribution.

What is the physiological role of EVs in
homeostasis and disease?

While the field has not identified which is the most
significant EV-related disease, cancer is the most heav-
ily studied, and EVs have been strongly implicated in
metastasis and the formation of tumour microenviron-
ments. Other intensively studied pathologies include
neurodegenerative disorders, such as Alzheimer’s dis-
ease, Parkinson’s disease, and prion diseases [127,128],
as well as diabetes and acute phase responses.
Understanding the basic physiological functions of
EVs will allow for further exploration of their roles in
homeostatic maintenance or disease dissemination.
Another recommendation from this Workshop is the
need for advanced animal models to study the physio-
logical importance of EV-mediated cargo transfer
between cells and tissue; these are required to conclude
how EV-mediated communication impacts disease
development. This is especially true when exploring
the potential secondary effects of EVs. For example,
EVs released from damaged lung can induce pulmon-
ary hypertension when injected into healthy mice.
However, these effects appear to be modulated by EV-
induced alterations in bone marrow cells, which then
promote pulmonary hypertension [129,130].
Furthermore, the field needs to establish guidelines
for defining and/or concluding which EV subpopula-
tions and associated cargo are involved in homoeo-
static maintenance and pathological responses. One
approach is to screen EV populations before and after
(patho)physiological stimulations/treatment regimens,
with the subsequent utilization of techniques like
RNA sequencing, proteomics, and lipidomics.
Implementation of multi-omics and longitudinal
cohorts can aid in enhancing the overall understanding
of EV biology and composition and can serve as quality
controls for EV subsets of interest.

Technologies and strategies for studying EVs:
considerations and limitations

The results of the Pre-Workshop survey confirm that
there remain many uncertainties and controversies in
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the EV field. For example, do the results of EV-uptake
experiments using cells cultured in 2D really reflect what
occurs in vivo? Does fluorescent labelling of purified
EVs lead to artefacts caused by aggregations of
the dye? How does the curvature of the vesicle and the
surface it binds to affect the fusion or function of the
EV? Do current methodologies for isolation or enrich-
ment alter the function of EVs and must we “live with”
the current limitations in separation technology? What
is the role of heterogeneity in EV function and what new
tools are needed to assess EV heterogeneity? Some rea-
sons why these questions have not yet been resolved
include the relative youth of the EV field, a lack of
robust tools and technologies for studying EVs, as well
as the lack of proper reporting and consistent terminol-
ogy in a largely heterogeneous approach to analysing
EVs across the community.

Many of the most frequently cited “influential stu-
dies” highlighted in the pre-workshop survey related to
characterizing EV subpopulations [131] and develop-
ing novel technologies for studying EVs with single-
particle sensitivity [132–135]. The efforts of the Society
to summarize and update the field with current knowl-
edge were also appreciated by the citation of previous
ISEV position papers [33,45,136]. Participants also
indicated the importance of standardization and
reporting initiatives such as EV-TRACK [137].

The need for new technologies and methodologies
was also evident from the verbatim feedback in the
survey. There was a particular focus on the need for
new or improved imaging techniques. Several applica-
tions of electron microscopy (EM) were suggested,
including 3D scanning electron microscopy (3D-SEM)
combined with labelling techniques such as APEX (a
monomeric peroxidase that withstands EM sample pre-
paration) and correlative light and electron microscopy
(CLEM). Many EVs are below the diffraction limit of
light, so super-resolution microscopy methods need to
be developed further to visualize EVs with better reso-
lution. Tracking of single EVs is challenging due to
their small size and paucity of molecular content; ima-
ging individual EVs could be enabled by the use of
brighter tags such as tandem fluorescent proteins or
SunTag [138]. Improved techniques for quantifying the
occurrence and effects of EV transfer, including in the
in vivo setting, were raised as an important require-
ment in the field. Furthermore, there are other biophy-
sical properties of EVs that should also be investigated,
including stiffness, adhesiveness, aggregation and mor-
phology. Techniques such as atomic force microscopy
(AFM), scanning probe microscopy, cryoEM and neu-
tron-scattering techniques could be used to measure
these properties. A need for improved isolation and

labelling of EVs was also reported in the survey.
Taken together, these comments highlight the need
for improved technologies in the EV field. This was
also evident from the range of talks at the Workshop
and the round-table discussions. The current “limita-
tions” should be viewed as opportunities: new
approaches combined with a greater understanding of
membrane biology will allow us to gain new insight
into EV biology and begin to resolve some of the
uncertainty in the field.

Experimental issues with purification and
characterization of EVs

EVs are challenging to study due to their small size
(mostly <1 µm diameter), heterogeneity and lack of
discriminative markers [139]. Although differential
ultracentrifugation is the historical workhorse for
EV isolation [140], it may introduce artefacts such
as disruption of membrane topology, EV aggregation
[141] and decoration of EVs with other components
present in the sample. Theoretically, filtration by
gravity flow should be gentler, but pushing samples
forcefully though a small-pored filter may, besides
trapping EVs in the filter, also damage or break EV
membranes [136]. Altering properties of EVs during
separation may also affect functionality. Other impor-
tant questions to consider include: do our current
separation techniques over-purify or select for more
“stable” EVs? Are we removing important signalling
molecules or cofactors from the supernatant when we
remove EVs from their biological medium? How does
the starting sample volume and type (i.e. the biologi-
cal matrix in which the EVs are present) influence EV
stability? Is one isolation technique better for certain
biological sample types than another? Many of these
questions still need to be resolved by basic analytical
experimentation.

Likewise, the best practices for EV characteriza-
tion, counting and sizing are still not universally
agreed upon. When working with samples derived
from mixed populations of cells, such as a biofluid
or supernatant from mixed cultures, the limited
knowledge of cell-specific EV markers makes identi-
fying the cell of origin challenging. Ongoing multio-
mics-based research approaches should assist in the
identification of tissue/cell-specific markers. There
are also a range of methods for counting and sizing
EVs, including nanoparticle tracking analysis (NTA),
tunable resistive pulse sensing (TRPS), Raman spec-
troscopy, flow cytometry, single-particle interfero-
metric reflectance imaging sensing (SP-IRIS) and
electron microscopy. These vary in their accuracy,
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resolution, strengths and weaknesses [133,135].
Unsurprisingly, the vast majority (90%) of survey
responders agree that different measurement technol-
ogies are biased towards certain EV size ranges
(Figure 12).

Exploring current EV fluorescent labelling
techniques

Many experiments incorporate the use of fluorescent
labels to visualize EV production, uptake, and biodis-
tribution. Although there is currently no efficient pan-
EV marker, many uptake studies utilize lipophilic dyes
such as PKH and Bodipy. The mechanism of action of
PKH is intercalating, with saturated acyl-chain lipids
inserting into lipid-raft structures. While PKH does not
form highly ordered micelles, it can form micelle-like
structures if it is not below the critical micelle concen-
tration [142]. Above this concentration, the properties
can change and give rise to artefacts and background
[142,143]. Bodipy is another popular dye which some
groups prefer over PKH as there is reduced

background and limited overlap with signals from
EVs. Alternatives to lipophilic dyes include CFSE and
maleimide-thiol coupling of dyes to EVs [144].
Interestingly, some labelling protocols recommend
BSA to quench dye labelling of EVs. However, BSA
may contain bovine EVs. Protocols for best EV label-
ling practices are needed to discern between labelled
EVs, aggregates of dye, and label incorporated by con-
taminants such as those in BSA. Free dye controls are
important, to show clearance of unbound dye, and that
all fluorescent entities observed are EV-associated.
Flotation gradients may assist with separation of
labelled EVs from dye aggregates, but other contami-
nants may remain [143].

The majority (72%) of workshop participants concur
that lipid dye experiments are unreliable unless the
proper controls are used to discern between labelled
EVs and aggregated dye (Figure 12). An endogenous
method to label EVs by using an amphiphilic Near
Infrared (NIR)-fluorescent probe, in which cells carry
out the labelling prior to secretion of the EVs, has been
recently proposed [145]. It does not require the use of
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CCurrent Particle Tracking Technologies

Different measurement technologies are biased to certain EV size ranges.

Optical scattering methods of EV measurement such as nanoparticle tracking are not specific to EVs.

Lipid dyes form artefactual particles on their own and with non-EV materials; results of lipid dye

experiments are unreliable unless one can effectively separate EVs and artifacts by flotation

gradients.
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Figure 12. Current particle tracking technologies. Three questions regarding current particle tracking technologies were adminis-
tered in the post-workshop survey. For each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10,
with bubble size reflecting of the number of responders at each point on the scale. Survey participants require improved, non-
biased technologies for determining EV size. The use of lipid dye can cause experimental artefacts.
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immuno-labels, reagents for conjugation reactions or
chromatographic purifications.

Another strategy for the labelling of vesicles is via
fluorescent tagging of EV proteins. For example, tag-
ging of tetraspanin proteins such as CD63 or CD81
with fluorescent proteins such as GFP or mCherry
allows EVs to be visualized and tracked. Innovative
approaches in which pH-dependent tags are employed,
have been used to visualize EVs following fusion of the
MVB with the PM [146]. This approach depends on
the acidic environment of the multivesicular body and
a neutral environment outside the cell. Alternatively,
tagging abundant fluorescent reporters with
a degradation motif (degron) is a way to specifically
label EVs and remove the reporter from the source cell,
allowing the observation of autocrine interactions
in vivo [35,59,147]. Issues that need to be considered
for any protein-tagging approach include the half-life
of the fluorescent tag, the brightness of the tag, the
limits of resolution of the microscopy technique used,
and the possibility that tagged EVs (or indeed dye-
labelled EVs) may have altered cargo or function.
Another issue is that the visualization of EVs that
lack the fluorescently tagged protein would be “invisi-
ble” and would thus be missing from any analysis. In
this respect, general EV membrane labelling using, for
example, fluorescent proteins fused to farnesylation or
palmitoylation signals may be preferred [148,149]. It is
recommended that further work is undertaken to opti-
mize and establish the best methodology for the fluor-
escent tagging or labelling of EVs.

Single-vesicle analysis techniques – where are we
and what do we need?

The survey revealed that single-vesicle analysis techni-
ques are one of the most frequently suggested techno-
logical advancements that are needed for the field, with
high-resolution single-vesicle flow cytometry being
particularly in demand, offering high-throughput ana-
lysis with a commonly available tool. Of note, 70–75%
of EV researchers use flow cytometry (FC) for targeted
phenotyping [150]. Almost every survey respondent
(97%) valued the development of single-vesicle flow
analysis for EVs below ~500 nm in diameter
(Figure 13). A reliable and accurate EV-nanoflow tech-
nique with the use of specialized cytometers with
higher scatter sensitivity to measure small particles
would allow for profound advances in understanding
both membrane composition and internal cargo
through state-of-the-art sorting and subsequent analy-
sis. Because the size of the majority of EVs is below the
wavelength of visible light, the majority (68%) of sur-
vey respondents believe that fluorescent triggering in
EV-flow cytometry allows for better resolution than
scatter (Figure 14); however, since no EV-specific gen-
eric labelling strategy is available, other non-EV com-
ponents (e.g. lipoprotein particles), cell debris and/or
EV membrane fragments may also be detected.
Furthermore, the small size of EVs renders them parti-
cularly prone to swarm effects often leading to erro-
neous interpretation of data, as many instruments are
still not sensitive enough to detect such small particles

3%

97%

CCurrent Opinion on EV-Flow Cytometery

High-resolution single EV

analysis by flow cytometry is

now possible for labs with

access to a standard flow

cytometer.

It remains necessary to have

specialized equipment,

reagents, and expertise to

perform single EV flow

analysis for EVs below about

500 nm in diameter.

Total #

Responders 

30 

Figure 13. Current opinion on EV-flow cytometry. In the post-workshop survey, participants were asked to choose between two
options regarding the current status of applying flow cytometry to the study of EVs. Almost all responders to this question call for
specialized equipment, reagents and expertise to characterize single EVs through flow cytometry.
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[151,152]. Of significance, there still needs to be estab-
lished the ideal fluorescent dye for fluorescent trigger-
ing which is capable of staining all EVs in
a preparation.

Depending on EV size, it is estimated that about 1–100
copies of a particular protein could be present on the EV
surface [153]. This low number of proteins present on the
EV surface may hamper the immune-detection by fluor-
escent antibodies of EVs or EV subsets. The development
of brighter fluorophores, alternatives for fluorescent-
antibodies, as well as the ability to increase the signal-to-
noise ratio by optimizing flow cytometers and settings for
EV analysis will lead to improved single-EV detection.
Instead of labelling proteins on the EV surface, highly
specific fluorescent lipid dyes may hold potential for fluor-
escent-based EV analysis. In that respect, proteins that
bind different lipids can be useful to distinguish subpopu-
lations of EVs and could be applied to the single-vesicle
analysis, including flow cytometry [154]. Myristoylated
alanine-rich C-kinase substrate (MARCKS) peptides
[155,156] could also be of potential use to label vesicles
based on membrane curvature. Ultimately, the combina-
tion of generic lipid dyes or lipid detection together with
specific labelling of EVs with fluorescent antibodies or
other reagents to label EV surface proteins offers new

possibilities to define and eventually sort specific EV sub-
populations. However, with multi-fluorescent approaches
precautions should be taken for quenching effects due to
the small surface area of the EV.

In general, every survey respondent (100%) agreed
that the development of reagents, such as single-chain
antibodies, aptamers, and less bulky fluorophores, is
needed to improve the sensitivity of EV-flow cyto-
metric-based analysis (Figure 14).

Currently, high-resolution flow-cytometric single-
EV analysis utilizes slow flow rates and although sort-
ing of single EVs can be performed [151], long sort
times and diluted samples result in a limited amount of
sorted EVs, which restricts the possibilities for down-
stream analysis. Additionally, the purity of the sorted
EV populations should be analysed and demonstrated
by other methods and potential effects of the sorting
process and subsequent sample processing on EV
integrity should be evaluated.

Altogether, there is a growing awareness of the
physical limitations of commonly used flow cytometers
developed for cell analysis which are using different
optics and laser configurations tuned for cellular ana-
lysis. However, the field is moving towards better
instrumentation for flow cytometric analysis of EVs,

24334111

1 4 7 7

3 5 5 8

0 1 2 3 4 5 6 7 8 9 10

S
u
r
v
e
y
 Q
u
e
s
t
io
n

(
B
u
b
b
le
 S
iz
e
 &
 L
a
b
e
l 
=
 #
 o
f
 R
e
s
p
o
n
d
e
r
s
)

FFluorescent Labeling of EVs

Fluorescence triggering in EV flow cytometry allows better resolution than scatter.

Better generic dyes of EVs are needed for flow cytometry and other investigations.

Development of reagents such as single chain antibodies, aptamers, and less bulky fluorophores is needed

to improve sensitivity of EV flow.
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Figure 14. Fluorescent labelling of EVs. Three questions regarding fluorescent labelling of EVs were administered in the post-
workshop survey. For each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size
reflecting of the number of responders at each point on the scale. Survey question participants acknowledge that better dyes and
reagents are needed to study EVs using flow cytometry. Still, using fluorescent flow cytometry to study EVs provides better
resolution than scatter.
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either by optimizing the existing flow cytometers
designed for cell analysis or by designing novel instru-
ments built for small particle analysis. As a reaction to
the demand of more specialized flow cytometers, man-
ufacturers incorporate certain instrument designs to
increase the capability of sorting and phenotyping
EVs <500nm. Some instruments are capable of detect-
ing EVs down to 100 nm. Examples are imaging flow
cytometry, spectral flow cytometry, high-sensitivity
flow cytometry, and nanoscale flow cytometry [157].

Besides the development of more advanced flow
cytometry for EV research, better transparency about
reporting instrument configuration is needed. This will
allow the interpretation of flow cytometry data from
one instrument to another. Applying strict and well-
defined controls in each reaction will also increase the
reproducibility and rigour of EV-flow cytometry
experiments. To advance the EV-flow cytometry field
a three-society workgroup was established in 2015; the
ISEV-ISAC-ISTH EV Flow cytometry workgroup
(http://www.evflowcytometry.org/). They are establish-
ing a framework for the minimal requirements for
accurately reporting EV measurement by flow
cytometry.

Alternative approaches to single-EV analysis are also
being developed, including 3D-SEM, CLEM, AFM and
Raman spectroscopy. However, these methods are less
commonly available and do not offer high throughput
analysis. AFM has been used to quantify the physical
characteristics of EVs, such as stiffness, as well as for the
visualization of EV budding. “Label free” methods are
attractive, as labelling by itself can alter the EVs. The use
of optical tweezers for studying and manipulating single,
large EVs is also gaining traction [158]. Capillary electro-
phoresis techniquesmay also be implemented to allow for
separation of EVs of different sizes or composition. Cryo-
EM is another good tool for visualizing EVs since EM
with immunogold labelling is the only technique that
combines morphological information at high resolution
and the specificity of labelling. A recommendation arising
from this Workshop is for the field to improve and
develop single-vesicle analysis techniques that will allow
researchers to ask new, important questions related to all
aspects of EV biology.

What can the EV field learn from engineers and
virologists?

To make genuine leaps forward it is recommended that
the EV field must adopt a more multidisciplinary
approach, seeking expertise from specialists in other dis-
ciplines, including engineering, physics, imaging and
chemistry. A biomimetic approach to studying EVs

involves producing synthetic analogues. Survey partici-
pants had mixed views on current capabilities to engineer
truly artificial EVs, with about one-third believing it is
presently possible, and almost half (42%) thinking it is
not (Figure 15), though this could be partly due to differ-
ent interpretations of the term “artificial EVs”. Indeed,
engineering EVs from biological sources is done routinely
[159]. For example, EVs could be loaded with therapeutic
cargo, like siRNAs or other drugs; successful delivery of
this cargo can be used for therapeutic purposes or, as
described above, to analyse EV uptake or distribution.
One key point of discussion was the difference between
intracellular and extracellular loading of engineered EV
cargo. In other words, should artificial cargo be added by
manipulating donor cells which then load the cargo for
us, or should we isolate EVs and artificially insert (or add
to the surface) cargo via experimental perturbations such
as electroporation or pH-dependent opening? The choice
of how to artificially load cargo in engineered EVs could
affect the utilization of the cargo in recipient cells.
Another way to engineer EVs is to alter the surface
composition to potentially re-direct the bio-targeting of
vesicles [160]. Whether a top-down approach (starting
with native EVs and modifying them to see how this
affects function) or a bottom-up approach (generating
artificial EVs from purified components) is taken,
a better understanding of membrane biologywill enhance
our ability to engineer, understand and use EVs.

Another area discussed in the Workshop was that the
EV field can learn a great deal from the virology field.
Enveloped virus morphogenesis, secretion, and entry into
target cells are well understood and are likely to reflect, at
least partly, EV biogenesis, target-cell contact, endocyto-
sis, and cargo delivery processes. Enveloped viruses
encode proteins that drive particle (vesicle) assembly in
producer cells, and particle (vesicle) disassembly in target
cells. Theremay be valuable dividends to searches for EV-
associated proteins that are functionally similar to those
operating in enveloped virus infections. The virology field
could lend a great deal of information as to how to
artificially design EVs to target specific cell types and
develop assays to indicate delivery of RNA or protein
into the cytosol. The same mechanisms utilized for viral
RNA packaging may also participate in EV RNA packa-
ging. Fostering collaborations with virologists should be
encouraged as it will likely aid in understanding EV
release and uptake pathways.

What new techniques or experimental approaches
do we need to study EVs?

To fully understand EV biology, physiology, and
pathology, the field needs more than just better
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labelling techniques and the ability to perform single-
EV analysis; the recommendation from the Workshop
is that a raft of new technological approaches is
required. Unsurprisingly, almost all survey participants
(97%) agree that new animal models and more relevant
in vitro systems are needed to address questions about
production and function of subsets of EVs (Figure 15).
Animal models may be a viable option for understand-
ing the production of EV subsets (MVB biogenesis,
transport to PM, fusion with the PM, and budding
from the PM). Genetic manipulations to track the
transfer and uptake of EVs within an animal [126]
may address these questions. The use of zebrafish
[95], Drosophila melanogaster [161–163], or C. elegans
[35,59,164] as genetic model organisms to study EV
biogenesis may initially be more useful than rodent
models, and are gaining traction within the field [165].

When using in vitro experimental methods, the envir-
onment in which EVs are generated, i.e. single-cell read-
outs, 2D cell culture, or organoids, is important. Will the
use of organoids provide a more realistic indication of
what is occurring with EV production and cargo trans-
port than other culture methods? Understanding how
EVs interact within a three-dimensional structure may
be more helpful and translatable than traditional culture
methods and is a goal for the future.

Reporting in EV studies

There are many factors that need to be addressed and
reported when performing EV work, and many of these
are outlined in both the 2014 and 2018 MISEV reports
[32,33]. Transparency is needed to help the field recon-
cile conflicting data from different laboratories. For
example, some data suggest that the passage number
of cells can strongly impact EVs in terms of number,
cargo, and markers (e.g. CD63) [166], making it diffi-
cult to draw conclusions as to whether or not observed
effects were due to experimental manipulations. If
a certain cell type in question does require supplemen-
tation with FBS, how are EVs depleted from serum?
Even a 24-h ultracentrifugation does not remove all of
the bovine RNA present in FBS, potentially leading to
artefactual results [167]. If a cell type can survive in the
absence of FBS, how does serum-starvation change
cellular RNA profiles or influence assay readouts?
Additionally, by culturing cells in serum-free condi-
tions, clonal populations are being selected for survival,
which could heavily influence experimental outcomes
of downstream assays. This is also highly relevant to
experiments performed using clonal cell lines gener-
ated by CRISPR/Cas9-mediated genome engineering. It
is also important to understand the normal physiology
of the cells being utilized for experiments prior to
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CCurrent EV Technologies

It is currently possible to make artificial EVs that faithfully mimic genuine EVs

It is currently possible to affect EV distribution to tissues by manipulating EV surface features.

New animal models and more relevant in vitro systems are needed to address questions about production

and function of subsets of EVs.
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Figure 15. Current EV Technologies. Three questions regarding current EV technologies were administered in the post-workshop
survey. For each question, participants’ answers are depicted horizontally on a Likert-scale from 0 to 10, with bubble size reflecting
of the number of responders at each point on the scale. Responders agree that new animal and in vitro models are needed to
address questions concerning EV production and function. Survey participants are not sure whether artificial EVs can mimic genuine
EVs, or that manipulation of EV surface features will affect biodistribution.
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perturbing them. Careful experimental design is
required when attempting to recapitulate a disease
within a dish. Additionally, more primary cell work is
required, as cell lines can behave in a dissimilar man-
ner [168]. Overall, critical evaluation of how model
systems reflect actual biology is essential. To identify
large-scale, significant results, experimental consistency
is key. We must strive to encourage and ensure high
replicability and reproducibility within the field, which
depends on critical evaluation of the consistency across
experiments and detailed reporting.

The future of EV therapeutics

A major question in EV therapeutics is under what
conditions the FDA, EMA and other regulatory agen-
cies will approve therapeutic use of EVs. The clinical
requirements for EV therapeutics and assays must be
achieved before approval can be granted [169]. Cell-
based therapies have been approved, so there is hope
for EVs in the future. Future implementation of these
therapies will focus heavily on the safety to bio-
therapeutic ratio. There is a strong feeling in the EV
community that regulatory agencies will eventually
support the use of EV therapeutics. How such agencies
would categorize EVs also needs to be considered; i.e.
will EVs be considered cell-like agents, or pharmaceu-
tical agents? While the origin of cell culture-derived
EVs is clear, the mechanism by which they convey
function in vivo remains unknown. Another considera-
tion is that we still do not isolate a pure homogenous
population of vesicles; EV heterogeneity is an impor-
tant problem/opportunity for the field [170,171].
A challenge for the therapeutic use of EVs is, therefore,
the ability to purify the vesicles effectively enough.
Thus, further work on the fundamental cell biology of
EVs is essential to realize their therapeutic poten-
tial [172].

Conclusion

EV research is rapidly advancing, but many unan-
swered questions remain regarding basic EV biology
and mechanisms of action. The primary goal of this
workshop was to gauge the field’s understanding of the
role of membranes in EV biogenesis, uptake/fusion,
and the types of technologies needed to study these
events. Through focused discussions and surveys admi-
nistered to Workshop participants, considerable gaps
in knowledge were identified and outline substantial
opportunities for future research.

The field generally agrees that there are two main EV
biogenesis pathways, which give rise to distinct EV

subpopulations (exosomes and MVs). Despite this,
many participants pointed out that we do not currently
possess the technology to discern these vesicles from one
another once they have entered the extracellular space.
Gaining a better understanding of the fundamental
properties of EV biogenesis, including the role of vary-
ing molecular components and changes in membrane
topology during EV formation will undoubtedly aid in
developing techniques to differentiate EVs derived from
the endocytic pathway versus those shed from the
plasma membrane. Other major considerations that
have yet to be addressed are the energetic requirements
needed for EV biogenesis, how various stimuli alter the
activation of these mechanisms, and whether these
mechanisms are conserved across cell types and species.

There remain many unanswered questions regard-
ing the basic mechanisms by which EV-cell interac-
tions occur; however, it is likely that these
communications necessitate surface molecules present
on both EVs and cells. Whether a predominant
mechanism (i.e. signalling at the cell surface, endocy-
tosis, or membrane fusion) presides and the level of
specificity by which these interactions occur has yet to
be determined. The impact of other factors that may
influence EV-cell interactions including experimental
timing, pH, temperature, membrane composition, EV
concentration and stability, and the presence/absence
of extracellular matrix all requires further investigation.
The cellular consequences of these interactions are
heavily understudied; basic knowledge as to how and
where EV cargo is unloaded into cells, and the role of
EVs in homeostasis has not yet been elucidated. As EVs
are being considered as potential therapeutics, in vivo
administration and biodistribution studies are now
widely conducted. When designing these essential
experiments, special considerations for the route of
administration, how to best assess/measure biodistribu-
tion and careful data interpretation are required.

Development of new techniques for isolating and
studying EVs is crucial for advancing the field.
Indeed, differential ultracentrifugation, the current
gold standard for EV isolation, may unintentionally
introduce artefacts and change the inherent properties
of the isolated particles. Similarly, the quantification
and characterization of isolated vesicles using popular
methodologies like nanoparticle tracking analysis may
also generate biased or inaccurate data. Despite the
great potential of fluorescent labels and dyes for study-
ing EVs, there are numerous shortcomings associated
with current products, and implementation of proper
controls is often overlooked in the experimental design.
Single-vesicle analysis tools are some of the most
sought-after technological advancements in the field
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and are indeed on the horizon. Regardless of the cur-
rently available technologies, one of the most impor-
tant things scientists can do for the study of EVs is to
provide transparent reporting in their publications to
allow for data replication and proper interpretation. It
is hoped that by providing this summary of where
consensus is present (or lacking) along with the recom-
mendations for future work that this ISEV position
paper will provide a supporting framework for the
field to move forward.
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