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Distributed Optimization Under Adversarial Nodes
Shreyas Sundaram Bahman Gharesifard

Abstract—We investigate the vulnerabilities of consensus-based
distributed optimization protocols to nodes that deviate from
the prescribed update rule (e.g., due to failures or adversarial
attacks). We first characterize certain fundamental limitations
on the performance of any distributed optimization algorithm in
the presence of adversaries. We then propose a secure distributed
optimization algorithm that guarantees that the non-adversarial
nodes converge to the convex hull of the minimizers of their
local functions under certain conditions on the graph topology,
regardless of the actions of a certain number of adversarial
nodes. In particular, we provide sufficient conditions on the graph
topology to tolerate a bounded number of adversaries in the
neighborhood of every non-adversarial node, and necessary and
sufficient conditions to tolerate a globally bounded number of
adversaries. For situations where there are up to F adversaries
in the neighborhood of every node, we use the concept of maximal
F -local sets of graphs to provide lower bounds on the distance-
to-optimality of achievable solutions under any algorithm. We
show that finding the size of such sets is NP-hard.

I. INTRODUCTION

In recent years, the topic of distributed optimization has
become a canonical problem in the study of networked
systems. In this setting, a group of agents equipped with
individual objective functions are required to agree on a state
that optimizes the sum of these functions. As in the classical
consensus problem, the agents can only operate on local
information obtained from their neighboring agents, described
by a communication network. There is a vast literature de-
voted to designing distributed algorithms, both in discrete and
continuous-time, that guarantee convergence to an optimizer of
the sum of the objective functions under reasonable convexity
and continuity assumptions [1]–[12].

As outlined above, the predominant assumption in dis-
tributed optimization is that all agents cooperate to calcu-
late the global optimizer. In particular, in typical distributed
optimization protocols, the individuals update their state via
a combination of an agreement term and an appropriately
scaled gradient flow of their individual functions. Given the
potential applications of distributed optimization algorithms
in large-scale (and safety-critical) cyber-physical systems, and
motivated by studies of security issues in consensus dynamics
(e.g., see [13]–[18]), it is reasonable to ask how vulnerable
consensus-based distributed optimization algorithms are with
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respect to failure or malicious behavior by certain nodes.
In fact, as we argue in this paper, current consensus-based
distributed optimization algorithms are easily disrupted by
adversarial behavior. The main objective of this paper is
hence to address the issue of security of consensus-based
distributed optimization dynamics by providing certain safety
guarantees against different numbers and types of attackers.
The recent work [19] also considers the problem of distributed
optimization with adversaries under different assumptions on
the graph topology, faulty behavior and classes of functions
than the ones that we consider here. The material in this
paper substantially extends the conference papers [20], [21]
by providing complete proofs of the results, along with
characterizations of the factors that affect the performance of
distributed optimization algorithms under adversarial behavior.
The contributions of this paper can be summarized as follows.

Statement of Contributions

The first contribution of this paper is to demonstrate funda-
mental limitations on the performance of any distributed opti-
mization algorithm in the presence of adversaries. In particular,
we show that it is impossible to develop an algorithm that
always finds optimal solutions in the absence of adversaries
and is at the same time secure against carefully crafted attacks.

As our second contribution, we introduce a secure version of
the consensus-based distributed optimization protocol, which
we term Local Filtering (LF) Dynamics, in which the nodes
discard the most extreme values in their neighborhood at each
time-step. We investigate the capabilities of such protocols
under different classes of adversarial behavior, and under the
assumption of having an upper bound F on either the total
number of adversarial nodes in the network (termed the F -
total model) or on the local number of adversarial nodes
in the neighborhood of each non-adversarial node (termed
the F -local model). In particular, we provide graph-theoretic
sufficient conditions for consensus in scenarios with F -local
Byzantine adversaries (which can send different values to
different neighbors at each time-step), and necessary and
sufficient conditions for scenarios with F -total malicious ad-
versaries (which operate under the wireless broadcast model of
communication). We utilize two different proof techniques for
the two scenarios (each of which provides different insights
and capabilities). The first proof relies on properties of prod-
ucts of stochastic matrices for rooted graphs, and relates the
consensus value to the limiting left-eigenvector corresponding
to eigenvalue 1 of the subgraph of regular nodes. The second
proof relies on characterizing the contracting behavior of the
gap between the regular agents with extreme values, and
applies even when the graphs are not rooted at each time-step



2

(which can occur under our dynamics, as we demonstrate).

Our third contribution is to provide a safety guarantee for
the proposed LF-dynamics. When the sequence of gradient
step-sizes decreases to zero and has infinite 1-norm (a typical
condition in gradient-based optimization dynamics [6]), we
prove that the states of the non-adversarial nodes converge to
the convex hull of the minimizers of the individual functions,
regardless of the actions taken by the adversarial nodes.

As our last contribution, we characterize factors that affect
the performance of secure distributed optimization algorithms.
We provide a bound which shows that for graphs with large
so-called maximum F -local sets, the performance of secure
algorithms can be poor under the F -local adversary model.
As a by-product, we prove that the complexity of finding the
size of the maximum F -local set is NP-hard. Several examples
demonstrate our results.

Organization

Section II introduces various mathematical preliminaries.
In Section III, we review the standard consensus-based dis-
tributed optimization algorithm. We describe the adversary
model in Section IV, illustrate vulnerabilities in existing algo-
rithms, and provide fundamental limitations on any distributed
optimization algorithms under such adversarial behavior. We
then introduce a class of secure distributed optimization algo-
rithms in Section V; we provide our main results on consensus
under this algorithm in Section VI, and provide safety guar-
antees on this algorithm in Section VII. We identify factors
that affect the performance of secure distributed optimization
algorithms in Section VIII, and conclude in Section IX.

II. MATHEMATICAL NOTATION AND TERMINOLOGY

Let R, R≥0, and N denote the real, nonnegative real, and
natural numbers, respectively, ‖ · ‖ the Euclidean norm on
Rn, 1 =

[
1 1 · · · 1

]′
, 0 =

[
0 0 · · · 0

]′
, and In

the identity matrix in Rn×n. A matrix A ∈ Rn×n with
nonnegative entries is called (row) stochastic if A1 = 1.
Throughout this paper, we are concerned with stochastic
matrices whose diagonal entries are bounded away from zero.
For a locally Lipschitz function f : R→ R, we denote the set
of subgradients at a given point x ∈ R by ∂f(x). We often,
additionally, assume that the functions under study are convex
with bounded subgradients, and hence are globally Lipschitz.

A graph G = (V, E) consists of a set of vertices (or nodes)
V = {v1, v2, . . . , vn}, and a set of edges E ⊂ V × V . The
graph is said to be undirected if (vi, vj) ∈ E ⇔ (vj , vi) ∈ E ,
and directed otherwise. The in-neighbors and out-neighbors
of vertex vi ∈ V are denoted by the sets N−i , {vj ∈ V |
(vj , vi) ∈ E} andN+

i , {vj ∈ V | (vi, vj) ∈ E}, respectively.
The in-degree and out-degree of vertex vi ∈ V are denoted
by d−i , |N−i | and d+

i , |N+
i |, respectively. For undirected

graphs, we denote Ni = N−i = N+
i as the neighbors of vertex

vi ∈ V , and di = d−i = d+
i as the degree. We denote time-

varying graphs, edge sets, and neighbor sets by appending a
time-index to those quantities.

A path from vertex vi ∈ V to vertex vj ∈ V is a sequence
of vertices vk1 , vk2 , . . . , vkl such that vk1 = vi, vkl = vj and
(vkr , vkr+1) ∈ E for 1 ≤ r ≤ l−1. A graph G = (V, E) is said
to be rooted at vertex vi ∈ V if for all vertices vj ∈ V \ {vi},
there a path from vi to vj . A graph is said to be rooted if it is
rooted at some vertex vi ∈ V . A graph is strongly connected
if there is a path from every vertex to every other vertex in
the graph.

A nonnegative matrix A ∈ Rn×n can be associated with a
graph G = (V, E) containing n nodes, where edge (vj , vi) ∈ E
if and only if aij 6= 0. We will thus say a nonnegative square
matrix is rooted if its associated graph is rooted.

For any r ∈ N, a subset S ⊂ V of vertices is said to be
r-local if |N−i ∩ S| ≤ r for all vi ∈ V \ S. In other words,
if S is r-local, there are at most r vertices from S in the in-
neighborhood of any vertex from V \ S. A maximum r-local
set is an r-local set of largest cardinality (i.e., there are no
r-local sets of larger size). A subset S ⊂ V of vertices is said
to be r-reachable if there exists a vertex vi ∈ S such that
|N−i \ S| ≥ r. In other words, S is r-reachable if it contains
a vertex that has at least r in-neighbors from outside S.

The following definitions will play a role in our analysis.

Definition 2.1 (r-robust graphs): For r ∈ N, graph G is
said to be r-robust if for all pairs of disjoint nonempty subsets
S1, S2 ⊂ V , at least one of S1 or S2 is r-reachable.

Definition 2.2 ((r, s)-robust graphs): For r, s ∈ N, a graph
is said to be (r, s)-robust if for all pairs of disjoint nonempty
subsets S1, S2 ⊂ V , at least one of the following conditions
holds:

(i) All nodes in S1 have at least r in-neighbors outside S1.
(ii) All nodes in S2 have at least r in-neighbors outside S2.

(iii) There are at least s nodes in S1 ∪ S2 that each have at
least r in-neighbors outside their respective sets.

The above definitions capture the idea that given any two
disjoint nonempty subsets of nodes in the network, there are
a certain number of nodes within those sets that each have
a sufficient number of in-neighbors outside their respective
sets. This notion will play a key role in the secure dynamics
that we propose in this paper, where nodes choose to discard
a certain number of their in-neighbors in order to mitigate
adversarial behavior. Note that (r, 1)-robustness is equivalent
to r-robustness. The following result (from Lemma 6 and
Lemma 7 in [18]) will be useful for our analysis.

Lemma 2.3: Suppose a graph G is r-robust. Let G′ be a
graph obtained by removing r − 1 or fewer incoming edges
from each node in G. Then G′ is rooted.

Further details on the above notions of robustness can be
found in [18], [22].
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III. REVIEW OF CONSENSUS-BASED DISTRIBUTED
OPTIMIZATION

Consider a network consisting of n agents V =
{v1, . . . , vn} whose communication topology is a (potentially
time-varying) graph G(t) = (V, E(t)). An edge (vi, vj) ∈ E(t)
indicates that vj can receive information from vi at time-step
t ∈ N. For each i ∈ {1, . . . , n}, let fi : R → R be convex
with bounded subgradients, and only available to agent vi. The
objective is for the agents to solve, in a distributed way (i.e., by
exchanging information only with their immediate neighbors),
the global optimization problem1

minimize f(x) =
1

n

n∑
i=1

fi(x). (1)

A common approach to solve this problem is to use a syn-
chronous iterative consensus-based protocol in which agents
use a combination of consensus dynamics and gradient flow
to find a minimizer of f [4], [6], [23]. Specifically, at each
time-step t ∈ N, each agent vi ∈ V has an estimate xi(t) ∈ R
of the solution to the problem (1). Each agent vi ∈ V sends
its estimate to its out-neighbors, receives the estimates of its
in-neighbors, and updates its estimate as [4]

xi(t+ 1) = aii(t)xi(t) +
∑

vj∈N−i (t)

aij(t)xj(t)−αtdi(t). (2)

In the above update rule, aij(t), vj ∈ {vi} ∪ N−i (t),
are a set of nonnegative real numbers satisfying aii(t) +∑
vj∈N−i (t) aij(t) = 1. In other words, the first portion

of the righthand side is a consensus step, representing a
weighted average of the estimates in node vi’s neighbor-
hood. The quantity di(t) is a subgradient of fi, evaluated
at aii(t)xi(t) +

∑
vj∈N−i (t) aij(t)xj(t). Finally, {αt}t∈N, is

the step-size sequence corresponding to the influence of the
subgradient on the update rule at each time-step. In this sense,
the last term in the above expression represents a gradient step.

The dynamics (2) can be represented compactly as follows.
Let

x(t) ,
[
x1(t) x2(t) · · · xn(t)

]′ ∈ Rn,
d(t) ,

[
d1(t) d2(t) · · · dn(t)

]′ ∈ Rn

be the vector of states and subgradients of the nodes at time-
step t, respectively. Let A(t) ∈ Rn×n≥0 be the matrix such that
for each (vj , vi) ∈ E(t), the (i, j)-th entry of A(t) is aij(t)
given in (2), the diagonal elements of A(t) are the self-weights
aii(t), and all other entries are set to zero. Then (9) can be
written as

x(t+ 1) = A(t)x(t)− αtd(t), (3)

for t ∈ N. Note that each row of A(t) sums to 1 at each time-
step, and thus A(t) is row-stochastic. It is easy to observe

1In order to tackle the complexities associated with adversarial behavior,
we restrict attention to scalar unconstrained optimization problems throughout
the paper.

that

x(t+ 1) = A(t)A(t− 1) · · ·A(0)x(0) (4)

−
t∑

s=1

A(t)A(t− 1) · · ·A(s)αs−1d(s− 1)− αtd(t).

For notational convenience, we define Φ(t, s) , A(t)A(t −
1) · · ·A(s) for t ≥ s, and Φ(t, s) , 0 for t < s. Thus, (4)
becomes

x(t+ 1) = Φ(t, 0)x(0)−
t∑

s=1

Φ(t, s)αs−1d(s− 1)− αtd(t).

There are some commonly-used assumptions that are made on
the weights in (2), which we encapsulate below.

Assumption 3.1 (Lower Bounded Weights): There exists a
constant η > 0 such that for all t ∈ N and vi ∈ V , if
vj ∈ {vi} ∪ N−i (t), then aij(t) ≥ η.

Assumption 3.2 (Double Stochasticity): For all t ∈ N and
vi ∈ V , the weights satisfy aii(t) +

∑
vj∈N+

i (t) aji(t) = 1.

The following result is a special case of the results of [6]
for graphs that are strongly connected at each time-step.

Proposition 3.3: Suppose the network G(t) is strongly con-
nected at each time-step and that the subgradients of each
of the local functions fi are bounded. Consider the update
rule (2), and suppose the weights satisfy Assumption 3.1 and
Assumption 3.2. Let the step-sizes satisfy

∑
t∈N αt =∞ and∑

t∈N α
2
t <∞. Then there is a minimizer x∗ of (1) such that

lim
t→∞

‖xi(t)− x∗‖ = 0,

for all vi ∈ V .

The above result shows that the update rule (2) allows
the nodes in the network to distributively solve the global
optimization problem (1). Our main objective in this paper is
to investigate the vulnerabilities of such protocols to nodes that
deviate from the prescribed update rule (e.g., due to failures
or adversarial attacks), and to develop a secure distributed
optimization algorithm that has provable safety guarantees in
the presence of such deviations. To do this, it will be helpful
to first generalize the above analysis to handle cases where
the weights are not doubly-stochastic.

A. Scenarios with Non-Doubly-Stochastic Weights

Here, we will establish convergence of the node states
under the dynamics (2) under certain classes of non-doubly-
stochastic weights. At each time-step t ∈ N, let A(t) ∈
Rn×n≥0 be the matrix containing the weights aij(t). Note that
aij(t) = 0 if vj /∈ {vi} ∪ N−i (t). Suppose there exists
some constant β > 0 such that at each time-step t ∈ N,
A(t) has a rooted subgraph that has edge-weights lower-
bounded by β, and diagonal elements lower-bounded by β.
Let Φ(t, s) , A(t)A(t− 1) · · ·A(s) for t ≥ s ≥ 0. Using the
fact that A(t) has a rooted subgraph, and with an argument
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similar to the one in [24] which we omit here, for each s ∈ N,
there exists a stochastic vector qs such that

lim
t→∞

Φ(t, s) = 1q′s. (5)

Noting that Φ(t, s) = Φ(t, s+ 1)A(s), we have that

q′s = q′s+1A(s), (6)

for all s ∈ N.

For each t ∈ N, let x(t) ∈ Rn be the state vector for the
network, and define the quantity

y(t) , q′tx(t) (7)

(i.e., y(t) is a convex combination of the states of the nodes at
time-step t). Using the above definition, we have the following
convergence result.

Lemma 3.4: Consider the network G(t) = (V, E(t)). Sup-
pose that the functions fi, vi ∈ V , have subgradients bounded
by some constant L, and that the nodes run the dynamics
(2). Assume that there exists a constant β > 0 such that at
each time-step t ∈ N, the weight matrix A(t) has diagonal
elements lower bounded by β and contains a rooted subgraph
whose edge weights are lower bounded by β. Let y(t) be the
corresponding sequence defined in (7).

(i) If αt → 0 as t→∞, then

lim sup
t→∞

‖x(t)− 1y(t)‖ = 0.

(ii) If
∑∞
t=1 α

2
t <∞, then

∞∑
t=1

αt‖x(t)− 1y(t)‖ <∞.

(iii) If each matrix A(t), t ∈ N has a common left-
eigenvector q′ corresponding to eigenvalue 1, and the
step-sizes satisfy

∑
αt =∞ and

∑
α2
t <∞, then

lim
t→∞

‖xi(t)− x∗‖ = 0

for all vi ∈ V , where x∗ is a minimizer of
∑n
i=1 qifi,

with qi being the i-th entry of q′.

The proof of this result closely follows the proof for doubly-
stochastic weights provided in [6], with the main difference
being in the use of the vector qt at appropriate points.
Note that if the matrices A(t) do not have a common left-
eigenvector, convergence to a constant value is not guaranteed
under the dynamics (2) (unlike in standard consensus dynam-
ics without the gradient terms). To see this, consider two row-
stochastic matrices A1 and A2, each with rooted subgraphs
and nonzero diagonal elements, with different left eigenvectors
q′1 and q′2, respectively, for eigenvalue 1. Select the functions
for the nodes such that

∑
q1ifi and

∑
q2ifi have different

minimizers, where qij is the j-th component of qi. Then, if
the dynamics evolve according to matrix A1 for a sufficiently
large period of time, all nodes will approach a minimizer of∑
q1ifi, regardless of the initial conditions. Similarly, if the

dynamics evolve according to the matrix A2 for a sufficiently
large period of time, all nodes will approach a minimizer of∑
q2ifi, again regardless of the initial conditions. Thus, by

appropriately switching between the matrices A1 and A2, the
nodes will oscillate between the two different minimizers.

With these results on distributed optimization in hand, we
now turn our attention to the effect of adversaries on the
optimization dynamics.

IV. ADVERSARY MODEL AND VULNERABILITIES OF
DISTRIBUTED OPTIMIZATION ALGORITHMS

Henceforth, we will assume that the underlying graph G
is time-invariant in order to focus on issues pertaining to
adversarial behavior. However, as we will see later, our pro-
posed algorithm will utilize time-varying (and state-dependent)
weights which can be viewed as inducing time-varying sub-
graphs of the underlying graph G.

A. Adversary Model

We partition the set of nodes V into two subsets: a set of
adversarial nodes A, and a set of regular nodes R = V \ A.
The regular nodes will follow any algorithm that we prescribe;
the adversarial nodes, on the other hand, will be allowed to
update their values in a completely arbitrary (and unknown)
manner. Rather than ascribe particular goals or behaviors to
the adversarial nodes, we will formulate an algorithm that
provides certain guarantees to the regular nodes regardless of
what the adversarial nodes do. In particular, in order to provide
security guarantees against worst case adversarial behavior,
we allow the adversarial nodes to know the entire network
topology and the private functions available to all of the other
nodes, and to coordinate among themselves to update their
values. Clearly any performance guarantees that we provide
against such worst-case (and potentially unrealistically strong)
adversaries will also apply to adversaries with specific goals,
or those that possess more limited knowledge and capabilities.
This model (of omniscient adversaries with arbitrary behavior)
is classical and standard in the literature on fault-tolerant and
secure distributed algorithms [14], [15], [25].

While we will allow the adversaries to update their values
arbitrarily (as described above), it will be useful to distinguish
between different communication capabilities on the part of
the adversaries, as defined below.

Definition 4.1 (Malicious vs. Byzantine): We say that an
adversarial node is malicious if it sends the same value to
all of its out-neighbors at each time-step (i.e., it follows the
wireless broadcast model of communication). We say that
an adversarial node is Byzantine if it is capable of sending
different values to different neighbors at each time-step (i.e.,
it follows the wired point-to-point model of communication).

Note that malicious behavior is an appropriate model for
applications where each node simultaneously communicates
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with all of its out-neighbors via a broadcast mechanism (e.g.,
as in wireless sensor networks). In such settings, an adversarial
node is not able to send different values to different neighbors.
On the other hand, the more general Byzantine model applies
to scenarios where nodes can communicate privately with
other individual nodes (e.g., as in wired or point-to-point
networks). Both malicious and Byzantine models have been
previously studied in the literature on distributed algorithms
[14], [15]. Note that malicious adversaries are a special case
of Byzantine adversaries.

As one might imagine, there will be a relationship between
the network topology and the number of such worst-case
adversaries that can be tolerated. In particular, in return for
allowing completely arbitrary (and worst-case) behavior on
the part of the adversaries, we will restrict the number and/or
locations of such adversaries in the network, as follows.

Definition 4.2 (F -total vs. F -local): For F ∈ N, we say
that the set of adversaries A is an F -total set if |A| ≤ F , and
an F -local set if |N−i ∩ A| ≤ F , for all vi ∈ R.

In words, the F -total model indicates that there are no more
than F adversaries in the entire network, whereas the F -local
model indicates that there are no more than F adversaries in
the in-neighborhood of any regular node. Note that F -total
adversaries are a special case of F -local adversaries.

As with any reliable or secure system, the network (and
algorithm) will be designed to provide a desired level of se-
curity (measured in terms of the largest number of adversaries
that can be tolerated, either totally in the network, or in any
in-neighborhood).2 Thus, our results will provide guarantees
of the following form: “If the set of adversaries forms an F -
total (or F -local) set, and the network topology satisfies certain
conditions (which depend on F ), then our prescribed algorithm
will guarantee certain behavior on the part of the regular nodes,
despite what the adversaries do.” In other words, we assume
that the nodes are programmed with our algorithm to provide
security guarantees against a desired maximum number of
adversaries F ; we then provide conditions on the network
topology that guarantee that such algorithms will work.

Given the above adversary models, we model the overall
network as undergoing the following sequence of steps:

(i) Each node vi ∈ V draws a private function fi that is
convex with bounded subgradients.

(ii) A set of nodes A ⊂ V is selected by an attacker to
be adversarial. The attacker can select this set based
on knowledge of the entire network topology and the
private functions assigned to all of the nodes. The set
of adversaries is restricted to be either an F -local or
F -total set, for some known F ∈ N.

2For example, consider standard modular redundancy schemes, where
unreliable components are replicated and their outputs are compared via a
voter. In such schemes, if one requires the system to work despite up to F
failures, one must deploy 2F + 1 copies of the component along with a
majority voter. Similarly, in error-control coding in communication systems,
the code must be designed to have a distance of at least 2F + 1 in order to
tolerate up to F corrupted symbols in any transmitted codeword [26].

(iii) The regular nodes commence running the distributed
optimization algorithm.

B. Attacking Consensus-Based Distributed Optimization Algo-
rithms

We start with the following result showing that it is ex-
tremely simple for even a single adversarial node (either
malicious or Byzantine) to disrupt dynamics of the form (2).

Proposition 4.3: Consider the network G = (V, E), and let
there be a single adversarial node A = {vn}. Suppose the
network is rooted at vn. Then if vn keeps its value fixed at
some constant x̄ ∈ R and the step-sizes satisfy αt → 0, all
regular nodes following (2) will asymptotically converge to x̄.

Proof: Since the adversarial node keeps its value fixed
for all time, its update can be modeled as

xn(t+ 1) = xn(t)

for all t ∈ N, with xn(0) = x̄. Thus, the global distributed
optimization dynamics take the form shown in (3), with

A(t) =

[
AR,R(t) AR,A(t)

0 1

]
,

where AR,R(t) is the matrix containing the weights placed
by regular nodes on other regular nodes during the update
(2), and AR,A(t) is a vector containing the weights placed
by regular nodes on the adversarial node’s value. Since (i)
the graph contains a spanning tree rooted at vn, (ii) all
weights used by the regular nodes on their neighbors (and
own values) are bounded away from zero, and (iii) all matrices
A(t) have a common left-eigenvector q′ =

[
01×n−1 1

]
,

Lemma 3.4 indicates that all regular nodes will converge to
y(t) = q′x(t) = xn(t) = x̄.

The above phenomenon is entirely analogous to the behavior
that occurs under “stubborn” agents in standard consensus
dynamics (e.g., [27], [28]).

C. Fundamental Limitations on Any Secure Distributed Opti-
mization Algorithm

The previous result shows that consensus-based distributed
optimization algorithms can be co-opted by an adversary
simply fixing its value at some constant. It is plausible that this
type of simple misbehavior can be detected via an appropriate
mechanism.3 However, it is easy to argue as follows that
under mild conditions on the class of objective functions at
each node, an adversary can always behave in a way as to
avoid detection, while arbitrarily affecting the outcome of the
distributed optimization.

Theorem 4.4: Suppose the local objective functions at each
node are convex with bounded subgradients, but otherwise

3By “detected”, we mean that deviations from a prescribed algorithm by
a given node can be inferred by observing all messages transmitted by that
node.
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completely arbitrary. Suppose Γ is a distributed algorithm
that guarantees that all nodes calculate a global optimizer of
problem (1) when there are no adversarial nodes. Then a single
adversary can cause all nodes to converge to any arbitrary
value when they run algorithm Γ, and furthermore, will remain
undetected.

Proof: Without loss of generality, let vn be an adversarial
node. Let each node vi ∈ V have local function fi. Let L
be an upper bound on the norm of the subgradients of the
functions fi for i ∈ V \ {vn}. Suppose node vn wishes all
nodes to calculate some value x̄ as an outcome of running
the algorithm Γ. Node vn participates in the algorithm Γ, and
pretends that its function is f̄n(x) = nL‖x − x̄‖1, which is
convex and has bounded subgradients. It is easy to verify that
the function 1

n

(∑
vi∈V \{vn} fi + f̄n

)
has a unique minimizer

at x̄. Since f̄n is a legitimate function that could have been
assigned to vn, this scenario is indistinguishable from the case
where vn is a regular node, and thus this misbehavior cannot
be detected. Thus, algorithm Γ will cause all nodes to calculate
x̄ under this misbehavior.

The above theorem applies to any algorithm that is guar-
anteed to output a globally optimum value in the absence of
adversaries (even for multivariable functions). The takeaway
point is that there is a tradeoff between optimality and re-
silience: any algorithm that always finds optimal solutions in
the absence of adversaries (under mild assumptions on the
class of local functions) can also be arbitrarily co-opted by an
adversary.

In the next section, we build on the insights gained from
the above characterizations of fundamental limitations, and
propose a modification of the standard consensus-based dis-
tributed optimization algorithm that provides certain safety
guarantees in the face of arbitrary adversarial behavior.

V. A SECURE CONSENSUS-BASED DISTRIBUTED
OPTIMIZATION PROTOCOL

Suppose that the adversarial nodes are restricted to form an
F -local set, where F is a nonnegative integer. The regular
nodes do not know which (if any) of their neighbors are
adversarial. Suppose that at each time-step t ∈ N, each regular
node vi ∈ R performs the following actions in parallel with
the other regular nodes:

(i) Node vi gathers the states {xj(t), vj ∈ N−i } of its in-
neighbors.

(ii) Node vi sorts the gathered values and removes the F
highest and F smallest values that are larger and smaller
than its own value, respectively. If there are fewer than
F values higher (resp. lower) than its own value, vi
removes all of those values. Ties in values are broken
arbitrarily. Let Ji(t) ⊂ N−i be the set of in-neighbors
of vi whose states were retained by vi at time-step t.

(iii) Node vi updates its state as

xi(t+ 1) = aii(t)xi(t) +
∑

vj∈Ji(t)

aij(t)xj(t)− αtdi(t),

(8)
where di(t) is a subgradient of fi evaluated at aiixi(t)+∑
vj∈Ji(t) aij(t)xj(t), and {αt}t∈N is a nonnegative

step-size sequence. At each time-step t and for each
vi ∈ R, the weights aij(t), vj ∈ {vi}∪Ji(t), are lower-
bounded by some strictly positive real number η and sum
to 1 (i.e., they specify a convex combination).

The adversarial nodes are allowed to update their states
however they wish. Note that the above dynamics are purely-
local in the sense that they do not require the regular nodes to
know anything about the network topology (other than their
own in-neighbors). Also note that even when the underlying
network G is time-invariant, the filtering operation induces
state-dependent switching (i.e., the effective in-neighbor set
Ji(t) is a function of the states of the in-neighbors of vi at
time-step t). In case a regular node vi has a Byzantine neighbor
vj , we abuse notation and take the value xj(t) in the update
equation (8) to be the value received from node vj (i.e., it
does not have to represent the true state of node vj).

We will refer to the above dynamics as Local Filtering
(LF) Dynamics with parameter F . Local filtering operations
of the above form have been previously studied in the context
of secure consensus dynamics (i.e., outside of distributed
optimization) in [16], [18], [25]. However, the presence of the
gradient terms in the dynamics (8) adds additional complexity
that precludes the proof techniques from [18] from being
directly applied, and thus we will analyze these dynamics in
the remainder of the paper, and show that they are capable
of mitigating adversarial behavior under certain conditions on
the network topology.

A. A Mathematically Equivalent Representation of Local Fil-
tering Dynamics

Since we are concerned with understanding the evolution
of the states of the regular nodes in our analysis, it will be
useful to consider a mathematically equivalent representation
of the dynamics (8) that only involves the states of the regular
nodes. The key idea of the proof of the following proposition is
from [29], which considered a slightly different version of the
local filtering dynamics in the context of distributed consensus.
Here, we provide a somewhat simpler proof, adapted for the
version of the dynamics that we are considering.

Proposition 5.1: Consider the network G = (V, E), with
a set of regular nodes R and a set of adversarial nodes A.
Suppose that A is an F -local set, and that each regular node
has at least 2F + 1 in-neighbors. Then the update rule (8) for
each node vi ∈ R is mathematically equivalent to

xi(t+1) = āii(t)xi(t)+
∑

vj∈N−i ∩R

āij(t)xj(t)−αtdi(t), (9)

where the nonnegative weights āij(t) satisfy the following
properties at each time-step t:
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(i) āii(t) +
∑
vj∈N−i ∩R

āij(t) = 1.
(ii) āii(t) ≥ η and at least |N−i | − 2F of the other weights

are lower bounded by η
2 .

Proof: Consider a regular node vi ∈ R. We will prove the
result by providing a procedure to construct the weights āij(t)
described in the proposition, starting from the weights aij(t) in
the LF dynamics (8). To facilitate this, we define two different
partitions of the in-neighbors of vi. For the first partition,
define the sets Ui(t), Ji(t) and Li(t), where Ui(t) (resp. Li(t))
contains the nodes with the highest (resp. lowest) values that
were removed by node vi after the filtering operation. For the
second partition, define the sets Ūi(t), J̄i(t) and L̄i(t), where
Ūi(t) and L̄i(t) contain the nodes with the highest and lowest
F values in node vi’s neighborhood at time-step t, respectively.
The set J̄i(t) contains the remaining nodes. Thus, we have
Ui(t) ⊆ Ūi(t), J̄i(t) ⊆ Ji(t), and Li(t) ⊆ L̄i(t).

Define āii(t) = aii(t) and āij(t) = aij(t) for vj ∈ Ji(t) ∩
R. Set āij(t) = 0 for vj ∈ R \ Ji(t).

If there are no adversarial nodes in Ji(t) (i.e., Ji(t) =
Ji(t) ∩ R), then the construction of the weights āij(t) for
node vi is complete. Specifically, we have

āii(t) +
∑

vj∈N−i ∩R

āij(t) = aii(t) +
∑

vj∈Ji(t)

aij(t) = 1,

which satisfies the first condition in the proposition. Further-
more, since |Ji(t)| ≥ |N−i | − 2F and each of the weights are
lower bounded by η, this satisfies the second condition in the
proposition.

Now consider the case where there are one or more ad-
versarial nodes in Ji(t). We consider adversarial nodes in
Ji(t) \ J̄i(t) and J̄i(t) separately.

Consider any adversarial node vm ∈ Ji(t) \ J̄i(t), and let
xm(t) be the value received by node vi from vm. Since vi did
not discard vm’s value, it must be the case that there are either
F values that are higher than xm(t) in vi’s neighborhood,
or vi’s own value is higher than xm(t). Similarly, there
must either be F values that are lower than xm(t) in vi’s
neighborhood, or vi’s own value is lower than xm(t). Since
there are at most F adversarial nodes in vi’s neighborhood,
we see that there is a pair of regular nodes vu, vl ∈ N−i ∪{vi}
with xl(t) ≤ xm(t) ≤ xu(t). Thus, the term aim(t)xm(t) in
(8) can be written as

aim(t)xm(t) = aim(t)γmxu(t) + aim(t)(1− γm)xl(t)

for some γm ∈ [0, 1]. By updating the weights āiu(t) and
āil(t) as āiu(t) ← āiu(t) + aim(t)γm and āil(t) ← āil(t) +
aim(t)(1−γm), respectively, the contribution of the adversarial
node vm ∈ Ji(t)\J̄i(t) in (8) is transformed into contributions
by two regular nodes. We do this for each adversarial node in
Ji(t) \ J̄i(t).

Now consider the set J̄i(t), containing |N−i |−2F nodes. If
there are no adversarial nodes in J̄i(t), then the construction
of the weights āij(t) is complete and both conditions in the

proposition are satisfied (since the weights assigned to the
regular nodes in J̄i(t) satisfy the second condition in the
proposition by each being larger than η).

Thus suppose that there are K adversarial nodes in the
set J̄i(t), where 1 ≤ K ≤ F (recall that the set of
adversarial nodes is assumed to be F -local). Then there must
be at least K regular nodes in the set Ūi(t), and at least
K regular nodes in the set L̄i(t). Label the K adversarial
nodes in J̄i(t) as {vm1

, vm2
, . . . , vmK}, with correspond-

ing states xm1
(t), xm2

(t), . . . , xmK (t). Pick any K regular
nodes in Ūi(t) and any K regular nodes in L̄i(t), and
label them as {vu1 , vu2 , . . . , vuK}, and {vl1 , vl2 , . . . , vlK},
respectively. We will label the states of these nodes as
xu1

(t), xu2
(t), . . . , xuK (t), and xl1(t), xl2(t), . . . , xlK (t), re-

spectively. By definition, we have xlj (t) ≤ xmj (t) ≤ xuj (t)
for all 1 ≤ j ≤ K. Thus for each j ∈ {1, 2, . . . ,K}, we can
write

xmj (t) = γjxlj (t) + (1− γj)xuj (t),

where 0 ≤ γj ≤ 1. In other words, the state of the adversarial
node vmj is a convex combination of the states of the regular
nodes vuj and vlj . Note that either γj or (1− γj) must be at
least equal to 0.5.

As before, update the weights āilj (t) and āiuj (t) as
āilj (t) ← āilj (t) + aimj (t)γj and āiuj (t) ← āiuj (t) +
aimj (t)(1−γj) for j ∈ {1, 2, . . . ,K}. In other words, we split
the value of the weight that was assigned to the adversarial
node mj among the regular nodes lj and uj , according to
the proportions γj and (1 − γj). Note that at least K of the
nodes in {vu1 , vu2 , . . . , vuK}∪{vl1 , vl2 , . . . , vlK} get assigned
a weight that is lower bounded by η

2 (since either γj or
(1 − γj) is at least 0.5). Since the weight associated to each
adversarial node is split according to a convex combination
to a pair of regular nodes in N−i \ J̄i(t), we see that the
first condition in the proposition is satisfied. Finally, since
āij(t) ≥ aij(t) ≥ η for vj ∈ J̄i(t) ∩ R, this ensures that
|J̄i(t)| − K = |N−i | − 2F − K weights are lower bounded
by η. As discussed above, the splitting of the adversarial
nodes’ weights ensures that an additional K regular nodes
are assigned a weight that is lower bounded by η

2 . Thus, in
total, there are at least |N−i | − 2F weights (other than āii(t))
that are lower bounded by η

2 , concluding the proof.

We emphasize again that the regular nodes run the dynamics
(8) (which does not require them to know which of their
neighbors is adversarial); the dynamics (9) are mathematically
equivalent to the dynamics (8) due to the nature of the local
filtering that is done by each regular node, and will lead to
certain insights that we will leverage.

Henceforth, we assume without loss of generality that the
regular nodes are arranged first in the ordering of the nodes,
and define

xR(t) ,
[
x1(t) x2(t) · · · x|R|(t)

]′
,

dR(t) ,
[
d1(t) d2(t) · · · d|R|(t)

]′
to be the vectors of states and subgradients of the regular
nodes, respectively. Based on Proposition 5.1, the dynamics
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of the regular nodes under the LF dynamics can be written as

xR(t+ 1) = Ā(t)xR(t)− αtdR(t), (10)

where Ā(t) ∈ R|R|×|R|≥0 contains the weights āij(t) from (9).

VI. CONVERGENCE TO CONSENSUS

In this section, we study the convergence properties of
the LF dynamics (8). In particular, we provide sufficient
conditions for consensus for scenarios with F -local Byzantine
adversaries (i.e., the most general class of adversaries that we
consider), and necessary and sufficient conditions for scenarios
with F -total malicious adversaries.

A. A Sufficient Condition for Consensus Under F -local Byzan-
tine Adversaries

Theorem 6.1: Consider the network G = (V, E), with
regular nodes R and an F -local set of Byzantine nodes A.
Suppose the network is (2F + 1)-robust, that the functions fi,
vi ∈ R, have subgradients bounded by some constant L, and
that the regular nodes run the LF dynamics (8) with parameter
F . Further suppose that αt → 0 as t→∞. Then, there exists
a sequence of stochastic vectors qt, t ∈ N, such that

lim sup
t→∞

‖xR(t)− 1y(t)‖ = 0,

where y(t) = q′txR(t).

Proof: Consider the LF dynamics (8), and their equivalent
matrix representation (10). By Proposition 5.1, we know the
following facts about the dynamics matrix Ā(t) at each time-
step t ∈ N: each diagonal element is lower bounded by η,
and for each row i ∈ {1, 2, . . . , |R|}, at least |N−i | − 2F
elements are lower-bounded by η

2 . Consider the graph G, and
remove all edges whose weights are smaller than η

2 in Ā(t);
note that this removes all edges from adversarial nodes to
regular nodes (since they do not show up at all in Ā(t)). For
each regular node vi ∈ R, note that at most 2F incoming
edges are removed, again since at least |N−i | − 2F elements
are lower-bounded by η

2 . Now, from Lemma 2.3, we see that
if the graph G is (2F + 1)-robust, the subgraph consisting
of regular nodes will be rooted after removing 2F or fewer
edges from each regular node. Thus, Ā(t) is rooted for each
t ∈ N, with a tree whose edge-weights are all lower-bounded
by η

2 (and whose diagonal elements are also lower-bounded
by η

2 ). The theorem then follows by applying the first part of
Lemma 3.4.

The above proof relied on the fact that in (2F + 1)-robust
networks, the weight matrix Ā(t) corresponding to the regular
nodes is rooted at each time-step (under the F -local adversary
model). This is only a sufficient condition; we now show that
under the F -total malicious model, one can in fact give a
necessary and sufficient condition on the graph topology in
order to guarantee consensus, but that rootedness is no longer
guaranteed at each time-step under such conditions. We will
then provide an alternate proof of convergence to consensus
for such graphs.

2

0 0

1 1

(a)

2

0 0

1 1

(b)

Fig. 1: (a) A 2-robust network. The values inside the circles indicate the
initial values of the nodes. (b) An arrow from node v to node w indicates that
w uses v’s value after applying the filtering operation. The resulting induced
graph is not rooted.

B. A Necessary and Sufficient Condition for Consensus Under
F -total Malicious Adversaries

We start with the following example showing that when
the network is not (2F + 1)-robust, the graph induced by the
filtering operation may not be rooted at each time-step.

Example 6.2: Consider the graph of Figure 1(a), where all
nodes are regular and use the LF dynamics (8) with F = 1.
Let us assume that all nodes have identical objective functions
given by f(x) = |x|, and that the initial values of the nodes are
as displayed inside the circles. One can verify that this graph
is only 2-robust: if we take each of the nodes with value 1 to
be the sets S1 and S2, then no node in either set has more
than 2 neighbors outside its set. Thus Theorem 6.1 cannot
be applied to prove consensus. Indeed, we will show that the
graph induced by the LF dynamics may not be rooted at each
time-step. Figure 1(b) shows the information that is used by
each node after the filtering operation. For example, the node
with value 2 has disregarded one of its neighbors with value
0, which is lower than its own value. However, since the node
with value 2 does not have any neighbors with values larger
than its own, it does not remove any other values. Similarly
each node with value 1 removes the value 2 and the value 0,
as they are the single highest and single lowest values in its
neighborhood at this time-step. The directed graph induced by
the filtering operation is clearly not rooted; nevertheless, as we
show later in Theorem 6.4, the regular nodes are guaranteed
to achieve consensus in this network under the dynamics (8),
even if any single node becomes malicious.

This example motivates us to use a different strategy for
establishing the convergence properties of the LF dynamics
(8). More importantly, our alternate approach will allow us to
show that the notion of (r, s)-robustness given in Definition 2.2
yields a necessary and sufficient condition for consensus
in scenarios with F -total malicious adversaries. In order to
establish this result, we need to define the following quantities:

M(t) , max
vi∈R

xi(t), m(t) , min
vi∈R

xi(t),

and
D(t) ,M(t)−m(t).

For each t ∈ N, we set

δt , sup
t̄≥t
|αt̄|L,
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where L is the upper bound on the magnitude of the subgra-
dients. Clearly |αt̄di(t̄)| ≤ δt for all t̄ ≥ t. For any γ ∈ R and
t, t̄ ∈ N with t̄ ≥ t, define the sets

XM (t, t̄, γ) , {vi ∈ V | xi(t̄) > M(t)− γ}
Xm(t, t̄, γ) , {vi ∈ V | xi(t̄) < m(t) + γ} .

A key to the proof will be the following simple fact: at any
time-step t, no regular node will ever use a value larger than
M(t) or smaller than m(t) in its update equation (8). This is
easy to see as follows. Consider the set of nodes Ji(t) whose
values are not filtered away by regular node vi at time-step t.
If this set contains only regular nodes, then clearly all of their
values will be in the interval [m(t),M(t)]. On the other hand,
suppose the set Ji(t) contains K adversarial nodes, where
1 ≤ K ≤ F . Then since vi had discarded the most extreme
values in its neighborhood at time-step t, those K adversarial
nodes’ values must have been moderate in comparison to the
removed values. Under the F -total model, it must thus be the
case that there is at least one regular node in vi’s neighborhood
that had a value larger than those of the K adversarial nodes,
and at least one regular node in vi’s neighborhood that had a
value smaller than those values (that regular node could be vi
itself). Thus again, we see that all of the values used by vi at
time-step t are in the interval [m(t),M(t)]. We are now ready
to show the following result.

Proposition 6.3: Consider the network G = (V, E), with
regular nodes R and adversarial nodes A. Suppose the ad-
versarial nodes are F -total malicious and the network is
(F + 1, F + 1)-robust. Further suppose that the functions fi,
vi ∈ R have subgradients bounded by some constant L, and
that the regular nodes run the Local Filtering dynamics (8)
with parameter F and with weights lower bounded by η. Then
for any t ∈ N, we have

D(t+ |R|) ≤
(

1− η|R|

2

)
D(t) + 2|R|δt. (11)

Proof: Consider any time-step t ∈ N. Define γ0 = D(t)
2 .

Note that the sets XM (t, t, γ0) and Xm(t, t, γ0) are disjoint.

By the definition of these sets, they each contain at least
one regular node when D(t) > 0 (i.e., the nodes that have
value M(t) and m(t), respectively). Since the graph is (F +
1, F + 1)-robust, and since there are at most F adversarial
nodes, there is at least one regular node in either XM (t, t, γ0)
or Xm(t, t, γ0) (or both) that has F + 1 neighbors outside its
set. Since each regular node only discards up to F values that
are smaller (or larger) than its own value, there will be at least
one regular node that uses the value of a node from outside
its set. Suppose that there is such a regular node vi in the set
XM (t, t, γ0). Then, the value of this node at the next time-step
is upper bounded as

xi(t+ 1) ≤ (1− η)M(t) + η(M(t)− γ0) + δt

= M(t)− ηγ0 + δt.

The above bound is obtained by noting that the smallest
possible weight that a node can assign to a used value is η

(according to the description of the LF dynamics (8)). Note
that the above expression is also an upper bound for any
regular node that is not in XM (t, t, γ0), since such a node
will use its own value in its update.

Similarly, if there is a regular node vj ∈ Xm(t, t, γ0) that
uses the value of a node outside that set, then its value at the
next time-step is lower-bounded as

xj(t+ 1) ≥ (1− η)m(t) + η(m(t) + γ0)− δt
= m(t) + ηγ0 − δt.

Again, this is also a lower bound for the value of any regular
node that is not in the set Xm(t, t, γ0).

Now, define the quantity γ1 = ηγ0− δt and note that this is
smaller than γ0. Thus, the sets XM (t, t+ 1, γ1) and Xm(t, t+
1, γ1) are disjoint. Furthermore, by the bounds provided above,
we see that at least one of the following must be true:

|XM (t, t+ 1, γ1) ∩R| < |XM (t, t, γ0) ∩R|, or

|Xm(t, t+ 1, γ1) ∩R| < |Xm(t, t, γ0) ∩R|.

If both of the sets XM (t, t+1, γ1)∩R and Xm(t, t+1, γ1)∩R
are nonempty, then again by the fact that the graph is (F +
1, F + 1)-robust, there is at least one regular node in at least
one of these sets that has F + 1 neighbors outside the set.
Suppose that vi ∈ XM (t, t + 1, γ1) ∩ R is such a node. As
above, this node’s value at the next time-step is upper bounded
as

xi(t+ 2) ≤ (1− η)M(t+ 1) + η(M(t)− γ1) + δt

≤ (1− η)(M(t) + δt) + η(M(t)− γ1) + δt

= M(t) + (2− η)δt − ηγ1

= M(t) + 2δt − η2γ0,

where the first inequality holds since the smallest possible
weight that node vi can assign to the (undiscarded) value of
a neighbor outside XM (t, t + 1, γ1) is η, and the value of
this neighbor, by construction, is at most M(t) − γ1. Again,
this upper bound also holds for any regular node that is not
in XM (t, t + 1, γ1) ∩ R. Similarly, if there is a node vj ∈
Xm(t, t+ 1, γ1)∩R that has F + 1 neighbors outside that set,
its next value is lower bounded as

xj(t+ 2) ≥ (1− η)m(t+ 1) + η(m(t) + γ1)− δt
≥ (1− η)(m(t)− δt) + η(m(t) + γ1)− δt
= m(t)− (2− η)δt + ηγ1

= m(t)− 2δt + η2γ0.

This bound also holds for any regular node that is not in the
set Xm(t, t+ 1, γ1) ∩R.

We continue in this manner by defining γk = ηkγ0 − kδt.
At each time step t + k, if both XM (t, t + k, γk) ∩ R and
Xm(t, t+ k, γk)∩R are nonempty, then at least one of these
sets will shrink in the next time-step. If either of the sets is
empty, then it will stay empty at the next time-step, since every
regular node outside that set will have its value upper bounded
by M(t) − γk (or lower bounded by m(t) + γk). After |R|
time-steps, at least one of the sets XM (t, t+ |R|, γ|R|)∩R or
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Xm(t, t+ |R|, γ|R|) ∩ R is guaranteed to be empty. Suppose
the former set is empty; this means that

M(t+ |R|) ≤M(t)− γ|R|.

Since m(t+ |R|) ≥ m(t)− |R|δt, we obtain

D(t+ |R|) ≤ D(t)− γ|R| + |R|δt

=

(
1− η|R|

2

)
D(t) + 2|R|δt.

The same expression arises if the set Xm(t, t+ |R|, γ|R|)∩R
is empty, concluding the proof.

The above proposition leads to the following result for con-
sensus of the gradient-based distributed optimization dynamics
under local-filtering rules.

Theorem 6.4: Consider the network G = (V, E), with regu-
lar nodesR and malicious nodes A. Suppose that the functions
fi, vi ∈ R, are convex and have subgradients bounded by
some constant L, and that the regular nodes run the Local
Filtering dynamics (8) with parameter F and weights lower
bounded by η. Suppose further that the step-sizes satisfy
αt → 0. Then the regular nodes are guaranteed to reach
consensus for all choices of initial values, local functions, F -
total sets of malicious nodes, and actions of the malicious
nodes if and only if the graph is (F + 1, F + 1)-robust.

Proof: The proof of sufficiency follows immediately from
Proposition 6.3. Specifically, fix any t ∈ N. For k ∈ N, from
(11), we have

D(t+ k|R|) ≤
(

1− η|R|

2

)k
D(t)

+ 2|R|
k−1∑
l=0

(
1− η|R|

2

)k−1−l

δt+l|R|.

Note that if αt → 0 as t → ∞, we have δt → 0 as t → ∞,
which in turn means that δt+l|R| → 0 as l→∞. This means
that the summation in the above expression goes to zero as
k →∞ (e.g., see Lemma 7 in [6]). Thus, D(t+k|R|)→ 0 as
k →∞. Since this holds for any t ∈ N, we see that D(t)→ 0
as t→∞.

For necessity, suppose that the network is not (F+1, F+1)-
robust. Then there exist two disjoint nonempty sets S1, S2 ⊂ V
such that (i) there is at least one node in S1 that has at most
F neighbors outside S1, (ii) there is at least one node in S2

that has at most F neighbors outside S2, and (iii) there are at
most F nodes in S1 ∪ S2 that have F + 1 or more neighbors
outside their respective sets. Choose the nodes in S1∪S2 that
each have F + 1 or more neighbors outside their respective
sets to be the adversarial set A; clearly A is an F -total set.
Now, assign all of the nodes in set S1 to have function f1, and
assign all of the nodes in set S2 to have function f2, where
the minimizer of f2 is strictly larger than the minimizer of f1.
Now let all of the nodes in set V \{S1∪S2} have function f3,
selected to have gradient equal to zero in the entire interval
bracketed by the minimizers of f1 and f2. Let all nodes in
S1 and S2 (including the adversarial nodes) be initialized at

their local minimizers, and let all nodes in V \ {S1 ∪ S2}
be initialized at a value strictly between the minimizers of
f1 and f2. Furthermore, let the malicious nodes never change
their values. In this case, all regular nodes in S1 will discard
all of their neighbors’ values from outside S1 (since they each
have at most F neighbors outside S1), and similarly all regular
nodes in S2 will discard all of their neighbors’ values from
outside S2. As the values of nodes in V \ {S1 ∪ S2} will
always remain strictly between the minimizers of f1 and f2,
the regular nodes in S1 and S2 will never deviate from their
initial values, and thus consensus will not be reached for this
assignment of functions.

The above result shows that the network considered in
Example 6.2 is guaranteed to facilitate consensus among the
regular nodes despite the presence of any single malicious
node (since the network is (2, 2)-robust), even though the
graph induced by the filtering operation is not rooted at each
time-step.

Remark 6.5: As illustrated by Theorems 6.1 and 6.4, the
properties of r-robustness and (r, s)-robustness play a key role
in consensus-based optimization dynamics of the form (8).
While these properties are stronger than other graph properties
such as r-minimum degree and r-connectivity, all of these
properties occur simultaneously in various commonly studied
models for large-scale networks [22]. There are also various
simple techniques to construct r-robust networks for any given
r ∈ N, as discussed in [18].

VII. A SAFETY CONDITION: CONVERGENCE TO THE
CONVEX HULL OF THE LOCAL MINIMIZERS

In the previous section, we provided graph properties that
guaranteed consensus for the regular nodes under the LF
dynamics (8) (under the condition that the step-sizes asymp-
totically go to zero). In this section, we provide a safety
guarantee on these dynamics under additional conditions on
the step-sizes, as detailed in the following theorem.

Theorem 7.1: Suppose that one of the following conditions
holds:

(i) The adversarial nodes are F -total malicious and the
network is (F + 1, F + 1)-robust; or

(ii) The adversarial nodes are F -local Byzantine and the
network is (2F + 1)-robust.

Suppose that all regular nodes follow the LF dynamics (8)
with parameter F . For each node vi ∈ R, suppose the local
function fi is convex, has subgradients bounded by L, and has
a nonempty compact set of minimizersMi ⊆ R. Define M =
maxvi∈Rmax{x | x ∈ Mi} and M = minvi∈Rmin{x | x ∈
Mi}. If the step-sizes satisfy

∑∞
t=0 αt = ∞ and αt → 0 as

t→∞, then lim supt→∞ xi(t) ≤M and lim inft→∞ xi(t) ≥
M for all vi ∈ R, regardless of the actions of the adversarial
nodes and the initial values.

Proof: Let M(t) and m(t) be the maximum and mini-
mum values of the regular nodes at time-step t, respectively.



1 1

Usi n g t h e ass u m pti o ns, T h e or e ms 6. 1 a n d 6. 4 i n di c at e t h at
M (t) − m (t) → 0 . N o w c o nsi d er t h e l o c al filt eri n g d y n a mi cs
( 8). Si n c e n o r e g ul ar n o d e e v er a d o pts a n ei g h b or’s v al u e l ar g er
t h a n M (t) i n its u p d at e, w e h a v e

x i (t + 1) = a i i (t)x i (t) +
v j ∈ J i ( t )

a i j (t)x j (t) − α t d i (t),

≤ a i i (t)M (t) +
v j ∈ J i ( t )

a i j (t)M (t) − α t d i (t)

= M (t) − α t d i (t),

f or e a c h r e g ul ar n o d e v i ∈ R . I n p arti c ul ar, w e h a v e

M (t + 1) ≤ M (t) − α t mi n
v i ∈ R

d i (t). ( 1 2)

It er ati n g, w e o bt ai n f or a n y T ∈ Z ≥ 1 ,

M (t + T ) ≤ M (t) −

t + T − 1

j = t

α j mi n
v i ∈ R

d i (j ). ( 1 3)

N o w s u p p os e b y  w a y of c o ntr a di cti o n t h at
li m s u pt → ∞ M (t) = M + δ f or s o m e δ > 0 . L et t0 b e
s u c h t h at t h e f oll o wi n g t hr e e c o n diti o ns ar e s atis fi e d:

(i) M + δ
2 ≤ M (t0 ) ≤ M + 2 δ ,

(ii) M (t) − m (t) ≤ δ
4 f or all t ≥ t0 , a n d

(iii) α t L ≤ δ
4 f or all t ≥ t0 .

S u c h a t0 is g u ar a nt e e d t o e xist b y t h e c o n v er g e n c e of M (t) −
m (t) t o z er o a n d t h e d e fi niti o n of δ . D e fi n e

G = mi n
v i ∈ R

df i

d x M + δ
4

.

If f i is n ot diff er e nti a bl e at M + δ
4 , w e c o nsi d er t h e i n fi m u m

of its s u b gr a di e nts at t h at p oi nt ( n ot e t h at all s u c h s u b gr a di e nts
will b e p ositi v e a n d b o u n d e d a w a y fr o m z er o). T h us, w e h a v e
d i (t) ≥ G > 0 w h e n e v er m (t) ≥ M + δ

4 . B y t h e d e fi niti o n of
t0 a n d usi n g ( 1 3), w e h a v e

M (t0 + T ) ≤ M (t0 ) − G

t 0 + T − 1

j = t 0

α j

≤ M + 2 δ − G

t 0 + T − 1

j = t 0

α j ,

f or a n y T s u c h t h at M (t) ≥ M + δ
2 f or all t ∈ [t0 , t0 + T ].

T h us, usi n g t h e f a ct t h at
t 0 + T − 1
j = t 0

α j is u n b o u n d e d i n T , w e

s e e t h at M (t0 + T ) ≤ M + δ
2 f or s uf fi ci e ntl y l ar g e T . L et t1

b e t h at p oi nt i n ti m e.

N o w w e s h o w t h at M (t) will n e v er e x c e e d M + 3 δ
4 aft er

ti m e t1 . S p e ci fi c all y, if M (t) ≤ M + δ
2 at s o m e ti m e t ≥ t1 ,

t h e n b y ( 1 2), w e h a v e

M (t + 1) ≤ M (t) + α t L ≤ M +
δ

2
+

δ

4
= M +

3 δ

4
.

Si mil arl y, if M (t) ≥ M + δ
2 at s o m e ti m e t ≥ t1 , t h e n b y

( 1 2), w e h a v e M (t + 1) ≤ M (t) − α t G , a n d t h us M (t) will
m o n ot o ni c all y d e cr e as e u ntil it is b el o w M + δ

2 . T h us, M (t)
will e v e nt u all y b e u p p er b o u n d e d b y M + 3 δ

4
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Fi g. 2: A n ill ustr ati o n of l a c k of c o n v er g e n c e t o a c o nst a nt
v al u e u n d er a d v ers ari al b e h a vi or.

d e fi niti o n of δ . T h us, li m s u pt → ∞ M (t) ≤ M . A n i d e nti c al
ar g u m e nt h ol ds f or t h e l o w er b o u n d.

A. L a c k of C o n v er g e n c e t o a C o nst a nt Val u e U n d er A d v ers ar-
i al B e h a vi or

As s h o w n i n t h e pr e vi o us r es ult, t h e L F d y n a mi cs g u ar a nt e e
c o ns e ns us wit hi n t h e c o n v e x h ull of t h e l o c al mi ni mi z ers a n d
pr e v e nt t h e a d v ers ari al n o d es fr o m dri vi n g t h e st at es of r e g ul ar
n o d es t o ar bitr aril y l ar g e v al u es u n d er a p pr o pri at e c o n diti o ns
o n t h e n et w or k t o p ol o g y. H o w e v er, a si n gl e m ali ci o us n o d e c a n
still pr e v e nt t h e r e g ul ar n o d es fr o m c o n v er gi n g t o a c o nst a nt
v al u e u n d er c ert ai n cl ass es of st e p-si z es. T his is ill ustr at e d i n
t h e f oll o wi n g e x a m pl e.

E x a m pl e 7. 2: C o nsi d er a c o m pl et e gr a p h G wit h fi v e n o d es
{ v 1 , v2 , v3 , v4 , v5 } . S u p p os e v 1 , v2 a n d v 3 all h a v e l o c al f u n c-
ti o ns f a (x ) = x 2 , a n d v 4 h as l o c al f u n cti o n f b (x ) = ( x − 9) 2

( wit h t h e m a g nit u d e of t h eir gr a di e nts c a p p e d at L , f or s o m e
s uf fi ci e ntl y l ar g e L ). S u p p os e n o d e v 5 is m ali ci o us.

L et all r e g ul ar n o d es st art at t h eir l o c al mi ni mi z ers a n d
r u n t h e d y n a mi cs ( 8) wit h st e p-si z es s atisf yi n g t α t = ∞
a n d t α 2

t < ∞ . L et t h e m ali ci o us n o d e b e h a v e as f oll o ws
(ill ustr at e d i n Fi g ur e 2). It st arts b y k e e pi n g its v al u e t h e s a m e
as t h e r e g ul ar n o d es v 1 , v2 a n d v 3 . I n t his c as e, t h os e r e g ul ar
n o d es all dis c ar d n o d e v 4 ’s v al u e as b ei n g t o o e xtr e m e, a n d
t h us all r e g ul ar n o d es c o n v er g e t o w ar ds t h e mi ni mi z er of f a ,
n a m el y 0 . W h e n n o d e v 4 ’s v al u e is s uf fi ci e ntl y cl os e t o 0 ,
t h e m ali ci o us n o d e s wit c h es its v al u e t o b e l ar g er t h a n v 4 ’s
v al u e ( as s h o w n j ust aft er ti m e-st e p 1 0 0 i n Fi g ur e 2). At t his
p oi nt, all r e g ul ar n o d es dis c ar d v 5 ’s v al u e as b ei n g t o o e xtr e m e
a n d i n c or p or at e n o d e v 4 ’s v al u es i n t h eir u p d at es. T his c a us es
all r e g ul ar n o d es t o st art c o n v er gi n g t o w ar ds t h e mi ni mi z er of
s o m e c o n v e x c o m bi n ati o n of f a a n d f b . W h e n all r e g ul ar n o d es
ar e s uf fi ci e ntl y cl os e t o t his mi ni mi z er, t h e m ali ci o us n o d e
a g ai n s wit c h es its v al u e t o b e t h e s a m e as t h at of v 1 , v2 a n d v 3 .
T h es e t hr e e n o d es t h e n st art i g n ori n g v 4 ’s v al u e, w hi c h c a us es
all r e g ul ar n o d es t o st art c o n v er gi n g t o w ar ds t h e mi ni mi z er
of f a . B y r e p e ati n g t his b e h a vi or a d i n fi nit u m, t h e m ali ci o us
n o d e c a us es t h e r e g ul ar n o d es t o f or e v er os cill at e b et w e e n t w o
diff er e nt v al u es ( alt h o u g h t h e y r e a c h c o ns e ns us a n d r e m ai n
wit hi n t h e c o n v e x h ull of t h e l o c al mi ni mi z ers of t h e r e g ul ar
n o d es), as s h o w n i n Fi g ur e 2.

A f or m al pr o of of t h e b e h a vi or e x hi bit e d b y t h e a b o v e
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example is straightforward but tedious, and thus we omit it
in the interest of space.

VIII. FACTORS THAT AFFECT THE PERFORMANCE OF
SECURE DISTRIBUTED OPTIMIZATION ALGORITHMS

The proof of Theorem 4.4 indicates that the nature of the
individual optimization functions (together with the network
topology) will play a role in determining the performance that
is achievable under adversarial behavior. For example, suppose
that all individual objective functions are drawn from a certain
class of functions S. In the trivial case where all functions in
S have the same unique minimizer, each node can calculate
the globally optimal value simply by calculating the minimizer
of its own function, and thus security against any number of
adversarial nodes is guaranteed. On the other hand, when the
class of functions S is sufficiently rich so that the function
held by each node contributes to the global minimizer(s), then
the number and location of adversarial nodes will play a larger
role in determining the achievable performance. One such
bound on performance is provided by the following result.

Proposition 8.1: Consider a network G = (V, E) with n
nodes and let F ∈ N. Let T ⊂ V be a maximum F -
local set. Let S be the set from which the local objective
functions are drawn, and suppose that fa, fb ∈ S, where
fa(x) = (x−a)2 and fb(x) = (x−b)2, for a, b ∈ R.4 Let Γ be
any distributed optimization algorithm that guarantees that all
regular nodes reach consensus on a value in the convex hull
of the minimizers of the regular nodes’ objective functions.
Let x∗ be the true minimizer of the average of the functions
held by all regular nodes, and let x̄ be the value computed by
the regular nodes under Γ. Then, under the F -local adversary
model, there is an allocation of functions to nodes such that
|x̄ − x∗| = |T |

n |(b − a)| and f(x̄) − f(x∗) = |T |2
n2 (b − a)2,

where f(x) is the value of the average of the functions held
by the regular nodes evaluated at x.

Proof: We consider two scenarios. In the first scenario,
let each node in V \ T have the local function fa, and let
each node in T have the local function fb. Let all nodes be
regular. The minimizer of the average of all functions is given
by x∗ = a+ |T |(b−a)

n , with f(x∗) =
(

1− |T |n
)
|T |
n (b− a)2.

In the second scenario, the nodes in set T are also assigned
the function fa, but are adversarial and execute the algorithm
by pretending their local functions are fb. Since Γ guarantees
that all regular nodes reach consensus in the convex hull of the
minimizers of the regular nodes’ functions, all regular nodes
must obtain the value x̄ = a after executing algorithm Γ.

Since the two scenarios are indistinguishable from the
perspective of Γ, the algorithm must also cause all regular
nodes to calculate x̄ = a under the first scenario. Thus, the
difference of the value output by Γ and the true minimizer of
the regular nodes’ functions is |x̄−x∗| = |T |

n |(b−a)|, and the

4Both functions can be modified to have their gradients capped at suf-
ficiently large values, so as to not affect the minimizer of any convex
combination of the functions.

w1 w2 w3 w4 w5 w6 · · · wN−2 wN−1 wN

u1 u2 · · · uK

W

U

Fig. 3: Graph G constructed on node sets U ∪W . All nodes in
set W are connected to each other (the edges are not shown
in the interest of clarity). Each node in set U connects to three
unique vertices in set W . This graph is 3-robust.

difference in achieved costs is f(x̄)− f(x∗) = |T |2
n2 (b− a)2.

Example 8.2: Consider the network shown in Figure 3,
where K ≥ 2 is some positive integer, and N = 3K. We
define the vertex sets W = {w1, w2, . . . , wN} and U =
{u1, u2, . . . , uK}. One can verify that this network is 3-robust
and that U is a maximum 1-local set. Suppose each node in U
is assigned the function fb(x) = (x−b)2, and each node in W
is assigned the function fa(x) = x2 (with the magnitude of
their gradients capped at L, for some sufficiently large L). By
Prop. 8.1, any algorithm that guarantees to output a value in
the convex hull of the regular nodes’ minimizers must produce
x̄ = 0 as a solution. In this case, we have |x̄ − x∗| = b

4 and
f(x̄)−f(x∗) = b2

16 , where x∗ = b
4 is the global minimizer.

Given the fact that the performance of secure distributed
optimization algorithms heavily depends on the size of maxi-
mum F -local sets in the network (under the F -local adversary
model), it is natural to ask how easy it is to find such maximum
sets. To answer this, we first define the problem formally and
then characterize its complexity.

Definition 8.3: Let r, k be positive integers. The r-Local Set
Problem is to determine whether a given graph has an r-local
set of size at least k.

Theorem 8.4: The r-Local Set Problem is NP-complete.

The proof of the above theorem is given in Appendix A.

Although finding maximum F -local sets in graphs is diffi-
cult in general (unless P = NP ), one can characterize the size
of such sets in certain specific classes of graphs. For instance,
the maximum F -local set in complete graphs has size exactly
F . Similarly, consider Erdös-Rényi random graphs where each
edge between each pair of nodes is added independently with
a certain probability p(n) (which could depend on the number
of nodes in the graph). It was shown in [22], [30] that if the
edge probability satisfies

p(n) =
ln(n) + F ln ln(n) + g(n)

n
,

where g(n) → ∞ as n → ∞, the size of the largest F -
local set is in O(nγ(n)) with high probability, where γ(n) is
any function satisfying ln ln(n) = o(γ(n) lnn). For instance,
γ(n) = (ln ln(n))1+ε

ln(n) satisfies this for any ε > 0. Thus,
with high probability, the fraction of nodes that are in the
maximum F -local set goes to zero as n→∞ in Erdös-Rényi
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random graphs for the above regime of edge probabilities. This
means that the limitation identified in Proposition 8.1 will not
play a major role in such graphs. An interesting avenue for
further research is to identify whether there are other graph
theoretic obstructions to the performance of secure distributed
optimization algorithms (including the LF dynamics we have
presented in this paper).

IX. DIRECTIONS FOR FUTURE RESEARCH

In this paper, we proposed a consensus-based distributed
optimization algorithm that mitigates adversarial behavior un-
der certain conditions on the network topology, in the sense
that the regular nodes will always asymptotically converge
to the convex hull of the minimizers of the regular nodes’
functions, despite the actions of any F -local (or F -total) set
of adversaries. We also identified topological properties (in the
form of maximum F -local sets) that affect the performance of
the algorithm. There are many interesting directions for future
research, including a more explicit characterization of the
distance-to-optimality of such algorithms (with corresponding
conditions on the network topology), extensions to directed
settings, analyzing constant-step size secure algorithms, and
a characterization of classes of functions that lead to near-
optimal solutions. The extension of our results to multidi-
mensional functions is also of interest. For example, one
option to tackle this problem might be to apply our local
filtering dynamics to each component of the parameter vectors
maintained by each regular node at each time-step. However,
identifying the region that such dynamics converge to (and
its relationship with the minimizer of the sum of the regular
nodes’ functions) remains an open problem.
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APPENDIX A
PROOF OF THEOREM 8.4: COMPLEXITY OF FINDING

MAXIMUM r-LOCAL SETS

Proof: We will provide a reduction from the NP-complete
Set Packing problem: given a collection of elements U =
{u1, u2, . . . , un}, a set of subsets S = {S1, . . . , Sm} of U ,
and a positive integer k, do there exist k subsets in S that are
mutually disjoint? Specifically, we will show that given any
instance of the Set Packing problem, one can construct a graph
G = (V, E) in such a way that G contains a 1-local set of size
at least k if and only if the answer to the given instance of
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the Set Packing problem is “yes.” We assume throughout that
k ≥ 2, as the answer to the Set Packing problem for k = 1 is
always “yes.”

Construct the graph G as follows. Define the vertex set V
to consist of n+m vertices

V = {u1, u2, . . . , un, s1, s2, . . . , sm},

where each vertex ui corresponds to an element of the set U ,
and each vertex si corresponds to the subset Si ∈ S.

Next, place an edge between each pair of vertices ui, uj ,
j 6= i. This creates a complete graph on the vertex set
{u1, . . . , un}. For each vertex si, 1 ≤ i ≤ m, add an edge
between si and vertex uj if uj ∈ Si in the given instance of
the Set Packing problem. This completes the construction of
the graph G.

Suppose that the answer to the Set Packing instance is
“yes.” Then there exists a collection of at least k subsets
such that no two of the subsets share an element. Let
P = {Si1 , Si2 , . . . , Sik′} be the corresponding collection,
where k′ ≥ k. Let Pv = {si1 , si2 , . . . , sik′} ⊂ V be the
corresponding vertices in graph G. Then it is easy to verify
that Pv forms a 1-local set of size k′ ≥ k; none of the vertices
{u1, u2, . . . , un} have more than one neighbor in Pv (by the
definition of the edges and the fact that Pv corresponds to a
packing), and none of the vertices si share any edges with
nodes in the set Pv . Thus, if the answer to the Set Packing
instance is “yes”, the answer to the constructed instance of the
1-local Set Problem is “yes.”

We now show the converse. Suppose the answer to the
constructed instance of the 1-local Set Problem is “yes,” i.e.,
there exists a 1-local set Pv ⊂ V of vertices, with cardinality
k′ ≥ k ≥ 2. We first claim that Pv cannot contain any
vertices from the set {u1, u2, . . . , un}. To see this, note that
Pv cannot contain all of the vertices {u1, u2, . . . , un}, for if it
did, any vertex si that is not in Pv would contain at least two
neighbors in Pv contradicting the fact that it is a 1-local set.
Next, note that Pv cannot contain more than one node from
{u1, u2, . . . , un}, for if it did, any node uj that is not in Pv
would have more than one neighbor in Pv , again contradicting
the fact that it is a 1-local set. Thus suppose Pv contains a
single vertex from {u1, . . . , un}, and take this vertex to be ui.
Then each vertex uj (j 6= i) already has a neighbor in Pv , and
thus none of the vertices si, 1 ≤ i ≤ m can be in Pv . Thus
Pv is of size 1, contradicting the fact that it is a 1-local set of
size at least 2.

Thus, Pv can contain only vertices from the set
{s1, s2, . . . , sm}. It is now easy to see that the subsets from
the Set Packing problem corresponding to those vertices form
a packing of size at least k, and thus the answer to the Set
Packing problem is “yes.”

The above reduction shows that the r-local Set Problem
is NP-hard. Since this problem has a certificate for “yes”
instances that can be verified in polynomial time (i.e., the
actual r-local set of size at least k), the r-local Set Problem
is in NP, and thus is NP-complete.


