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A Risk-Averse Conic Model for Networked
Microgrids Planning With Reconfiguration and

Reorganizations
Xiaoyu Cao , Jianxue Wang , Senior Member, IEEE, Jianhui Wang , Senior Member, IEEE,
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Abstract—The advanced switching techniques enable the
topology reconfiguration of microgrids (MGs) in active distri-
bution network. In this paper, we enhance and generalize the
traditional reconfiguration strategy resorting to the concept of
“dynamic MGs” (i.e., the reorganization of MGs boundaries),
to achieve a higher operational feasibility against the emergency
islandings. Also, a risk-averse two-stage mixed integer conic pro-
gram model is presented to support the networked MGs planning
with generalized reconfiguration decisions. The MGs capacity
expansion and seasonal reconfiguration decisions are made in the
first stage, and validated under stochastic islanding scenarios in
the second stage, where the network operations are captured by a
second-order conic program (SOCP). Furthermore, a conditional
value-at-risk (CVaR) measure is involved to quantitatively control
the islanding risks. By theoretically proving the strong duality
of the SOCP subproblem, we develop and customize Benders
decomposition method with the guaranteed finite convergence to
the optimal value. Finally, numerical results on 33- and 56-bus
networked MGs validate the effectiveness of proposed recon-
figuration strategy as well as planning approach. Our method
demonstrates a cost-saving up to 22.56% when comparing to the
traditional scheme with fixed MGs boundaries.

Index Terms—Microgrids expansion planning, generalized
network reconfiguration, stochastic mixed-integer conic program,
condition value-at-risk, Benders decomposition.
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NOMENCLATURE

Set and Index

(t, h) Time index of hour h in season t
E/(i, j) Set/index of branches
M Set of microgrids
N /i Set/index of nodes
�/ω Set/index of stochastic scenarios
� Set of nodes with existing DER installation
H/h Set/index of hours
k Index of candidate DERs
T/t Set/index of seasons.

Parameters

C̄0
k,i Existing power capacity of DER k at node i

Ē0
k,i Existing energy capacity of ES k at node i

δrt,h
k,i (ω),

δlt,hi (ω)

Capacity factor of RES k/load demand (under
scenario ω) at node i in (t, h)

�h Time slot of microgrids operation
ηk Charge/discharge efficiency of ES k
�

t Scaling factor from typical day to season t
λec

k Operating cost coefficient of ES k
λfc

k Fuel cost coefficient of DFG k
λom

k Fixed maintenance cost coefficient of DER k
μk Maximum depth of discharge (DOD) of ES k
I Upper bound of current magnitudes
p0, q0 Active/reactive power limits of substation
S

p
, S

q
Upper limits of active/reactive power flows

φec
k , φ

pc
k Annualized unit energy/power cost of ES k

φic
k Annualized unit cost of RES or DFG k
πω Occurrence probability of scenario ω
δ̃r

t,h
k,i, δ̃l

t,h
i Capacity factor of RES k/load demand (under an

average scenario) at node i in (t, h)
U,U Allowable range of voltage magnitudes
ϕ Penalty cost factor of RES curtailment
ϑ Cost coefficient of power loss
ξ Penalty cost factor of load shedding
Dpt

i,Dqt
i Active/reactive load capacity at node i in season t

rij, xij Resistance/reactance of branch (i, j)
rut,h

i Operating reserve requirement at node i in (t, h)
sc0

i Installed capacity of shunt capacitors at node i
U0 Reference voltage level.
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Variables

C̄k,i Newly-added power capacity of DER k at node i
Ēk,i Newly-added energy capacity of ES k at node i
�vt,h

ij Variables to control the enforcement state of KVL
constraints on branch (i, j) in (t, h)

dt,h
k,i , ct,h

k,i Discharge/charge power of ES k at node i in (t, h)

et,h
k,i Stored energy of ES k at node i in (t, h)

fpt
ij, fqt

ij Virtual active/reactive power flows on branch (i, j)
in season t

gt,h
k,i, qt,h

k,i Active/reactive output of DER k at node i in (t, h)

glt,hi Renewable energy curtailment at node i in (t, h)
Gpi,Gqi Active/reactive power capacity at node i
pt,h

0 , qt,h
0 Exchanged power at substation node in (t, h)

Pt,h
ij ,Qt,h

ij Active/reactive flows on branch (i, j) in (t, h)

plt,hi , qlt,hi Active/reactive load shedding at node i in (t, h)
ut

ij Binary variable to indicate the open/closed status
of branch (i, j) in season t

vt,h
i , �

t,h
ij Squared magnitudes of voltage and current in

(t, h)
wt

ij Binary variable to indicate the placement of PCC
on branch (i, j) in season t.

I. INTRODUCTION

THE MICROGRIDS are considered as the essential
building blocks of the active distribution networks

(ADN) [1]. Several neighboring microgrids with distributed
energy resources (DERs) can be networked to achieve higher
system performance, e.g., energy efficiency, reliability, and
resilience [2], [3]. In case of extreme events (e.g., utility black-
outs or natural disasters), particularly, the microgrids can be
operated as self-adequacy islands to preserve the critical loads
and to assist the service restoration of adjacent areas, which
thus makes a highly reliable and “self-healing” system [2].

To realize the islanding functionality, it requires the
microgrids to be properly configured with adequate DER
resources and reliable network topology. Hence, the planning
issues of networked microgrids, especially the initial design
of network layout and DERs integration, have been exten-
sively discussed in the current literatures, e.g., [4]–[9]. As
indicated by [10], [11], however, the static planning strategy
could hardly capture the dynamic changes in system con-
ditions (e.g., demand growth, seasonal rhythms of wind or
solar resources, fuel price fluctuation) under the long-term
timescale. In addition to the capital investment, the microgrids
infrastructure should be reinforced periodically to maintain
its operational feasibility. One typical way to harden the
microgrids is resorting to the capacity expansion of DERs,
which has been well modeled and numerically verified in
several recent publications, e.g., [10]–[17]. Reference [10]
presented a stochastic program method to optimize the capac-
ity expansion of microgrids considering the randomness of
DERs output. Reference [11] proposed a chance constrained
information-gap decision model to handle both the random
factors (e.g., variable DERs generation and load profile) and
nonrandom uncertainties (e.g., demand growth) in multi-stage
microgrids expansion planning. Reference [12] designed a

tri-level microgrids planning framework to coordinate the
demand expansion with resource configuration and operational
optimization under load uncertainties. In [13], the microgrids
expansion planning was studied with comprehensive modeling
of battery energy storage. In [14], [15], the capacity expansion
of DERs was optimized under uncertain demand and DERs
output, along with the partitioning of distribution network into
several interconnected microgrids. Reference [16] developed a
multi-stage and multi-load-scenario formulation to deal with
the expansion planning of ADN and DERs capacity consid-
ering the operation strategies of microgrids. Similarly, the
distribution network expansion and microgrids deployment
were co-optimized through a bi-level approach in [17].

Certainly, the reinforcement of microgrids can be achieved
through network expansion as in [16], [17]. Nevertheless, we
mention that the target of microgrids deployment is usually to
defer the upgrades of distribution facilities. So, instead of the
network expansion, a more practical strategy is to reconfigure
the existing microgrids [1] by changing the open/closed status
of remotely-controlled smart switches (SSWs). The concept of
network reconfiguration is originally adopted in distribution
system for the purposes such as power loss reduction, con-
gestion management, voltage violation mitigation, and DERs
hostility improvement [18]–[25]. Analogously, the reconfigu-
ration strategy is also applicable to the microgrids in ADN.
Reference [26] presented a microgrid reconfiguration (MRC)
decision model to minimize the total cost of transmission loss
and switching actions. In [27], the MRC was modeled as
a reliability-oriented chance constrained program and solved
through a sampling-based convex relaxation. Reference [28]
developed a multi-objective framework for the reconfiguration
of islanded microgrids to seek for Pareto-optimality between
load survivability and cost-benefits. Reference [29], [30] stud-
ied the dynamic reconfiguration of microgrid considering
the cost-minimization under grid-connected operation as well
as the reliability enhancement for islanding. Reference [31]
implemented a real-time MRC algorithm to isolate the contin-
gency regions in case of natural disasters.

We notice that the aforementioned network reconfiguration
strategies are all implemented under the traditional concept of
microgrid, i.e., with clearly-defined and fixed boundaries [32].
Note that the networking supports the sharing of critical DER
resources among microgrids. Once the networking is damaged
(e.g., under natural disasters), however, the fixed boundaries
may lead to severe demand-supply unbalance within some of
the isolated microgrids. To fit the dynamic system conditions
and prepare for emergency islandings, it requires for a more
flexible topology control scheme, where the energy resources
can be proactively relocated to gain higher operational fea-
sibility. Hence, we generalize the traditional reconfiguration
strategy (with static microgrids boundaries) by using the new
concept of “dynamic microgrids” [33], [34], i.e., the flexible
reorganization of microgrids boundaries, so as to ensure the
self-adequacy of networked microgrids under extreme events.
We mention that the generalized reconfiguration strategy with
reorganizable boundaries is abbreviated as G-MRC.

Also, this paper develops a risk-averse two-stage mixed
integer conic program formulation to support the microgrids
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expansion planning with generalized reconfigruation decisions.
Note that a two-stage planning framework is designed to rep-
resent the functionality of G-MRC under normal operation and
emergency islandings respectively. The first-stage problem is
to co-optimize the microgrids capacity expansion and general-
ized reconfiguration decisions, along with the grid-connected
scheduling of microgrids. Aided by advanced switching and
EMS techniques, the microgrids in ADN can be reconfigured
and reorganized periodically to capture the varying system
conditions under different timescales, e.g., yearly, season-
ally, or monthly. In this study, the microgrids are assumed
to be reconfigured under a seasonal basis, which is practi-
cally reasonable for a long-term planning problem. Then, in
the second-stage, a minimum energy loss model is defined
under the seasonal stochastic scenarios (representing the vari-
ability of DERs’ generation and load demand) to validate
the first-stage decisions given the islanding of on-emergency
microgrids. Note that in both planning stages, the detailed
operations of reconfigurable network can be described by an
accurate AC power flow model with convexified SOCP formu-
lation. Furthermore, our planning formulation incorporates a
CVaR measure to hedge against the operational risks of those
very adversarial islanding scenarios.

In addition, the modeling of G-MRC will introduce a
large number of binary variables to our planning formula-
tion. Together with the AC power flow structure for every
stochastic scenario, the resultant mixed integer SOCP model
could be computationally intractable even using state-of-
the-art commercial solvers (e.g., CPLEX). By proving the
strong duality of the SOCP subproblem, we develop and cus-
tomize a Benders decomposition method that converges to the
optimal value in finite steps. Indeed, we drastically relieves the
computational burden of the proposed planning formulation.
Hence, comparing to many published results, we note that
the presented mixed integer SOCP model with CVaR con-
sideration generalizes conventional optimization models for
MRC (e.g., [27], [29], [30]), and the algorithm development
theoretically strengthens the existing computational methods
(e.g., [35], [36]). Next, we summarize our main contributions:

1) A generalized MRC strategy with dynamic boundaries is
presented, which is analytically supported and demon-
strated by a reorganizable microgrids planning (RMP)
model formulated as a two-stage stochastic program
with a CVaR measure. In particular, the G-MRC oper-
ations are accurately captured by a mixed integer and
SOCP-based power flow model.

2) The strong duality of our conic G-MRC model is the-
oretically proved, which supports the customization of
Benders decomposition algorithm to exactly and effi-
ciently solve the proposed mixed integer conic planning
formulation.

3) Our numerical results reveal that a significant benefit
of G-MRC (i.e., the cost saving over 22.56% for a
real-world system) comparing to the traditional network
reconfiguration with fixed boundaries, which validates
the effectiveness of the proposed strategy in practice.

The remainder of this paper is organized as below. Section II
outlines the generalized reconfiguration strategy. Section III

Fig. 1. Traditional MRC vs. G-MRC.

formulates the CVaR-based stochastic conic program model
for reorganizable microgrids planning. Section IV presents the
strong-conic-duality based Benders decomposition algorithm.
The proposed method is numerically verified in Section V.
Finally, conclusions are drawn in Section VI.

II. GENERALIZED MICROGRIDS RECONFIGURATION WITH

REORGANIZABLE BOUNDARIES

A. Definition

As mentioned in [26]–[31], the network reconfiguration is
usually conducted to improve the operational feasibility (e.g.,
power loss reduction, voltage regulation) of a microgrid. For
a cluster of networked and interdependent microgrids, how-
ever, the freedom of reconfiguration could be restricted by
their fixed inner boundaries, and thus may not fit well. As
demonstrated in Fig. 1(a), for example, the reconfiguration
of MG1 can be conducted by closing the tie SSW at line
L2-4 while opening the sectionalizing SSW at L1-2 (or L1-3,
L3-4). But it is not allowed to close the tie SSW at L2-6
or L2-7 since they are out of the coverage area of MG1.
To enable the topology control with higher flexibility and a
broader scope, we combine the traditional MRC strategy with
a new paradigm of networked microgrids that holds dynamic
and reorganizable boundaries. Following the existing concept,
the generalized microgrids reconfiguration (G-MRC) can
be defined as “a network refinement strategy that changes not
only the topology but also the inner boundaries (and thus the
resource re-allocation over flexibly scaling subsystems) among
a cluster of networked and interdependent microgrids”.

Note that we relax the assumption of fixed boundaries so
that the scale and feeder configuration of each microgrid can
both be flexibly adjusted, along with the proactive re-allocation
of critical DER resources among microgrids. As shown in
Fig. 1(b), the boundary (i.e., PCC point) between MG1 and
MG2 is switched from L1-5 to L1-2, which thus results in
a shrunken MG1 and an expanded MG2. Consequently, the
DERs installed at node N2 is transferred out of MG1, and
instead, to supply the load nods in MG2. Moreover, without
the boundary restrictions, the freedom of reconfiguration
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extends from each single microgrid to the entire networked
system.

B. Motivation

Based on Fig. 1, we note that G-MRC serves as a pre-
ventive strategy to support the network reinforcement of
microgrids, specifically for extreme events (e.g., utility black-
outs or natural disasters). In such cases, the networked system
has to separate from the main grid and split apart into sev-
eral islanded microgrids. To ensure the power balance of
each single entity, a de-energized microgrid (e.g., MG2 in
Fig. 1) could be reinforced by receiving the DER nodes
from (or transferring the load nodes to) those over-adequacy
microgrids (e.g., MG1 in Fig. 1) through preventive G-MRC
operations. Thus, the co-optimization of topology reconfigura-
tion and dynamic boundaries enables an improved immunity
against the energy loss risks brought by emergency island-
ings. We mention that a great benefit of networking is to
gain additional reserves for on-emergency microgrids typically
through their interconnection and thus the sharing of critical
DER resources. Aided by G-MRC, this benefit can also be
achieved through the proactive re-allocation of DER resources,
which thus improves the reliability and operational flexibility
of islanded microgrids as well as the cost-efficiency of facility
investment.

C. Analytical Modeling

The operations of G-MRC are modeled on an ADN that
hosts several interconnected microgrids. Without loss of gen-
erality, our method is applied to the networked microgrids with
a spanning-tree structure, which is represented by (N , E,M).
Let N denote the set of nodes where the unique root node (i.e.,
substation) is indexed by 0 and the rest nodes are indexed by
i = 1, 2, . . . , n ∈ N+. Let E denote the set of branches, which
are indexed by (i, j) ∈ E . Let M denote the set of microgrids,
which can be considered as subgraphs of (N , E).

Accordingly, we introduce two sets of binary variables, i.e.,
ut

ij and wt
ij, to represent the G-MRC decisions (as in Fig. 1(b)).

Note that ut
ij is to control the feeder configuration by closing

the (originally opened) tie SSWs (ut
ij := 0→ 1) while opening

the (originally closed) sectionalizing SSWs (ut
ij := 1 → 0).

Moreover, wt
ij is to control the reorganization of microgrids

boundaries, which depends on the placement of PCC points.
Note that wt

ij = 1 indicates that a PCC is placed on branch
(i, j) and vice versa. Clearly, we have

wt
ij ≤ ut

ij, ∀(i, j) ∈ E,∀t ∈ T (1)

Accordingly, the G-MRC actions can be analytically
expressed as the changing status of binary variables ut

ij and
wt

ij. The total number of changed binary status (i.e., ON/OFF
status of SSWs) in each season should be limited as:

∑

(i,j)∈E
|ut

ij − ut−1
ij | ≤ Nt

nr, ∀t ∈ T (2)

∑

(i,j)∈E
|wt

ij − wt−1
ij | ≤ Nt

pr, ∀t ∈ T (3)

where Nt
nr and Nt

pr define the number limits of G-MRC actions
in season t, while the tuple (u0

ij,w0
ij) represents the initial topol-

ogy of networked microgrids. In addition to (2) and (3), it
also requires the reconfigured network to hold a spanning-tree
topology as in (4)-(7) [22]–[24].

∑

(i,j)∈E
ut

ij = |N | − 1, ∀t ∈ T (4)

∑

j∈�(i)
�t

ij = −1, ∀i ∈ N+,∀t ∈ T (5)

−Siju
t
ij ≤ �t

ij ≤ Siju
t
ij, ∀(i, j) ∈ E,∀t ∈ T (6)

∑

j∈�(0)
�t

ij = κ t
0, ∀t ∈ T (7)

where |N | denotes the cardinality of node set. Note that in (4),
the number of branches with closed switches is required to
be equal to the number of non-root nodes. Also, a group of
virtual power balance constraints, i.e., (5)-(7), are imposed to
ensure the network connectivity. We note that (5) enforces
the power balance requirement for node i ∈ N+ subject to
fictitious unit load (1 p.u.), where �(i) is the set of nodes that
connect to node i. The virtual load flow �t

ij is nonzero only on
the connected branches as in (6), where Sij is the power flow
limit on branch (i, j). Besides, as in (7), the fictitious load in
reconfigured system can only be fed through the substation
node by fictitious inflow κ t

0. As mentioned in [22]–[24], the
enforcement of constraints (4)-(7) necessarily guarantees the
radiality and connectivity of the entire reconfigured network.

Furthermore, when encountering the extreme events, the
SSWs at substation and PCCs will be opened (wij := 1→ 0)
to separate the on-emergency microgrids as electrical islands.
In such cases, we use uij − wij instead of uij to indicate the
ON/OFF status of line switches. To ensure the radiality of the
partitioned network, (4)-(7) are extended to derive a group of
self-energized subtree constraints as in (8)-(12).

∑

(i,j)∈E

(
ut

ij − wt
ij

)
= |N | − |M|, ∀t ∈ T (8)

∑

j∈�(i)
fpt

ij ≤ Gpi − Dpt
i, ∀i ∈ N+,∀t ∈ T (9)

∑

j∈�(i)
fqt

ij ≤ Gqi − Dqt
i, ∀i ∈ N+,∀t ∈ T (10)

S
p
ij

(
wt

ij − ut
ij

)
≤ fpt

ij ≤ S
p
ij

(
ut

ij − wt
ij

)
,∀(i, j) ∈ E,∀t ∈ T

(11)

S
q
ij

(
wt

ij − ut
ij

)
≤ fqt

ij ≤ S
q
ij

(
ut

ij − wt
ij

)
,∀(i, j) ∈ E,∀t ∈ T

(12)

where |M| denotes the cardinality of microgrid set. Note
that (8) is to partition the original spanning-tree graph into |M|
subtrees (i.e., microgrids). In analogy to (5)-(7), we develop
constraints (9)-(12) to enforce the connectivity and radiality
on each subtree. Moreover, the capacity balance constraints
are introduced as in (9) and (10) [11] to guarantee that the
nodal load capacity is overly satisfied (with reserve margins)
so that every subtree can be self-energized.
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TABLE I
DIFFERENCES BETWEEN TRADITIONAL MRC AND GENERALIZED MRC

D. Differences of Generalized MRC and Traditional MRC

In the following, we highlight the major differences
of G-MRC from the existing MRC strategy (as in [26]–[31]):

1) On the Definitions: The traditional MRC only per-
mits limited refinements on the topology subject to
clearly-defined territory of microgrids. Differently, the
generalized MRC changes both the topology and inner
boundaries, which leads to adjustable coverage areas,
feeder reconfiguration, and DERs re-allocation of net-
worked microgrids.

2) On the Motivations: The target of MRC is generally to
improve the operational performance of grid-connected
microgrids. However, it could not remedy the demand-
supply unbalances under islanded operation. Differently,
the major concern of G-MRC is to reinforce the
microgrids with adequate self-energizing capacity for
emergency islandings. Also, it preserves the normal
reconfiguration functionality when applying to the grid-
connected operations.

3) On the Flexibility: The MRC is conducted with the
restriction of fixed microgrids boundaries. In contrast,
G-MRC provides a much higher flexibility to dynami-
cally and adaptively reorganize the microgrids bound-
aries.

Finally, the aforementioned comparisons are summarized as
in Table I.

III. CVAR-BASED TWO-STAGE FORMULATION FOR

RECONFIGURABLE MICROGRIDS PLANNING

A. 1st-Stage Problem: Co-Optimization of Generalized
Microgrids Reconfiguration and Capacity Expansion
Planning

1) Objective Function: The first-stage objective is to
minimize the investment cost of microgrids expansion
(zinv) and the grid-connected operational cost (zgoc) before
the realization of uncertainties, which can be written
as follows:

min zinv + zgoc (13)

zinv =
∑

i∈�

⎡

⎣
∑

k∈{res,dfg}
φic

k C̄k,i +
∑

k∈ es

(
φec

k Ēk,i + φpc
k C̄k,i

)
⎤

⎦ (14)

zgoc =
∑

i∈�

∑

k∈{res,dfg,es}
λom

k C̄k,i +
∑

t∈T

∑

h∈H

∑

i∈�

∑

k∈dfg

�
tλfc

k gt,h
k,i�h

+
∑

t∈T

∑

h∈H

∑

i∈�

∑

k∈es

�
t λ

ec
k

2

(
dt,h

k,i + ct,h
k,i

)
�h

+
∑

t∈T

∑

h∈H

�
t

⎛

⎝ρhpt,h
0 �h +

∑

(i,j)∈E
ϑrij�

t,h
ij �h

⎞

⎠ (15)

As shown in (14), the investment cost of newly-added DERs
is evaluated on a yearly basis. Without loss of generality, the
capacity expansion (i.e., discrete decisions with a resolution of
1kW/1kWh) is conducted on a specified nodes set with exist-
ing DER installation, and the candidate DER types include
renewable energy sources (RES), dispatchable fuel generators
(DFG), and energy storage devices (ES) [11]. The operational
cost in (15) is comprised of the fixed maintenance cost, the
fuel cost of DFGs, the operating cost of ES, the power bar-
gain cost between microgrids and utility grid, and the network
loss cost. Note that typical days are sampled to represent the
seasonal operation of microgrids, where �h denotes the time
slot. All these daily cost terms are then scaled to derive the
seasonal values by a factor �

t.
2) Investment Constraints:

0 ≤ C̄k,i ≤ Cmax
k,i , ∀k ∈ {res,dfg,es},∀i ∈ � (16)

βmin
k C̄k,i ≤ Ēk,i ≤ βmax

k C̄k,i, ∀k ∈ es,∀i ∈ � (17)

Gpi =
{∑

k∈{res,dfg,es}
(

C̄k,i + C̄0
k,i

)
, ∀i ∈ �

0, ∀i ∈ N+/�
(18)

Gqi =
{

sc0
i +

∑
k∈res γ

max
k

(
C̄k,i + C̄0

k,i

)
, ∀i ∈ �

sc0
i , ∀i ∈ N+/�

(19)

Note that the power capacity expansion of DERs is con-
strained by (16). Particularly, the power capacity of newly-
added ES is used to scale its energy capacity through factors
βmax

k ≥ βmin
k ≥ 1 as in (17). The active/reactive components of

nodal power capacity are defined in (18) and (19) respectively.
3) Operational Constraints: Note that in our first-stage

problem, a set of average operating scenarios (under differ-
ent seasons) are included to support the seasonal G-MRC
decisions, which are constrained as in (20)-(39).
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pt,h
g,i

=
{∑

k∈{res,dfg} g
t,h
k,i+

∑
k∈es

(
dt,h

k,i−ct,h
k,i

)
, ∀i ∈ �,∀t,∀h

0, ∀i ∈ N+/�,∀t,∀h
(20)

qt,h
g,i =

{
sc0

i +
∑

k∈res qt,h
k,i, ∀i ∈ �,∀t,∀h

sc0
i , ∀i ∈ N+/�,∀t,∀h (21)

gt,h
k,i = δ̃r

t,h
k,i

(
C̄k,i + C̄0

k,i

)
, ∀k ∈ res,∀i ∈ �,∀t,∀h (22)

γmin
k gt,h

k,i ≤ qt,h
k,i ≤ γmax

k gt,h
k,i, ∀k ∈ res,∀i ∈ �,∀t,∀h (23)

0 ≤ gt,h
k,i ≤ C̄k,i + C̄0

k,i, ∀k ∈ dfg,∀i ∈ �,∀t,∀h (24)
∑

k∈dfg

(
C̄k,i + C̄0

k,i − gt,h
k,i

)
≥ rut,h

i , ∀i ∈ �,∀t,∀h (25)

0 ≤ ct,h
k,i, dt,h

k,i ≤ C̄k,i + C̄0
k,i, ∀k ∈ es,∀i ∈ �,∀t,∀h (26)

et,h+1
k,i = et,h

k,i + ηkct,h
k,i − dt,h

k,i/ηk, ∀k ∈ es,∀i ∈ �,∀t,∀h (27)

μk

(
Ēk,i + Ē0

k,i

)
≤ et,h

k,i ≤ Ēk,i + Ē0
k,i,∀k ∈ es,∀i,∀t,∀h (28)

et,0
k,i = et,H

k,i , ∀k ∈ es,∀i ∈ �,∀t,∀h (29)

pt,h
g,i − δ̃l

t,h
i Dpt

i =
∑

j∈�(i)
Pt,h

ij −
(

Pt,h
mi − rmi�

t,h
mi

)
,

∀i ∈ N+,∀t,∀h (30)

qt,h
g,i − δ̃l

t,h
i Dqt

i =
∑

j∈�(i)
Qt,h

ij −
(

Qt,h
mi − xmi�

t,h
mi

)
,

∀i ∈ N+,∀t,∀h (31)

vt,h
i − vt,h

j = 2
(

rijP
t,h
ij + xijQ

t,h
ij

)
−
(

r2
ij + x2

ij

)
�

t,h
ij +�vt,h

ij

∀(i, j) ∈ E,∀t,∀h (32)

�
t,h
ij =

(
Pt,h

ij

)2 +
(

Qt,h
ij

)2

vs,t
i

, ∀(i, j) ∈ E,∀t,∀h (33)

U2 ≤ vt,h
i ≤ U

2
, ∀i ∈ N+,∀t,∀h (34)

0 ≤ �t,h
ij ≤ I

2
ut

ij, ∀(i, j) ∈ E,∀t,∀h (35)
∣∣∣�vt,h

ij

∣∣∣ ≤
(

U
2 − U2

)(
1− ut

ij

)
, ∀(i, j) ∈ E,∀t,∀h (36)

−p0 ≤ pt,h
0 =

∑

j∈�(0)
Pt,h

0j ≤ p0, ∀t,∀h (37)

−q0 ≤ qt,h
0 =

∑

j∈�(0)
Qt,h

0j ≤ q0, ∀t,∀h (38)

Eqs. (1)− (12) (39)

Note that the active and reactive components of nodal power
generation are defined in (20) and (21). In (22)-(23), the
active power output of RES is assumed to be fully utilized
under the grid-connected operation, while its reactive power
output can be adjusted following the range of power factor
angles, i.e., [γmin

k , γmax
k ] = [ tan θmin

k , tan θmax
k ]. The genera-

tion and reserve constraints of DFGs are presented in (24)
and (25) respectively. The operation of ES is modeled as
in (26)-(29). To capture the operation of seasonally recon-
figurable network, a nonlinear branch flow model (BFM) [37]
with recoverable angle relaxation is presented in (30)-(33). Let
j ∈ �(i) and m index the children nodes and the (unique) par-
ent node of node i, the nodal active/reactive power balance is
required as in (30) and (31). The enforcement of Kirchhoff’s

Voltage Law (KVL) as in (32) and (33) is controlled by
reconfiguration variables, i.e., ut

ij. When ut
ij = 0, (32) is relaxed

because of the auxiliary variable �vt,h
ij in (36) [29], while the

current and power flow variables are enforced to zero due
to (33) and (35); Otherwise, constraints (32) and (33) are
activated. The squared magnitudes of voltage and current are
constrained by (34) and (35). The exchanged active/reactive
power at substation node are constrained by (37) and (38),
and the square of reference voltage level is fixed to a constant
U2

0. Finally, the seasonal G-MRC decisions are constrained
by (1)-(12) as in (39).

Furthermore, the nonconvex equality (33) can be convexi-
fied by relaxing into a set of conic constraints [38]:

vt,h
i �

t,h
ij ≥

(
Pt,h

ij

)2 +
(

Qt,h
ij

)2
, ∀(i, j) ∈ E,∀t,∀h (40)

Note that (30)-(32) and (40) yields a convex SOCP approxi-
mation to the AC power flow model in (30)-(33), which could
be exact under specific conditions as summarized in [38].

B. 2nd-Stage Problem: Validation of Reconfiguration and
Reorganization Decisions Under On-Emergency Operation

Once encountering the extreme events, the ADN will transit
from normal operation to on-emergency mode, which drives
the networked system to be partitioned and disconnected from
the utility grid. In such cases, each microgrid should be
self-energized to immunize the uncertainties (i.e., the sea-
sonal fluctuation of RES generation and load). Hence, in the
second-stage, the feasibility of G-MRC decisions for emer-
gency islandings will be checked under a finite set of scenarios
ω ∈ �. A minimum energy loss model is defined to represent
our second-stage problem (under scenario ω ∈ �) as follows:

min zωioc =
∑

t∈T

∑

h∈H

∑

(i,j)∈E
�

tϑrij�
t,h,ω
ij �h

+
∑

t∈T

∑

h∈H

∑

i∈�
�

tϕglt,h,ωi �h

+
∑

t∈T

∑

h∈H

∑

i∈N+
�

t
(
ξ1plt,h,ωi + ξ2qlt,h,ωi

)
�h (41)

s.t., glt,h,ωi =
∑

k∈res

[
δrt,h

k,i (ω)
(

C̄k,i + C̄0
k,i

)
− gt,h,ω

k,i

]
,

∀i ∈ �,∀t,∀h (42)

plt,h,ωi , qlt,h,ωi ≥ 0, ∀i ∈ N+,∀t,∀h (43)

0 ≤ gt,h,ω
k,i ≤ δrt,h

k,i (ω)
(

C̄k,i + C̄0
k,i

)
,

∀k ∈ res,∀i ∈ �,∀t,∀h (44)

pt,h,ω
g,i −

(
δlt,hi (ω)Dpt

i − plt,h,ωi

)

=
∑

j∈�(i)
Pt,h,ω

ij −
(

Pt,h,ω
mi − rmi�

t,h,ω
mi

)
,∀i ∈ N+,∀t,∀h

(45)

qt,h,ω
g,i −

(
δlt,hi (ω)Dqt

i − qlt,h,ωi

)

=
∑

j∈�(i)
Qt,h,ω

ij −
(

Qt,h,ω
mi − xmi�

t,h,ω
mi

)
,∀i ∈ N+,∀t,∀h

(46)
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vt,h,ω
i = U2

0, ∀i ∈ �,∀t,∀h (47)

�
t,h,ω
ij ≤ I

2
(

ut
ij − wt

ij

)
, ∀(i, j) ∈ E,∀t,∀h (48)

∣∣∣�vt,h,ω
ij

∣∣∣ ≤
(

U
2 − U2

)(
1− ut

ij + wt
ij

)
,∀(i, j) ∈ E,∀t,∀h

(49)

�ω{ (20), (21), (23)− (29), (32), (34), (40)} (50)

The second-stage objective function is presented in (41).
In our study, the general energy loss cost is defined as the
summation of penalty costs for network loss, RES curtailment
and load shedding incurred by islanded operation. Note that
the RES curtailment (as constrained by (42)) and load shed-
ding can only be activated in on-emergency mode as remedy
strategies, which are penalized by large cost factors ϕ and ξ .
The imposing of penalty factor allows the relaxation of upper
bounds on load shedding, as in (43). In (44) and (45)-(46), the
variability of RES output and load demand are represented by
random variables δrt,h

k,i (ω) and δlt,hi (ω) respectively under sce-
nario ω. Correspondingly, the operational variables constrained
by (20), (21), (23)-(29), (32), (34)-(36), and (40) are also rede-
fined under each scenario ω, as shown in (47)-(50). Note that
in (47), the nodes with DER integration are selected as the
reference nodes for each islanded microgrid. In addition, the
binary variable ut

ij−wt
ij is introduced in (48) and (49) to control

the preventive G-MRC decisions for extreme events.

C. CVaR-Based Planning Reformulation

The influence of uncertain factors may increase the energy
loss risk under emergency islandings. A popular way of risk
management is resorting to the value-at-risk (VaR), i.e., a
lower ε-quantile of the loss distribution [39], [40]. Note that
the VaR measure is indifferent to the extreme scenarios that
exceed VaR, which, however, may lead to substantial energy
loss. To address this challenge, we introduce CVaR in place
of VaR to quantitatively control the risks of those very adver-
sarial scenarios. In our study, the CVaR for islanding risks
is defined as the conditional expectation of energy loss cost
zωioc subject to zωioc ≥ VaRε , where ε is the confidence level.
The sampling approximation form of CVaR [39] is adopted as
in (51).

CVaRε = VaRε + 1

1− ε
∑

ω∈�
πω
[
zωioc − VaRε

]+ (51)

where [t]+ = max{0, t}. By using (51), we reformulate
the energy loss function in (41) as a CVaR-based objective
function to penalize the first-stage decisions that may cause
extremely heavy losses. Accordingly, a risk-averse reformula-
tion of RMP model is developed based on (1)-(32), (34)-(40)
and (41)-(50). The full matrix form of our RMP model is given
as follows:

RMP : min cTx+ dTy0 + θ(VaRε + 1

1− ε
∑

ω∈�
πωηω) (52)

s.t. ηω ≥ max
{
0, qT yω − VaRε

}
, ∀ω ∈ � (53)

H1u+ H2w+ H3x+ H4ρ ≥ h (54)

Ax ≥ b (55)

R̃x+ Fu+ Dy0 = r̃ (56)

‖Gly0‖2 ≤ gT
l y0, ∀l ∈ L (57)

Rωx+ K2u+ K3w+ Syω = rω, ∀ω ∈ � (58)

‖Blyω‖2 ≤ sT
l yω, ∀l ∈ Lω,∀ω ∈ � (59)

u,w ∈ {0, 1}, x ∈ Z+, VaRε, ρ, y0, yω, ηω ∈ R, ∀ω ∈ �
(60)

The objective function is abstracted in (52), where θ denotes
the risk level factor that makes a trade-off between the cost-
minimization and risk-averse objectives. The vectors x and
(u,w) represent the discrete decision variables of capacity
expansion and seasonal G-MRC, while y0 and yω denote the
operational decisions defined under the grid-connected and
islanding modes respectively. The first-stage constraints are
presented in (53)-(57). Eq. (53) is introduced to compute
the CVaR measure. Eq. (54) stands for the reconfigura-
tion and reorganization constraints as in (1)-(12), where ρ

denotes the auxiliary variables appeared in (5)-(7) and (9)-(12).
Eq. (55) is to restrict the investment decisions, corresponding
to (16)-(19). The linear constraints of grid-connected oper-
ation, i.e., (20)-(32) and (34)-(38), are represented by (56).
Eq. (57) stands for the conic constraints as in (40), where
l ∈ L is to index such constraints. The second-stage con-
straints, i.e., the linear constraints (associated with random
variables) and the conic constraints of islanded operation, are
denoted by (58) and (59) respectively.

IV. STRONG CONIC DUALITY AND CUSTOMIZED

BENDERS DECOMPOSITION METHOD

The mixed integer SOCP formulation with stochastic sce-
narios in (52)-(60) could be computationally very challeng-
ing, which demands an efficient decomposition algorithm.
Traditionally, strong duality-based Benders decomposition
method is often adopted to handle the similar but simpler
mixed integer linear counterpart. Nevertheless, the strong
duality property does not hold in general for an SOCP for-
mulation [41]. If such property fails, Benders decomposition
is not an exact algorithm. Hence, we should first investigate the
strong duality issue of our formulation, and then describe the
customization of Benders decomposition for fast computation.

A. Conic AC OPF Model With the Strong Duality

Although the dual of an SOCP formulation has been utilized
in the literature, e.g., [36], [42], it is suggested in [41] that the
strong duality should be studied according to its specifications
to ensure rigorousness. So, we consider the particular SOCP
formulation defined in (41)-(50) (i.e., the SOCP relaxation of
second-stage AC OPF problem) and study its duality issue,
which supports our algorithm development.

Proposition 1: For a fixed first-stage discrete solution
(x̂, û, ŵ), the SOCP formulation (41)-(50) of a fixed scenario
ω has the strong duality if the upper bounds of load shedding
variables can be relaxed.

Proof: Following Slater’s Condition [41], the strong dual-
ity holds for an SOCP if either its primal problem or dual
problem is bounded and strictly feasible. Clearly, the objec-
tive function (41) is bounded from below. So we only need
to prove that (42)-(50) is strictly feasible under the proposed
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condition. For brevity, subscripts t, h, ω are removed in our
proof.

Denote the nodal power injections by auxiliary variables p̃i

and q̃i such that

p̃i = pg,i + pli − δliDpi, ∀i ∈ N+ (61)

q̃i = qg,i + qli − δliDqi, ∀i ∈ N+ (62)

p̃i ∈ Sp
i , q̃i ∈ Sq

i , ∀i ∈ N+ (63)

where Sp
i and Sq

i are convex sets surrounded by affine con-
straints (42)-(44) and (50) with fixed first-stage solution. Note
that these affine convex sets, which define the feasible space
for single operational variables, will never be empty. Then, let
pi = sup{Sp

i }, p
i
= inf{Sp

i }, qi = sup{Sq
i } and q

i
= inf{Sq

i },
the SOCP formulation defined in (45)-(49) and (61)-(63) is
actually equivalent to the OPF-SOCP in [41].

Since the DERs output is curtailable under islanded opera-
tion, p

i
, q

i
≤ 0 holds for all i ∈ N+. On the other hand, we

have pi, qi = +∞ for all i ∈ N+ if the upper bounds of pli
and qli are relaxed. So it follows condition C1-(d) in [41], i.e.,
p

i
≤ 0 < pi, q

i
≤ 0 < qi, that the strict feasibility of (45)-(49)

and (61)-(63) is ensured. Consequently, the strong duality of
the original SOCP formulation (41)-(50) is guaranteed.

Then, we give the matrix form of SOCP
formulation (41)-(50) and its dual problem.

Primal : Jp
ω = min qTyω (64)

s.t. Syω = rω − Rωx̂− K2û− K3ŵ : μω (65)

‖Blyω‖2 ≤ sT
l yω, ∀l ∈ Lω : γω, σω (66)

yω ∈ R (67)

Dual : Jd
ω = max μT

ω

(
rω − Rωx̂− K2û− K3ŵ

)
(68)

s.t. STμω +
∑

l∈Lω

(
BT

l γ
l
ω + σ l

ωsl

)
= q (69)

∥∥∥γ l
ω

∥∥∥
2
≤ σ l

ω, ∀l ∈ Lω (70)

μω, γ
l
ω ∈ R, σ l

ω ∈ R+, ∀l ∈ Lω (71)

where μω and γ l
ω, σ

l
ω for all l ∈ Lω are the dual variables

of our SOCP second-stage problem. Note that the proof of
Proposition 1 is independent of (x̂, û, ŵ) and ω. Hence, the
next result follows easily for (64)-(71).

Corollary 1: For any given first-stage discrete solution
(x̂, û, ŵ), the strong duality of (64)-(71) holds, i.e., Jp

ω = Jd
ω

for all ω ∈ �.

B. Customized Benders Decomposition Algorithm

Denote LB and UB as the lower and upper bounds respec-
tively, and j as the iteration counter. By using the strong duality
of SOCP formulations (64)-(71), the iterative algorithm of
customized Benders decomposition is developed as follows:

I Initialization: Set LB = −∞, UB = +∞, j = 0, OCj
ω =

∅; Set the termination gap ε.
II Iterative Steps:
− Step 1: Compute the master problem MPj:

z = min cTx+ dTy0 + θ
(

VaRε + 1

1− ε
∑

ω∈�
πωηω

)
(72)

s.t. ηω ≥ ψω − VaRε, ∀ω ∈ � (73)

ψω ≥ μ̂T
ω,i(rω − Rωx− K2u− K3w),

∀ω ∈ �, i = 1, . . . , j− 1 (74)

Eqs. (54)− (57) (75)

u,w ∈ {0, 1}, x ∈ Z+,VaRε ∈ R, ηω, ψω ∈ R+,∀ω ∈ �
(76)

• If MPj is infeasible, terminate the algorithm and report
the infeasibility of the original RMP problem;

• Otherwise, derive an optimal solution (x̂, û, ŵ, ŷ0) and
objective value zj, then update LB = zj and j = j+ 1;

− Step 2: For (x̂, û, ŵ), compute the dual of subproblem,
i.e., (68)-(71), for every scenario ω ∈ �; Get the solutions
as (μ̂ω,j, γ̂ l

ω,j, σ̂
l
ω,j) and generate the Benders optimality

cuts OCω,j as in (74);
− Step 3: Evaluate the objective function (52) under the

current solution (x̂, û, ŵ, ŷ0) and the solution of (64)-(67),
record current value zj and update UB = min{UB, zj};

III Termination Criterion: If |UB−LB
LB | ≤ ε, converge to the

solution corresponding to the best UB and terminate the
iterative steps; Otherwise, MPj ← MPj−1

⋃
ω∈� OCω,j,

then go back to Step 1.
In the following, we prove the convergence issue of our

Benders decomposition algorithm.
Corollary 2: The aforementioned Benders Decomposition

algorithm either reports infeasibility or converges to the
optimal value in finite steps.

Proof: Note that it is sufficient to consider the most stringent
case where ε=0. We first consider the detection of infeasibil-
ity. According to Corollary 1, the second stage operational
SOCP problem is always feasible with a finite optimal value
for every random scenario, regardless of (x̂, û, ŵ). Hence, it
is clear that the original RMP is infeasible if and only if the
master problem MPj with j = 0 is infeasible. Consequently,
the RMP’s infeasibility issue can be detected easily at the
beginning of the algorithm.

To prove the convergence in the general case where RMP
is feasible, we let LBj and UBj to denote the lower and upper
bounds obtained in j-th iteration for the purpose of explana-
tion. We claim that whenever UBj > LBj, the master problem
MPj+1 must produce a new optimal solution (x̂, û, ŵ) that
have not been derived in any previous iterations. Actually,
if this is not the case, let MPk with k ≤ j be the master
problem that produces the same optimal solution. Then, we
have UBj+1 ≤ UBj ≤ UBk ≤ LBj+1 that leads to the termi-
nation of the algorithm. Note that the first two inequalities
follow from the update strategy of the upper bound defined in
Step 3, and the last inequality follows from the strong dual-
ity presented in Corollary 1 and constraint (74) defined with
respect to optimal dual solutions in MPj+1. Therefore, together
with the fact that the feasible set of (x, u,w) is a bounded dis-
crete set that has a finite number of points, the convergence
clearly can be achieved within finite steps.

V. NUMERICAL RESULTS

The proposed G-MRC strategy and planning approaches
(i.e., risk-averse RMP model and customized Benders
decomposition (CBD) method) are verified through two
microgrids test systems based on IEEE 33-bus network [37]
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Fig. 2. Comparison of Generalized MRC with Traditional MRC for 33-Bus Networked Microgrids.

and SCE 56-bus network (a real-world distribution system
served by Southern California Edison (SCE) Company [43]).
Based on the standard systems, the demand growth is consid-
ered to be 20%, which drives the capacity expansion of DERs.
The candidate facilities are chosen as solar panels (PVs), micro
turbines (MTs), and battery banks (BBs) to represent RES,
DFG, and ES respectively. To support our planning decision,
10,000 stochastic scenarios are sampled based on the empiri-
cal data of RES outputs and load profiles using the techniques
mentioned in [44]. Besides, all the algorithm development and
computations (including our CBD) are made by CPLEX in
MATLAB environment on a PC with Intel Core i7-7820HQ
2.90GHZ processer and 32GB RAM.

A. 33-Bus Networked Microgrids

The initial topology of 33-bus networked microgrids is
shown in Fig. 2(a), where the sectionalizing SSWs and tie
SSWs are placed on solid and dashed lines respectively.

3 microgrids (MGs) are included with their boundaries
(i.e., PCC points) denoted by “-X-”, which are normally
closed while opened under emergencies to form self-adequate
islands. The initial settings of candidate DERs are listed in
Table II [11], [23]. Other planning parameters can be referred
to [44]. In this case, we first exhibit the seasonal G-MRC deci-
sions and compare them with the traditional MRC schemes
of the test network. Also, we derive the planning results via
MRC and fixed network topology as benchmarks to vali-
date the effectiveness of the proposed RMP model. In the
aforementioned tests, 40 clustered stochastic scenarios are
introduced to achieve a trade-off between the computational
accuracy and efficiency. At last, the solution performance
of CBD will be tested under an increasing number of
scenarios.

1) Comparison of G-MRC With Traditional MRC: Fig. 2
presents the seasonal G-MRC and MRC (as the benchmark)
decisions of 33-bus system. Note that both the G-MRC and
MRC decisions are optimized in a global optimality manner.
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TABLE II
INITIAL SETTINGS OF CANDIDATE DERS FOR 33-BUS SYSTEM

TABLE III
RESULTS OF 33-BUS NETWORKED MICROGRIDS PLANNING VIA

GENERALIZED MRC AND BENCHMARK STRATEGIES

As shown in Fig. 2(b1)-(b4), however, the involvement of
dynamic boundaries facilitates the refinements of coverage
areas, feeder configuration, and DERs allocation over the net-
worked microgrids system. In contrast, as in Fig. 2(c1)-(c4),
the traditional strategy is observed to reconfigure with the
restriction of fixed microgrids boundaries. In the following, the
differences between G-MRC and MRC are analyzed season by
season:
• Season 1: The G-MRC is applied to the initial network

through feeder reconfiguration and the relocation of PCC
between MG2 and MG3. As a result, MG3 (with DER
integration at N13 and N17) is expanded to supply more
load nodes (i.e., N6-N9, N26-N27). Also, MG2 gains
higher generation adequacy by shrinking its coverage area
to N28-N33. In comparison, the MRC is conducted within
the fixed boundaries of MG2 (by closing the SSW at
L27-32 and opening the SSW at L27-28) and MG3 (by
closing the SSW at L11-17 while opening the SSW at
L14-15).

• Season 2: Based on the network in Season 1, the G-MRC
is performed to reorganize the topology across all the
microgrids. The new MG1 (i.e., N1-N22) is formed by
merging the main bodies of MG1 and MG3, while a
small part of MG1 is isolated to form the new MG3
(i.e., N23-N25). The rest load nodes are supplied by
the new MG2 (i.e., N26-N33). Differently, the tradi-
tional scheme is to reconfigure MG1 (by closing the
SSW at L5-24 and opening the SSW at L4-5) and MG2
(by closing the SSW at L27-28 while opening the SSW
at L29-30).

Fig. 3. Seasonal Varying Trend of Energy Loss Cost.

• Season 3: Based on the network in Season 2, the PCC
that connects MG1 and MG2 is relocated from L6-26 to
L26-27. In contrast, the traditional scheme is to reconfig-
ure MG1 (by closing the SSW at L4-5 and opening the
SSW at L3-23) and MG2 (by closing the SSW at L8-30
while opening the SSW at L7-8).

• Season 4: The G-MRC is conducted between MG1 and
MG2. On one hand, MG1 shrinks to N7-N18 by opening
the SSW at L6-7. On the other hand, MG2 is expanded
by receiving the rest nodes (including the DER node
N21) that once belonged to MG1. Then, the reorganized
MG1 and MG2 are connected through a new PCC on
L8-30. Differently, the MRC is only conducted in MG2
(by closing the SSW at L7-8 and opening the SSW at
L6-7).

We notice that the effects of traditional reconfiguration
strategy, which only change the topology of each microgrid
within the fixed boundaries, are rather limited when comparing
to G-MRC decisions. Hence, the dynamic reorganization of
boundaries facilitates the networked microgrids to gain higher
flexibility and adaptability.

2) Verification of Generalized Reconfiguration Strategy and
Risk-Averse Planning Model: The G-MRC strategy as in
Fig. 2(b1)-(b4) is then applied to support the capacity expan-
sion planning of 33-bus networked microgrids. Table III
presents the G-MRC based planning results given risk level
θ = 0.60 and confidence level ε = 90%. To validate the
effectiveness of G-MRC, we set up two benchmark cases,
i.e., microgrids planning with fixed topology and traditional
MRC strategy, which are also provided in Table III. Note that
the optimal values of investment cost (zinv), operational cost
(zgoc), and weighted CVaR cost (θCVaR) are evaluated as the
performance metrics for planning solutions.

Comparing to the base case with fixed topology, the coordi-
nation of capacity expansion planning and G-MRC is observed
to yield a slightly larger investment cost but much lower oper-
ational cost and weighted CVaR cost, and thus save the total
cost by 6.79%. Also, the G-MRC based planning solution out-
performs the MRC based one through a cost reduction of
$40,113.9 (nearly 2%). It can be seen that the cost-saving
is mostly achieved by reducing the energy loss under emer-
gency islandings. Fig. 3 presents the seasonal varying trend of
energy loss cost (ELC) under G-MRC and benchmark cases.
Note that in the benchmarks, the emergency occasions could
lead to a very large ELC especially in Season 3 and Season 4.
However, the application of G-MRC has clearly reduced these
costs, which implies a lower risk level for severe islanding
scenarios under different seasons. Hence, comparing to those
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Fig. 4. Sensitivity Analysis of Risk-Control Parameter.

TABLE IV
COMPUTATIONAL TESTS OF CUSTOMIZED BENDERS DECOMPOSITION

fixed-boundaries schemes, the proposed strategy provides a
reorganized microgrids topology with a superior performance,
which could evidently improve the cost-efficiency of DERs
investment as well as the operational feasibility of networked
system especially under the on-emergency mode.

Furthermore, we investigate the impact of risk parameter
θ on planning results. As shown in Fig. 4, by increasing the
value of θ , the decision on RMP becomes more conservative
with a lower CVaR and a larger total cost. It indicates that a
larger θ could lead to a more costly planning solution but with
a stronger risk-hedging capability. Certainly, when θ ≥ 0.50,
the effect of risk reduction becomes marginal with the increase
of risk level factor. These observations demonstrate the effec-
tiveness of our risk-averse planning formulation, which pro-
vides a quantitative tool to control the risk level of G-MRC
decisions.

3) Solution Performance of Customized Benders
Decomposition Method: The computational feasibility
of CBD is tested and compared with the direct use of CPLEX
(CPX). The test results under different scenario numbers (Ns)
are given in Table IV, where the objective values, iteration
numbers, solution times (count in minutes), and remaining
gaps are recorded in columns “obj”, “itr”, “min”, and “gap”,
respectively. We set the gap threshold as 0.5% and the time
limit as 720 mins. The solution time will be marked by “T”
or “O” if any problem is running out of time or memory.

It can be seen that CBD successfully solves all the instances
and performs much faster than CPX. With the increase of sce-
nario number, we note that the solution capacity of CPX is
limited up to an 8-scenario instance using 613.91 mins, while
CBD spends only 10.14 mins (i.e., 98.35% time-saving com-
pared to CPX) to address such a problem. For those can be
solved by both methods, CBD attains similar results to CPX
with a relative optimality gap less than 0.5% (which is rea-
sonable due to our gap settings). For the instances involving
more scenarios, CPX even fails to get any feasible solutions
(with no gap information available) due to either the time limit

TABLE V
RESULTS OF 56-BUS NETWORKED MICROGRIDS PLANNING VIA

GENERALIZED MRC AND BENCHMARK STRATEGIES

or memory restriction. In contrast, our CBD spends less than
30 mins to address all these challenging instances (including
an intractable 120-scenario instance). Hence, the direct solving
of our mixed-integer SOCP formulation is proved to be very
time-consuming even with a few scenarios. In comparison to
CPX, however, the proposed algorithm can derive the plan-
ning solution with a similar precision but drastically reduce
the computation time by orders of magnitude.

B. 56-Bus Networked Microgrids

The proposed G-MRC strategy and planning methodol-
ogy are further tested on a real-world 56-bus network. The
detailed system data can be found in [43]. This network is
originally equipped with 5MW PV generators at N45 and
0.6Mvar shunt capacitors for each of N19, N21, N30, and
N53. These nodes are also selected as the candidate sites
for DERs integration. Hence, the initial topology of 56-bus
network is specified by including 4 microgrids, 5 candidate
DER nodes, and 4 tie SSWs, as illustrated in Fig. 5(a). We
note that most of these microgrids are not self-energized,
which thus demand for capacity expansion and network
reinforcement. Other parameter settings can be referred to
Section V-A.

The seasonal G-MRC decisions for 56-bus network are
presented in Fig. 5(b1)-(b4). The PCC that connects MG1
and MG3 is observed to be relocated along with the feeder
reconfiguration in Season 1 and Season 4 to reorganize these
microgrids. Through G-MRC, the DERs at node N21 (which
originally belong to MG1) are transferred to supply MG3.
Differently, as shown in Fig. 5(c1)-(c4), the traditional strategy
only reconfigures each microgrid within the pre-determined
domain. Also, Table V exhibits the planning solutions via
G-MRC and two benchmark strategies. Comparing to the
fixed-topology instance, the reinforcement through G-MRC
has significantly reduced the total planning cost by nearly
25%. In contrast, the MRC based solution attains a much less
cost-saving by only 3.01%. Moreover, the results of bench-
mark cases demonstrate that the improper island partitioning
could lead to a very large risk penalty. By imposing the
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Fig. 5. Comparison of Generalized MRC with Traditional MRC for 56-Bus Networked Microgrids.

dynamic-boundary strategy, however, the CVaR cost is reduced
from $666,358.4 to $290,912.8, which indicates a tremendous
reduction in energy loss risks. Together with our observations
in Section V-A, we can conclude that the proposed strategy
extends the traditional concept of topology reconfiguration and
fits well for networked microgrids.

VI. CONCLUSION

This paper presents a generalized network reconfiguration
strategy to tackle the emergency islandings of microgrids. With
this new strategy, a CVaR based stochastic mixed-integer conic

model is developed to support the microgrids expansion plan-
ning with network reconfiguration and reorganizations. Also,
we customize a strong conic-duality based Benders decompo-
sition method to handle the computational issues. Numerical
results on 33-bus test network and a real-world 56-bus system
show that G-MRC achieves a significant cost-saving up to
22.56% comparing to the traditional reconfiguration strategy
(i.e., with fixed boundaries). Hence, the proposed strategy
enables the microgrids capacity expansion with higher cost-
efficiency and system performance under both the normal
operation mode and emergency islandings. Moreover, the
customized decomposition algorithm demonstrates a superior
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solution capacity to the direct use of a commercial solver,
which thus supports the real application of our reorganizable
microgrids planning method.
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