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Networked Microgrids Planning Through Chance
Constrained Stochastic Conic Programming

Xiaoyu Cao ', Student Member, IEEE, Jianxue Wang

Abstract—This paper presents a chance constrained stochas-
tic conic program model for networked microgrids planning.
Under a two-stage optimization framework, we integrate a
multi-site microgrids investment problem and two sets of oper-
ational problems that correspond to the grid-connected and
islanding modes, respectively. To handle the uncertain nature
of renewable energy generation and load variation, as well as
the contingent islanding caused by external disruptions, stochas-
tic scenarios are employed to capture randomness and a joint
chance constraint is introduced to control the operational risks. A
second-order conic program (SOCP) formulation is also utilized
to accurately describe the AC optimal power flow (OPF) in oper-
ational problems. As the resulting mixed integer SOCP model
is computationally difficult, we customize the bilinear Benders
decomposition with non-trivial enhancement techniques to deal
with practical instances. Numerical results on 5- and 69-bus net-
worked microgrids demonstrate the effectiveness of the proposed
planning model and the superior performance of our solution
algorithm.

Index Terms—Networked microgrids, multi-site resource plan-
ning, chance constrained stochastic program, second-order conic
program, bilinear Benders decomposition.

NOMENCLATURE
Set and Index

Q/j Set/index of buses in multi-microgrid network
7(n) Set of periods defined under islanding scenario n
D(s) Set of days defined under stochastic scenario s
E/(,j) Set/index of branches in multi-microgrid network
I/n Set/index of islanding scenarios

k Index of candidate DERs
M Set of buses with microgrids integration
S/s Set/index of stochastic scenarios
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Capital recovery factor of DER k

Probability of stochastic/islanding scenarios
Time-of-use electricity price in hour 7
Allowable range of voltage magnitudes at bus j
Penalty cost factor of load reduction

Cost coefficient of power loss

Unit energy/power cost of ES &

Fuel cost coefficient of DFG k

Unit capital cost of DER (expect for ES) k
Nominal lifetime of DER &

Number of stochastic/islanding scenarios
Maximum number of deployed microgrids
Fixed O&M cost coefficient of DER &
Active/reactive load at bus j in hour ¢
Installed capacity of shunt capacitors at bus j
Discount rate

Resistance/reactance of branch (i, j)
Reference voltage level at substation bus.

Squared magnitude of current on branch (i, ) in
hour ¢

Discharge/charge power of ES k at bus j in hour ¢
Stored energy of ES k at bus j in hour ¢
Exchanged power at substation bus in hour ¢
Active/reactive power injection at bus j in hour #
Power transaction via PCC of microgrid j in
hour ¢

Active/reactive power flow on branch (i,j) in
hour ¢

Active power output of DER k at bus j in hour 7
Load reduction at bus j in hour ¢
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. Reactive power output of RES k at bus j in hour #
vj’- Squared magnitude of voltage at bus j in hour ¢
Xi,j Number of newly-installed DER & at microgrid j
Zj Binary variable to indicate the siting status of

microgrid at bus j.

I. INTRODUCTION

HE GROWING proliferation of microgrids motivates
T their interconnection to make a more reliable, secure, and
resilient network near the customer-side [1]-[3]. Networking
a few neighboring microgrids enables them to share the
generation, storage, and reserve resources, which prompts
the whole community to operate in a more economical and
efficient way. Also, each individual microgrid can bene-
fit from the reliability improvement due to the backup of
others, which ensures the power-supply continuity in case
of emergency events, e.g., utility contingencies or natural
disasters [4], [5]. To achieve the full strength of the afore-
mentioned advantages, we believe that a networked microgrids
system needs to be properly configured and analytically
studied.

As mentioned in [6]—[8], the ownership of microgrids could
belong to the utility (e.g., grid operator and government), local
community, electricity retailers, end consumers, or a hybrid of
above. According to the ownership, the microgrids planning
can be implemented in a centralized or decentralized way. In
this study, we consider that the microgrids are owned by a
sole stakeholder (e.g., the utility) and planned in a centralized
manner. We note that the centralized planning situation exists
in many practical systems, e.g., some utility microgrids with
a single owner in U.S. [1], [9], Europe [10], and China [11].
Under a centralized environment, the main task of networked
microgrids planning (NMP) is to optimize the siting and siz-
ing of multiple interconnected microgrids in a distribution
network, aiming to maximize the total investment and oper-
ational benefits with guaranteed system performances, e.g.,
reliability, flexibility, and efficiency.

Comparing to the single microgrid planning, which has been
heavily studied in literatures [12]-[14], the planning issues of
networked microgrids are much more complicated. Essentially,
the planning problems of networked microgrids, which fall
into a multi-site resource planning category, must follow the
system-wide power balance principle by including complex
power flow representations. Also, it should consider relevant
reactive power, voltage, and congestion issues. As a result,
the NMP is actually a non-linear combinatorial optimization
problem, which could be very challenging for a practical
network. But for the single-site system, the network complica-
tions can be ignored and the resulting planning formulation is
drastically simpler. Another critical issue for NMP is to man-
age the multi-source uncertainties associated with the internal
dynamics and the external circumstances of microgrids. On
one hand, the intermittency of renewable energy generation
as well as the inaccuracy of load forecast within microgrids
bring non-trivial uncertainties into the planning data [14]. On
the other hand, the uncertainties of external disruptions, e.g.,
the forced or scheduled maintenance of upstream grid, may
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drive the entire networked system to transit from normal grid-
connected mode to islanded operation mode [15]. Since the
needs for islanding (a salient feature of microgrids) could
lead to costly investment, it is necessary to make a trade-off
between the cost-effectiveness and risk-immunity in planning
decisions.

With the aforementioned challenges, it demands for strong
tools to analytically consider the impact of network issues and
multi-source uncertainties in NMP problems, which, however,
have not yet been fully addressed in the current literatures.
Many of the existing studies, e.g., [16]-[23], have concerned
the internal uncertainties, e.g., intermittent generation and vari-
able load. Reference [16] proposed a probabilistic minimal-cut
based approach for the interconnection planning of multiple
microgrids considering the stochastic output of distributed
energy resources (DERs). Reference [17] studied the mete-
orological data analysis of renewable energy generation to
support the cooperative planning of interconnected microgrids.
Reference [18] presented a two-stage stochastic program (SP)
model to co-optimize the investment plans of microgrids, gen-
erators, and transmission lines under uncertain contingencies
and load growth. References [19], [20] adopted the heuristic-
based SP methods to handle the randomness of DERSs’
output and load in NMP problems. References [21]-[23]
developed the bi-level program frameworks to decide the
sectioning and configuration scheme of microgrids in a dis-
tribution network, while the uncertainties were captured by
scenario-based methods and robust optimization respectively.
Nevertheless, the uncertainties of external disruptions, which
may cause microgrids islanding and further challenge the
system performance, were often neglected in the existing lit-
eratures [12], [24]. Moreover, due to the non-linearity and
non-convexity introduced by network representations (e.g., AC
power flow equations), many of the current NMP formulations
can only be solved by heuristic approaches [19]-[23], which,
however, generally do not guarantee the global optimality of
their solutions. The aforementioned research gaps motivate our
exploration on more realistic modeling and analytical com-
putation tools for the configuration planning of networked
microgrids.

In this paper, we capture the sequential and interdependent
microgrids’ investment and operation decisions using a two-
stage framework, and thus formulate the NMP as a two-stage
chance constrained stochastic conic program. Our formulation
incorporates the multi-site investment scheme at the first-
stage and the dual-mode (i.e., grid-connected and islanding
modes) operational models at the second-stage. Based on two
sets of operational problems, we combine the SP and chance
constrained program (CCP) to address the multi-source uncer-
tainties: 1) the SP is applied to manage the internal generation
and load uncertainties under grid-connected mode; and 2) the
CCP is included to ensure the feasibility of islanded operation
subject to external uncertainties, which provides a trade-off
scheme to balance the cost-benefit and the immunity against
operational risks. Also, the actual operation of multi-microgrid
network is captured by the non-linear branch flow model [25].
We mention that this power flow model actually can be con-
vexified into a computationally friendly SOCP, which ensures
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Fig. 1. Conceptual Structure of Networked Microgrids.

its solution’s global optimality with respect to our origi-
nal planning formulation under mild conditions [26]-[28].
Moreover, to handle the challenging mixed-integer SOCP for-
mulation of the proposed planning problem, we customize the
bilinear Benders decomposition method [14], [29] with strong
duality and make non-trivial enhancements through the tech-
niques of Jensen’s inequalities and Pareto-optimal cuts, which
yields a strong computational capacity.

Comparing to the current literatures, our main contributions
can be summarized as:

1) A holistic NMP model is presented to consider the multi-
site microgrids investment and dual-mode network operations.

2) An integrated chance constrained stochastic framework is
proposed to manage the multi-source uncertainties associated
with different operational modes of networked microgrids.

3) An exact and efficient decomposition algorithm is
developed to analytically solve the proposed mixed-integer
SOCP formulation.

The remainder of this paper is organized as below. Section II
formulates the chance constrained stochastic NMP model.
Section III presents details of the enhanced bilinear Benders
decomposition method. Section IV shows the results of numer-
ical tests. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

The conceptual architecture of networked microgrids is
shown in Fig. 1. The multi-microgrid distribution network is
assumed to hold a radial topology with buses indexed by j € 2
and branches indexed by (i,j) € E. The substation bus is
indexed by j = 0. The buses with microgrids integration (via
the points of common coupling (PCC)) are indexed by j € M,
and the other buses are indexed by j € 2/M. The (unique)
sending end and the receiving ends of bus j are indexed by i
and h € O(). Also, we regard each individual microgrid as
a single-bus system even though it could have inner network
structure at a lower voltage class. Note that these inner struc-
tures can be considered through extended network modeling,
but are not in the scope of this study.

Under these preliminaries, we formulate a two-stage chance
constrained stochastic NMP model. The centralized investment
decisions are made at the first stage to deploy the microgrids
on regional network as well as to decide the sizing plan of
DERs for each microgrid. Then, two sets of operational SOCPs
are included at the second stage to coordinately dispatch
the networked microgrids under grid-connected and islanding
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modes, respectively. Without loss of generality, the candidate
DERs refer to renewable energy sources (RES), dispatchable
fuel generators (DFG), and energy storage devices (ES) [14].

A. Ist-Stage Problem: Investment Decisions

The first-stage problem is to minimize the annualized cost
of microgrids investment before the realization of uncertain
factors, which can be written as:

min Y Y gCipiXi,

JjEQ ke{res,dfg}

+ 0 G(ECkEk + PCrpi) Xi.j M
JE kees
R(1 + R)™
b = Tt Vk € {res, dfg, es) 2)
st 45Xy < Xij < Xk j, Vk € {res, dfg,es),VjeQ  (3)
ZZj =< Nmg @)
je

Xije€Zy,zj €{0,1}, Vke {res,dfg,es},VieQ (5)

As shown in (1), the annualized investment cost is evalu-
ated by multiplying the capital cost of candidate DERs with
their capital recovery factors (¢x), as defined in (2). Also, the
capacities of candidate DERs are constrained by (3) to reflect
the limitations due to geographical, financial, and environmen-
tal conditions, and the cardinality constraint in (4) introduces
an upper bound (Nmg) on the total number of microgrid
sites.

Remark 1: Note that the optimal microgrids siting is actu-
ally a complicated combinatorial problem [19], [30], [31]. For
the sake of illustration, a conceptual siting model is adopted
as in (1)-(5) with several of the practical factors, e.g., finan-
cial and geographical issues. Moreover, our siting model can
be easily extended by incorporating other practical consider-
ations (e.g., by adding linear or conic constraints) as well as
the preference of system planners (e.g., by fixing part of the
siting variables).

B. 2nd-Stage Operational Problem in Grid-Connected Mode

The first set of operational problem is to perform the coor-
dinated scheduling of networked microgrids given a finite set
of stochastic scenarios S = {&|s = 1,2, ..., N,}, which are
defined under typical days D(s) to capture the uncertainties of
RES generation (i.e., §; (&) and load variation (i.e., Pf,j(Es)
and q;’ j(ES)). Each scenario follows a probability 5. The grid-
connected scheduling problem (GSP) under scenario s € S can
be written as:

min Cf)m + Ci;v)t + Cfoss + Cfc (6)

Cm=hY > Y  O0CpXi

teD(s) JeM ke{res,dfg,es}

+hyS YD FCwA @)

teD(s) jeM kedfg

Ch=h Y Y o'ryia (8)

teD(s) jeM
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Chss=h Y D 0rgty'A 9)

teD(s) (i.j)eE

C=h Z Z(5ppfc’fj + §q‘115c'fj)Af
teD(s) je2

st ) P D = ) gy = 16 — p

(10)

kefres,dfg} kees
Vj e M,Vt (11)
S gt tacitali=dE) —ay. VieMyve (12
keres
0 <ppi < 81 EprXy ,  Vk e res,Vj € M, Vi (13)
4| < V5% — PeXej, Yk €res,Vj € M, Vi (14)
P Xij <P < PiXej, Vk € dfg,Vj e M, Vi (15)
0< d,i;j. < pkXej» Vke€es,Vje MVt (16)
0 <) <PiXej Vkees,YjeMVt (17)
eif = ¢+ ey — di /e, Vkees,Yje M,V (18)
eXij < & < @Xij, Vkees, Vje MV (19)
D ey —dii/m) =0, VkeesNjeM (20)
teD(s)
S, 1 .
P, VjeM,Vt
P‘?ft — ]’i'eé‘.’t — Z P‘?’t = { 8+
ij ij h S\t St .
: Uoen Pij — Py Vi€ /M. Vt
21
s,t .
q.", VjeM,Vt
o —x,:;ﬁ‘?.’t — Z Q‘?}’lt — { 8 o i
ij ij e J a5 = Do Vje Q/M,Vt
(22)
vt =it =20 P 4 Q) — s +xi2j)efjt’
Y(i,j) € E,Vt (23)
e = (PN + (@), V(.j) € EVi 24)
U<V <T;, YjeQW (25)
G =2 ..
0<e' <I, VGjeEV: (26)
—Pap < PB’Z = Z Pf)kt < Pgp, Vi (27)
ke®(0)
_ésub = qz)’[ = Z ngt = asubv vt (28)
ke®(0)

The second-stage objective (6) contains the operation and
maintenance (O&M) cost (C ), power transaction cost (Cfn),
network loss cost (Cfoss), and load reduction cost (Cfc), which
are evaluated through (7)-(10) respectively. In (7), the fixed
O&M cost is proportional to DERs installation, while its vary-
ing part refers to the fuel cost of DFGs. Eq. (8) calculates
the total cost incurred by the power transactions between the
microgrids cluster (as a whole) and the main grid [32], [33].
The network loss and load curtailment are penalized by spe-
cific cost factors as in (9) and (10). All these cost terms are
evaluated on a daily basis and then scaled to derive yearly
values by a factor h.

Egs. (11)-(20) represent the operational constraints of
each individual microgrid. Constraints (11)-(12) ensure the
active and reactive power balance within each microgrid.
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The microgrids are supplied by both the DERs and the exter-
nal network. The power transactions through the PCCs could
be positive (power procurement status) or negative (power
selling status). Note also that the reactive power can be
supplied by existing shunt capacitors as well as the power
electronic interface (e.g., converter) equipped with RES [34].
Additionally, the upper restrictions on load reduction variables
pfc’f j and qic,/’ can be relaxed since they are heavily penal-
ized in the objective function. In (13), the active power output
of RES is calculated as the product of its installed capac-
ity and time-varying factor §; (), which mainly depends on
weather conditions (e.g., solar irradiation and ambient temper-
ature). The reactive power served by the converters of RES
is constrained by (14). The generation constraint of DFGs is
given in (15). The power and energy states of ES are con-
strained by (16)-(20). Note that in (20), the energy state of
ES is kept as its initial value after a daily charge-discharge
cycle.

Egs. (21)-(28) denote the operational constraints of multi-
microgrid network (as shown in Fig. 1). A nonlinear branch
flow model is defined by (21)-(24). With a recoverable angle
relaxation [28], we only need to deal with the magnitude
representations of these power flow equations. The square
of magnitudes of nodal voltage and branch current are con-
strained by (25) and (26). The exchanged active/reactive power
between networked microgrids and up-stream grid are con-
strained by (27) and (28), respectively. Besides, the reference
voltage level at substation bus is specified as Up.

Remark 2: Since (21)-(24) introduce the non-convexity to
our mixed integer nonlinear planning formulation, its global
optimality cannot be guaranteed. To convexify (21)-(24), we
relax the equalities in (24) to derive a set of rotated second-
order conic constraints:

2 2

() + (0 <
As a result, we obtain a convex and computationally friendly
SOCP relaxation, which includes (6)-(23), (25)-(28) and (29)
(denoted by GSP-r), to the original GSP. Moreover, through
the sufficient conditions presented in [28], [35], this SOCP
relaxation is exact and its convexity guarantees a global
optimal solution to the original GSP.

V(i,j) € E,¥t,Vs (29)

C. 2nd-Stage Operational Problem in Islanding Mode

The second set of operational problem is to guarantee the
feasibility of islanding under external disruptions. The capac-
ity sufficiency for islanded operation is validated based on a
finite set of scenarios I = {wy|n = 1,2, ..., Ny}, which are
defined under t-hour islanding periods [15]. Each islanding
scenario n occurs with a probability m,. According to IEEE
Standard 1547.4 [36], the major concern for microgrids island-
ing is to maintain the reliability and operational security. As
the economic target is less critical for the islanded operation,
we only require that the operational cost (A,), which includes
the O&M cost, network loss cost, and load reduction cost, is
no larger than an expected value by imposing the cost-bound
constraints. Note that the power transaction cost, which orig-
inates from the exchanged power with main grid, is excluded
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when computing A,. Hence, the islanding validation problem
(IVP-r) under scenario n € I can be written as:

Ap=Cl +CL +CL<A (30)
BN (11) = (23), (25) = (26), (29)}, Viet(m) (31)
o’ =0, g’ =0, Vier(n (32)

where the cost-bound constraint is given in (30). In (31), the
operational constraints in GSP-r are re-defined in constraints
set 2™ under each islanding scenario. Besides, the boundary
conditions for islanded operation are clarified in (32).

Since the load reduction is penalized in A,, the variables
that slack constraints set ™ are actually restricted by our
cost-bound constraints. In this regard, the cost-bound require-
ments in (30) could become too restrictive for some very
adversarial scenarios (i.e., with high risks of load reduction).
The full consideration of cost-bound may force the planners to
generate and implement a highly capacitated and costly plan-
ning scheme. To achieve a trade-off between the cost-benefit
and the immunity against islanding risks, we impose a chance
constraint on (30) so that it is allowed to be relaxed with a
pre-defined small probability. Note also that the chance con-
straint of (30) involves multi-variate integration, which makes
it very difficult to be represented by a closed-form expres-
sion. Hence, we follow the strategies in [29] to express the
chance constraints by a scenario-based bilinear formulation
as below.

Ay(1—u,) <A, Vnel (33)
Znnun <e. (34)
nel

Remark 3: Constraints (33)-(34) ensure that the cost-bound
constraint is satisfied with a probability greater than or equal
to 1 — e, where ¢ is the risk tolerance level. Note that binary
variable u,, is utilized to indicate that the full requirements of
islanding scenario n is imposed or not. Clearly, when u,, = 0,
the cost-bound constraint under islanding scenario n must be
satisfied, and when u, = 1, otherwise. The total probabil-
ity of islanding scenarios that can be partially deactivated is
restricted by the joint chance constraint (34).

Actually, the chance constraints (33)-(34) can be equiva-
lently interpreted as value-at-risk (VaR) constraints [37], [38],
which perform as the risk measure. Hence, by adjusting
the parameter &, the chance constraints can be applied to
quantitatively control the operational risks of microgrids
islanding.

D. Full Formulation of Networked Microgrids Planning

Combining (1)-(5) with (6)-(23), (25)-(29) and (31)-(34),
we obtain the full formulation of two-stage chance constrained
stochastic NMP model. For convenience, its compact matrix
form is given as below.

¢ = min cIx+ Z nsdTys (35)
seS

st. Ax<b (36)

Fys=f, VseS 37

Wex + Ry, >v, VseS (38)
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IGmysll, < glys, Vs €S, Vme Ly (39)
Loys > lp, VseS (40)
x€Zy,yseR, VseS 41
gyl —up) <A, Vnel (42)
Hy,=h,, Vnel 43)
Vix+ Ky, >w, Vnel 44)
|1Bmynll, < r,{lyn, Vnel,Vme L, 45)
Znnun <eg Vnel 46)
nel
yh € Rou, €{0,1}, Vnel “n

The objective function is abstracted in (35). The vec-
tor x represent the first-stage variables, while y; and y,
denote the second-stage variables defined under stochas-
tic and islanding scenarios. The investment decisions are
constrained by (36), corresponding to constraints (3)-(4).
Constraints (37)-(38) denote the linear equalities and inequal-
ities in GSP-r, i.e., (11)-(23), (25), (26). Constraint (39)
stands for the conic constraints in (29), where m is the
index of such constraints. Constraint (40) represents con-
straints (27)-(28), which are only for grid-connected operation.
Constraints (42) and (46) denote the joint chance constraints
in IVP-r, i.e., (33) and (34). Constraints (43)-(45) correspond
to the rest constraints in IVP-r.

III. ENHANCED BILINEAR BENDERS DECOMPOSITION
METHOD FOR STOCHASTIC MIXED INTEGER SOCP

We observe that the chance constrained stochastic mixed
integer SOCP in (35)-(47) is a large-scale non-convex formu-
lation, which is very challenging for professional solvers. To
address such computational challenges, we follow the strat-
egy in [14], [29] to develop and customize a decomposition
method, i.e., the bilinear Benders decomposition method, that
can significantly improve our solution capacity. Also, two
enhancement techniques are adopted for better performance.

The framework of classical Benders decomposition for
stochastic linear programming (LP) involves a master problem
and a set of subproblems. The latter one is actually the dual of
the second-stage problem in every scenario. Note that, differ-
ent from LP, it is not always the case that an SOCP formulation
has the strong duality, which actually could be the case for
the popular AC OPF SOCP formulation (as revealed by the
numerical study in [39]). Note that if the strong conic dual-
ity fails, there is no guarantee that Benders decomposition for
mixed-integer SOCP leads to exact solutions. However, to the
best of our knowledge, although conic dual problem has been
utilized for algorithm development (e.g., [40]-[42]), this issue
was rarely mentioned in any publication. Based on an ana-
Iytical study in [39], our second-stage AC OPF problems are
observed to fit a sufficient condition that guarantees the strong
duality of SOCP formulation, which thus ensures the exactness
of our bilinear Benders reformulation.

1) Feasibility-Check Subproblem: We first define a sub-
problem (SP,) to check the feasibility of first-stage
solution (denoted by x) with respect to the chance
constraints (42) and (46) under islanding scenarios. SP, is
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formulated as below.

SP, : Ay=min Y 1, (48)
nel

st 1> Ya(l—uy) — A, Vnel (49)

Znnun <e (50)

nel

t, >0,u, €{0,1}, Vnel (29

where Y, is to denote the operational cost from the island-
ing scenario n, which can be attained by computing the
cost-minimization counterpart of IVP-r as in the following.

Y, = néin {qTyn - (43) — (4T)), Vnel. (52)
Remark 4: As mentioned in [14] that if Ay = 0, we can
conclude that the current % is a feasible solution towards
constraints (42) and (46). Otherwise, a different first stage
investment plan should be generated in the next iteration.

2) Optimality Subproblems: Next, two types of optimal-
ity subproblems are defined based on our operational SOCP
problems. The first type SP},, which corresponds to the GSP-r
under each scenario s € S, is to minimize the recourse cost
dTys subject to constraints (37)-(40) for a given X. The dual
form of SP is given as follows.

SP} : &, = max ulf, + 1 (v—Wik) + 6] (53)
st Flpug + R0+ L50+ > (Ghyl +0l"gm) =d  (54)

meLy

Vm e L
€R+,

(55)
(56)

m m
"1, <o

Us, V' € R, Ag, 65, 0" Vm € Ly

where (g, Ag, 05 are the dual variables of constraints (37), (38)
and (40), while y;", 0" are the dual variables of conic con-
straints for all m € L; in (39) . ®; is the operational cost from
the stochastic scenario s. Note that GSP-r is bounded and also
feasible since (37)-(40) can be slacked by load reduction vari-
ables. The dual solution of SP} provides a set of Benders
optimality cuts OC, as in (63).

Another type of optimality subproblem is needed to ensure
the feasibility of (42)-(46) under each islanding scenario n € I.
Following an idea presented in [14] to deal with such con-
straint, we consider the left-hand-side of (42) and make use
of its associated optimality cuts to achieve the feasibility. The
second type of optimality subproblem (SP}) is defined as
following, which is in the dual form of (52):

SP} : T, = max x, h, + v, (w— V,3) (57)

st H xo+ K'Y+ Y (B +kirm) =q  (58)
meL,

H vy Hz <k, VmelL, (59)

X, Vy €ER, Y,k €Ry, Vme L, (60)

Similarly, the dual solution of SP% (i-e., Xn, ¥n, Vi K
yields another set of optimality cuts OCy as in (65).

Remark 5: Note that the primal forms of SP} and SPy,
ie., (37)-(40) and (52), can be equivalently expressed as
the OPF-SOCP in [39]. Then, due to the inclusion of load
reduction variables (with relaxed upper bounds), the condition
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Cl-(iv) in [39] holds for SP}, and SPg, which thus ensures
the strong duality of our SOCP subproblems.

3) Investment Master Problem: Combining (35), (36), (42),
and (46) with the Benders optimality cuts OCY in (63) and
OCyg in (65), the master problem (MP) (in j-th iteration) of
our networked microgrids planning model can be defined as:

MP : O =min ¢'x+ ) m,®; ©1)
sesS

s.t. Ax <b (62)
Dy > by — AL W(x—3), VseSii=1,....j—1 (63)
Y,(1—u,) <A, Vnel (64)
Yo = Toi— ¥l Valx—3),Vneli=1...j—1 (65
Znnun <eg (66)
nel

x€ly, d;€R, VseSl 67)
Y, eR4,u,€{0,1}, Vnel (68)

where j is the counter of current iteration.

Remark 6: (i) Note that the bilinear structure in (64)-(66)
corresponds to the chance constrained formulation (42)-(46).
When u, = 1, (64) is always satisfied, which means that the
corresponding OCy in (65) is deactivated. Otherwise, OCy is
enforced in MP.

(ii) The bilinear inequalities in (64) can be easily linearized
through McCormick linearization method [29]. Consequently,
MP is converted into a mixed-integer linear program (MILP).
Actually, (64)-(65) are strengthened bilinear Benders cuts
developed in [14], which renders MP readily computable for
state-of-the-art MILP solvers. Then, the linearized MP can
be strengthened by adding two sets of cuts OC} and OCy
iteratively until the optimality condition is satisfied.

Following the decomposition scheme in (53)-(68), the
detailed procedures of customized bilinear Benders decom-
position method are outlined as below: _

— Step 1. Set LB = —oo, UB = +00, j = 0, 0OC,/ =

OCy’ = @; Set the gap threshold e;

— Step 2. Compute the master problem MP;;

o If MP; is infeasible, terminate the algorithm and report
the infeasibility of the original problem;

e Otherwise, derive an optimal solution (X, i) and objec-
tive value @j, then update LB = Oj andj=j+1;

— Step 3. For X, compute SP, for every s € S; Get the dual
solutions and generate the cuts OCZ] ;

— Step 4. For X, compute SPg, for every n € I; Get the dual
solutions and generate the cuts OCE” ;

— Step 5. Compute SP, to get the feasibility gap Ag; If
Ay = 0, evaluate the primal objective value g: in (35) and
update UB = min{UB, E};

— Step 6. Get the optimality gap A, = |(UB — LB)/LBj;
e If A, < e, converge to current X, then go to Step 7;

Ng . N, .
e Otherwise, MP; < MP;_; | J OC)’ UI OCy’, then go
s=1 n=1

to Step 2;
— Step 7. Report the optimal solution Xx.
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TABLE I TABLE II
MAJOR PARAMETERS OF CANDIDATE DERS TECH-ECONOMICAL PARAMETERS FOR PLANNING
Renewable Energy and Dispatchable Fuel Generators Parameter Description Value
Nom. Min Capital O&M Fuel Life R Discount rate 0.04
Label Type Cap. Output Cost  Cost Cost  Time -
yp AW) (kW) ($/KW) (SKW/h) (SKW/R)  (yr) ¥ Cost Coefficient of Power Loss ($/kWh) 0.05
PV Solar Panel 120 0 1800 0 0 15 Sp / Sq Penalty Cost Factors of Load Reduction 20/20
MT Micro Turbine 60 6 800 0030 0.153 10 On-Peak Electricity Price ($/kWh) 0.193
Energy Storage Devices ot Partial-Peak Electricity Price ($/kWh) 0.138
Power Energy Power Energy O&M  Effi- Life Off-Peak Electricity Price ($/kWh) 0.083
Label Type Cap. Cap. Cost  Cost Cost | Time Up Reference Voltage of Distribution Network (kV) 10
(kW) (kWh) ($/kW) ($/kWh) ($/kW/h) 1Y (yr) -
U, U] Allowable Range of Voltage Magnitudes (kV) [9,11]
BB Battery Bank 100 200 250 200 0.004 090 8 —
I Upper Bound of Current Magnitudes (A) 250
P Active Power Limit of Substation (MW) 5.00
Enhancement Techniques: We note that those two different Qaub Reactive Power Limit of Substation (MVar) 3.10
sets of subproblems (subject to stochastic and islanding sce-
narios), which are of different natures, generate complicated TABLE TII
interactions and incur a large number of Benders iterations in NOTATIONS OF PLANNING CASES
our computation. Hence, on top of the aforementioned cus-
tomization of bilinear Benders procedure, we have designed Notation Definition

and implemented two enhancement techniques to achieve a
stronger computational performance:

e One is to generate and adopt more useful Benders cuts,
i.e., Pareto-Optimal cuts [43]-[45], from computing the
subproblems with core-point based reformulation. Also,
the core points are updated following the methods in [44]
to further improve the computation efficiency.

e Another one is to strengthen the master problem by cre-
ating and including a virtual scenario through Jensen’s
inequality [29], [46]. Although such inclusion increases
the size and computational complexity of the master
problem, the augmented master problem should be a
tighter relaxation to the original formulation.

Actually, with those two enhancements, as demonstrated in
our numerical study in Section IV, the computational capabil-
ity of proposed bilinear Benders decomposition algorithm is
greatly improved by reducing the necessary Benders iterations
significantly before convergence.

IV. NUMERICAL RESULTS

The proposed two-stage chance constrained stochastic NMP
model and bilinear Benders decomposition algorithm with
enhancements are first verified on a 5-bus illustrative net-
worked microgrids system. Then, our method is further tested
on a more complex microgrids structure based on IEEE 69-bus
distribution system to prove its scalability. For demonstra-
tion, we choose photovoltaic (PV) panels, micro turbines, and
battery banks to represent RES, DFG, and ES, respectively.
Table I presents the major parameters of candidate DERs.
Table II lists other essential parameters (partly from the pub-
lished data of U.S. Energy Information Administration). The
time-varying patterns of PV generation and load demand are
captured by daily operating curves in 10,000 scenarios. To
make a trade-off between accuracy and computational effi-
ciency, the k-means clustering method is applied to generate
the reduced scenario sets. All the algorithm development and

DT Deterministic NMP model

Stochastic NMP model

(i.e., (35)-(41) that excludes islanding mode)

Chance constrained stochastic NMP model (i.e., (35)-(47))

Sp

CC_Sp

computations, including our bilinear Benders decomposition,
are made by CPLEX in MATLAB environment on a laptop
computer with Intel Core 17-7820HQ 2.90GHZ processer.

A. 5-Bus Test System

The 5-bus networked microgrids system is shown in Fig. 2.
The proposed dual-mode planning model (35)-(47), as denoted
by CC_SP, is solved given A = $300,000, ¢ = 0.10,
t = 8h, (N, N;) = (80, 80). To demonstrate the effectiveness
of CC_SP, we set up two benchmark cases (i.e., DT and SP)
as in Table III. The optimal solutions and objective values of
DT, SP, and CC_SP are presented in Fig. 2-(a), (b), (c), respec-
tively. We observe that the DT solution invests 3 microgrids
at bus 1, 2, 3, which are neighboring to the substation bus.
Even though such siting scheme enables an easy access of
microgrids to gain power-selling revenues, the remote users at
bus 4, 5 could be vulnerable to the prevailing uncertainties. In
contrast, the SP solution moves MG_B from bus 2 to bus 5
to improve the reliability of remote users. Also, the total stor-
age capacity is added from 3.00MW to 4.40MW to handle the
randomness of PV generation. Compared to the SP solution,
CC_SP adopts a similar siting scheme while reinforcing the
capacity plan of DERs to further hedge the external uncer-
tainties. The MT installation is increased from 0.66MW to
1.08MW, while more storage units are deployed at the remote
buses to ensure the power supply continuity during islanded
operation.

Then, the rationality of CC_SP solution is verified through
Monte Carlo simulation (MCS) given different islanding
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0-30MW 0.15MVar

0.20MVar
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(©

Fig. 2. Planning Solutions: 5-Bus System. (a) DT Solution OBJ=$711,801.
(b) SP Solution OBJ=$803,470. (c) CC_SP Solution OBJ=$821,190.

probabilities (p). Note that, when p = 5%, the actual oper-
ational cost of CC_SP solution (¢ = 0.10) is expected to
be 277.7k$ (<300.0k$), which is significantly lower than
SP (685.1k$) and DT (1806.0k$). We also notice that the
biased evaluation for operational cost in DT solution may
lead to overly optimistic investment in RES units, which ren-
ders larger investment cost (724.1k$) than CC_SP (601.7k$).
Other performance metrics attained by MCS include expected
network loss (ENL) and loss of power supply probability
(LPSP) [47]. Table IV shows detailed results of performance
evaluation. In all instances, the CC_SP solution demonstrates
higher reliability and efficiency levels than DT. Particularly,
when p = 10%, our CC_SP can reduce the LPSP and
ENL by 72.4% and 42.4%. Given the same condition, the
CC_SP solution also shows obvious advantage over SP, which
reduces the LPSP by 54.6% due to its dual-mode consider-
ation. In Table IV, we also investigate the impact of risk
tolerance level ¢ on CC_SP solutions. The increase of ¢
from 0.10 to 0.20 leads to an increasing LPSP (in most
cases) and a falling ENL, along with the decline of invest-
ment cost. Hence, by solving CC_SP via a varying ¢, we can
obtain different trade-offs between the cost-effectiveness and
the actual operational performance under uncertainties. The

IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 6,

PERFORMANCE EVALUATION OF PLANNING SOLUTIONS:

TABLE IV

5-BUS SYSTEM
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Inv. p=0 p=5% p=10%
Solution Cost ENL LPSP ENL LPSP ENL LPSP
k$) MW) MW) (MW)
e=0.10 601.7 276.5 0.34% 273.5 0.44% 2713 0.97%
CC SP e=0.15 5389 2723 0.42% 270.1 0.55% 268.1 1.04%
e=0.20 529.1 256.0 0.48% 254.1 0.61% 251.7 0.94%
Sp 527.0 2575 0.42% 2545 097% 251.0 1.54%
DT 724.1 5102 2.45% 4959 3.01% 470.6 3.51%
TABLE V
COMPUTATIONAL TEST: 5-BUS SYSTEM
EBD BD CPX
(Ns,N;) OBJ itr min gap OBJitr min gap OBJ min gap
(k$) (k$) (k$)
(5,5 795 12 093 0.42% 797 25 1.63 0.10% 798 031 <0.5%
(10,10) 805 9 0.99 0.35% 805 17 1.66 0.40% 804 622 <0.5%
(20,200 812 8 1.41 0.41% 810 17 2.73 031% 810 6.74 <0.5%
(40,40) 817 11 4.55 0.13% 817 17 5.77 027% 816 64.69 <0.5%
(80,80) 821 10 10.18 0.46% 824 14 10.70 0.33% 858 T 5.63%
(120,120) 823 9 1593 0.26% 824 14 16.52 0.17% / T NA

above observations demonstrate the validity of proposed plan-
ning model, which provides a flexible scheme to manage the
multi-source uncertainties in NMP problem.

Finally, the computational capability of enhanced bilinear
Benders decomposition method (EBD) is tested by compar-
ing to the basic bilinear Benders decomposition (BD) and the
direct use of CPLEX (CPX). Table V exhibits the test results
under different sizes of scenario sets (N;, Ny). The objective
values, iteration numbers, solution times (in minutes), ter-
mination gaps are recorded in columns “OBJ”, “itr”, “min”,
and “gap”, respectively. If any problem is terminated due to
the time limit of 480 mins, its solution time will be marked
by “T”. Also, the gap threshold is set as 0.5%. In case where
the gap report is unavailable, it will be recorded by “N/A”.
When (Ng, Nf) = (5,5), it can be seen that all the methods
can efficiently solve the problem. With the growth of scenario
size, however, both BD methods (even without enhancements)
perform much faster than CPX, which can mostly reduce the
solution time by 97.88%. When (N, Nj) = (120, 120), our
EBD reaches the optimality condition in less than 16 mins,
while CPX fails to derive any feasible solution in 8 hours with
no gap available. We also notice that, for those can be solved
by both CPX and EBD, the difference between objective val-
ues is maintained below 0.33% (<0.5%). Hence, the proposed
algorithm holds similar precision to commercial solver but
drastically improves the computational efficiency.

B. 69-Bus Test System

To evaluate our planning model and solution algorithm on
practical-scale systems, we further test a 69-bus networked
microgrids. The planning solution of 69-bus system is shown
in Fig. 3. We observe that the microgrid with largest DER
installation (MG_D) is located near the substation bus to
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MG_A: PV=0.60MW, MT=0.12MW, BB=0.80MWh
MG_B: PV=0.72MW, MT=0.36MW, BB=0.40MWh
MG_C: PV=1.32MW, MT=0.48MW, BB=1.80MWh
MG_D: PV=3.60MW, MT=0.60MW, BB=6.00MWh

0.12MW, MT=0.12MW
MG_F: PV=1.68MW, MT=0.84MW, BB=2.40MWh

Fig. 3. Planning Solution: 69-Bus System.

TABLE VI
COMPUTATIONAL TEST: 69-BUS SYSTEM

EBD BD CPX

OBJ itr min  gap
(k$)

(5,5 161938 37.59 0.49% 161895 141.63 0.49%
(10,10) 163830 31.44 0.47% 163283 93.38 0.46%
(20,20) 165526 52.58 0.22% 165569 143.61 0.47%
(40,40) 165923 118.090.49% 1655 59269.96 0.35%
(80,80) 168019251.030.36% 169147 T 1.89% / T

(120,120) 1667 17 420.09 0.46% 217630 T 47.69% / T

OBJ min  gap
«$)

1619 47.22 <0.5%
1633 42.20 <0.5%
1657 480.00 <0.5%
1654 369.75 <0.5%
N/A
N/A

(Ns,N7) OBJitr min  gap
(k$)

pursue higher cost benefits. Also, several smaller microgrids
MG_C, MG_E, MG_G, MG_H) are deployed near the far-
end buses, so as to improve the reliability level and reduce the
network loss. Table VI exhibits the results of computational
tests on 69-bus network. We notice that the EBD is capa-
ble to address all the instances using at most 420 mins (for
intractable 120-scenario instance), which shows a clear superi-
ority over CPX. Furthermore, EBD outperforms its basic form
since the iteration numbers are significantly reduced by apply-
ing the enhancement techniques. For those can be solved by
both methods, our enhancements reduce the iteration number
by more than 60.0%, and thus saving the computation time by
56.3%-73.5%. When (Ny, N;) = (80, 80) or (120,120), EBD is
still applicable while BD can only report a low quality solution
with a very large optimality gap. Together with our observa-
tions on 5-bus test system, we can conclude that the proposed
algorithm has a strong scalable capacity to solve a practi-
cal NMP problem with numerous stochastic and islanding
scenarios.

V. CONCLUSION AND DISCUSSION

This paper proposes a two-stage chance constrained stochas-
tic conic program model to address the networked microgrids
planning problem concerning the multi-site investment, dual-
mode operations, multi-source uncertainties, and non-linear
power flow representations. Moreover, the bilinear Benders
decomposition method is customized with two enhancement
techniques to analytically solve the challenging mixed-integer
SOCP formulation. Numerical studies are conducted to verify
the proposed planning method on 5- and 69-bus networked
microgrids systems. Some key observations and insights from
our numerical results are listed as below:

1) Importance of dual-mode operational modeling: We

notice that the consideration on dual-mode operations

6627

has clearly influenced the siting and sizing decisions of
networked microgrids. So, the solution of our CC_SP
model can provide an informative guidance for the plan-
ning and long-term dual-mode operations of networked
microgrids.

2) Effectiveness of chance constrained stochastic conic for-
mulation: We observe that the planning solution of our
CC_SP model achieves a significantly lower operational
cost as well as higher reliability and energy efficiency
levels than the benchmark cases. Moreover, by adjust-
ing the risk parameter, our model yields a flexible and
practical scheme to support real systems with trade-
offs between the cost-effectiveness and the risk-hedging
capability for islanded operations.

3) Strong scalable capacity of enhanced bilinear Benders
decomposition: Our enhancements on bilinear Benders
decomposition method demonstrate a superior computa-
tional capacity to its basic form and the direct use of a
professional commercial solver, which makes it appli-
cable for networked microgrids planning in practical
distribution systems.

In our future work, the proposed method will be extended in

several aspects, e.g., microgrids planning under a deregulated
environment and a multi-stage framework.
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