Automating Dependence-Aware Parallelization of
Machine Learning Training on Distributed Shared
Memory

Jinliang Wei
Carnegie Mellon University
jinlianw@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University
gibbons@cs.cmu.edu

Abstract

Machine learning (ML) training is commonly parallelized
using data parallelism. A fundamental limitation of data par-
allelism is that conflicting (concurrent) parameter accesses
during ML training usually diminishes or even negates the
benefits provided by additional parallel compute resources.
Although it is possible to avoid conflicting parameter ac-
cesses by carefully scheduling the computation, existing
systems rely on programmer manual parallelization and it
remains a question when such parallelization is possible.
We present Orion, a system that automatically parallelizes
serial imperative ML programs on distributed shared mem-
ory. The core of Orion is a static dependence analysis mech-
anism that determines when dependence-preserving paral-
lelization is effective and maps a loop computation to an
optimized distributed computation schedule. Our evaluation
shows that for a number of ML applications, Orion can paral-
lelize a serial program while preserving critical dependences
and thus achieve a significantly faster convergence rate than
data-parallel programs and a matching convergence rate
and comparable computation throughput to state-of-the-art
manual parallelizations including model-parallel programs.

CCS Concepts - Computing methodologies — Machine
learning; - Software and its engineering — Distributed
memory; Just-in-time compilers; Source code generation;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’19, March 25-28, 2019, Dresden, Germany

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6281-8/19/03...$15.00
https://doi.org/10.1145/3302424.3303954

RIGHTS L

Garth A. Gibson
Vector Institute, CMU and University of Toronto
garth.gibson@acm.org

Eric P. Xing
Petuum Inc., Carnegie Mellon University
eric.xing@petuum.com

ACM Reference Format:

Jinliang Wei, Garth A. Gibson, Phillip B. Gibbons, and Eric P. Xing.
2019. Automating Dependence-Aware Parallelization of Machine
Learning Training on Distributed Shared Memory. In Fourteenth
EuroSys Conference 2019 (EuroSys '19), March 25-28, 2019, Dresden,
Germany. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3302424.3303954

1 Introduction

Machine learning (ML) techniques have been successfully
applied to a wide range of application domains including rec-
ommender systems [27], image classification [21, 28], topic
modeling [8], just to name a few. The core of ML is a sta-
tistical model which is a set of parametric functions that
serve inference queries, such as mapping an image to a label.
ML training finds model parameter values that minimize (or
maximize) a given objective function so the model best fits
the observed data samples (i.e., the training dataset) based on
certain criteria. Commonly used training algorithms repeat-
edly process the observed data samples, until the objective
function stops improving, i.e., the algorithm has converged.
Given a training dataset D = {D;|1 < i < N} where D,
denotes a mini-batch of one or multiple data samples, a serial
training algorithm computes an update function A (A;, D;)
for each mini-batch 9; using the current parameter values
Ay and updates the parameters before processing the next
mini-batch. Training algorithms typically take many passes
(i.e. iterations) over the training dataset before they converge.

1.1 Data Parallelism

ML training is commonly parallelized using data parallelism.
Under data parallelism, K random data mini-batches {D;.x k-1
|1 < k < K} are distributed to K workers at the i-th time step.

Each worker computes the update function uy = A (A¢, Djwk+k-1)

in parallel using the current parameter values A; and its as-
signed mini-batch D;.x,—1. The master copy of parameters
is updated by aggregating refinements {u;|1 < k < K}
from all workers. The updated parameter values are then
distributed to workers before they enter the next time step.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

R/W

(a) Read-write sets (b) Data parallelism (c) Dep-aware
Figure 1. Data parallelism vs. dependence-aware parallelism:
(a) the read-write (R/W) sets of data mini-batches D, to Dy;
(b) in data parallelism, mini-batches are randomly assigned
to workers, leading to conflicting parameter accesses; (c) in
dependence-aware parallelization (note that D instead of
D, is scheduled to run in parallel with D;), mini-batches are
carefully scheduled to avoid conflicting parameter accesses.

@@ @@ @

Q. A X, A><Wo/ A

@) @

5

sync barrier

sync barrier

56O

A key problem of data parallelism is that it is not equiva-
lent to serial execution because a worker does not observe
the other concurrent workers’ parameter updates produced
at the same time step. Compared to a serial execution, under
data parallelism, a worker computes A using a stale version
of model parameter values, violating data dependence.

Non-serializable execution often leads to slower algorithm
convergence and lower model quality, therefore data paral-
lelism is not always the best parallelization method. We can
understand the effect of such non-serializable paralleliza-
tion from two perspectives. First, for stochastic gradient
descent (SGD), synchronous data parallelism over K workers
is equivalent to sequential SGD using a mini-batch size of K
times larger. Mini-batch size is a SGD hyperparameter and
a mini-batch size that is too large often requires more data
passes to reach the same model quality and may also lead
to lower model performance on unseen data. Previous work
reported this effect for both traditional ML models [26] and
neural networks [23, 25]. Second, generally speaking, non-
serializable parallelization is an erroneous execution of the
sequential algorithm, where parameter values contain error
due to conflicting accesses. Intuitively, the error’s magnitude
increases when more workers are used and decreases when
workers synchronize more frequently. Thanks to ML algo-
rithms’ tolerance to bounded error [22, 39], the erroneous
execution may still produce an acceptable model but the
algorithm’s convergence rate and model quality degrades as
the the error increases [22, 26, 45]. Large mini-batch size or
synchronization once per mulitple mini-batches is common
in distributed training in order to ammortize synchroniza-
tion overhead. This is especially common for traditional ML
models where per-data-sample computation is light.

1.2 Dependence-aware Parallelization

In many ML applications, A reads only a subset of the model
parameters and generates refinements to a (possibly differ-
ent) subset of parameters. If each worker is assigned with a
mini-batch Z)]'c such that the read-write sets of all A (At, Z)]'C)
computations are disjoint, then the parallel execution is se-
rializable. That is, the parallel execution produces the same

RIGHTS L

J. Wei et al.

result as a serial exeuction following some sequential order-
ing of the mini-batches. We refer to this style of paralleliza-
tion that preserves data dependence among mini-batches as
dependence-aware parallelization. Fig. 1 compares data paral-
lelism with dependence-aware parallelism. Note that under
the dependence-aware parallelization shown, the parallel ex-
ecution is equivalent to sequentially processing mini-batches
D1, Dy, D;, and D; (serializable), while under the shown
data-parallelism, execution is not serializable.

STRADS [26] has exploited this property and demon-
strates that training algorithms converge considerably faster
compared to data parallelism when computation is sched-
uled to avoid conflicting parameter accesses (also referred to
as model parallelism). However, STRADS requires program-
mers to manually parallelize the training algorithm, which
demands significant programmer effort and is error-prone.
In contrast, our system Orion automates dependence-aware
parallelization of serial imperative ML programs for effi-
cient distributed execution. Orion’s parallelization strategies
are similar to STRADS but our focus is on automating de-
pendence analysis and dependence-aware parallelization for
serial imperative ML programs.

While imperative programming with a shared memory
abstraction is highly expressive and natural for program-
mers, parallelization is more difficult compared to functional
programming as dependency has to be inferred from mem-
ory accesses. Orion employs static dependence analysis and
parallelization techniques from automatic parallelizing com-
pilers and takes advantage of ML-specific properties to relax
program semantics and thus improve parallelism. Sematic
relaxations include programmer-controlled dependence vio-
lation, which enables data parallelism with few code changes.
Moreover, Orion minimizes remote random access overhead
via automated data partitioning and bulk prefetching based
on the memory access pattern discovered in static analysis
to achieve efficient distributed execution.

Experiments on a number of ML applications confirm
that preserving data dependence can significantly improve
ML training’s convergence progress and our proposed tech-
niques are effective. We also compare Orion with various
offline ML training systems [5, 26, 45] and show that Orion
achieves much better or matching convergence progress and
at least comparable computation throughput, even when
compared with state-of-the-art manual parallelization, while
substantially reducing programmer effort.

This paper makes three major contributions. First, we
present a mechanism to automatically parallelize serial im-
perative ML programs for distributed training, with respect
to data dependence. Our mechanism employs static depen-
dence analysis and parallelization techniques from automatic
parallelizing compilers, enhanced with ML-specific seman-
tic relaxations. Second, we describe Orion, an end-to-end
distributed system that efficiently implements the paralleliza-
tion mechanism. Orion also features a new programming

Automating Dep-Aware Parallelziation of ML Training on DSM

abstraction that unifies dependence-aware parallelization
and data parallelism and supports a wide range of ML appli-
cations. Third, we present an extensive experimental evalua-
tion that demonstrates Orion parallelization’s effectiveness
and competitive performance against other state-of-the-art
offline ML training systems.

2 Motivation

In this section, we motivate the need for automation by
discussing what dependence-aware parallelization of a real
ML application entails, for example, when implementing it
on STRADS [26], a state-of-the-art scheduler framework.

2.1 Matrix Factorization using SGD

Matrix factorization (MF) is a popular model used in rec-
ommender systems [27]. Given a large (and sparse) m X n
matrix V and a small rank r, the goal of MF is to find an mxr
matrix W and an r X n matrix H such that V.~ WH, where
the quality of approximation is defined by an application-
dependent loss function L. A commonly used loss function
in recommender systems is nonzero squared loss Lnzs1 =
i jvyz0(Vij — [WH];5)?.

MF is often solved as an optimization problem using Sto-
chastic Gradient Descent (SGD) that minimizes the loss
function (i.e., the objective function). Note that Lyzs; can
be decomposed into the sum of local losses, i.e., Lyzsr =
Di,jviy#0 L(Vijs Wis, Hij), where 1(Vij, Wi, Hyj) = (Vij=WiH.).
We denote a subset of the nonzero entries in V as training
set Z. With a step size €, an SGD algorithm for MF can
be described in Alg. 1 1([19, 27]). Alg. 1 describes an ab-
stract serial algorithm that is not bound to a particular sys-
tem. Convergence of the algorithm is measured by a train-
ing loss defined over the training set Z C V, ie., L;, =

Sijiziyez U Zij, Wie, Hej).

Algorithm 1: SGD For Matrix Factorization
Input :the training set Z and rank r
Output: factor matrices W and H
Randomly Initialize W and H

while not converged do
for Z,’j € Zdo
W, &« Wi = Wise 58— 1(Zij, Wis, H)
H,j < Hyj —H*jea%vl(zij,m*,mj)
Wie — W,

2.2 Parallelizing SGD Matrix Factorization

Similar to other iterative convergent ML algorithms, the
heavy computation in SGD MF resides in the for-loop that
iterates over the training set Z, which is desired to be par-
allelized. Implementations of SGD MF on parameter server

Practical applications may employ regularization. Here we omit regular-
ization for simplicity since it does not affect parallelization.

RIGHTS L

EuroSys 19, March 25-28, 2019, Dresden, Germany

20,2|21,2|22,2 20,2|121,2|22,2 20,2|21,2(Z2,2
Z0,1|121,1|Z2,1 Z0,1|121,1|22,1 20,1|121,1(Z2,1
20,0|121,0(Z2,0 20,0121,0(Z2,0 Z0,0|21,0(Z2,0
(a) Time step 1 (b) Time step 2 (c) Time step 3

Figure 2. Stratified SGD taking a full pass over Z: Z is par-
titioned into 3 strata, which each corresponds to a unique
time step. Each stratum consists of 3 range-partitioned blocks.
While strata are processed sequentially, blocks within a stra-
tum can be processed in parallel without violating any de-
pendence.

systems [11, 45] and graph processing systems [10, 20, 49]
are often parallelized using data parallelism, where the train-
ing set Z is randomly partitioned and assigned to workers.
Random partitioning leads to conflicting accesses on W or H
and violating data dependence, e.g., if data samples Z;, and
Ziq, both reading and writing W;., are assigned to different
workers and processed in the same time step.

We may observe two data samples Z;; and Z; 7, Vi, j,i’,j’ :
i #i’,j # j', are independent. That is, processing Z;; and
Zyj does not read or write to the same entries in W or H.
We can devise a serializable parallelization by processing
only independent data samples in parallel. Although differ-
ent orderings of data samples may indeed lead to different
numerical values of W and H, serializability is often suffi-
cient for matching sequential execution’s convergence rate
and model quality. Based on this observations, Gemulla et
al. [19] proposed a serializable, parallel SGD algorithm called
stratified SGD, which partitions the training dataset Z (i.e.,
the iteration space) into a sequence of strata. The strata
are processed sequentially but blocks within a stratum are
processed in parallel. A 3 X 3 partitioned matrix Z and the
corresponding stratified SGD execution is depicted in Fig 2.

Generally, with manual parallelization, programmers iden-
tify the data dependences among loop iterations based on
how they access shared memory and devise a computation
schedule. A computation schedule breaks down the itera-
tion space (e.g., Z) into partitions, which conceptually form
a dependency graph. An ideal partitioning provides suffi-
cient parallelism (i.e., many partitions can be executed in
parallel) while amortizing synchronization overhead (i.e.,
partitions are large enough). The computation schedule also
assigns partitions to workers. Dependencies among itera-
tion space partitions incur synchronization among workers
and network communication. Partition assignment affects
synchronization frequency and communication volume.

STRADS 2 [26] is a scheduler framework for traditional
model-parallel ML programs, whose applications, such as
SGD MF and topic modeling (LDA) achieve state-of-the-art
convergence rate. Compared to Orion, STRADS performs

2STRADS is open-sourced here: https://github.com/sailing-pmls/strads (last
visited: 1/10/2019). SGD MF is not part of the open-sourced repository and
was obtained from STRADS authors.

EuroSys 19, March 25-28, 2019, Dresden, Germany
1 DistArray
/ g Orion Worker
- _1 DistArray
Orion Worker
1 DistArray
= Orion Worker

Figure 3. Orion System Overview

Driver Program

Orion Master

neither static or dynamic analysis, nor code generation. Ap-
plication programmers thus manually analyze data depen-
dence and derive a computation schedule. While deriving an
efficient computation schedule is most challenging, imple-
mentation is also highly non-trivial. SGD MF on STRADS is
implemented as a coordinator and a worker program, totally
consisting of 1788 lines of C++ code. The application pro-
gram is responsible for coordination among workers, data
partitioning, parameter communication and synchroniza-
tion, etc. Due to STRADS’ low-level abstraction, there is
little code reuse across STRADS applications.

In constrast, Orion performs static dependence analy-
sis to find an efficient dependence-preserving paralleliza-
tion and reuse the corresponding computation schedule.
Orion abstracts away worker coordination by providing high-
level primitives such as @parallel_for, map and groupBy.
Moreover, Orion generates code for data loading, partition-
ing, and prefetching, tailored to specific data types, so that a
computation schedule can be resued for different computa-
tion and data types without losing efficiency. Thus applica-
tion programmers can focus on the core ML algorithm.

3 Orion Programming Model

Orion consists of a distributed runtime and an application
library (Fig 3). Orion application programmers implement
an imperative driver program that executes instructions
locally and in Orion’s distributed runtime using the applica-
tion library. Distributed programming in Orion seamlessly
integrates with the rest of the program thanks to Orion’s
distributed shared memory (DSM) abstraction and parallel
for-loops. Our prototype implementation supports applica-
tion programs written in Julia [7]. Julia is a scripting language
that offers high programmer productivity like Python with
great execution speed [3] using just-in-time compilation.

3.1 Distributed Arrays

Orion’s main abstraction for DSM is a set of multi-dimensional
matrices, which we refer to as Distributed Arrays (or DistAr-
rays). A DistArray can contain elements of any serializable

type and may be either dense or sparse. A DistArray is par-
titioned and stored in the memory of a set of distributed

machines in Orion’s runtime and Orion automatically repar-
titions DistArrays to minimize remote access overhead when

executing distributed parallel for-loops.

RIGHTS L

J. Wei et al.

Orion.@parallel_for for (e_idx, e_val) in A
..loop body...
end

Figure 4. Distributed parallel for-loop example

Elements of an N-dimensional DistArray are indexed with
an N-tuple (p1,p2,....pn). A DistArray supports random ac-
cess via both point queries (e.g. A[1, 3, 2]) to access a
single element and set queries (e.g. A[1:3, 3, 2])wherea
range is specified for one or multiple DistArray dimensions.
Here [1, 3, 2] and [1:3, 3, 2] are DistArray subscripts,
analogous to DSM addresses. Statements that access DistAr-
ray elements can either execute locally or in Orion’s dis-
tributed workers by using the parallel for-loop primitive.

Similar to Resilient Distributed Datasets (RDD) [52], Dis-
tArrays can be created by loading from text files using a
user-defined parser or by transforming an existing DistAr-
ray using operations like map and groupBy. Text file loading
and map operations are recorded by Orion and not evaluated
until the driver program calls materialize. This allows
Orion to fuse the user-defined functions across operations
and avoids memory allocation for intermediate results. Un-
like RDDs, set operations that may cause shuffling, such as
groupBy, are evaluated eagerly for simplicity.

Compared to RDD, DistArray supports indexed random
accesses (i.e., point and set queries) and in-place updates,
which makes DistArray better suited for holding trainable
model parameters which are iteratively updated, especially
when each mini-batch updates only a subset of the parame-
ters. A DistArray is automatically distributed among a set
of worker machines and can be sparse. At the lowest level,
TensorFlow tensors are dense matrices that reside on a single
device and TensorFlow applications may manually represent
sparse and distributed matrices using dense tensors (e.g.,
[42]). While DistArray does not provide a rich set of linear
algebra operations like TensorFlow tensors, a DistArray set
query returns a Julia Array, which can leverage the rich set
of linear algebra operations natively provided by Julia.

3.2 Distributed Parallel For-Loop

The driver program may iterate over the elements of an
N-dimensional DistArray using a vanilla Julia for-loop. For
example, the loop in Fig. 4 iterates over each element of
DistArray A where e_idx is the element’s index and e_val
is the element’s value. As A is a N-dimensional matrix, the
for-loop is naturally an N-level perfectly nested loop and
the DistArray represents the loop nest’s iteration space. Each
DistArray element corresponds to a loop iteration and the
element’s index e_idx is the loop iteration’s index vector, of
which each element is referred to as a loop index variable.
For-loops iterating over a DistArray can be parallelized
across a set of distributed workers using a @parallel_for
macro. Depending on the loop body’s access pattern to other

Automating Dep-Aware Parallelziation of ML Training on DSM

DistArrays, parallelization assigns iterations to workers and
adds synchronization when it is needed for preserving data
dependence among loop iterations (i.e., loop-carried depen-
dence). Iterations that have dependences between them be-
cause of shared accesses on DistArrays * are executed one
after another in the correct order. Thus the parallel execution
is equivalent to a serial execution of the loop (serializable).

Tools like OpenMP [13] and MATLAB parfor [4] also pro-
vide parallel for-loop primitives, provided that the program-
mer asserts the for-loops have no dependency among its
iterations. But Orion’s @parallel_for macro can be ap-
plied to loops that have dependences among iterations, and
preserves loop-carried dependences. Moreover, Orion’s par-
allel for-loop executes in a distributed cluster while existing
tools only apply to single machines.

Let P = {(p1,p2,...pn)I¥i € [1,n] : 0 < p; < s;} repre-
sent the iteration space of a n-dimensional DistArray, where
(p1,p2, --.,pn) represents the index vector of an iteration, and
the size of the iteration space’s i-th dimension is s;. For any
two iterations § = (p1,pg,....pn) and p' = (p},p}s--sDh),
Orion can parallelize the for-loop while preserving all loop-
carried dependences if one of the following is true:

1. 1D Parallelization: There exists a dimension i such
that when p; # p}, there doesn’t exist any loop-carried
dependence between iteration p and iteration 1;’ . Note
that this also includes the case when there’s no depen-
dence between any iterations.

2. 2D Parallelization: There exist two dimensions i and
J such that when p; # p and p; # p, there doesn’t
exist any loop-carried dependence between iteration
7 and iteration p’.

3. 2D Parallelization w/ Unimodular Transforma-
tion: When neither 1D nor 2D parallelization is appli-
cable, in some cases (see Sec. 4.3), unimodular transfor-
mations [46] may be applied to transform the iteration
space to enable 2D parallelization.

Applicability. Static parallelization requires the size of the
iteration space to be constant and known at compile time.
ML training applications usually iterate over a fixed input
data set or model parameters and Orion JIT compiles a for-
loop after the iteration space DistArray is loaded or created.
Orion’s dependence-aware parallelization strategies apply
to for-loops when the loop body accesses only a subset of
the shared memory addresses and the addresses can be fully
determined given the loop index variables, i.e., the iteration-
space DistArray index. More specifically, our current imple-
mentation accurately captures dependence when DistArray
subscripts contain at most one loop index variable plus or mi-
nus a constant at each position. A more complex subscript is
conservatively regarded as that it may take any value within

3They both access the same DistArray element and at least one of the
accesses is a write.

RIGHTS L

EuroSys 19, March 25-28, 2019, Dresden, Germany

the DistArray’s bounds. The loop body may inherit any dri-
ver program variable. The inherited variables are assumed to
be read-only * during a single loop execution but their values
could change between different executions of the same loop.
ML applications commonly represent data records as a
mapping from a n-tuple key to a value, ie., (k_1, k_2,
., k_n) — value, where the key uniquely identifies
the data record. Thus data records may be organized in a
n-dimensional tensor, indexed by the key tuple. When param-
eter accesses are also indexed by the key tuple, paralleliza-
tion via static dependence analysis is possible. For example,
the popular bag-of-words model represents text as a set of
mappings from a word to its number of occurrences. ML
applications on text data often have parameters associated
with each word, such as the word topic count vector in topic
modeling with Latent Dirichlet Allocation or the word em-
bedding vector, which are accessed based on word ID.
Deep neural network (DNN) training is an increasingly
important class of ML workloads. The core computation of a
typical DNN training program is a loop that iterates over data
mini-batches where each iteration performs a forward pass,
a backward pass and updates the neural network weights.
DNNs commonly read and update all weights in each itera-
tion, therefore serializable parallelization over mini-batches
is not applicable. DNN training is most commonly paral-
lelized with data parallelism, which can be achieved in Orion
by permitting dependence violation as discussed in Sec. 3.3.

3.3 Distributed Array Buffers

Static dependence analysis avoids materializing a huge de-
pendence graph whose size is propotional to the training
dataset. Such a graph would be expensive to store and ana-
lyze. However, static dependence analysis requires the Dis-
tArray subscripts to be determined (as an expression of loop
index variables and constants) statically to accurately cap-
ture the dependence among loop iterations.

First, some ML models, such as DNNs, perform dense pa-
rameter accesses. Second, while parameter accesses might
be sparse in some models, the DistArray subscripts may
depend on runtime values (e.g., e_val in Fig. 4). For exam-
ple, in sparse logistic regression, processing a data sample
reads and updates the weights corresponding to the sample’s
nonzero features. In this case, traditional dependence analy-
sis conservatively marks all DistArray positions as accessed,
leading to false dependences among iterations and impeding
parallelization. For these models, serializable parallelization
can be severely limited in computation throughput or simply
inapplicable, therefore such ML training applications are of-
ten parallelized with dependence violations. The algorithm
converges better (closer to serial execution) when there are
fewer collisions and when writes make small changes. In

“The loop body may still write to those variables but the new value is visible
only to the worker that performs the write.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

order to support these applications, Orion application pro-
grammers may selectively exempt certain (or all) writes from
dependence analysis using Distributed Array Buffers (or Dis-
tArray Buffers). By applying all writes to DistArray Buffers
instead of DistArrays, an Orion application effectively re-
sorts to data parallelism.

A DistArray Buffer is a write-back buffer of a DistArray,
and provides the same API for point and set queries. A Dis-
tArray Buffer maintains a buffer instance on each worker,
which is usually initialized empty. The application program
may apply a subset of DistArray writes to a corresponding
DistArray Buffer and exempt those writes from dependence
analysis, making it possible to parallelize a for-loop that can’t
be parallelized otherwise.

Typically the buffered writes are applied to the correspond-
ing DistArray after the worker executes multiple for-loop
iterations. The application program may optionally bound
how long the writes can be buffered. Orion supports an
element-wise user-defined function (UDF) for applying each
DistArray Buffer’s buffered writes. This UDF is executed
atomically on each DistArray element and thus supports
atomic read-modify-writes. The UDF for applying buffered
writes allows applications to define sophisticated custom
logic for applying updates, and makes it easy to implement
various adaptive gradient algorithms [15, 34, 44].

3.4 Putting Everything Together

Fig. 5 shows a Julia SGD MF program parallelized by Orion.
The serial program has less than 90 lines of Julia code and
can be parallelized by changing only a few lines. The par-
allel program creates DistArrays instead of local matrices
for training data (ratings) and parameters (W and H) by
loading from text files (text_£file) or random initialization
(randomn). DistArrays can be manipulated with set opera-
tions, like map (e.g., line #9). The for-loops that iterate over
the ratings matrix entries (e.g., line #14) are parallelized
by applying the @parallel_for macro.

The parallel for-loop’s loop body may read any driver pro-
gram variable that is visible to the loop (e.g., step_size)
and the driver program may access the result of a parallel
for-loop execution by reading from DistArrays or by using
an accumulator (e.g., err). When an accumulator variable
is created (e.g., line #12), an instance of this variable is cre-
ated on each Orion worker, and the state of each worker’s
accumulators are retained across for-loop executions. The
driver program may aggregate the value of all workers’ acc-
mulators using a user-defined commutative and associative
operator (e.g. line #25).

4 Static Parallelization

Given Orion’s expressive programming model, in this sec-
tion, we discuss how for-loops are parallelized and scheduled,
along with various novel techniques to improve distributed
execution throughput without programmer effort.

RIGHTS L

J. Wei et al.
1 step_size = 0.01
2
3 Orion.@dist_array ratings =
4 Orion.text_file(data_path, parse_line)
5 Orion.materialize(ratings)
6 dim_x, dim_y = size(ratings)
7 Orion.@dist_array W = Orion.randn(K, dim_x)
8 Orion.@dist_array W =
9 Orion.map(W, init_param, map_values=true)
10 Orion.materialize (W)
11
12 Orion.@accumulator err = Float32(0.0)
13 for iter = l:num_iterations
14 Orion.@parallel_for for (key, rv) in ratings
15 W_row = @view W[:, key[1]]
16 H_row = @view H[:, key[2]]
17
18 W[:, key[1]] .= W_row - W_grad * step_size
19 H[:, key[2]] .= H_row - H_grad * step_size
20 end
21 Orion.@parallel_for for (key, rv) in ratings
22
23 err += abs2(rv - pred)
24 end
25 err = Orion.get_aggregated_value(:err, :+)
26 Orion.reset_accumulator(:err)
27 end

Figure 5. SGD Matrix Factorization Parallelized using Orion
4.1 Parallelization Overview

Orion’s @parallel_for primitive is implemented as a Julia
macro, which is expanded when the for-loop is compiled.
A Julia macro is a function that is invoked during compila-
tion (as opposed to at runtime), which takes in an abstract
syntax tree (AST) and produces a new AST to be compiled
by the Julia compiler. Orion’s @parallel_for macro stati-
cally analyzes the for-loop’s AST to compute dependences
among loop iterations based on the loop body’s access pat-
tern to DistArrays. These dependences are represented as
dependence vectors.

Based on the dependence pattern, Orion decides whether
the for-loop is 1D or 2D parallelized and whether a unimod-
ular transformation is needed (see Sec. 4.3). During macro
expansion, Orion generates functions that perform the loop
body’s computation and defines those functions in the dis-
tributed workers. According to the parallelization strategy,
the generated new AST, that executes on driver, invokes
a static computation schedule with the corresponding loop
body functions. The generated AST also contains code that 1)
repartitions relevant DistArrays to minimize remote access
overhead; and 2) captures and broadcasts driver program
variables that are inherited in the loop body’s scope. Note
that even though the parallel for-loop may itself be inside
of another for-loop and executed multiple times, the macro
expansion and compilation is executed only once. A global

Automating Dep-Aware Parallelziation of ML Training on DSM

p Input: a for-loop to parallelize

for (key, rv) in ratings

W_row = @view W[:, key[1]]

H_row = @view H[:, key[2]]

pred = dot(W_row, H_row)

diff = rv - pred

W_grad .= -2 * diff * H_row

H_grad .= -2 * diff * W_row

W[:, key[1]] W_row - W_grad * step_size

H[:, key[2]] H_row - H_grad * step_size
end

Loop information

Iteration space: ratings

Loop index vector: key

Iteration ordering: unordered

DistArray reads: W[:, key[1]],H[:, key[2]]
DistArray writes: W[:, key[1]],H[:, key[2]]
Inherited variables: step_size, W_grad, H_grad

Statically analyze
the loop code

EuroSys 19, March 25-28, 2019, Dresden, Germany

Compute dependence vectors (Sec. 4.2)

Y iterations p = (p1, p2), [;' = (p], p;) and

Compilation process:

Statically extract loop

S0 - information
p’ > p, p’ depends on p if <
(p1) == (npp) or (p2) == (»pj). ie, Compute dependence
{:_: , or {:_: , . The dependence vectors ;
pri=p P2=p; ~
vecotrs are thus (0,) and (oo, 0). Determine the iter-
\ J ation space’s parti-

” : : tioning scheme and
Partition & schedule the iteration space (Sec. 4.3) computation schedule

Since Y dependence vector d= (d1, dz), dy = ~

0 or d; = 0, unordered 2D parallelization is Determine the ac-
applicable. Partition ratings by its 1st and cessed DistArrays’s
2nd dimension. partitioning scheme

\ J 1
h'd

Code generation: Dis-
tArray partitioning,
driver variable broad-
cast, loop body func-
tions, parallel for-

Partition accessed DistArrays (Sec. 4.4)

W and H are range partitioned by its 2nd di-
mension and allocated among executors. The
smaller one of W and H is rotated among
executors.

loop execution, etc.

\ J

Figure 6. Overview of Orion’s static parallelization process using SGD MF as an example.

statement in a Julia program is just-in-time compiled and ex-
ecuted before the following global statements are compiled,
thus the compilation of a statement may make use of previ-
ous statements’ runtime execution results, such as DistArray
sizes. Fig. 6 presents an overview of the JIT compilation
process using SGD MF as an example.

4.2 Computing Dependence Vectors

A lexicographically positive vector® d denotes a dependence
vector of an n-loop nest if and only if there exist two depen-
dent iterations p; and p, such that p; = p, + d Infinity co (or
positive/negative infinity, +00/—00) in dependence vectors
means that the dependence vector may take any (positive or
negative) integer value at that position. In Fig. 6, dependence
vector (0,00) means that any iteration (p{,p;) depends on
iteration (py,p2) as long as p; —p; == 0. A dependence vector
implies a dependence pattern shared by all iterations, yield-
ing a concise dependence representation. However, depen-
dence vectors may conservatively represent a dependence
that exists for only certain iterations as a dependence for all
iterations, unnecessarily limiting parallelism.

Previous work discussed how to compute dependence
vectors [24, 33]. An iteration depends on another (earlier)
iteration if and only if they both access the same memory
location and at least one of the accesses is a write. In gen-
eral, computing dependence vectors requires performing a
dependence test on the subscripts of each pair of DistArray
references from two different iterations, and either prove
independence or produce a dependence vector for the loop
indices occuring in the scripts [24]. Since Orion currently

5A vector d = (d, da, ..., dy) is lexicographically positive if 3i : d; > 0
andVj <i:dj 20

RIGHTSE LI MN iy

supports accurate dependence capturing only for subscripts
that contain at most one loop index variable plus or minus
a constant at each position, we can simplify the algorithm.
We represent each subscript as a 3-tuple (dim_idx, const
, stype), representing the loop index variable’s dimension
index in the iteration space, the constant and the type of
the subscript, i.e., whether it is a single value or a range and
whether the subscript is supported for dependence analy-
sis. Alg. 2 presents Orion’s core procedure for computing
dependence vectors. Our algorithm produces at most one
dependence vector from each pair of static DistArray ref-
erences. Two DistArray references are independent when
they are both read, and write-write dependence may be omit-
ted when the loop iterations can be executed in any order
(unordered_loop). After skipping such reference pairs, we
initialize a dependence vector whose elements are infinity,
meaning that any two iterations may be dependent due to
these two DistArray references. We then refine this conser-
vative dependence by checking each subscript position. We
declare the two references are independent if their subscripts
will never match. In the end, we add the dependence vector
to the set of dependence vectors after making sure it is lexi-
cographically positive. The algorithm has a time complexity
of O(N? x D) for each referenced DistArray where N is the
number of static DistArray references and D is the number
of dimensions of the referenced DistArray.

4.3 Parallelization and Scheduling

Orion partitions the iteration space based on dependence
vectors so that different partitions can be executed in par-
allel. Each worker is assigned a number of iteration space
partitions and synchronizes at most once per partition.

EuroSys ’19, March 25-28, 2019, Dresden, Germany

i/\

Eisiae

@®)
@e)
@D
@)

Ei&i6id

Eii6id

w0

wl

w2

w3

(a) 1D parallelization.

v

i/\

(1,2
(LD
OO

wl w2

(500

v

(b) 2D parallelization.

J. Wei et al.

i/\

@D
CHE@DIEDICD)|
e,

)
QD ED

w0 wl w2 w3

b

v

(c) Unordered 2D parallelization.

in_parallel for j = 0:(N-1)

for iter in partition[j]

execute_iteration(iter)
synchronize ()

for time_step = 0: (M + N - 2)
in_parallel for j

i = time_step - j i = (j + time_step) % N

if i > 0 & i < N

= 0:(N-1)

for time_step = 0:(M-1)
in_parallel for j = 0:(N-1)

for iter in partition[j, 1i]

for iter in partition[j, 1i] execute_iteration(iter)

execute_iteration(iter)

synchronize ()

(d) 1D computation schedule.

(e) 2D computation schedule.

synchronize ()

(f) Unordered 2D computation schedule.

Figure 7. Parallelization of a 4 X 4 iteration space. Ellipses denote loop iterations and edges denote dependence between
iterations. Note that representing the dependence in (a) requires only 1 depenence vector, namely (0, 1), and representing
the dependence in (b) and (c) requires only 2 dependence vectors, namely (1,0) and (0, 1). Iterations of the same color are
executed in parallel. Rectangles denote iteration space partitions. Workers are denoted as w0, w1, etc. M and N denote the
number of unique time-dimension (vertical) and space-dimension (horizontal) indices. Although it’s not shown here, typically
each worker is assigned with multiple space-dimension indices for better load balancing and multiple time-dimension indices

for pipelined parallelism (Sec. 4.4).

Given the set of dependence vectors D, if there exists a
dimension i such that ¥d = (d1,ds,...,dn) € D,d; = 0, then
any two iterations § = (p1,pz,--pr) and p’ = (p},p}s--sph)
are independent as long as p; # p!. Partitioning the iteration
space by dimension i ensures that any two iterations $ and
1;’ from two different partitions are independent. Thus the
loop can be scheduled by assigning different iteration space
partitions to different workers as there’s no data dependence
across partitions. This is referred to as 1-dimensional (i.e.
1D) parallelization. Note that all such dimensions i that
satisfy the above condition are candidate partitioning dimen-
sions. Fig. 7a shows an example that applies 1D paralleliza-
tion to a 2-level loop nest and partitions the 2D iteration
space by dimension j. The corresponding compute schedule
is shown in Fig. 7d. The workers synchronize with each other
after executing all iterations in its assigned partition.

If there exist two dimensions i and j such that vd =
(di,da,...,dyn) € D,d; = 0,d; = 0, then any two iterations
P = (p1.p2s..spn) and p’ = (p1>P3>---»Py) are independent
as long as p; # p; and p; # p;. In this case, the loop can
be parallelized by partitioning the iteration space by dimen-
sions i and j, which we refer to as 2-dimensional (i.e. 2D)
parallelization (see Fig. 7b). The partitions are assigned to
workers based on one of the dimensions, e.g. j in this case,

RIGHTS LI L)

which we refer to as the space dimension and the other dimen-
sion is referred to as the time dimension. The computation
is executed in a sequence of global time steps. Within each
time step, multiple workers may execute a local partition
in parallel, where the partition’s time dimension index is
derived from the time step number to ensure that all parallel
partitions’ indices differ in both space and time dimensions.
We observe that a partition depends on only two other itera-
tion space partitions from the previous time step and one of
them belongs to the same worker. Thus a worker waits for
a signal from a single predecessor worker to begin the next
time step instead of a global synchronization barrier.
Relaxing the ordering constraints. Traditional automatic
parallelizing compilers preserve the lexicographical ordering
of loop iterations and thus dependences indicate the execu-
tion ordering of dependent loop iterations, such as shown
in Fig. 7b. With the ordering constraints, simultaneous ex-
ecution of two iterations might not be possible even when
they do not access the same memory location. For example,
in Fig. 7b, even though they do not access the same memory
location, iteration (3,1) cannot be executed in parallel with
(0,0) due to the ordering constraints enforced by (3,0).
Many ML algorithms such as Gibbs sampling do not re-
quire a particular ordering in which data samples or mini-
batches are processed. Other algorithms such as stochastic

Automating Dep-Aware Parallelziation of ML Training on DSM

Algorithm 2: Computing dependence vectors

input :refs - the list of references on DistArray D
output:dvecs - the set of dependence vectors due to
references to D

dvecs = EmptySet();
for each unique pair ref_a and ref_b in refs do
> Skip checking dependence if both references are read or
if the loop is unordered and both references are write.
if (ref_a.is_read and ref_b.is_read) or
(unordered_loop and ref_a.is_write and
ref_b.is_write)then

L continue;

dvec = Vec(iter_space.num_dims, inf);
independent = false;
for dim € D.dims do
sub_a =ref_a.subs[dim];
sub_b = ref_b.subs[dim];
if sub_a and sub_b contains a single loop index
variable then
if sub_a.dim_idx == sub_b.dim_idx then
dist = sub_a.const - sub_b.const;
if dvec[sub_a.dim_idx] != inf and
dvec[sub_a.dim_idx] != dist then
L independent = true;
break;
dvec[sub_a.dim_idx] = dist;
else
L continue;

else
L Test dependence for other subscript types;

if not independent then
correct dvec for lexicographical positiveness;
dvecs =union(dvecs, {dvec});

gradient descent usually randomly shuffle the dataset before
or during training. For such ML algorithms, even though
different iteration ordering may result in different numerical
values and thus affect the convergence process, enforcing a
particular ordering, such as the lexicographical ordering, is
not necessarily beneficial but sacrifices parallelism. There-
fore, Orion’s parallelization by default ensures only serial-
izability but not the lexicogrpahical ordering. Applications
may enforce ordering by using the ordered argument in
@parallel_for. Relaxing the ordering constraints allows
Orion to reorder iterations to maximize parallelism: Orion
schedules workers to start from different indices along the
time dimension to fully utilize all workers (Fig. 7c and Fig. 7f).
Unimodular transformation. When neither 1D or 2D par-
allelization can be directly applied, Orion may apply unimod-
ular transformations on the iteration space, when the depen-
dence vectors contain only numbers or positive infinity, to en-
able 2D parallelization. Parallelizing for-loops using unimod-
ular transformations was introduced by Wolf et. al [46]. The

RIGHTS L

EuroSys 19, March 25-28, 2019, Dresden, Germany

0|
"L P]

(a) time step 0 (b) time step 1 (c) time step 2
Figure 8. Pipelined computation of a 2D parallelized
unordered loop on 4 workers. An ellipse represents a
worker executing a partition (space_partition_id,
time_partition_id). The workers access different par-
titions of DistArray D at different time steps. Partitions of
D that are being used by workers are lime-colored and the
partitions that are being communicated are pink-colored. At
the beginning of the loop execution, each worker is assigned
with 2 time partition indices and thus 2 partitions of Dis-
tArray D. Upon finishing the first time step, a worker sends
out the updated D partition and immediately begins the next
time step using its locally available D partition.

set of dependence vectors after unimodular transformation
denoted as D’ satisfy that vd = (di,dzy...,dp) € D’ :dy >0
(all dependences are carried by the outermost loop). With
the transformed loop nest denoted as Lq,L,,...L,, there’s no
dependence between iterations of the innermost loop nest
L,,Ls,...L, in the same outermost loop L;. Thus the for-loop
can be parallelized by partitioning the transformed itera-
tion space by the outermost dimension and any combination
of the inner loop dimensions. By reversing the transforma-
tion, we can derive a 2D partitioning of the original iteration
space.

As multiple candidate partitioning dimensions may exist,
Orion uses a simple heuristic to choose the partitioning di-
mension(s) among candidates that minimizes the number
of DistArray elements needed to be communicated among
Orion workers during loop execution. This heuristic can be
overridden by the application program.

Dealing with Skewed Data Distribution. As the paral-
lel for-loop’s iteration space is often sparse and the data
distribution is often skewed, (for example, when iterating
over a skewed dataset) partitioning the iteration space into
equal-sized partitions results in imbalanced workload among
workers. Orion DistArrays support a randomize operation
that randomizes a DistArray along one or multiple dimen-
sions to achieve a more uniform data distribution. Further
more, Orion computes a histogram along each partitioning
dimension to approximate the data distribution, which is
used to generate a more balanaced partitioning.

Fault tolerance. An Orion driver program can checkpoint
a DistArray by writing it to disk, which is eagerly evaluated.
For ML training, a common approach is to checkpoint the
parameter DistArrays every N data passes.

RIGHTS

EuroSys ’19, March 25-28, 2019, Dresden, Germany

4.4 Reducing Remote Random Access Overhead

Generally, DistArray random access can be served by a pa-
rameter server. However, in this case, each random access
potentially result in a remote access over the inter-machine
network. The overhead of network communication is signif-
icant even when Orion workers cache DistArray values and
buffer DistArray writes.

Locality and pipelining. Usually different workers read
and write to disjoint subsets of elements of a DistArray. If
the workers’ read/write sets are disjoint range partitions of
a DistArray, the DistArray may be range partitioned among
workers so random access to it can be served locally.

Under 2D parallelization, the DistArray range partition

accessed by a worker may be different at different time
steps and a worker has to wait to receive a DistArray par-
tition from its predecessor before starting a new time step.
When the ordering constraints can be relaxed (Fig. 7f), Orion
avoids the workers’ idle waiting time by creating multiple
time-dimension partition indices per worker and letting the
worker proceed to a locally available time-dimension par-
tition index while waiting for data from its predecessor, as
illustrated in Fig. 8.
Bulk prefetching. If the same elements of a DistArray are
simultaneously accessed by different workers, for example,
when it is updated by a DistArray Buffer, or the disjoint sets
of elements cannot be obtained from efficiently partitioning
the DistArray, the DistArray is served by a number of server
processes, similar to a Parameter Server. In this case, in or-
der to minimize the random remote access overhead, Orion
prefetches DistArray reads in bulk.

In order to accurately determine which values to prefetch,
existing Parameter Server systems rely on programmers to
implement a “virtual iteration” besides the actual computa-
tion to provide the parameter access pattern [12] or to man-
ually implement prefetching and cache management [29].
Orion automates bulk prefetching by synthesizing a func-
tion that generates the list of DistArray element indices that
are read during the loop body computation. The generated
function executes loop body statements that read from non-
locally allocated DistArrays, but instead of reading DistArray
elements and performing computation, those statements are
transformed to only record the DistArray subscript value.
Since the DistArray subscripts may depend on runtime val-
ues, such as loop index variable and driver program variables
(which are captured and broadcasted to workers as read-only
variables), the function also executes statements that the
DistArray subscripts have a data or control dependence on
with proper control flow and ordering. If a DistArray sub-
script depends on values read from DistArrays, computing
it may incur an expensive remote access. Therefore, Dis-
tArray subscripts that depend on other DistArray values
are not recorded for bulk prefetching. The code generation
algorithm is in spirit similar to dead code elimination.

i,

10

J. Wei et al.

5 Offline ML Training Systems

In this section, we review and compare existing offline ML
training systems (Table 1) with Orion, with an emphasis on
their programming model and parallelization strategy. We
focus on dataflow systems and graph processing systems,
which present two distinct programming models.

5.1 Batch Dataflow Systems and TensorFlow

Many systems [5, 36, 51, 52] adopt a dataflow execution
model, where the application program constructs a directed
acyclic graph (DAG) that describes the computation and the
computation DAG is lazily evaluated only when certain out-
put is requested. A popular system among them is Spark [52],
in which each node of the DAG represents a set of data
records called a Resilient Distributed Dataset (RDD) and the
edges represent transformation operations that transform
one RDD to another. A fundamental limitation of traditional
dataflow systems is that their computation DAG does not
allow mutable states in order to ensure deterministic execu-
tion, which makes updating model parameters an expensive
operation. For example, mutable states in Spark such as dri-
ver local variables or accumulators, are not represented in
the computation graph and are stored and updated by a sin-
gle driver process. SparkNet [35] represents model weights
as driver program local variables, which are broadcasted
to workers to compute new weights. The new weights pro-
duced by workers are collected and averaged by the driver.
Each broadcast and collection takes about 20 seconds [35].

TensorFlow [5] is a deep learning system which also
adopts the dataflow programming model, where nodes of
the computation DAG represent operations whose inputs
and outputs are tensors flowing along the edges. TensorFlow
introduces mutable states such as variable and queue into the
computation graph to efficiently handle model parameter
updates. A typical TensorFlow program constructs a DAG
that implements the update operation processing a single
mini-batch of data, where trainable model parameters are
represented as variables. One approach to represent different
mini-batch’s or data sample’s access pattern on invidiudal
model parameters is to represent each mini-batch (or data
sample) and model parameter as separate nodes in the DAG
(i.e., statically unroll the whole loop), resulting in a huge
DAG that’s expensive to store and analyze.

Alternatively, the computation can be described as a while-
loop [50] iterating over mini-batches or data samples. While
TensorFlow while-loop allows different iterations to be exe-
cuted in parallel, each operation is assigned with, and bound
to, a single computing device (different operations can be
placed on different devices). In other words, a TensorFlow
while-loop does not partition its iteration space among dis-
tributed devices and may fail to exploit the full parallelism
enabled by the loop. On the other hand, a TensorFlow while-
loop enables additional parallelism for loops with a large and

RIGHTS

Automating Dep-Aware Parallelziation of ML Training on DSM

Category Examples

EuroSys 19, March 25-28, 2019, Dresden, Germany

DSM Programming Paradigm App. Program. Lang.

Dataflow
Dataflow w/ mutable states
Parameter Server
PS w/ scheduling
Graph Processing
Orion

Spark [52], DryadLINQ [51]
TensorFlow [5]
parameter server [29], Bosen [45]
STRADS [26]
PowerGraph [20], PowerLyra [10]

No dataflow Scala, Java, Python

Yes dataflow Python, C, C++

Yes imperative C++

Yes imperative C++
Limited vertex programming C++

Yes imperative Julia

Table 1. Comparing different systems for offline machine learning training.

complex loop body (e.g., a multi-layer RNN), since the loop
body can be distributed among multiple computing devices.
Moreover, a TensorFlow while-loop dynamically computes
a loop termination condition and supports data-dependent
control flow inside the loop body including nested loops.

5.2 Graph Processing Systems

Graph processing systems [10, 20, 31, 32, 49, 53, 54] take
a user-provided data graph as input and execute a vertex
program on each graph vertex. Since a vertex program is
restricted to access only data stored on that vertex itself,
its edges or its neighboring vertices, the graph naturally
describes the vertex program’s data dependence on muta-
ble states. This property allows some systems to schedule
independent vertex computation and ensure serializability
by using graph coloring or pessimistic concurrency con-
trol [20, 31, 32]. However, graph coloring is an NP-complete
problem and is expensive to perform; and with pessimistic
concurrency control, lock contention may heavily limit the
system’s scalability as demonstrated by a weak scaling exper-
iment on PowerGraph [20]. As a result, recent graph process-
ing systems have given up serializability: their vertex pro-
gram either executes asynchronously or synchronizes with
Bulk Synchronous Parallel synchronization [10, 49, 53, 54],
both violating dependence among vertices.

6 Experimental Evaluation

Orion is implemented in ~17,000 lines of C++ and ~6,300
lines of Julia (v0.6.2). and has been open sourced.® In this
section, we evaluate Orion, focusing on parallelization ef-
fectiveness and execution efficiency. Our experiments were
conducted on a 42-node cluster where each machine con-
tains an Intel E5-2698Bv3 Xeon CPU and 64GiB of memory.
Each CPU contains 16 cores with hyper-threading. These
machines are connected with 40Gbps Ethernet.

6.1 Evaluation Setup and Methodology

We are interested in answering the following questions through
experimental evaluation:

1. Is the algorithms’ convergence rate sensitive to data
dependence? Can dependence violation (such as data
parallelism) significantly slow down algorithm con-
vergence? Previous work (e.g., STRADS [26]) demon-
strated that data dependence may have critical impact

SURL: https://github.com/jinliangwei/orion

i,

on algorithmic convergence and our results confirm
their observations.

2. Can proper semantic relaxations such as relaxing the
loop ordering constraints and violating non-critical
dependences indeed improve computation throughput
without jeopardizing convergence?

3. While preserving critical dependences, can Orion par-
allelization effectively speed up the computation through-
put and thus overall convergence rate of serial Julia
ML programs?

4. Do Orion applications achieve higher or competative
computation throughput and convergence rates com-
pared to applications on other state-of-the-art offline
ML training systems, including both manually paral-
lelized data- and model-parallel programs?

ML applications. We’ve implemented a number of ML ap-
plications on Orion, exercising different parallelization strate-
gies, as summarized in Table 2. In this section, we focus on
evaluating performance for SGD MF (w/o and w/ AdaRev)
and LDA, which are commonly used benchmark applications
and allow us to compare Orion with other systems.
Datasets. We evaluated SGD MF (w/o and w/ AdaRev) on
the Netflix dataset [1] for movie recommendation, which
contains ~100 million movie ratings (rank is set to 1000).
We evaluated LDA on a smaller NYTimes dataset that con-
tains ~300 thousand documents and a subset of the large
ClueWeb dataset [2] that contains ~25 million documents
(32GB) (number of topics is set to 1000 and 400 respectively).
Metrics. Ultimately ML training applications desire to reach
a high model quality in the least amount of time, which we
refer to as overall convergence rate. A high overall conver-
gence rate requires the training system to both process a
large number of data samples per second, i.e., achieve a high
computation throughput, and improve the model quality by a
large margin per data pass, i.e., achieve a high per-iteration
convergence rate. A serial execution typically achieves the
best per-iteration convergence rate and thus serves as a
gold standard. Different parallelizations may have different
per-iteration convergence rates depending on whether and
which data dependences are violated. Our evaluation metrics
include both overall and per-iteration convergence rate to
properly attribute the performance differences.

ML systems in comparison. We compared Orion with a
number of state-of-the-art ML offline training systems on
SGD MF (w/ and w/o AdaRev) and LDA in terms of both

RIGHTS

EuroSys ’19, March 25-28, 2019, Dresden, Germany J. Wei et al.
Acronym Model Learning Algorithm LoC Parallelizations
SGD MF Matrix Factorization SGD 87 2D Unordered
SGD MF AdaRev Matrix Factorization SGD w/ Adaptive Revision 108 2D Unordered
SLR Sparse Logistic Regression SGD 118 1D (data parallelism)
SLR AdaRev Sparse Logistic Regression ~ SGD w/ Adaptive Revision 143 1D (data parallelism)
LDA Latent Dirichlet Allocation Collaposed Gibbs Sampling 398 2D Unordered, 1D
GBT Gradient Boosted Tree Gradient Boosting 695 1D
Table 2. ML applications parallelized by Orion.
c)QQ [© % SGD MF, Netflix serial R
ERCIES - > Data Parallelism —+— 9 e
§ ’590 [3 £ © $ Dep-Aware Parallelism (unordered) —— JQ /%
9 40T S w ﬁ ;! 2 Lo oo 02 ep-Aware Parallelism (ordered) —&— NS
AR [I B e e e RS //
Q 2 A S R £ ~ S
c)Qg [o~ LDA, NYTimes _% SF u\%% E) ,‘OJ
g O\ & s *F %25 = °> Serial —<—
§ :QG Loe & 2 ST M*MMM E";/q}? Data Paralleﬁzran —
& QT il 3 NNM o %% ,\,’yg ep/Aware Parallelism (unordered) —x—
e 100 r ® Q ﬁ- S o 2 g L Dep-Aware Parallelism (ordered) —=—
A — “ 1 1 1 1
Operiadd 1 2 & 8 16 32 64128256384 So 20 40 60 80 100 Qf’ 0 20 40 60 80 100
number of workers ~ iteration N iteration

(a) Time (seconds) per iteration

(b) SGD MF, Netflix

(c) LDA, NYTimes

Figure 9. Orion parallelization effectiveness. (a) compares the time per iteration (averaged over iteration 2 to 8) of serial Julia
programs with Orion-parallelized programs. The Orion-parallelized programs are executed using different number of workers
(virtual cores) on up to 12 machines, with up to 32 workers per machine. (b) and (c) compare the per-iteration convergence rate
of different parallelization schemes and serial execution; the parallel programs are executed on 12 machines (384 workers).

computation throughput and overall convergence rate. The
systems that we experimentally compare to include Bsen
parameter server [45], STRADS and TensorFlow.

TuX? [49] is a recently proposed graph processing system,
particularly optimized for ML training workloads. TuX? was
reported to have an over an order of magnitude faster per-
iteration time on SGD MF compared to PowerGraph [20]
and PowerLyra [10]. With a rank of 50, TuX? SGD MF ’
takes ~0.7 seconds to perform one data pass on the Net-
flix dataset [1] using 8 machines, each with two Intel Xeon
E5-2650 CPUs (16 physical cores), 256GiB of memory, and
a Mellanox ConnectX-3 InfiniBand NIC with 54Gbps band-
width (all higher than ours except for slight slower CPUs).
In contrast, Orion SGD MF achieves a per-iteration time of
~1.4 seconds on 8 machines with the same number of CPU
cores. On the other hand, with a carefully tuned mini-batch
size, TuX? SGD MF reaches a nonzero squared loss (lower
is better) of ~7 x 10'% in ~600 seconds using 32 machines
in its best case, while Orion SGD MF reaches ~8.3 x 107 in
~68 seconds using only 8 machines. Even though TuX? SGD
MF achieves a higher computation throughput, its overall
convergence rate is much lower than Orion’s due to violating
data dependence.

6.2 Summary of Evaluation Results

1. Preserving data dependence is critical for SGD MF
(w/o and w/ AdaRev) and LDA. Dependence-violating
parallelization (i.e., data parallelism) takes many more
data passes than serial execution to reach the same

"TuX? is not open sourced

Ay

‘Ordered Unordered Speedup

SGD MF (Netflix) 13.1 5.9 2.2X
SGD MF AdaRev (Netflix) 43.6 16.7 2.6X
LDA (NYTimes) 29.9 5.0 6.0X

Table 3. Time per iteration (seconds) with ordered and un-
ordered 2D parallelization (12 machines), averaged over iter-
ation 2 to 100.
model quality, while dependence-aware paralleliza-
tion (even with proper semantic relaxations) retains
a comparable per-iteratoin convergence rate to serial
execution.

2. Orion-parallelized SGD MF (w/ and w/o AdaRev) and
LDA converge significantly faster than manual data-
parallel implementations on Bésen, in terms of both
number of iterations and wall clock time.

3. Data-parallel SGD MF AdaRev and LDA on Bésen con-
verges faster with more frequent communication of
parameter values and updates, approaching Orion par-
allelization at the cost of higher network bandwith.

4. Orion-parallelized SGD MF AdaRev and LDA achieve
a matching per-iteration convergence rate to manual
model-parallel programs on STRADS, but may have a
slower time per iteration mainly due to Julia’s language
overhead compared to C++.

5. Orion-parallelized SGD MF converges considerably
faster than a data-parallel implementation on Tensor-

Flow while achieving a 2.2X faster per-iteration time.
6.3 Parallelization Effectiveness

We compare Orion-parallelized Julia programs with serial
Julia programs in terms of both computation throughput

Automating Dep-Aware Parallelziation of ML Training on D

SM

EuroSys 19, March 25-28, 2019, Dresden, Germany

I S
IS Manual Data Parallelism on Bosen —+— o E Manual Data Parallelism on Bosen —+— Q’
S B/ Managed Comm & AdaRev on Bosen —<— S Managed Comm & AdaRev on Bosen —x— &
5’,‘ | Autpb-Parallelization by Orion —— $ Auto-Parallelization by Orion —— v /“/*
a~ w/ AdaRev on Orion —&— g~ w/ AdaRev on Orion —&— - oy]‘/
o | (=} *
= © = QF S
z £\ Nl gt /]
£ye M ES9T MWWW E) '\‘;N’
© © PR = TN
= b= — T Y
S mm SE EE&& 8 Ny Ual Data Parallelism on Bosen —+—
& Seceng. 3F Sﬂ,}@m DA w/ Managed Comm on Bosen ——
~ s s e ~ = N ,Auto-Parallelization by Orion —x—
© © N
go 200 400 600 800 1000 1200 1400 go 20 40 60 80 100 120 140 ,\,Y)?' 0 2 4 6 8 0 12 14
o
g time (seconds) < iteration :’ time (1000 seconds)

(a) Over time - SGD MF (AdaRev), Netflix

(b) Over iterations - SGD MF (AdaRev), Netflix

(c) Over time - LDA, ClueWeb

Figure 10. Orion vs. Bdsen, convergence on 12 machines (384 workers)

(a) Over time - SGD MF AdaRev, Netflix

(b) Over time - LDA, ClueWeb

) Q
o £ Manual Model Parallelism on STRADS —>— < <
S FY Auto-Parallelization on Orion —&— (A AN
I ® L © pHEFT
;7 \ I:Z(N Vi /*/* ,Jw /,(
87 [& 5
2 oFy g & g &
ERAA g e | g e |
ol $RET] AN
5N > T > e
Q g 8 vy g vy
@ S B ual Model Parallelism on STRADS —— ™', anual Model Parallelism on STRADS —+—
~ Bt TS VN ,:’";r . AutF-ParaIIIeIizatlion byIOrionI T ,:’;/ IAuto-Para!IeIizationI by OrionI —*—
© gy A
$0 200 400 600 800 1000 1200 1400 0 2 4 6 8 10 12 14 J~0 20 40 60 80 100
‘2 ‘@
g time (second) o time (1000 seconds) N iteration

(c) Over iterations - LDA, ClueWeb

Figure 11. Orion vs. STRADS, convergene on 12 machiens (384 workers)

(i.e., time per iteration) and per-iteration convergence rate
(Fig. 9). As shown in Fig. 9a, although the Orion abstraction
incurs some overhead, Orion parallelization outperforms the
serial Julia programs using only two workers and enables
consistent speedup up to 384 workers. Although Orion’s par-
allelization relaxes the loop ordering constrants for both SGD
MF and LDA, and violates some non-critical dependences in
LDA, preserving (critical) dependences enable Orion paral-
lelization to achieve a matching convergence rate to serial
execution (Fig. 9b and Fig. 9c). On the other hand, data par-
allelism (using Bosen) converges substantially slower than
serial execution due to violating dependences freely.

Table 3 compares ordered and unordered 2D paralleliza-
tion in terms of computation throughput. Theoretically, re-
laxing the loop ordering constraints at most doubles paral-
lelism. But it also enables a more efficient communication
scheme (see section 4.4) that hides the communication la-
tency, achieving an over 2Xx speedup. Fig. 9b and Fig. 9c
show that loop ordering makes negligible differences in con-
vergence rate. While we observe a bigger difference when
adaptive revision [34] is used, relaxing the loop constraints
is still beneficial for the improved computation throughput.
Bulk Prefetching. When training SLR using SGD, each
data sample reads and updates a number of weight values
corresponding to the nonzero features of the data record,
which is unknown until the data sample is processed. The
sequence of DistArray reads causes a sequence of inter-
process communication, possibly over inter-machine net-
works. In a single-machine experiment using the KDD2010
(Algebra) [18] dataset, each data pass takes 7682 seconds,

RIGHTS LI

Ay

13

Managed Comm on Bosen
Auto-Parallelization by Orion

of;’oo

00{)5

0

bandwidth (Mbps)
2, 050

50,

0

0 100

seconds

Figure 12. Bandwidth usage, LDA on NYTimes
wasting most of the time on communication. Orion auto-
matically synthesizes a function to prefetch the needed Dis-
tArray values in bulk (see Section 4.4) and thus reduces the
per-iteration time to 9.2 seconds. It can be further reduced
to 6.3 seconds by caching the prefetch indices.

6.4 Comparison with Other Systems

Manual data parallelism. Under data parallelism, Bosen
workers synchronize after processing the entire local data
partition. While achieving a high computation throughput,
data-parallel applications on Bosen converge considerably
slower than Orion-parallelized programs.

Data parallelism w/ communication management. Bésen
features a communication management (CM) mechanism
that improves the convergence rate of data-parallel training.
Given a bandwidth budget, CM proactively communicates
parameter updates and fresh parameter values before the
synchronization barrier, when spare network bandwidth
is available, to reduce the error due to violating data de-
pendence. Moreover, CM prioritizes large updates to more
effectively utilize the limited bandwidth budget. We assign
each Bgsen machine a bandwidth budget of 1600Mbps and

RIGHTS

EuroSys ’19, March 25-28, 2019, Dresden, Germany

8 ;s Orion —+—
o [TensorFlow —»—
v O ~—
N Ram—
<
~Y o0 500 1000 1500 2000 2500 3000
time (second)
140 (a) Convergence Over Tmiem
4 100
S 80
g 60
) 40
20
0

Orion TF.25M TF_806K
(b) Time (seconds) per iteration; TF_x denotes a

mini-batch size of x
Figure 13. Orion vs. TensorFlow, SGD MF on Netflix

2560Mbps respectively for SGD MF and LDA for maximal
overall convergence rate. For SGD MF on Netflix and LDA
on ClueWeb25M, CM achieves similar per-iteration conver-
gence rate compared to dependence-aware parallelization by
Orion but is still ~40% slower for LDA on NYTimes. For both
SGD MF and LDA, CM uses substantially higher network
bandwidth than Orion due to the aggressive communication
(Fig. 12). Excessive communication incurs CPU overhead due
to marshalling and lock contention, reducing Bésen’s com-
putation throughput and leading to a slower overall conver-
gence rate than Orion when training LDA on ClueWeb25M.
Manual model parallelism. Compared to manually opti-
mized model-parallel programs on STRADS, Orion-parallelized
SGD MF AdaRev and LDA achieve a matching per-iteration
convergence rate (Fig. 11). While achieving a similar compu-
tation throughput on SGD MF AdaRev, Orion takes ~1.8%
(ClueWeb25M) and ~4.0x (NYTimes) longer than STRADS to
execute an iteration for LDA. STRADS’s better performance
is largely due to a communication optimization: communicat-
ing data between workers on the same machine requires only
pointer swapping. Since Julia (v0.6.2) doesn’t yet support
shared-memory multi-threading, inter-process communica-
tion in Orion incurs marshalling and memory copies. This
overhead is negligible for SGD MF where the communication
is mostly float arrays with trivial serialization.
TensorFlow. We compare Orion-parallelized SGD MF with
an implementation on TensorFlow (v1.8), both executed on
a single machine using only CPU (Fig. 13). Following Ten-
sorFlow (TF) common practices, our SGD MF program con-
structs a DAG which processes of a mini-batch of data matrix
entries to exploit TF’s highly parallelized operators. Since
TF does not update model parameters until a full mini-batch
is processed, TF SGD MF converges considerally slower than
Orion’s iteration-wise. With a mini-batch size of 25 million,
TF is ~2.2X slower in terms of per-iteration time, partly due
to redundant computation with respect to sparse data matrix
(TF runs out of memory with larger mini-batch sizes). Each it-
eration takes longer with a smaller mini-batch size (Fig. 13b)
because of not fully utilizing all CPU cores. Overall TF SGD

i,

14

J. Wei et al.

MF converges much slower than Orion’s, indicating that TF
might not be the best option for sparse ML applications.

7 Related Work

Automatic parallelizing compilers. There have been decades

of work on automatically parallelizing programs based on
static data dependence analysis. This includes both vector-
ization [6, 37] and parallelization for multiple processors
with a shared global memory, like Orion. Many loop trans-
formation techniques have been developed for the latter,
including loop interchange [47], loop skewing [48] and loop
reversal. These transformations can be unified under uni-
modular transformations [46], which can only be applied to
perfectly nested loops, e.g., traversing a multi-dimensional
tensor. Affine scheduling [14, 16, 17] applies to arbitrary
nestings of loops and unifies unimodular transformation
with loop distribution, fusion, reindexing and scaling. Affine
scheduling maps dynamic instances of instructions to a time
space and instructions assgned the same time can be exe-
cuted in parallel. Lim et al. [30] additionally partitions the
instructions among processors to minimize synchronization.
Dynamic analysis. Pingali et al. [38] addresses paralleliza-
tion by representing algorithms as operators and a topol-
ogy, which describes the dependence between operators.
The topology graph may be obtained from static analysis or
dynamic tracing, or given as an input. Compared to static
dependence analysis, this approach may be effective in par-
allelizing algorithms that deal with irregular data structures,
e.g., graphs, but may suffer a larger overhead due to dynamic
tracing and analyzing a large dependence graph.
Approximate computing. Previous work has proposed
taking advantage of the approximate nature of application
programs and introduced techniques, such as loop perfo-
ration [43] and task skipping [40] to reduce computation
while sacrificing accuracy. Sampson et al. [41] rely on pro-
grammers to declare data that tolerates approximation so
it can be mapped to lower-power hardware to save energy.
HELIX-UP [9] also proposes to relax program semantics to
increase parallelism and uses programmer-provided train-
ing inputs to tune the degree of approximation. Although
auto-tuning could be incorporated in Orion, we believe that
ML practitioners have domain-specific heuristics to make
reasonable decisions while auto-tuning can be expensive.

8 Conclusion

We present Orion, a system that parallelizes ML programs
based on static data dependence and unifies various par-
allelization strategies under a clean programming abstrac-
tion. Orion achieves better or competitive performance com-
pared to state-of-the-art offline ML training systems while
substatially reducing programmer effort. We believe that
Orion is an effective first step towards applying static de-
pendence analysis to parallelize imperative ML programs for
distributed training.

RIGHTS LI

Automating Dep-Aware Parallelziation of ML Training on DSM

Acknowledgments

We thank Andy Pavlo, Aaron Harlap, Abutalib Aghayev and
Qing Zheng for their comments on earlier drafts of the paper.
We thank Jin Kyu Kim for providing us the STRADS SGD
MF source code. We thank our shepherd Yuan Yu and the
anonymous EuroSys’19 reviewers for their valuable and con-
structive feedback. We also thank the member companies of
the PDL Consortium (Alibaba, Broadcom, Dell EMC, Face-
book, Google, Hewlett-Packard, Hitachi, IBM, Intel, Micron,
Microsoft, MongoDB, NetApp, Oracle, Salesforce, Samsung,
Seagate, Two Sigma, Toshiba, Veritas, and Western Digital)
for their interest, insights, feedback, and support. This re-
search is supported in part by National Science Foundation
under awards CCF-1629559 and CCF-1725663. Part of the
work was done when Jinliang was visiting the Vector Insti-
tute.

References

[1] 2009. Netflix Prize Data.
netflix-prize-data/.

https://www.kaggle.com/netflix-inc/

[2] 2013. ClueWeb. https://lemurproject.org/clueweb12/.

[3] Last visited Dec 2018. Julia Micro-Benchmark. https://julialang.org/
benchmarks/.

[4] Last visited Dec 2018. MATLAB Parallel For Loop. https://www.
mathworks.com/help/matlab/ref/parfor.html.

[5] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265-283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[6] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FOR-
TRAN Programs to Vector Form. ACM Transactions on Programming
Languages and Systems 9 (1987), 491-542.

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.
Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1
(2017), 65-98. https://doi.org/10.1137/141000671

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent
Dirichlet Allocation. J. Mach. Learn. Res. 3 (March 2003), 993-1022.
http://dl.acm.org/citation.cfm?id=944919.944937

[9] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.

2015. HELIX-UP: Relaxing Program Semantics to Unleash Paralleliza-

tion. In Proceedings of the 13th Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization (CGO ’15). IEEE Computer

Society, Washington, DC, USA, 235-245. http://dl.acm.org/citation.

cfm?id=2738600.2738630

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra:

Differentiated Graph Computation and Partitioning on Skewed Graphs.

In Proceedings of the Tenth European Conference on Computer Systems

(EuroSys ’15).

Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,

Abhimanu Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B.

Gibbons, Garth A. Gibson, and Eric P. Xing. 2014. Exploiting Bounded

Staleness to Speed Up Big Data Analytics. In 2014 USENIX Annual Tech-

nical Conference (USENLX ATC 14). USENIX Association, Philadelphia,

PA, 37-48.

[10

[t

[11

—

Ay

15

EuroSys 19, March 25-28, 2019, Dresden, Germany

[12] Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai,
Jesse Haber-Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gib-
bons, Garth A. Gibson, and Eric P. Xing. 2014. Exploiting Iterative-ness
for Paralle]l ML Computations. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC ’14). ACM, New York, NY, USA, Article 5,
14 pages.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-
Standard API for Shared-Memory Programming. IEEE Comput. Sci.
Eng. 5, 1 (Jan. 1998), 46-55. https://doi.org/10.1109/99.660313

Alain Darte and Yves Robert. 1995. Affine-by-Statement Scheduling of
Uniform and Affine Loop Nests over Parametric Domains. J. Parallel
Distrib. Comput. 29 (08 1995), 43-59. https://doi.org/10.1006/jpdc.1995.
1105

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. J. Mach.
Learn. Res. 12 (July 2011), 2121-2159. http://dl.acm.org/citation.cfm?
id=1953048.2021068

Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem. I. One-dimensional time. International Journal of Parallel
Programming 21, 5 (01 Oct 1992), 313-347. https://doi.org/10.1007/
BF01407835

Paul Feautrier. 1992. Some efficient solutions to the affine sched-
uling problem. Part II. Multidimensional time. International Jour-
nal of Parallel Programming 21, 6 (01 Dec 1992), 389-420. https:
//doi.org/10.1007/BF01379404

Hsiang fu Yu, Hung yi Lo, Hsun ping Hsieh, Jing kai Lou, Todd G.
Mckenzie, Jung wei Chou, Po han Chung, Chia hua Ho, Chun fu
Chang, Jui yu Weng, En syu Yan, Che wei Chang, Tsung ting Kuo,
Po Tzu Chang, Chieh Po, Chien yuan Wang, Yi hung Huang, Yu xun
Ruan, Yu shi Lin, Shou de Lin, Hsuan tien Lin, and Chih jen Lin. 2011.
Feature engineering and classifier ensemble for KDD Cup 2010. In In
JMLR Workshop and Conference Proceedings.

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis.
2011. Large-scale Matrix Factorization with Distributed Stochastic
Gradient Descent. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’11). ACM,
New York, NY, USA, 69-77. https://doi.org/10.1145/2020408.2020426
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Paralle] Com-
putation on Natural Graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). USENIX, Hollywood, CA, 17-30.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).
arXiv:1512.03385 http://arxiv.org/abs/1512.03385

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B. Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.
2013. More Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server. In Advances in Neural Information Processing Systems
26, C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger (Eds.). Curran Associates, Inc., 1223-1231.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, gen-
eralize better: closing the generalization gap in large batch training of

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

neural networks. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA. 1729-1739.

Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. 2016. On Large-Batch Training
for Deep Learning: Generalization Gap and Sharp Minima. CoRR
abs/1609.04836 (2016). arXiv:1609.04836 http://arxiv.org/abs/1609.
04836

[24]

[25]

EuroSys ’19, March 25-28, 2019, Dresden, Germany

[26]

[27]

(28]

[29]

(30]

(31]

[32

—

(33]

(34]

(35]

(36]

(37]

(38]

(39]

RIGHTS

Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A.
Gibson, and Eric P. Xing. 2016. STRADS: A Distributed Framework
for Scheduled Model Parallel Machine Learning. In Proceedings of
the Eleventh European Conference on Computer Systems (EuroSys ’16).
ACM, New York, NY, USA, Article 5, 16 pages. https://doi.org/10.1145/
2901318.2901331

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factor-
ization Techniques for Recommender Systems. Computer 42, 8 (Aug.
2009), 30-37.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., USA,
1097-1105. http://dl.acm.org/citation.cfm?id=2999134.2999257

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association, Broomfield, CO, 583-
598.

Amy W. Lim and Monica S. Lam. 1998. Maximizing Parallelism and
Minimizing Synchronization with Affine Partitions. In Parallel Com-
puting. ACM Press, 201-214.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud. Proc.
VLDB Endow. 5, 8 (April 2012), 716-727.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Frame-
work For Parallel Machine Learning. In UAL

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. 1991. Ef-
ficient and Exact Data Dependence Analysis. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design
and Implementation (PLDI °91). ACM, New York, NY, USA, 1-14.
https://doi.org/10.1145/113445.113447

H. Brendan McMahan and Matthew Streeter. 2014. Delay-Tolerant
Algorithms for Asynchronous Distributed Online Learning. Advances
in Neural Information Processing Systems (NIPS) (2014).

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael L. Jor-
dan. 2015. SparkNet: Training Deep Networks in Spark. CoRR
abs/1511.06051 (2015). arXiv:1511.06051 http://arxiv.org/abs/1511.
06051

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal
Execution Engine for Distributed Data-flow Computing. In Proceed-
ings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI’11). USENIX Association, Berkeley, CA, USA,
113-126. http://dl.acm.org/citation.cfm?id=1972457.1972470

Dorit Nuzman and Ayal Zaks. 2008. Outer-loop Vectorization: Revisited
for Short SIMD Architectures. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT
’08). ACM, New York, NY, USA, 2-11. https://doi.org/10.1145/1454115.
1454119

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. 2011. The Tao of Parallelism in Algorithms. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’11). ACM, New York, NY, USA, 12-25.
https://doi.org/10.1145/1993498.1993501

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011.
Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In Advances in Neural Information Processing Systems 24,

1T ‘f

16

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

J. Wei et al.

J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Wein-
berger (Eds.). Curran Associates, Inc., 693-701.

Martin Rinard. 2006. Probabilistic Accuracy Bounds for Fault-tolerant
Computations That Discard Tasks. In Proceedings of the 20th Annual
International Conference on Supercomputing (ICS *06). ACM, New York,
NY, USA, 324-334. https://doi.org/10.1145/1183401.1183447

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. Ener]: Approximate Data
Types for Safe and General Low-power Computation. SIGPLAN Not.
46, 6 (June 2011), 164-174. https://doi.org/10.1145/1993316.1993518
Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake Hechtman.
2018. Mesh-TensorFlow: Deep Learning for Supercomputers. In Ad-
vances in Neural Information Processing Systems 31. Curran Associates,
Inc., 10435-10444.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. 2011. Managing Performance vs. Accuracy Trade-
offs with Loop Perforation. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 124-134.
https://doi.org/10.1145/2025113.2025133

Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J. Smola. 2016.
AdaDelay: Delay Adaptive Distributed Stochastic Optimization. In
Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016. 957-965.
http://jmlr.org/proceedings/papers/v51/sra16.html

Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gre-
gory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing.
2015. Managed Communication and Consistency for Fast Data-parallel
Iterative Analytics. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 381-394.
https://doi.org/10.1145/2806777.2806778

Michael E. Wolf and Monica S. Lam. 1991. A loop transformation
theory and an algorithm to maximize parallelism. IEEE Transactions
on Parallel and Distributed Systems 2, 2 (Oct. 1991), 452-472.

Michael Wolfe. 1986. Advanced Loop Interchanging. In ICPP.
Michael Wolfe. 1986. Loops skewing: The wavefront method revisited.
International Journal of Parallel Programming 15, 4 (01 Aug 1986),
279-293. https://doi.org/10.1007/BF01407876

Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming
Wu, Wei Li, and Lidong Zhou. 2017. Tux?: Distributed Graph Compu-
tation for Machine Learning. In 14th USENLX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 669-682. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/xiao

Yuan Yu, Martin Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,
Andy Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins,
Michael Isard, Manjunath Kudlur, Rajat Monga, Derek Gordon Murray,
and Xiaoqiang Zheng. 2018. Dynamic control flow in large-scale
machine learning. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018. 18:1-18:15. https:
//doi.org/10.1145/3190508.3190551

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System
for General-purpose Distributed Data-parallel Computing Using a
High-level Language. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI'08). USENIX
Association, Berkeley, CA, USA, 1-14. http://dl.acm.org/citation.cfm?
id=1855741.1855742

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael]J. Franklin, Scott Shenker, and
Ton Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Presented as part of

Automating Dep-Aware Parallelziation of ML Training on DSM

(53

—

(54]

RIGHTS

the 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX, San Jose, CA, 15-28.

Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and
Weimin Zheng. 2016. Exploring the Hidden Dimension in Graph Pro-
cessing. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 285-
300. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/zhang-mingxing

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 301-
316. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/zhu

IR

17

EuroSys 19, March 25-28, 2019, Dresden, Germany

