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Abstract— We study a setting where a group of agents, each
receiving partially informative private observations, seek to
collaboratively learn the true state (among a set of hypotheses)
that explains their joint observation profiles over time. To solve
this problem, we propose a distributed learning rule that differs
fundamentally from existing approaches, in the sense that it
does not employ any form of “belief-averaging”. Specifically,
every agent maintains a local belief on each hypothesis that is
updated in a Bayesian manner without any network influence,
and an actual belief that is updated (up to normalization) as
the minimum of its own local belief and the actual beliefs of its
neighbors. Under minimal requirements on the signal structures
of the agents and the underlying communication graph, we
establish consistency of the proposed belief update rule, i.e.,
we show that the actual beliefs of the agents asymptotically
concentrate on the true state almost surely. As one of the
key benefits of our approach, we show that our learning rule
can be extended to scenarios that capture misbehavior on
the part of certain agents in the network, modeled via the
Byzantine adversary model. In particular, we prove that each
non-adversarial agent can asymptotically learn the true state of
the world almost surely, under appropriate conditions on the
observation model and the network topology.

I. INTRODUCTION

Various distributed learning problems arising in social
networks (such as opinion formation and spreading), and in
engineered systems (such as target recognition by a group
of aerial robots) can be studied under the formal framework
of distributed hypothesis testing. Within this framework, a
group of agents repeatedly observe certain private signals,
and aim to infer the “true state of the world” that explains
their joint observations. While much of the earlier work
on this topic assumed the existence of a centralized fusion
center for performing computational tasks [1], more recent
endeavors focus on a distributed setting where interactions
among agents are captured by a communication graph [2]–
[10]. Our work here falls in the latter class. A typical
belief update rule in the distributed setting combines a local
Bayesian update with a consensus-based opinion pooling
of neighboring beliefs. Specifically, linear opinion pooling
is studied in [2]–[4], whereas the log-linear form of belief
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aggregation is studied in the context of distributed hypothesis
testing in [5]–[8], and distributed parameter estimation in [9],
[10]. Notably, exponential convergence rates are achieved in
[3], [5]–[7], while a finite-time analysis is presented in [8].
Extensions to time-varying graphs are studied in [4], [5].

In [5, Section III], the authors explain that the commonly
studied linear and log-linear forms of belief aggregation
are specific instances of a more general class of opinion
pooling known as g-Quasi-Linear Opinion pools (g-QLOP),
introduced in [11]. The main contribution of our paper is
the development of a novel belief update rule that deviates
fundamentally from the broad family of g-QLOP learning
rules discussed above. Specifically, the learning algorithm
that we propose in Section III-A does not rely on any linear
consensus-based belief aggregation protocol. Instead, each
agent maintains two sets of beliefs: a local belief that is up-
dated in a Bayesian manner based on the private observations
(without neighbor interactions), and an actual belief that is
updated (up to normalization) as the minimum of the agent’s
own local belief and the actual beliefs of its neighbors. In
Section V, we establish that under minimal requirements on
the agents’ signal structures and the communication graph,
the actual beliefs of the agents asymptotically concentrate
on the true state almost surely. In Section IV, we argue that
our approach works under graph-theoretic conditions that are
milder than the standard assumption of strong-connectivity.

In addition to the above contribution to the distributed
hypothesis testing problem, we also show in this paper that
our approach is capable of handling agents that do not
follow the prescribed learning algorithm. Such agents may
represent stubborn individuals or ideological extremists in the
context of a social network, or model faults (either benign
or malicious) in a networked control system. We ask: In
the presence of such misbehaving entities, how should the
remaining agents process their private observations and the
beliefs of their neighbors to eventually learn the truth? To
answer this question, we model misbehaving agents via the
classical Byzantine adversary model, and develop a provably
correct, resilient version of our proposed learning rule in
Section III-B. The only related work (that we are aware of) in
this regard is reported in [7]. As we discuss in Section III-B,
our proposed approach is significantly less computationally
intensive relative to those in [7]. We identify conditions
on the observation model and the network structure that
guarantee applicability of our Byzantine-resilient learning
rule, and argue in Section IV that such conditions can be
checked in polynomial time.
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II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1, 2, . . . , n} interacting over a time-invariant, directed com-
munication graph G = (V, E). An edge (i, j) ∈ E indicates
that agent i can directly transmit information to agent j. If
(i, j) ∈ E , then agent i will be called a neighbor of agent j,
and agent j will be called an out-neighbor of agent i. The
set of all neighbors of agent i will be denoted Ni. Given two
disjoint sets C1, C2 ⊆ V , we say that C2 is reachable from C1
if for every i ∈ C2, there exists a directed path from some
j ∈ C1 to agent i (note that j will in general be a function
of i). We will use |C| to denote the cardinality of a set C.

Observation Model: Let Θ = {θ1, θ2, . . . , θm} denote m
possible states of the world; each θi ∈ Θ will be called a
hypothesis. Let N and N+ denote the set of non-negative
integers and positive integers, respectively. Then at each
time-step t ∈ N+, every agent i ∈ V privately observes
a signal si,t ∈ Si, where Si denotes the signal space of
agent i. The joint observation profile so generated across the
network is denoted st = (s1,t, s2,t, . . . , sn,t), where st ∈ S ,
and S = S1×S2×· · ·×Sn. The signal st is generated based
on a conditional likelihood function l(·|θ?), governed by the
true state of the world θ? ∈ Θ. Let li(·|θ?), i ∈ V denote the
i-th marginal of l(·|θ?). The signal structure of each agent
i ∈ V is then characterized by a family of parameterized
marginals {li(wi|θ) : θ ∈ Θ, wi ∈ Si}.

We make the following standard assumptions [2]–[8]: (i)
The signal space of each agent i, namely Si, is finite. (ii)
Each agent i has knowledge of its local likelihood functions
{li(·|θp)}mp=1, and it holds that li(wi|θ) > 0, ∀wi ∈ Si, and
∀θ ∈ Θ. (iii) The observation sequence of each agent is
described by an i.i.d. random process over time; however, at
any given time-step, the observations of different agents may
potentially be correlated. (iv) There exists a fixed true state of
the world θ? ∈ Θ (unknown to the agents) that generates the
observations of all the agents. Finally, we define a probability
triple (Ω,F ,Pθ?), where Ω , {ω : ω = (s1, s2, . . .), ∀st ∈
S, ∀t ∈ N+}, F is the σ-algebra generated by the obser-
vation profiles, and Pθ? is the probability measure induced

by sample paths in Ω. Specifically, Pθ? =
∞∏
t=1

l(·|θ?). We

will use the abbreviation a.s. to indicate that an event occurs
almost surely w.r.t. the probability measure Pθ? .

Given the above setup, the goal of each agent in the
network is to discern the true state of the world θ?. The
challenge associated with such a task stems from the fact that
the private signal structure of any given agent is in general
only partially informative. To make this notion precise, define
Θθ?

i , {θ ∈ Θ : li(wi|θ) = li(wi|θ?), ∀wi ∈ Si}. In words,
Θθ?

i represents the set of hypotheses that are observationally
equivalent to the true state θ? from the perspective of agent
i. In general, for any agent i ∈ V , we may have |Θθ?

i | > 1,
necessitating collaboration among agents. While inter-agent
collaboration is implicitly assumed in the related literature,
in this paper we will also allow misbehavior on the part of
certain agents, modeled as follows.

Adversary Model: We assume that a certain fraction of

the agents are adversarial, and model their behavior based
on the Byzantine fault model [12]. In particular, Byzan-
tine agents possess complete knowledge of the observation
model, the network model, the algorithms being used, the
information being exchanged, and the true state of the world.
Leveraging such information, adversarial agents can behave
arbitrarily and in a coordinated manner, and can in partic-
ular, send incorrect, potentially inconsistent information to
their out-neighbors. We will consider an f -local adversarial
model, i.e., we assume that there are at most f adversaries in
the neighborhood of any non-adversarial agent. As is fairly
standard in the distributed fault-tolerant literature [13]–[17],
we only assume that non-adversarial agents know the upper
bound f on the number of adversaries in their neighborhood,
but are otherwise unaware of their identities. The adversarial
set will be denoted by A ⊂ V , and the remaining agents
R = V \ A will be called the regular agents.

Our objective in this paper will be to design a distributed
learning rule that allows each regular agent i ∈ R to identify
the true state of the world almost surely, despite (i) the
partially informative signal structures of the agents, and (ii)
the actions of any f -local Byzantine adversarial set. To this
end, we introduce the following notion of source agents.

Definition 1. (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses θp, θq ∈ Θ,
if D(li(·|θp)||li(·|θq)) > 0, where D(li(·|θp)||li(·|θq)) rep-
resents the KL-divergence between the distributions li(·|θp)
and li(·|θq). The set of all source agents for the pair θp, θq
is denoted by S(θp, θq).

In words, a source agent for a pair θp, θq ∈ Θ is an agent
that can distinguish between the pair of hypotheses θp, θq
based on its private signal structure. In our developments,
we will require the following two definitions.

Definition 2. (r-reachable set) [14] For a graph G = (V, E),
a set C ⊆ V , and an integer r ∈ N+, C is an r-reachable set
if there exists an i ∈ C such that |Ni \ C| ≥ r.

Definition 3. (strongly r-robust graph w.r.t. S(θp, θq)) For
r ∈ N+ and θp, θq ∈ Θ, a graph G = (V, E) is strongly
r-robust w.r.t. the set of source agents S(θp, θq), if for every
non-empty subset C ⊆ V \ S(θp, θq), C is r-reachable.

III. PROPOSED LEARNING RULES

A. A Novel Belief Update Rule

In this section, we propose a novel belief update rule and
discuss the intuition behind it. To introduce the key ideas
underlying our basic approach, we first consider a scenario
where all agents are regular, i.e., R = V . Every agent i
maintains and updates (at every time-step) two separate sets
of belief vectors, namely, πi,t and µi,t. Each of these vectors
are probability distributions over the hypothesis set Θ. We
will refer to πi,t and µi,t as the “local” belief vector (for
reasons that will soon become obvious), and the “actual”
belief vector, respectively, maintained by agent i. The goal of
each agent i ∈ V in the network will be to use its own private
signals, and the information available from its neighbors, to
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update µi,t sequentially so that limt→∞ µi,t(θ
∗) = 1 almost

surely. To do so, for each θ ∈ Θ, and at each time-step t+
1, t ∈ N, agent i first generates πi,t+1(θ) via a local Bayesian
update rule that incorporates the private observation si,t+1

using πi,t(θ) as a prior. Having generated πi,t+1(θ), agent i
updates µi,t+1(θ) (up to normalization) by setting it to be the
minimum of its locally generated belief πi,t+1(θ), and the
actual beliefs µj,t(θ), j ∈ Ni of its neighbors at the previous
time-step. It then reports its actual belief µi,t+1(θ) to each
of its out-neighbors.1 The belief vectors are initialized as
µi,0(θ) > 0, πi,0(θ) > 0, ∀θ ∈ Θ, ∀i ∈ V . Subsequently,
these vectors are updated at each time-step t+ 1, t ∈ N as:
• Step 1: Update of the local beliefs:

πi,t+1(θ) =
li(si,t+1|θ)πi,t(θ)

m∑
p=1

li(si,t+1|θp)πi,t(θp)
. (1)

• Step 2: Update of the actual beliefs:

µi,t+1(θ) =
min{{µj,t(θ)}j∈Ni ,πi,t+1(θ)}

m∑
p=1

min{{µj,t(θp)}j∈Ni ,πi,t+1(θp)}
.

(2)
Intuition behind the learning rule: Consider the set

of source agents S(θ∗, θ) who can differentiate between a
certain false hypothesis θ and the true state θ?. We ask: how
do the agents in the set S(θ?, θ) contribute to the process
of collaborative learning? To answer this question, we note
that the signal structures of such agents are rich enough for
them to be able to eliminate θ on their own, i.e., without
the support of their neighbors. Thus, the agents in S(θ?, θ)
should contribute towards driving the actual beliefs of their
out-neighbors (and eventually, of all the agents in the set
V\S(θ?, θ)) on the hypothesis θ to zero. To achieve the above
objective, we are especially interested in devising a rule that
ensures that the capability of the source agents S(θ?, θ) to
eliminate θ is not diminished due to neighbor interactions. It
is precisely these considerations that motivate us to employ
(i) an auxiliary belief vector πi,t+1 generated via local
processing (i.e., without any network influence) of the private
signals, and (ii) a min-rule of the form (2). Specifically, if
i ∈ S(θ?, θ), then the sequence of local beliefs πi,t+1(θ)
will almost surely converge to 0 based on the update rule
(1). Hence, for a source agent i ∈ S(θ?, θ), πi,t+1(θ) will
play the key role of an external network-independent input
in the min-rule (2) that triggers a process of belief reduction
on the hypothesis θ originating at the source set S(θ?, θ),
and eventually propagating via the proposed min-rule to each
agent in the network reachable from S(θ?, θ). The above
discussion will be made precise in Section V.

Remark 1. Note that our proposed algorithm does not
employ any form of “belief-averaging” unlike existing ap-
proaches to distributed hypothesis testing that rely either on
linear opinion pooling [2]–[4], or log-linear opinion pooling

1Note that based on our algorithm, agents only exchange their actual
beliefs, and not their local beliefs.

[5]–[10]. As such, the lack of linearity in our belief update
rule precludes (direct or indirect) adaptation of existing
analysis techniques to suit our needs. Consequently, we
develop a novel sample path based proof technique in Section
V to establish consistency of the proposed learning rule.

B. A Byzantine-Resilient Belief Update Rule

As pointed out in the Introduction, a key benefit of our
approach is that it can be extended to account for the worst-
case Byzantine adversarial model described in Section II. A
standard way to analyze the impact of such adversarial agents
while designing resilient distributed consensus-based proto-
cols (for applications in consensus [13], [14], optimization
[15], [16] and hypothesis testing [7]) is to to express the
iterates of a regular agent as a convex combination of the
iterates of its regular neighbors, based on appropriate filtering
techniques, and under certain assumptions on the network
structure. While this can indeed be achieved efficiently for
scalar consensus problems, for problems requiring consensus
on vectors (like the belief vectors in our setting), such an
approach becomes computationally prohibitive [7]. To bypass
such heavy computations, and yet accommodate Byzantine
attacks, we now develop a resilient version of the learning
rule introduced in Section III-A, as follows. Each agent
i ∈ R acts as follows at every time-step t+1 (where t ∈ N).

• Step 1: Update of the local beliefs: The local belief
πi,t+1(θ) is updated as before, based on (1).

• Step 2: Filtering extreme beliefs: If |Ni| ≥ (2f + 1),
then agent i performs a filtering operation as follows.
It collects the actual beliefs µj,t(θ) from each neighbor
j ∈ Ni and sorts them from highest to lowest. It rejects
the highest f and the lowest f of such beliefs (i.e., it
throws away 2f beliefs in all). In other words, for each
hypothesis, a regular agent retains only the moderate
beliefs received from its neighbors.

• Step 3: Update of the actual beliefs: If |Ni| ≥ (2f +
1), then agent i updates µi,t+1(θ) as follows. Let the
set of neighbors whose beliefs on θ are not rejected
by agent i (based on the previous filtering step) be
denoted by Mθ

i,t ⊂ Ni. The actual belief µi,t+1(θ) is
then updated as follows:

µi,t+1(θ) =
min{{µj,t(θ)}j∈Mθ

i,t
,πi,t+1(θ)}

m∑
p=1

min{{µj,t(θp)}
j∈M

θp
i,t

,πi,t+1(θp)}
.

(3)
If |Ni| < (2f + 1), then agent i updates µi,t+1(θ) as
follows:

µi,t+1(θ) = πi,t+1(θ). (4)

Agent i transmits µi,t+1(θ) to each of its out-neighbors on
completion of the above steps. We will refer to the above
sequence of actions as the Local-Filtering based Resilient
Hypothesis Elimination (LFRHE) algorithm.
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IV. MAIN RESULTS AND DISCUSSION

The main results of the paper are as follows.

Theorem 1. Suppose R = V , and that the following hold:
(i) For every pair of hypotheses θp, θq ∈ Θ, the corre-

sponding source set S(θp, θq) is non-empty.
(ii) For every pair of hypotheses θp, θq ∈ Θ, V \S(θp, θq)

is reachable from the source set S(θp, θq).
(iii) Agents have non-zero prior beliefs on each hypothesis,

i.e., πi,0(θ) > 0, µi,0(θ) > 0, ∀i ∈ V , ∀θ ∈ Θ.
Then, the learning rule described by equations (1) and (2)
guarantees that µi,t(θ?)→ 1 a.s. ∀i ∈ V .

Theorem 2. Suppose the following are true:
(i) For every pair of hypotheses θp, θq ∈ Θ, the graph
G is strongly (2f + 1)-robust w.r.t. the corresponding
source set S(θp, θq).

(ii) Each regular agent i ∈ R has a non-zero prior belief
on each hypothesis, i.e., πi,0(θ) > 0, µi,0(θ) > 0 for
all i ∈ R, and for all θ ∈ Θ.

Then, the LFRHE algorithm described by equations (1), (3)
and (4) guarantees that µi,t(θ?) → 1 a.s. ∀i ∈ R, despite
the actions of any f -local set of Byzantine adversaries.

Remark 2. For any pair θp, θq ∈ Θ, notice that condition
(i) of Theorem 2 (together with the definition of strong-
robustness in Def. 3) requires |S(θp, θq)| ≥ (2f + 1), if
V \ S(θp, θq) is non-empty.

Remark 3. While the first condition in Theorem 1 is a basic
global identifiability condition, the second condition on the
network structure is in general weaker than the standard
assumption of strong-connectivity made in [2], [3], [6], [8]–
[10]. To see this, consider a scenario where Θ = {θ1, θ2}.
Clearly, any agent i ∈ S(θ1, θ2) can discern the true
state without neighbor interactions, precluding the need for
incoming edges to such agents.

Remark 4. The first condition in Theorem 2 blends re-
quirements on the signal structures of the agents with those
on the communication graph. To gain intuition about this
condition, suppose Θ = {θ1, θ2}, and consider an agent
i ∈ V \ S(θ1, θ2). To enable i to learn the truth despite
potential adversaries in its neighborhood, one requires (i)
redundancy in the signal structures of the agents (see Remark
2), and (ii) redundancy in the network structure to ensure
reliable information flow from S(θ1, θ2) to agent i. These
requirements are captured by condition (i). For a fixed source
set S(θp, θq), checking whether G is strongly (2f + 1)-
robust w.r.t. S(θp, θq) can be done in polynomial time [17].
Since the source sets for each pair θp, θq ∈ Θ can also
be computed in polynomial time via a simple inspection of
the agents’ signal structures, it follows that condition (i) in
Theorem 2 can be checked in polynomial time.

V. PROOFS OF THE MAIN RESULTS

We start with the following simple lemma that character-
izes the asymptotic behavior of the local belief sequences
generated based on (1); for a proof, see [18].

Lemma 1. Consider an agent i ∈ S(θ?, θ) ∩ R. Suppose
πi,0(θ?) > 0. Then, the update rule (1) ensures that (i)
πi,t(θ)→ 0 a.s., and (ii) πi,∞(θ?) , limt→∞ πi,t(θ

?) exists
a.s., and satisfies πi,∞(θ?) ≥ πi,0(θ?).

We now sketch the proofs of Theorems 1 and 2; details
can be found in [18].

A. Proof of Theorem 1 (Sketch)

Proof. Let Ω̄ ⊆ Ω denote the set of sample paths along
which for each agent i ∈ V , the following hold: (i) for
each θ ∈ Θ \ Θθ?

i , πi,t(θ) → 0, and (ii) πi,∞(θ?) ,
limt→∞ πi,t(θ

?) exists, and satisfies πi,∞(θ?) ≥ πi,0(θ?).
Based on condition (iii) in Theorem 1, and Lemma 1, we
infer that Ω̄ has measure 1. Thus, to prove the desired result,
it suffices to confine our attention to Ω̄. Specifically, fix any
sample path ω ∈ Ω̄, and pick any ε > 0. Our goal will be to
establish that along the sample path ω, there exists t(ω, ε)
such that for all t ≥ t(ω, ε), µi,t(θ) < ε, ∀i ∈ V , ∀θ 6= θ?.
We complete the proof in the following two steps.

Step 1: Lower bounding the actual beliefs on the true
state: Define γ1 , mini∈V πi,0(θ?) and notice that γ1 > 0
based on condition (iii) of the theorem. Given the choice
of the sample path ω, we notice that πi,∞(θ?) exists for
each i ∈ V , and that πi,∞(θ?) ≥ γ1. Pick a small number
δ > 0 such that δ < γ1. The following statement is then
immediate. There exists a time-step t̄1(ω, δ) such that for all
t ≥ t̄1(ω, δ), πi,t(θ?) ≥ γ1 − δ > 0, ∀i ∈ V . Now define
γ2(ω) , mini∈V{µi,t̄1(ω,δ)(θ

?)}. We claim γ2(ω) > 0. To
see this, observe that given the assumption of non-zero prior
beliefs on the true state, and the structure of the proposed
min-rule (2), γ2(ω) can be 0 if and only if there exists
some time-step t′(ω) ≤ t̄1(ω, δ) such that πi,t′(ω)(θ

?) = 0,
for some i ∈ V . However, given the structure of the local
Bayesian update rule (1), we would then have πi,t(θ?) = 0,
for all t ≥ t′(ω), contradicting the previously established fact
that πi,t(θ?) ≥ γ1 − δ > 0, ∀t ≥ t̄1(ω, δ) ≥ t′(ω), ∀i ∈ V .
Having thus established that γ2(ω) > 0, define η(ω) ,
min{γ1− δ, γ2(ω)} > 0. In other words, η(ω) lower-bounds
the lowest belief (considering both local and actual beliefs)
on the true state θ? held by an agent at time-step t̄1(ω, δ).
We claim the following:

µi,t(θ
?) ≥ η(ω), ∀t ≥ t̄1(ω, δ), ∀i ∈ V . (5)

To see why (5) is true, fix an agent i ∈ V , and observe that
based on (2):

µi,t̄1(ω,δ)+1(θ?)
(a)

≥ η(ω)
m∑
p=1

min{{µj,t̄1(ω,δ)(θp)}j∈Ni , πi,t̄1(ω,δ)+1(θp)}

≥ η(ω)
m∑
p=1

πi,t̄1(ω,δ)+1(θp)

(b)
= η(ω),

(6)
where (a) follows from the way η(ω) is defined and by
noting that πi,t(θ?) ≥ η(ω), ∀t ≥ t̄1(ω, δ), ∀i ∈ V , and
(b) follows by noting that the local belief vectors generated
via (1) (at each time-step) are valid probability distributions
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over Θ, and hence
m∑
p=1

πi,t̄1(ω,δ)+1(θp) = 1. Since the above

reasoning applies to each i ∈ V , (5) follows via induction.
Step 2: Upper bounding the actual beliefs on each false

hypothesis: Given an ε > 0, pick a small ε̄(ω) > 0 such
that ε̄(ω) < min{η(ω), ε}. Fix a false hypothesis θ 6= θ?.
By virtue of condition (i) of the theorem, we know that
|S(θ?, θ)| > 0. Let q = d(G) + 2, where d(G) represents
the diameter of the graph G. Then, based on Lemma 1, for
each i ∈ S(θ?, θ), there exists tθi (ω, ε̄(ω)) such that for all
t ≥ tθi (ω, ε̄(ω)), πi,t(θ) ≤ ε̄q(ω). Define

t̄θ2(ω, δ, ε̄(ω)) , max{t̄1(ω, δ), max
i∈S(θ?,θ)

{tθi (ω, ε̄(ω))}}.
(7)

Throughout the rest of the proof, we suppress the dependence
of t̄2 on θ, ω, δ and ε̄(ω) to avoid cluttering the exposition.
For any agent i ∈ S(θ?, θ), (2) yields:

µi,t̄2+1(θ)
(a)

≤ ε̄q(ω)

min{{µj,t̄2(θ?)}j∈Ni , πi,t̄2+1(θ?)}
(b)

≤ ε̄q(ω)

η(ω)

(c)
< ε̄(q−1)(ω) ≤ ε̄(ω) < ε,

(8)

where (a) follows from the fact that for each i ∈ S(θ?, θ),
we have πi,t(θ) ≤ ε̄q(ω), ∀t ≥ t̄2, (b) follows from (5) and
(7), and (c) follows from the way ε̄(ω) has been chosen. The
chain of reasoning used to arrive at (8) applies to subsequent
time-steps as well, thereby yielding:

µi,t(θ) < ε̄(q−1)(ω), ∀t ≥ t̄2 + 1, ∀i ∈ S(θ?, θ). (9)

We now wish to investigate how the effect of (9) propagates
through the rest of the network. If V \ S(θ?, θ) is empty,
then we have reached the desired conclusion w.r.t. the false
hypothesis θ. If not, define

L(θ?,θ)
1 , {i ∈ {V \ S(θ?, θ)} : |Ni ∩ S(θ?, θ)| > 0} (10)

as the set of out-neighbors of the source set S(θ?, θ).
Condition (ii) of the theorem implies that if V \ S(θ?, θ) is
non-empty, then so is L(θ?,θ)

1 . Consider any agent i ∈ L(θ?,θ)
1 .

By definition, i has a neighbor in S(θ?, θ) satisfying (9). This
observation, coupled with equations (5), (7), and arguments
similar to those used to arrive at (8), yields:

µi,t(θ) < ε̄(q−2)(ω), ∀t ≥ t̄2 + 2, ∀i ∈ L(θ?,θ)
1 . (11)

With L(θ?,θ)
0 , S(θ?, θ), define the sets L(θ?,θ)

r , 1 ≤ r ≤
d(G) recursively as follows:

L(θ?,θ)
r , {i ∈ V \{

r−1⋃
c=0

L(θ?,θ)
c } : |Ni∩{

r−1⋃
c=0

L(θ?,θ)
c }| > 0}.

(12)
Whenever V \{

⋃r−1
c=0 L

(θ?,θ)
c } is non-empty, condition (ii) of

the theorem implies that L(θ?,θ)
r is also non-empty. One can

then easily verify via induction on r that:

µi,t(θ) < ε̄(q−(r+1))(ω), ∀t ≥ t̄2 + (r + 1), ∀i ∈ L(θ?,θ)
r ,

(13)
where 1 ≤ r ≤ d(G). Noting that q = d(G)+2, we conclude
µi,t(θ) < ε̄(ω) < ε, ∀t ≥ t̄2 +d(G)+1, ∀i ∈ V . An identical
argument applies to every false hypothesis θ 6= θ?.

B. Proof of Theorem 2 (Sketch)

Proof. Consider an f -local adversarial set A ⊂ V , and let
R = V \ A. We study two separate cases.

Case 1: Consider a regular agent i ∈ R such that |Ni| <
(2f + 1). One can show that condition (i) of the theorem
implies i ∈ S(θp, θq), for every pair θp, θq ∈ Θ. It then
follows from Lemma 1 that such an agent can learn the true
state θ? by simply updating its beliefs based on (1) and (4).

Case 2: We now focus only on regular agents i satisfying
|Ni| ≥ (2f + 1). A key property of the proposed LFRHE
algorithm that will be used throughout the proof is as follows.
For any i ∈ R, and any θ ∈ Θ, the filtering operation of the
LFRHE algorithm ensures that at each time-step t ∈ N:

µj,t(θ) ∈ Conv(Ψθ
i,t), ∀j ∈Mθ

i,t, (14)

where
Ψθ
i,t , {µj,t(θ) : j ∈ Ni ∩R}, (15)

and Conv(Ψθ
i,t) is used to denote the convex hull formed by

the points in the set Ψθ
i,t. To see why (14) is true, partition the

neighbor set Ni of a regular agent into three sets Uθi,t,Mθ
i,t,

and J θi,t as follows. Sets Uθi,t and J θi,t are each of cardinality
f , and contain neighbors of agent i that transmit the highest f
and the lowest f actual beliefs respectively, on the hypothesis
θ, to agent i at time-step t. The set Mθ

i,t contains the
remaining neighbors of agent i, and is non-empty at every
time-step since |Ni| ≥ (2f + 1). If Mθ

i,t ∩ A = ∅, then
(14) holds trivially. Thus, consider the case when there are
adversaries in the set Mθ

i,t, i.e., Mθ
i,t ∩ A 6= ∅. Given the

f -locality of the adversarial model, and the nature of the
filtering operation in the LFRHE algorithm, we infer that for
each j ∈Mθ

i,t∩A, there exist regular agents u, v ∈ Ni∩R,
such that u ∈ Uθi,t, v ∈ J θi,t, and µv,t(θ) ≤ µj,t(θ) ≤ µu,t(θ).
This establishes our claim regarding equation (14).

Our goal will be to now establish each of the two steps in
the proof of Theorem 1. To this end, let Ω̄ ⊆ Ω denote the
set of sample paths along which for each agent i ∈ R, the
following hold: (i) for each θ ∈ Θ\Θθ?

i , πi,t(θ)→ 0, and (ii)
πi,∞(θ?) , limt→∞ πi,t(θ

?) exists, and satisfies πi,∞(θ?) ≥
πi,0(θ?). Based on condition (ii) of the theorem, and Lemma
1, we infer that Pθ?(Ω̄) = 1. Now fix a sample path ω ∈
Ω̄, and pick ε > 0. Define γ1 = mini∈R πi,0(θ?), pick a
small number δ > 0 satisfying δ < γ1, and observe that
there exists t̄1(ω, δ) such that πi,t(θ?) ≥ γ1 − δ > 0, ∀t ≥
t̄1(ω, δ), ∀i ∈ R. Define γ2(ω) , mini∈R{µi,t̄1(ω,δ)(θ

?)}.
As before, we claim γ2(ω) > 0. To see this, suppose by way
of contradiction that there exists a time-step t′(ω) satisfying:

t′(ω) = min{t ∈ N : ∃i ∈ R with µi,t(θ?) = 0}. (16)

Clearly, t′(ω) 6= 0 based on condition (ii) of the theorem.
Suppose t′(ω) is some positive integer, and focus on how
agent i updates µi,t′(ω)(θ

?) based on (3). Following similar
arguments as in the proof of Theorem 1, we know that
πi,t(θ

?) > 0, ∀t ∈ N, ∀i ∈ R. At the same time, every belief
featuring in the set Ψθ?

i,t′(ω)−1 (as defined in equation (15))
is strictly positive based on the way t′(ω) is defined. The
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above arguments coupled with (14), (15) readily imply that
µi,t′(ω)(θ

?) > 0, yielding the desired contradiction.2 With
η(ω) , min{γ1 − δ, γ2(ω)} > 0, equations (14), (15), and
arguments similar to those used to arrive at (6) yield

µi,t(θ
?) ≥ η(ω), ∀t ≥ t̄1(ω, δ), ∀i ∈ R. (17)

This completes Step 1. To proceed with Step 2 (i.e.,
upper-bounding the actual beliefs on each false hypoth-
esis), given an ε > 0, pick a small ε̄(ω) > 0 such
that ε̄(ω) < min{η(ω), ε}. Fix a hypothesis θ 6= θ?,
let q = n + 1, and note that based on Lemma 1, for
each i ∈ S(θ?, θ) ∩ R, there exists tθi (ω, ε̄(ω)) such
that for all t ≥ tθi (ω, ε̄(ω)), πi,t(θ) ≤ ε̄q(ω). De-
fine t̄2 , max{t̄1(ω, δ),maxi∈S(θ?,θ)∩R{tθi (ω, ε̄(ω))}}.
For any agent i ∈ S(θ?, θ) ∩ R, observe that
min{{µj,t̄2(θ?)}j∈Mθ?

i,t̄2

, πi,t̄2+1(θ?)} ≥ η(ω). Combining
the above with arguments used to arrive at (8), we obtain:

µi,t(θ) < ε̄(q−1)(ω), ∀t ≥ t̄2 + 1, ∀i ∈ S(θ?, θ) ∩R. (18)

If V \ S(θ?, θ) is empty, then we are done. Else, define

L(θ?,θ)
1 , {i ∈ {V \S(θ?, θ)} : |Ni ∩S(θ?, θ)| ≥ (2f + 1)}.

(19)
Whenever V \ S(θ?, θ) is non-empty, we claim that L(θ?,θ)

1

(as defined above) is also non-empty based on condition (i)
of the theorem. To see this, note that if L(θ?,θ)

1 is empty, then
C = V \S(θ?, θ) is not (2f +1)-reachable, violating the fact
that G is strongly (2f + 1)-robust w.r.t. S(θ?, θ). We claim

min
j∈Mθ

i,t̄2+1

µj,t̄2+1(θ) < ε̄(q−1)(ω), ∀i ∈ L(θ?,θ)
1 ∩R. (20)

To verify the above claim, pick any agent i ∈ L(θ?,θ)
1 ∩ R.

When |Mθ
i,t̄2+1 ∩ {S(θ?, θ) ∩ R}| > 0, the claim fol-

lows immediately based on (18). Consider the case when
|Mθ

i,t̄2+1 ∩ {S(θ?, θ)∩R}| = 0. Since i ∈ L(θ?,θ)
1 , it has at

least (2f + 1) neighbors in S(θ?, θ), out of which at least
f + 1 are regular based on the f -locality of the adversarial
model. Since the set J θi,t̄2+1 has cardinality f , it must then
be that |Uθi,t̄2+1 ∩ {S(θ?, θ) ∩ R}| > 0. Let u ∈ Uθi,t̄2+1 ∩
{S(θ?, θ)∩R}. Based on the wayMθ

i,t̄2+1 is defined, it must
be that µj,t̄2+1(θ) ≤ µu,t̄2+1(θ) < ε̄(q−1)(ω), ∀j ∈Mθ

i,t̄2+1,
where the last inequality follows from (18). This establishes
our claim regarding (20). Consider the update of µi,t̄2+2(θ)
based on (3). The above arguments (that apply to subsequent
time-steps as well) imply that the numerator of the fraction
on the RHS of (3) is upper-bounded by ε̄(q−1)(ω), while the
denominator is lower-bounded by η(ω), yielding:

µi,t(θ) < ε̄(q−2)(ω), ∀t ≥ t̄2 + 2, ∀i ∈ L(θ?,θ)
1 ∩R. (21)

With L(θ?,θ)
0 , S(θ?, θ), we recursively define the sets

L(θ?,θ)
r , 1 ≤ r ≤ (n− 1) as follows:

L(θ?,θ)
r , {i ∈ V \ {

⋃r−1
c=0 L

(θ?,θ)
c } : |Ni ∩ {

⋃r−1
c=0 L

(θ?,θ)
c }| ≥ (2f + 1)}.

(22)

2In particular, this establishes that based on the LFRHE algorithm, an
adversarial agent cannot cause its regular out-neighbors to set their actual
beliefs on θ? to be 0 by setting its own actual belief on θ? to be 0.

The proof can then be completed as in Theorem 1 by
inducting on r.

VI. CONCLUSION

In this paper, we introduced a distributed learning rule that
differs fundamentally from those existing in the literature,
in the sense that it does not rely on any consensus-based
belief aggregation protocol. Using a novel sample path based
analysis technique, we established its consistency under
minimal requirements on the information structures of the
agents and the communication graph. We then showed that
a significant benefit of the proposed learning rule is that it
can be easily and efficiently modified to account for the
presence of misbehaving agents in the network, modeled
via the Byzantine adversary model. Ongoing work involves
performing a detailed convergence rate analysis to see how
such rates compare with those existing in literature.
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