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Abstract— We study the problem of collaboratively estimat-
ing the state of a discrete-time LTI process by a network of
sensor nodes interacting over a time-varying directed commu-
nication graph. Existing approaches to this problem either (i)
make restrictive assumptions on the dynamical model, or (ii)
make restrictive assumptions on the sequence of communication
graphs, or (iii) require multiple consensus iterations between
consecutive time-steps of the dynamics, or (iv) require higher-
dimensional observers. In this paper, we develop a distributed
observer that operates on a single time-scale, is of the same di-
mension as that of the state, and works under mild assumptions
of joint observability of the sensing model, and joint strong-
connectivity of the sequence of communication graphs. Our
approach is based on the notion of a novel “freshness-index”
that keeps track of the age-of-information being diffused across
the network. In particular, such indices enable nodes to reject
stale information regarding the state of the system, and in turn,
help achieve stability of the estimation error dynamics. Based on
the proposed approach, the estimate of each node can be made
to converge to the true state exponentially fast, at any desired
convergence rate. In fact, we argue that finite-time convergence
can also be achieved through a suitable selection of the observer
gains. Our proof of convergence is self-contained, and employs
simple arguments from linear system theory and graph theory.

I. INTRODUCTION

Given a discrete-time LTI system x[k + 1] = Ax[k],
and a linear measurement model y[k] = Cx[k], a classical
result in control theory states that if the pair (A,C) is
observable, then one can generate an estimate x̂[k] that con-
verges exponentially fast to x[k] at any desired convergence
rate. Over the last couple of decades, significant effort has
been directed towards studying the distributed counterpart of
the above problem, wherein observations of the process are
distributed among a set of sensors modeled as nodes of a
communication graph [1]–[10]. The fundamental problem of
identifying the minimal requirements on the measurement
structure of the nodes and the underlying communication
graph that guarantee the existence of a distributed observer,
was solved only recently in [5]–[9] for static graphs.
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The approaches in [5]–[10] can be generally classified
based on the following attributes. (i) Does the approach
require multiple consensus iterations between consecutive
time-steps of the dynamics?1 (ii) What is the dimension
of the estimator maintained by each node? (iii) Can the
convergence rate be controlled? (iv) Is the approach robust to
temporal variations in the underlying communication graph?
The techniques proposed in [5]–[9] operate on a single-time-
scale, those in [7]–[9] require observers of dimension no
more than that of the state of the system, the ones in [6],
[7], [10] can achieve any desired convergence rate, while
the one in [10] can account for a fairly general class of
time-varying graphs. The main contribution of this paper is
the development of a distributed observer that shares each
of the above positive attributes. Specifically, we develop
a single-time-scale distributed state estimation algorithm in
Section IV that requires each node to maintain an estimator
of dimension equal to that of the state (along with some
simple counters), and works under the basic assumptions of
joint observability of the observation model, and joint strong-
connectivity of the sequence of communication graphs.

The authors in [11] point out that even for the basic
consensus problem, extending the stability analysis for static
graphs to time-varying graphs is highly non-trivial. Arguably,
the stability analysis for the distributed state estimation
problem with time-varying graphs is even more challenging,
since one has to account for potentially unstable external
dynamics, a feature that is missing in the standard consensus
problem. Nevertheless, in Section V, we establish using sim-
ple arguments from linear system theory and graph theory,
that based on our approach, each node can track the true
dynamics exponentially fast at any desired convergence rate.
Additionally, we show how to design the observer gains so
as to achieve convergence in finite time. The closest related
work is [10], where the authors develop a solution that makes
an elegant connection to the problem of distributed linear-
equation solving [12]. In contrast to our technique, the one in
[10] is inherently a two-time-scale approach, requires each
node to maintain and update auxiliary state estimates, and
works under the assumption that the communication graph
is strongly-connected at each time-step.

The key idea behind our algorithm is the use of a suit-
ably defined “freshness-index” that keeps track of the age-
of-information being diffused across the network. Loosely
speaking, such indices are a measure of the accuracy with

1Such approaches, referred to as two-time-scale approaches, may prove
to be computationally prohibitive for real-time applications.
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which the information received by a node describes the
physical process being observed. While the freshness-indices
enable a node to reject stale information, the assumption
of joint strong-connectivity ensures that fresh information is
diffused across the network sufficiently often. These facts
taken together help achieve stability of the estimation error
process. Finally, we point out that while this is perhaps
the first use of the notion of age-of-information (AoI) in
a networked control/estimation setting, such a concept has
been widely employed in the study of various queueing-
theoretic problems arising in wireless networks [13], [14].2

II. PROBLEM FORMULATION AND BACKGROUND

We are interested in collaborative state estimation of a
discrete-time LTI system of the form:

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, A ∈ Rn×n is the
system matrix, and x[k] ∈ Rn is the state of the system.3 A
network of sensors, modeled as nodes of a communication
graph, obtain partial measurements of the state of the above
process as follows:

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri represents the measurement vector of
the i-th node at time-step k, and Ci ∈ Rri×n repre-
sents the corresponding observation matrix. Let y[k] =[
yT1 [k] · · · yTN [k]

]T
and C =

[
CT

1 · · · CT
N

]T
repre-

sent the collective measurement vector at time-step k, and
the collective observation matrix, respectively. The goal of
each node i in the network is to generate an asymptotically
correct estimate x̂i[k] of the true dynamics x[k]. It may not
be possible for any node i in the network to accomplish
such a task in isolation, since the pair (A,Ci) may not be
detectable in general. Throughout the paper, we will only
assume that the pair (A,C) is observable.

As is evident from the above discussion, information
exchange among nodes is necessary to solve the problem at
hand. At each time-step k ∈ N, such interactions are modeled
by a directed communication graph G[k] = (V, E [k]), where
V = {1, . . . , N} represents the set of nodes, and E [k]
represents the edge set of G[k] at time-step k. Specifically,
if (i, j) ∈ E [k], then node i can send information directly
to node j at time-step k; in such a case, node i will be
called a neighbor of node j at time-step k. We will use
Ni[k] to represent the set of all neighbors (excluding node
i) of node i at time-step k. When G[k] = G ∀k ∈ N, where
G is a static, directed communication graph, the necessary
and sufficient condition (on the system and network) to solve
the distributed state estimation problem is that each source

2The notion of age-of-information (AoI) was first introduced in [13]
as a performance metric to keep track of real-time status updates in a
communication system. In a wireless network, it measures the time elapsed
since the generation of the packet most recently delivered to the destination.
In Section IV, we will relate this concept to our present setting.

3We use N and N+ to denote the set of non-negative integers and the set
of positive integers, respectively.

component of G be collectively detectable [5]. Our goal in
this paper is to extend the above result to the scenario where
the underlying communication graph is allowed to change
over time. To this end, let the union graph over an interval
[k1, k2], 0 ≤ k1 < k2, indicate a graph with vertex set equal
to V , and edge set equal to the union of the edge sets of
the individual graphs appearing over the interval [k1, k2].
Based on this convention, we will assume that the sequence
of communication graphs {G[k]}∞k=0 is “jointly strongly-
connected”, in the sense described below.

Assumption 1. (Joint Strong-Connectivity) There exists
T ∈ N+ such that the union graph over every interval of
the form [kT, (k+ 1)T ) is strongly-connected, where k ∈ N.

For communication graphs satisfying the above assump-
tion, our objective will be to design a distributed algorithm
that ensures limk→∞ ‖x̂i[k]− x[k]‖ = 0, ∀i ∈ V . To this
end, we recall the following result from [8].

Lemma 1. Given a system matrix A, and a set of N
sensor observation matrices C1,C2, . . . ,CN , define C ,[
CT

1 · · · CT
N

]T
. Suppose (A,C) is observable. Then,

there exists a similarity transformation matrix T that trans-
forms the pair (A,C) to (Ā, C̄), such that

Ā =


A11 0
A21 A22 0

...
...

. . .
...

AN1 AN2 · · · AN(N−1) ANN

 ,

C̄ =


C̄1

C̄2
...

C̄N

 =


C11 0
C21 C22 0

...
...

...
...

CN1 CN2 · · ·CN(N−1) CNN

 ,
(3)

and the pair (Aii,Cii) is observable ∀i ∈ {1, 2, . . . , N}.
We use the matrix T given by Lemma 1 to perform the

coordinate transformation x[k] = Tz[k], yielding:

z[k + 1] = Āz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, . . . , N},
(4)

where Ā = T−1AT and C̄i = CiT are given by (3).
Commensurate with the structure of Ā, the vector z[k] is
of the following form:

z[k] =
[
z(1)[k]

T · · · z(N)[k]
T
]T
, (5)

where z(j)[k] will be referred to as the j-th substate. By
construction, since the pair (Ajj ,Cjj) is locally observable
w.r.t. the measurements of node j, node j will be viewed
as the unique source node for substate j. In this sense, the
role of node j will be to ensure that each non-source node
i ∈ V \ {j} maintains an asymptotically correct estimate
of substate j. For a time-invariant strongly-connected graph,
this is achieved in [8] by first constructing a spanning tree
rooted at node j, and then requiring nodes to only listen to
their parents in such a tree for estimating substate j. The
unidirectional flow of information (from the source node j
to the rest of the network) so achieved guarantees stability of
the error process. The above strategy is no longer applicable
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Fig. 1. An LTI system is monitored by a network of 3 nodes, where the
communication graph G[k] switches between the two graphs shown above.
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Fig. 2. Estimation error plots of the nodes for the model in Figure 1.
Simulations are performed for a model where a = 2. The figure on the left
corresponds to the case where consensus weights are distributed uniformly
among neighbors, while the one on the right is the case where weights are
placed along a tree rooted at node 1.

when the underlying communication graph is time-varying,
for the following reasons. (i) For a given substate j, there
may not exist a common spanning tree rooted at node j in
each graph G[k], k ∈ N. (ii) Requiring a specific spanning
tree rooted at node j to repeat after a finite duration of time is
restrictive, and qualifies as only a special case of Assumption
1. (iii) Suppose for simplicity that G[k] is strongly-connected
at each time-step (as in [10]), and hence, there exists a
spanning tree Tj [k] rooted at node j in each such graph.
For estimating substate j, suppose consensus at time-step k
is performed along the spanning tree Tj [k]; the next section
shows that switching between such spanning trees can lead
to unstable error processes. In Section IV, we develop a
fairly simple algorithm that bypasses each of the above
problems. The next section discusses the intuition behind
this algorithm.

III. ILLUSTRATIVE EXAMPLE

Consider a network of 3 nodes monitoring a scalar unsta-
ble process x[k+1] = ax[k], as shown in Figure 1. The com-
munication graph G[k] switches between the two topologies
shown in Figure 1. Specifically, G[k] is the graph in Figure
1(a) at all even time-steps, and the one in 1(b) at all odd time-
steps. Node 1 is the only node with non-zero measurements,
and thus acts as the source node for this network. Suppose
for simplicity that it has perfect information of the state at
all time-steps, i.e., x̂1[k] = x[k], ∀k ∈ N. Given this setup,
a standard consensus based state estimate update rule would
take the form (see for example [5], [8], [10]):

x̂i[k + 1] = a

 ∑
j∈Ni[k]∪{i}

wij [k]x̂j [k]

 , i ∈ {2, 3}, (6)

where the weights wij [k] are non-negative, and satisfy∑
j∈Ni[k]∪{i} wij [k] = 1, ∀k ∈ N. The key question is:

how should the consensus weights be chosen to guarantee
stability of the estimation errors of nodes 2 and 3? Even
for this simple example, if such weights are chosen naively,
then the errors may grow unbounded over time. To see this,
consider the following two choices: (1) consensus weights
are distributed evenly over the set Ni[k] ∪ {i}, and (2)
consensus weights are placed along the tree rooted at node
1. In each case, the error dynamics are unstable, as depicted
in Figure 2. To overcome this problem, suppose nodes 2 and
3 are aware of the fact that node 1 has perfect information of
the state. Since nodes 2 and 3 have no measurements of their
own, intuitively, it makes sense that they should place their
consensus weights entirely on node 1 whenever possible. The
trickier question for node 2 (resp., node 3) is to decide when
it should listen to node 3 (resp., node 2). Let us consider
the situation from the perspective of node 2. At time-step 0,
it adopts the information of node 1, and hence, the error of
node 2 is zero at time-step 1. However, the error of node 3 is
not necessarily zero at time-step 1. Consequently, if node 2
places a non-zero consensus weight on the estimate of node
3 at time-step 1, its error at time-step 2 might assume a
non-zero value. Clearly, at time-step 1, node 2 is better off
rejecting the information from node 3, and simply running
open-loop. The main take-away point here is that adoption
or rejection of information from a neighbor should be based
on the quality of information that such a neighbor has to
offer. In particular, a node that has come in contact with
node 1 more recently is expected to have better information
about the state than the other. Thus, to dynamically evaluate
the quality of an estimate, the above reasoning suggests the
need to introduce a metric that keeps track of how delayed
that estimate is w.r.t. the estimate of the source node 1. In
the following section, we introduce such a metric.

IV. ALGORITHM

Building on the intuition developed in the previous sec-
tion, we introduce a new approach to designing distributed
observers for a general class of time-varying networks. The
main idea is the use of a “freshness-index” that keeps track of
how delayed the estimates of a node are w.r.t. the estimates
of a source node. Specifically, for updating its estimate of
z(j)[k], each node i ∈ V maintains and updates at every time-
step a freshness-index τ (j)

i [k]. At each time-step k ∈ N, the
index τ (j)

i [k] plays the following role: it determines whether
node i should adopt the information received from one of its
neighbors in Ni[k], or run open-loop, for updating ẑ

(j)
i [k],

where ẑ
(j)
i [k] represents the estimate of z(j)[k] maintained

by node i. In case it is the former, it also indicates which
specific neighbor inNi[k] that node i should listen to at time-
step k; this piece of information is particularly important for
the problem under consideration, and ensures stability of the
error process. We now formally describe the rules that govern
the update of the estimates of the j-th substate z(j)[k].

Initialization of Freshness-Indices: Each node i ∈ V
maintains an index τ (j)

i [k] ∈ {ω} ∪N, where ω is a dummy
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value. Specifically, τ (j)
i [k] = ω represents an “infinite-delay”

w.r.t. the estimate of the source node for sub-state j, namely
node j (i.e., it represents that node i has not received any
information from node j regarding substate j up to time-
step k). The indices τ

(j)
i [k] are initialized as: τ (j)

j [0] =

0, τ
(j)
i [0] = ω, ∀i ∈ V \ {j}.

Update Rules for the Source Node: Node j maintains
τ

(j)
j [k] = 0, ∀k ∈ N, and updates ẑ

(j)
j [k] as:

ẑ
(j)
j [k + 1] = (Ajj − LjCjj)ẑ

(j)
j [k] +

(j−1)∑
q=1

(Ajq − LjCjq)ẑ
(q)
j [k] + Ljyj [k],

(7)
where Lj is an output-injection gain to be decided later.

Update Rules for the Non-Source Nodes: For each
non-source node i ∈ V \ {j}, we consider two distinct cases
based on the value of τ (j)

i [k].
Case 1: τ (j)

i [k] = ω. Define

M(j)
i [k] , {l ∈ Ni[k] : τ

(j)
l [k] 6= ω}. (8)

IfM(j)
i [k] 6= ∅, let u ∈ argmin

l∈M(j)
i [k]

τ
(j)
l [k]. Node i then

updates τ (j)
i [k] and ẑ

(j)
i [k] as follows:

τ
(j)
i [k + 1] = τ (j)

u [k] + 1, (9)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
u [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (10)

If M(j)
i [k] = ∅, then

τ
(j)
i [k + 1] = ω, (11)

ẑ
(j)
i [k + 1] = Ajj ẑ

(j)
i [k] +

(j−1)∑
q=1

Ajqẑ
(q)
i [k]. (12)

Case 2: τ (j)
i [k] 6= ω. Define

F (j)
i [k] , {l ∈M(j)

i [k] : τ
(j)
l [k] < τ

(j)
i [k]}, (13)

where M(j)
i [k] is as defined in (8). If F (j)

i [k] 6= ∅, let u ∈
argmin

l∈F(j)
i [k]

τ
(j)
l [k]. Node i then updates τ (j)

i [k] as per

(9), and ẑ
(j)
i [k] as per (10). If F (j)

i [k] = ∅, then τ
(j)
i [k] is

updated as
τ

(j)
i [k + 1] = τ

(j)
i [k] + 1, (14)

and ẑ
(j)
i [k] is updated as per (12).

The above steps describe an approach for estimating z[k],
and hence x[k], since x[k] = Tz[k]. We now briefly describe
each rule of the proposed algorithm. Consider any substate
j ∈ {1, . . . , N}. For estimation of substate j, since delays
are measured w.r.t. the source node j, node j maintains its
freshness-index τ (j)

j [k] at zero for all time, to indicate a zero
delay w.r.t. itself. For updating its estimate of z(j)[k], it uses
only its own information, as is evident from (7). Every other
node starts out with an “infinite-delay” w.r.t. the source,
which is represented by the freshness-index taking on the
value ω. The freshness-index of a node i ∈ V \ {j} changes
from ω to a finite value when it comes in contact with a

neighbor with a finite delay, i.e., with a freshness-index that
is not ω (see equation (8)). At this point, we say that τ (j)

i [k]
has been “triggered”. Once triggered, at each time-step k, a
non-source node i will adopt the information of a neighbor
l ∈ Ni[k] only if node l’s estimate of z(j)[k] is “more fresh”
relative to its own, i.e., only if τ (j)

l [k] < τ
(j)
i [k] (see equation

(13)). Among the set of neighbors inM(j)
i [k] (if τ (j)

i [k] has
not yet been triggered), or in F (j)

i [k] (if τ (j)
i [k] has been

triggered), node i only adopts the information (based on (10))
of the neighbor u with the least delay. At this point, the delay
of node i matches that of node u, and this fact is captured
by the update rule (9). In case node i has no informative
neighbor, it increments its own freshness-index linearly by
1 (to capture the effect of its own information getting older)
via the update rule (14), and runs open-loop based on (12).

V. MAIN RESULT AND ANALYSIS

The main result of the paper is as follows.

Theorem 1. Given an LTI system (1), and a measurement
model (2), suppose (A,C) is observable. Let the sequence
of communication graphs {G[k]}∞k=0 satisfy Assumption 1.
Then, the observer gains L1, . . . ,LN can be designed in
a manner such that the estimation error of each node
i ∈ V converges to zero exponentially fast at any desired
convergence rate ρ, based on the proposed algorithm.

To prove Theorem 1, we require the following intermediate
results; proofs of these results are omitted here due to space
constraints, but can be found in [15].

Lemma 2. Consider any substate j, and suppose that at
some time-step k, we have that j ∈M(j)

i [k], for some i ∈ V\
{j}. Then, the proposed algorithm guarantees the following.

(i) If τ (j)
i [k] = ω, then j = argmin

l∈M(j)
i [k]

τ
(j)
l [k].

(ii) If τ
(j)
i [k] 6= ω, then j ∈ F (j)

i [k], and j =

argmin
l∈F(j)

i [k]
τ

(j)
l [k].

Lemma 3. Suppose Assumption 1 is met. Then, for each
substate j, the proposed algorithm guarantees the following.

τ
(j)
i [k] 6= ω, ∀k ≥ (N − 1)T, ∀i ∈ V . (15)

Lemma 4. Consider any substate j, and suppose that at
some time-step k, we have τ (j)

i [k] = m, where i ∈ V \ {j},
and m ∈ N+. Then, the proposed algorithm guarantees:

ẑ
(j)
i [k] = Am

jj ẑ
(j)
j [k−m]+

(j−1)∑
q=1

(k−1)∑
τ=(k−m)

A
(k−τ−1)
jj Ajqẑ

(q)
v(τ)[τ ],

(16)
where v(τ) ∈ V \ {j}.

Lemma 5. Suppose Assumption 1 is met. Then, for any
substate j, the proposed algorithm guarantees the following:

τ
(j)
i [k] ≤ 2(N − 1)T, ∀k ≥ (N − 1)T, ∀i ∈ V . (17)
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Proof. (Theorem 1) Given a desired rate of convergence ρ ∈
(0, 1), pick a set of positive scalars {ρ1, . . . , ρN}, such that
ρ1 < ρ2 < · · · ρN < ρ. For each substate j ∈ {1, . . . , N}, let
the corresponding source node j design the observer gain Lj
(featuring in equation (7)) in a manner such that the matrix
(Ajj − LjCjj) has distinct real eigenvalues with spectral
radius equal to ρj . Such a choice of Lj exists as the pair
(Ajj ,Cjj) is observable by construction. Then, there exists
a set of positive scalars {α1, . . . , αN}, such that [16]:4∥∥∥(Ajj − LjCjj)

k
∥∥∥ ≤ αjρkj , ∀k ∈ N. (18)

For a particular substate j, let e
(j)
i [k] = ẑ

(j)
i [k] − z(j)[k].

Consider the first substate j = 1, and observe that based
on (3), (4), and (7), the following is true: e

(1)
1 [k + 1] =

(A11 − L1C11)e
(1)
1 [k]. Thus, we obtain

e
(1)
1 [k] = (A11 − L1C11)

k
e

(1)
1 [0]. (19)

Taking norms on both sides of (19), and using (18), yields:∥∥∥e(1)
1 [k]

∥∥∥ ≤ c1ρk1 , ∀k ∈ N, (20)

where c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥. Based on Lemmas 3 and 4, and

the fact that z(1)[k] = (A11)
m
z(1)[k − m], ∀m ∈ N, the

following is true for any non-source node i ∈ V \ {1}:

e
(1)
i [k] = (A11)

τ
(1)
i [k]

e
(1)
1 [k−τ (1)

i [k]], ∀k ≥ (N−1)T. (21)

For each substate j, one can always find scalars βj , γj ≥ 1,
such that

∥∥∥(Ajj)
k
∥∥∥ ≤ βjγkj , ∀k ∈ N [16]. Using this bound

and the one in (20), the fact that γ1 ≥ 1 and ρ1 < 1, the fact
that τ (1)

i [k] ≤ 2(N−1)T, ∀k ≥ (N−1)T based on Lemma 5,
and the sub-multiplicative property of the 2-norm, we obtain
the following by taking norms on both sides of (21):∥∥∥e(1)

i [k]
∥∥∥ ≤ c̄1ρk1 , ∀k ≥ (N − 1)T, ∀i ∈ V , (22)

where

c̄1 , c1β1

(
γ1

ρ1

)2T̄

, T̄ = (N − 1)T. (23)

Note that c̄1 ≥ c1, and hence the bound in (22) applies
to node 1 as well (see equation (20)). Our goal is to now
obtain a bound similar to that in (22) for each substate j ∈
{2, . . . , N}. To this end, let gjq = ‖(Ajq − LjCjq)‖, and
hjq = ‖Ajq‖. Define the following quantities recursively for
j ∈ {2, . . . , N}.

cj ,
αj

ρ
(2j−3)T̄
j

∥∥∥e(j)
j [(2j − 3)T̄ ]

∥∥∥+

(j−1)∑
q=1

gjq c̄q
(ρj − ρq)

ρ(2j−3)T̄
q

 ,

c̄j , βj

cj(γj
ρj

)2T̄

+

(j−1)∑
q=1

hjq c̄q
(γj − ρq)

(
γj
ρq

)2T̄
 ,

(24)
where c1 , α1

∥∥∥e(1)
1 [0]

∥∥∥, and c̄1 is as defined in (23). We
now claim the following for each substate j ∈ {1, . . . , N}:∥∥∥e(j)

i [k]
∥∥∥ ≤ c̄jρkj , ∀k ≥ (2j − 1)T̄ , ∀i ∈ V . (25)

4We use ‖A‖ to refer to the induced 2-norm of a matrix A.

To prove the above claim, we proceed via induction on
the substate number j. Suppose the claim holds for all
q ∈ {1, . . . , j − 1}, where 2 ≤ j ≤ N . To prove the desired
result for substate j, observe that equations (3) and (4) yield:

z(j)[k + 1] = Ajjz
(j)[k] +

(j−1)∑
q=1

Ajqz
(q)[k]

= (Ajj − LjCjj)z
(j)[k] +

(j−1)∑
q=1

(Ajq − LjCjq)z
(q)[k] + Ljyj [k].

(26)
Based on the above equation and (7), we obtain:

e
(j)
j [k + 1] = (Ajj − LjCjj)e

(j)
j [k] +

(j−1)∑
q=1

(Ajq − LjCjq)e
(q)
j [k].

(27)
Rolling out the above equation over time, we obtain:

e
(j)
j [k] = (Ajj − LjCjj)

(k−(2(j−1)−1)T̄ )
e

(j)
j [(2(j − 1)− 1)T̄ ]

+

(j−1)∑
q=1

k−1∑
τ=(2(j−1)−1)T̄

(Ajj − LjCjj)
(k−τ−1)

(Ajq − LjCjq)e
(q)
j [τ ],

(28)
where k ≥ (2(j − 1) − 1)T̄ . Taking norms on both sides
of the above equation, using the triangle inequality, and the
sub-multiplicative property of the two-norm, we obtain:

∥∥∥e(j)
j [k]

∥∥∥ (a)

≤ αjρ
k
j


∥∥∥e(j)

j [(2j − 3)T̄ ]
∥∥∥

ρ
(2j−3)T̄
j

+
1

ρj

(j−1)∑
q=1

gjq

(k−1)∑
τ=(2j−3)T̄

ρ−τj

∥∥∥e(q)
j [τ ]

∥∥∥


(b)

≤ αjρ
k
j


∥∥∥e(j)

j [(2j − 3)T̄ ]
∥∥∥

ρ
(2j−3)T̄
j

+
1

ρj

(j−1)∑
q=1

gjq c̄q

(k−1)∑
τ=(2j−3)T̄

(
ρq
ρj

)τ
(c)

≤ cjρ
k
j , ∀k ≥ (2j − 3)T̄ .

(29)
In the above inequalities, (a) follows from (18) and the
definition of gjq , (b) follows by noting that q ≤ (j−1), τ ≥
(2(j−1)−1)T̄ , and then applying the induction hypothesis,
(c) follows by simplifying the preceding inequality using
ρq < ρj . We have thus obtained a bound on the estimation
error of substate j for node j. To bound the estimation errors
of substate j for each non-source node i ∈ V \{j}, note that
equation (26) can be rolled out over time to yield:

z(j)[k] = Am
jjz

(j)[k−m]+

(j−1)∑
q=1

(k−1)∑
τ=(k−m)

A
(k−τ−1)
jj Ajqz

(q)[τ ].

(30)
Lemma 4 then yields for each i ∈ V \ {j}, ∀k ≥ T̄ :

e
(j)
i [k] = (Ajj)

τ
(j)
i [k]

e
(j)
j [k − τ (j)

i [k]]

+

(j−1)∑
q=1

(k−1)∑
τ=(k−τ (j)

i [k])

A
(k−τ−1)
jj Ajqe

(q)
v(τ)[τ ].

(31)

Based on the induction hypothesis and equation (29), notice
that each error term featuring in the RHS of the above
equation will decay exponentially provided k is large enough.
Specifically, suppose k ≥ (2j − 1)T̄ , in which case k −
τ

(j)
i [k] ≥ (2j − 3)T̄ , since τ (j)

i [k] ≤ 2T̄ , ∀k ≥ T̄ , ∀i ∈ V
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based on Lemma 5. For k ≥ (2j − 1)T̄ , taking norms on
both sides of (31) yields:

∥∥∥e(j)
i [k]

∥∥∥ (a)

≤ βj

cj(γj
ρj

)2T̄

ρkj + γ
(k−1)
j

(j−1)∑
q=1

hjq c̄q

(k−1)∑
τ=(k−τ (j)

i [k])

(
ρq
γj

)τ
(b)

≤ βj

cj(γj
ρj

)2T̄

ρkj + γ
(k−1)
j

(j−1)∑
q=1

hjq c̄q

(k−1)∑
τ=(k−2T̄ )

(
ρq
γj

)τ
(c)

≤ βj

cj(γj
ρj

)2T̄

ρkj +

(j−1)∑
q=1

hjq c̄q
(γj − ρq)

(
γj
ρq

)2T̄

ρkq


(d)

≤ c̄jρ
k
j , ∀k ≥ (2j − 1)T̄ .

(32)
In the above inequalities, (a) follows from the induction
hypothesis, equation (29), the bounds on the growth and the
norm of Ajj , and by noting that τ (j)

i [k] ≤ 2T̄ (based on
Lemma 5), ρj < 1, γj ≥ 1, (b) follows by suitably changing
the lower limit of the inner summation (over time), a change
that is warranted since each term in the summation is non-
negative, (c) follows by simplifying the preceding inequality,
and (d) follows by noting that ρq < ρj , ∀q ∈ {1, . . . , j − 1}
by design. Note that the bound obtained in (32) for each
non-source node i ∈ V \ {j} applies also to the source node
j, since c̄j ≥ cj . Let ei[k] = ẑi[k] − z[k]. For any node
i ∈ V , we then obtain the desired result as follows:

‖ei[k]‖ =

√
N∑
j=1

∥∥∥e(j)
i [k]

∥∥∥2

≤

(√
N∑
j=1

c̄2j

)
ρk, ∀k ≥ (2N − 1)(N − 1)T.

(33)
In particular, we obtain limk→∞ ‖ei[k]‖ = 0, ∀i ∈ V .

Corollary 1. (Finite-Time Convergence) Suppose the con-
ditions stated in Theorem 1 are met. Then, the observer
gains L1, . . . ,LN can be designed in a manner such that
the estimation error of each node i ∈ V converges to zero in
at most n+ 2N(N − 1)T time-steps.

Proof. (Sketch) For each substate j ∈ {1, . . . , N}, let the
gain Lj be chosen such that (Ajj − LjCjj) has all its
eigenvalues at 0. Such a choice of Lj exists since (Ajj ,Cjj)
is observable by construction. Clearly, (Ajj − LjCjj) is
then a nilpotent matrix of index at most nj , where nj =

dim(Ajj). Thus, it is easy to see that e(1)
1 [k] = 0, ∀k ≥ n1,

based on (19). Referring to equation (21), and noting that
τ

(1)
i [k] ≤ 2T̄ , ∀k ≥ T̄ , ∀i ∈ V , we obtain: e(1)

i [k] = 0, ∀k ≥
n1 + 2T̄ , ∀i ∈ V . One can easily generalize this argument
to the remaining substates by using an inductive reasoning
akin to that employed in the proof of Theorem 1.

Remark 1. Notice that given a desired convergence rate ρ,
the general design approach described in the proof of The-
orem 1 offers a considerable degree of freedom in choosing
the parameters ρ1, . . . , ρN , since they only need to satisfy
0 < ρ1 < ρ2 < · · · < ρN < ρ. As such, this can be
achieved in infinitely many ways, and the design flexibility
so obtained in choosing the observer gains can be exploited
to optimize transient performance, or performance against
noise. In contrast, the proof of Corollary 1 highlights a

specific approach to obtain finite-time convergence. However,
such an approach may lead to undesirable transient spikes
in the estimation errors, owing to large observer gains.

VI. CONCLUSION

In this paper, we developed a new approach towards
designing distributed observers that work under the basic as-
sumption of joint observability, and can handle a very general
class of time-varying graphs. Unlike existing literature, this
is achieved without requiring multiple consensus iterations
between consecutive time-steps of the dynamics. Instead, our
main idea is based on introducing a metric that keeps track
of the age-of-information being diffused across the network,
and in turn, acts as measure of quality of such information.
We established that any desired exponential convergence rate
can be achieved based on our approach. Furthermore, we
showed that one can even obtain finite-time convergence via
an appropriate choice of the observer gains. Ongoing work
involves extending the ideas in this paper to scenarios where
certain sensors are potentially under attack [17].
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