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Abstract

Shared mobility-on-demand services are expanding rapidly in cities around the world. As a prominent example, app-based
ridesourcing is becoming an integral part of many urban transportation ecosystems. Despite the centrality, limited public
availability of detailed temporal and spatial data on ridesourcing trips has limited research on how new services interact with
traditional mobility options and how they affect travel in cities. Improving data-sharing agreements are opening unprece-
dented opportunities for research in this area. This study examined emerging patterns of mobility using recently released
City of Chicago public ridesourcing data. The detailed spatio-temporal ridesourcing data were matched with weather, transit,
and taxi data to gain a deeper understanding of ridesourcing’s role in Chicago’s mobility system. The goal was to investigate
the systematic variations in patronage of ridehailing. K-prototypes was utilized to detect user segments owing to its ability to
accept mixed variable data types. An extension of the K-means algorithm, its output was a classification of the data into
several clusters called prototypes. Six ridesourcing prototypes were identified and discussed based on significant differences
in relation to adverse weather conditions, competition with alternative modes, location and timing of use, and tendency
for ridesplitting. The paper discusses the implications of the identified clusters related to affordability, equity, and competition
with transit.

ecosystem using detailed temporal and spatial data on
ridesourcing trips.

Transportation network companies (TNCs) are
prominent in many urban transportation ecosystems.

The growth of ridesourcing patronage is attributed to
the convenience compared with traditional modes.
Widespread adoption of smartphones embedded with
GPS technology has enabled travelers to street-hail
rides through mobile applications, get real-time informa-
tion about waiting times, and make cashless e-payments,
as well as rating driver performance. More recently,
major operators have used algorithms to match passen-
gers along similar routes in real time, providing a new
generation of shared rides. However, the proliferation of
ridesourcing services has been a disruptive force in
the mobility landscape and many questions have been
raised about negative externalities and the socio-spatial
equity of supply. There is significant need for more
insight on ridesourcing use patterns for cities to prepare
policy, regulation, and infrastructure plans. Yet, this
mobility transformation has not been widely studied,
as many TNCs are reluctant to make their data
publicly available. Recent data-sharing agreements with
the City of Chicago, IL has enabled researchers to exam-
ine the role of ridesourcing in the transportation

Several studies have characterized the adoption, fre-
quency, and attitudes toward ridesourcing (/—4), but
none have used trip data at the scale and scope provided
by the City of Chicago. This study uses this newly
released trip data, to develop insights about the role
ridesourcing plays in the transportation ecosystem.
The detailed spatio-temporal patronage data from oper-
ators Uber, Lyft, and Via is merged with local transit,
taxi, and weather observations. The goal of this research
was to investigate the variations in patronage of ridehail-
ing. By studying the emerging mobility patterns present
in the data and examining the uneven locational and
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pricing patterns we developed insights about the motiva-
tions of users.

This study utilized an unsupervised learning algorithm
to examine the underlying patterns in the data. Owing to
the mixed data types (i.e., data containing both numeric
and qualitative/categorical variables), the K-prototypes
algorithm was selected (5). This is an extension of the K-
means algorithm that deals with categorical data. The
model produces a classification of the data into K
number of prototypes, similar to K-means clusters.

This study contributes to the literature by providing a
closer look at large, relatively disaggregate TNC data
from a major metropolitan area. After tuning parameters
for the best fit, the optimal number of prototypes to
describe the data was six. The first group of users (i.e.,
prototype) contained trips that occurred in adverse
weather conditions such as rainy weather. The second
prototype involved trips that occurred in the evening.
The third prototype represented trips that were typically
longer in distance but not shared. The fourth prototype
was defined by the trip origin and destination being to
one of the two major airports in Chicago: O’Hare and
Midway International. The fifth prototype was defined
by short, solo trips occurring in areas that are well served
by transit. The sixth prototype was defined by nearly all
observations being shared rides.

This paper is structured with the following sections.
A Literature Review that covers the state-of-the-art in
TNC research follows. The Methodology section then
explains model development and attribute selection. The
subsequent section reviews the algorithm’s output and
leads into a policy discussion. Finally, the Conclusions
section contains a review of what was achieved in this
study, its limitations, and possible future works.

Literature Review

Since the inception of Uber in 2009, shortly followed by
Lyft, ridehailing has already undergone significant ser-
vice evolution, as discussed by Shaheen and Cohen (6).
Among these, shared ridehailing, or ridesplitting,
matches individuals in real time based on shared
routes; and microtransit, or curb-to-curb options,
match users into van-sized vehicles based on dynamic
or planned routing. For the major TNCs, riders can
now typically decide between solo travel or ridesplitting
in the same application. Authorizing sharing typically
results in lower fares but longer travel times, as the trip
now includes several stops that may cause the vehicle to
deviate from the optimal path for a single origin—desti-
nation pair.

Researchers have tried to develop a better under-
standing of ridesourcing travel, but data are scarce.
Uber and Lyft do not generally share comprehensive

trip level data in a several of its markets thereby imped-
ing the progress of empirical studies in this field. Owing
to empirical data scarcity, researchers have become cre-
ative to gain insights on usage and possible impacts.
Henao and Marshall went so far as to become a TNC
driver to collect trip information (7). Their research sug-
gested extra vehicle miles were generated by deadhead-
ing, a form of inefficiency that is difficult to map using
stated data. After accounting for deadheading mileage,
the average occupancy of a TNC vehicle was less than
one person. Such empirical approaches can offer new
insights but some caveats limit the generality. The trips
recorded in this study were a relatively small sample of
total rides in the entire region and are biased because of
all data coming from a single customer search strategy
(7). Other groups have utilized their own ridehailing
experiments to highlight competition with transit (8)
and equity compared with taxis (8,9), further highlight-
ing the need for a comprehensive dataset for analysts to
access. Along with access to data, connections between
stated and revealed preference data may also lead to
more informed policy decisions (/0).

The current understanding of ridesourcing travel is
mostly informed by survey research. In the following
we briefly provide an overview of relevant ridesourcing
work and relate findings to the current analysis of real
large-scale data. Several studies delve into the trip pur-
poses of ridesourcing trips. Defined by its utilization of
large-capacity vehicles, microtransit (also known as
demand-responsive transit or on-demand transit) can
serve as a tool to address public transit overcrowding
and the first-last mile problem (/7). It is mainly utilized
for commuting (/7,12). Instead, trips made by the more
taxi-like TNCs are mostly for social/recreational trips
(7,13-15). Trip purpose is not included in the current
analysis because of data anonymization. However, in
future works, spatial examination of locations of interest
combined with other trip attributes could be used to infer
trip types.

The effects of TNCs on the transportation system,
specifically via the competition or complementarity
with other modes, is a core area of research. In particu-
lar, owing to the similarity of the services, the impact on
taxis has been widely studied. TNCs have significantly
reduced the demand for traditional taxi services such
that taxi drivers have altered their strategies to remain
profitable (/6-21). Focusing on transit competition,
Schwieterman and Smith found that TNCs are preferred
over public transit, especially when origin—destination
pairs are not well served by transit (8). Along similar
lines, ridesourcing’s relationship with public transit was
found to be complementary within large cities with
small transit agencies (22). Further determinants of ride-
sourcing use relate to the travel environment. Frei et al.
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found that weather affects TNC usage (23). Though their
study focused on microtransit, other TNC services may
also be affected by adverse weather.

Owing to these observations, the ridesourcing trip
data used in this project were matched in space and
time with data on weather, equivalent origin—destination
transit travel times, and peak taxi demand.

Model Development

The data analysis used to examine patterns of ridesourc-
ing use in this project was an unsupervised learning tech-
nique called K-prototypes. K-prototypes is similar to
K-means, since both aim to cluster several observations
together according to their attributes. The advantage
K-prototypes has in this situation is its ability to also
accept categorical variables. More details on K-proto-
types development can be found in research by Huang (5).

The challenge of dealing with categorical variables has
been considered for segmentation analysis. The problem
is that the K-means algorithm relies on all variables
being numerical. Specifically, in the K-means algorithm,
for a continuous variable such as travel time, the distance
between an observation’s travel time and the proposed
cluster’s mean travel time is the key element for identi-
fying clusters among observations. With a categorical
variable such as vehicle type, distance is no longer
applicable. One strategy to include categorical variables
in the K-means algorithm is to code each category as a
dummy variable (0 or 1). The distance calculated by
K-means algorithm for a categorical variable is then 0
or 1, which is not informative. With the K-prototypes
algorithm the mode of the category is used as is a mea-
sure of a matching coefficient. The formulation from
Huang of the K-prototypes algorithm is summarized in
Equations 1 to 4 (9).

The matching of observations to prototypes involves
reducing the error or cost function. This cost function
represents the distance between observation data and the
assigned prototype center. Equation 1 shows that the
error, E, is the sum of distances from the prototype
center. X; is the attributes of trip 7, Q; is the center of
Prototype /, and y; is a dummy variable that is equal to 0
when trip i is assigned to Prototype 1. This is then the
sum of squared distances for n TNC trips across k
number of prototypes. Equation 2 breaks down
d(X;, Q;) into numerical and categorical components,
where the first term is the squared numerical distance
of attribute j of trip i/ from the center for attribute j of
Prototype I; the second term includes a component to
determine the weight, y;,, of the categorical variables
to the total error E. The error of Prototype I is then
calculated in Equation 3, where Ef is further explained
by Equation 4. C; is the set of all unique values of

categorical attribute j, and p(c; € C; |/) is then the prob-
ability of unique value ¢; from set C; being in Prototype
L.
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The advantage of using the K-prototypes algorithm
over other clustering algorithms is highlighted by
Equation 4. A common way to code categorical variables
for other data-driven methods is to use one-hot encod-
ing. Using this method, the unique values of a category
are coded as a dummy variable equal to 1 when denoting
the variable of interest and 0 otherwise. Algorithms using
one-hot encoded data fail to recognize that these unique
values belong to a categorical variable because categories
are reduced to 0 or 1. The advantage of the K-prototypes
algorithm lies in the recognition that these values denote
categorical variables and using the probability of a
unique value from a set C; being in Prototype /.

This model was implemented and tuned with the R
programming language using the “clustMixType” pack-
age (24,25). Using this package, the error is minimized
and the weighting of the categorical error is optimized.
Much like other clustering methods, the number of pro-
totypes is a tunable parameter. The final tunable param-
eters are discussed in the Results section.

Data Description

The data used in this project were drawn from TNC trip
data provided by the City of Chicago (26). The trip data
began on November 1, 2018 and was updated monthly.
For the purpose of obtaining lower optimization times
and being able to match the equivalent transit travel
times, the data was partitioned to weekdays in
November 2018. Holidays were not included. This left
a total of 3,085,070 trips in the dataset. The trips were
grouped at the census tract level and include variables
such as travel time, travel distance, fare, whether it was a
shared trip (and if it was, how many other passengers
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were included), census tract origin—destination pairs, and
timestamp of pickup and drop-off rounded to the nearest
15-min increment.

The  weather data  were  collected from
OpenWeatherMap, specifically for the City of Chicago
in November 2018 (27). The data were at the hourly level
and include amount of rain and snow in the previous
hour, a qualitative description of the weather (such as
raining, hazy, sunny, etc.), and temperature. The station
collecting the data was located at O’Hare International
Airport at the northwest tip of the city limits. The sup-
plementary transit travel times dataset was created for
each unique origin—destination—time—day tuple. Transit
travel time estimates were obtained using the Google
Distance Matrix (Advanced) API by providing the
census tract of origin, the census tract of destination,
travel mode (transit), and departure time (28). From
the API, approximate transit travel times between
point to point origin—destination pairs were collected.
This data included the expected access (walking to transit
stop) and expected wait time just as one would view them
from a navigation assistant device/app. Since the data
were only available from 6:00 a.m. to 10:00 p.m. for
much of the network, the TNC trips data, which are
publicly available and collected by the City of Chicago,
were also restricted to these hours. Even when available,
transit typically operates at reduced capacity after 10:00
p-m., so to enable a fair comparison we restricted the
analysis to these regular travel hours. The taxi trip
data used in this research corresponded to peak taxi
demand in 2014 and are further described by Chen
et al. (29). The data are the monthly taxi trips between
census tract origin—destination pairs, which are referred
to as monthly taxi frequency later in the analysis. These
data were included to characterize and compare the spa-
tial relationship of taxi usage by matching each ride-
sourcing trip with the total taxi flow between the same
origin and destination. Table 1 contains descriptive sta-
tistics for the numerical analysis data.

Table I. Descriptive Statistics of Ridehailing, Transit, Taxi, and
Weather Data

Numerical variable Median Mean (SD)
Travel time (min) 13.32 15.47 (9.98)
Distance (mi) 2.70 3.79 (3.19)
Total fare ($) 10.00 11.24 (6.27)
Parties joined in trip | 1.32 (0.77)
Humidity (%) 71.00 73.58 (11.89)
Wind speed (mph) 3.00 3.82 (2.33)
Rain last hour (in.) 0.00 0.061 (0.26)
Minute after midnight 930.00 887.5 (268.20)
Transit travel time (min) 17.95 21.10 (15.40)
Monthly taxi frequency 1004 14,976 (36,875.57)

Note: SD = standard deviation.

Analysis of Results

During the estimation phase, the K-prototypes algo-
rithm was tuned to select the optimal number of proto-
types. This was determined by developing models
including several prototypes ranging from 2 to 14 and
calculating the total cost across all observations. The
final number of prototypes chosen was six, based on
interpretability of segmentation variables and guidance
from the plot, which in Figure 1 shows a clear “elbow” at
six prototypes (30). An elbow occurs when adding more
clusters does not sufficiently improve the objective func-
tion. 7y is the tradeoff between numerical cost and cate-
gorical cost optimized by the “kproto” function in the
clustMixType package and was estimated to be 1.33 for
all prototypes as per Equations 2 and 4 (25). There is no
intuitive meaning to this value except that it can be user-
specified, and higher values mean that the categorical
variables receive a higher weight. Figure 1 shows how
many observations belong in each prototype cluster.
A summary of the top six origin and destinations, respec-
tively, are given in Table 2. The clustering results are
shown in Table 3 along with mean values of the explan-
atory attributes in each prototype.

An important observation related to variable selection
in the presence of potential correlation needs to be made.
In practice, transportation modeling often deals with
concerns surrounding the correlation among time, dis-
tance, and cost, either by interacting or dropping varia-
bles. Yet ridesourcing represents a special case because
of the dynamic demand-responsive pricing that relaxes
this typical correlation. While we cannot separate out
instances of surge pricing from this data we note that
some interesting relationships were discovered when

1.4e+07 -

1.2e+07 -

Error

1.0e+07 -

8.0e+06 -

5 10
Prototype

Figure I. Selection K number of prototypes.
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Table 2. Community Area Characteristics

Per capita  Bar and tavern  Transit access
Community area income ($) density (per mi?)  time* (min)
Chicago average 32,534 4.78 19.75
Near North Side 91,948 32.66 13.00
Near West Side 50,394 10.51 10.57
West Town 54,429 11.86 11.03
Loop 77,722 46.84 9.53
Lincoln Park 73,965 13.43 12.94
Lake View 67,066 19.15 .17
Midway 28,925 3.27 33.79
O’Hare 27,212 0.17 84.64

comparing prototypes. Notably, though the variables are
correlated, on average, within the specific clusters the
relationship revealed vast differences in per mile costs.
Table 4 and related discussions highlight these insights.

We now turn to summarize the contours of the six
user clusters. On the whole, the analysis did not produce
prototypes that were heavily differentiated by tempera-
ture or snow fall in the past hour. Yet weather effects
were evident in the first segment of users (Prototype 1 or
P1_weather). P1_weather was the second largest proto-
type and was characterized by its relatively low total
fares and short travel times and distances. This short-
distance travel, averaging 4 mi, was coupled with the
strongest weather impacts observed, namely the presence
of adverse weather seen with rain, humidity, and wind
speed. The distinct nature of Prototype 1 suggests the use
of ridesourcing for short-distance travel to cope with
adverse weather in the early part of the day.

Prototype 2 (P2_late-night) was the largest segment
with 30.2% of users. Though still representing shorter
trips, it was distinct from P1 owing to the trip timing
in the evening (average was 1,080 min after midnight
or 6:00 p.m.) and the lack of relationship to weather
conditions. Inspecting Table 5, these trips were most
heavily focused in the wealthy downtown and near
north areas. Furthermore, Table 2 illustrates that trips
in this cluster originated from areas with the highest bar
and tavern densities. This sizable cluster suggests a
strong tendency to use ridesourcing for evening travel,
which is in line with findings from Lavieri and Bhat (37).

Prototype 3 (P3_solo-non-transit) had longer travel
times, which tend to be associated with longer distances
(albeit not associated with airport travel), and higher
total charges. This large user segment (20.4% of usage)
suggests some transit gap-filling capacity of ridesourcing
in Chicago, whereas the origin—destination and time-
matched potentially available transit trip would take
30% longer on average with transit travel-time taken
as base. Notably, considering the fixed transit pricing
of $2.25, the ridesourcing trips were on average Six

Table 3. Prototype Attribute Results and Percentiles

Percent
ridesplitting

Minute Transit travel

Wind Rain last

Parties

Monthly taxi

time

(min)

after
midnight

hour

speed

Humidity (%) (mph)**

joining

Total
fare ($)

9.05 (41th)
8.85 (41st)
15.56 (85th)

Distance

Travel time

(%)

frequency

(in.)**

trip**

(mi)
2.16 (40th)

2.07 (38th)
5.74 (80th)

(min)

Prototype

18.77
17.65
10.48
16.58
13.76

11,695 (76th)
10,031 (75th)
3,558 (64th)
3,840 (65th)

844 (39th)
804 (37th)
1,838 (78th)
3,392 (97th)

432  0.15 7025 (37th)
1,080 (72nd)

3.

82.96 (79th)
66.07 (31st)

0.0l

57

878 (45th)
826.4(40th)
815.9(39th)
870.7(45th)

0.03
0.08
0.05
0.05

3.66
3.96
3.70
3.66

72.29 (54th)
75.09 (61st)

501 (19th) 14,4687 (98th)

1,545 (69th)

73.64 (56th)
74.12 (59th)

(Percentile) 637.40* (36th)

-night
P3_solo-non-transit

Pl_weather
P2_late

600.9 (33rd)
,284.0 (78th)

P4_ai r

2,014.0 (94th) 12.25 (97th) 27.64 (97th)

port
P5_transit-com

8.40 (40th)
7.43 (15th)

139 (21st)
4.83 (74th)

572.2 (31st)
1,320.0 (79th)

petitive

pli-tting

P6_rides

100

5,286 (68th)

3

Note: Bold type indicates important feature.

**Non-continuous variables with low range do not have percentiles included.
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Table 4. Prototype Specific Average Costs and Speed

% transit travel

Average $ per Average $ per Average speed time above ridesourcing
Prototype mile traveled minute travel time (mph) equivalent trip*
All trips 2.97 0.73 12.16 36.39
Pl_weather 4.19 0.85 12.20 3241
P2_late-night 428 0.88 12.40 33.80
P3_solo-non-transit 2.71 0.73 16.09 43.15
P4_airport 2.26 0.82 21.90 68.42
P5_transit_competitive 6.04 0.88 8.75 —12.44
P6_ridesplitting 1.54 0.34 13.17 17.05

*(Transit travel time — Ridesourcing travel time)/Ridesourcing travel time

Table 5. Prominent Prototype Origins and Destinations

Origins Destinations
Prototype Community % in prototype Prototype % in prototype
Pl_weather Near North Side 22.62 Near North Side 24.22
Near West Side 13.63 Loop 15.40
West Town 9.638 Near West Side 14.15
Loop 9.537 West Town 5.280
Lincoln Park 5.878 Lincoln Park 5.012
Lake View 5.169 Lake View 4561
P2_late-night Near North Side 24.96 Near North Side 23.78
Near West Side 12.84 Near West Side 13.16
Loop 12.11 West Town 8.932
West Town 7.502 Lincoln Park 8.162
Lincoln Park 7.224 Loop 8.085
Lake View 7.103 Lake View 7.664
P3_solo-non-transit Near North Side 16.77 Loop 18.21
Loop 10.47 Near North Side 12.07
Lake View 9.795 Near West Side 11.25
Near West Side 8.263 Lake View 7916
Lincoln Park 7.144 West Town 4967
West Town 6.115 Lincoln Park 4723
P4 _airport Midway 13.80 O’Hare 16.17
O’Hare 9.523 Midway 15.08
Near North Side 7.606 Near North Side 9.966
Loop 6.306 Loop 7.152
Near West Side 5.624 Near West Side 6.974
Lake View 4.607 Lake View 3.531
P5_transit-competitive Loop 45.57 Loop 54.35
Near North Side 32.15 Near North Side 21.88
Near West Side 8.719 Near West Side 8.013
Lake View 5.986 Lake View 5.982
West Town 3.156 West Town 4.160
Lincoln Park 2.688 Lincoln Park 3.112
P6_ridesplitting Near West Side 13.81 Near North Side 14.90
Near North Side 11.54 Near West Side 13.20
Loop 10.60 Loop 13.18
West Town 7.686 West Town 6.060
Lake View 6.510 Lake View 6.058
Lincoln Park 5.489 Lincoln Park 4.873

Note: Bold type denotes important prototype features.
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times more costly. Trips in this prototype were also typ-
ically not shared and concentrated in wealthier areas.
This finding mirrors observations by Schwieterman and
Smith that ridesourcing is used even in areas with a
wealth of transit options, although our analysis suggests
that transit speeds were relatively low (Table 4) a factor
that is easily tracked by travelers using real-time smart-
phone navigation tools (8).

Prototype 4 (P4 _airport) represented a small group of
users with long travel times dominated by trips to and
from the main airports, O’Hare or Midway International
(Table 5). This prototype also had trips where the origins
and destinations were not served well by transit, as seen
with the average transit travel time being more than 70%
longer. Along with poor transit connectivity, this cluster
featured relatively low taxi frequency. The low taxi fre-
quency showed low demand for taxis between similar
airport-based trips, likely because airport trips were rel-
atively infrequent and could be completed by carpooling
with known associates such as a family member or
friend. These trips’ fares were more expensive than in
other prototypes, but relative to the cost of traditional
taxis, were still affordable. Given that it is also more
convenient to utilize ridehailing than to ask a family
member to drive, the strong connection between airport
travel and ridehailing is unsurprising. Taxi pickups at
airports are declining and other revenue streams such
as parking and rental cars have also been negatively
affected (32,33). This prototype highlighted the strong
competitive position against both transit and taxi for
airport access, albeit it did not account for the issue of
waiting time that might change this assessment in partic-
ular considering departures from Chicago airport where
TNCs have limited access.

Interestingly, Prototype 5 (P5_transit-competitive)
was a small cluster that stood out as representing the
shortest trips and for being the only case for which
trips could have been served better by transit. Notably,
the average transit travel times would have been 12.44%
lower than the observed TNC travel times. This is in
stark contrast to other prototypes, as Table 4 shows
that most other prototypes’ transit travel times were at
least 30% longer than the ridesourcing equivalent ride.
Most of these trips were in the Chicago Loop or just
north of it where transit is highly concentrated in the
core commercial area.

Prototype 6 (P6_ridesplitting) with 12.8% of users
was defined by representing nearly all shared authorized
trips. This segment appears to reflect a more cost-
conscious user group given that the ridesourcing price
per mile was the lowest, and the competition in relation
to price and time was closer to the potentially available
transit trip.

To further understand motivations of different users,
Table 4 highlights the insights from comparing tradeoffs
within clusters, namely fare per mile, fare per minute,
and average speed to the average reference of all ride-
sourcing trips. Table 4 shows that P1_weather, P2 late-
night, and P5_transit-competitive prototypes have a
more premium fare point with higher fare per mile and
fare per minute than their counterparts. The results also
show steep discounts for P6_ridesplitting as it had the
lowest fare per mile and fare per minute. These results
confirmed the prototype interpretations, as premiums
were expected (through surge pricing or similar dynam-
ics) for rides in bad weather, late at night when drivers
may be few and far between, when potential-riders are
unable to drive because of inebriation, and transit-
competitive trips mostly occurring in the Loop commu-
nity area, which is the core commercial area. Discounts
were also expected to appear with the ridesplitting pro-
totype, as reduced fares were expected with delays
incurred by the detours when picking up a different

party.

Discussion

The K-prototypes analysis was geared to finding rela-
tionships in the ridesourcing data by grouping similar
observations together. The merging of multiple datasets
further enabled the prototypes search to identify the
main ridesourcing profiles with regards to trip attributes
(e.g., travel time, fare, origin and destinations, being pri-
vate or shared), and competing mobility services (transit
and taxi), along with weather conditions. This discussion
section focuses on how the results relate to current
research and can inform future research directions.
Four areas of investigation are highlighted, centering
on weather impacts, competition with transit and taxi,
ridesplitting patterns, and spatial distribution of
ridesourcing.

Weather Dependence

We found that while weather did not have a pervasive
impact on ridesourcing across clusters, it did strongly
determine the choices in P1_weather highlighted by
higher average windspeed, humidity, and rainfall in the
last hour. The identification of this prototype provided
evidence that weather can have a significant impact on
TNC usage for as many as 25% of trips. Taken together
with results from Frei et al. demonstrating weather
impacts in a microtransit choice experiment, this illus-
trates the importance of including weather as an explan-
atory variable in future TNC analyses (23). Inclusion of
weather variables in TNC analyses could further explain
the interactions between ridesourcing and other modes.
For example, weather was shown to affect active modes
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of transport, so including weather as an explanatory var-
iable between the relationship of ridesourcing and active
mobility could inform demand in the future (34). This is
especially useful for understanding how TNCs might
relate to bikeshare, as adverse weather has been shown
to decrease its demand and contribute to increased rid-
ership of other modes (35). Brodeur and Nield (36) find
that ridesourcing demand increases during adverse
weather conditions and compared the supply of TNC
drivers to taxis. Their results illustrate the benefit of
TNCs, specifically, its dynamic pricing over taxis as a
tool to increase the supply of drivers and meet consumer
demand (36).

Mode Substitution with Transit and Taxi

The importance of understanding the relationship TNCs
have with other modes was further highlighted by
P4 _airport and P5_transit-competitive prototypes. The
airport prototype showed that airport trips were a
major source of demand for ridesourcing because it pro-
vides more effective service than current transit options
for many users.

The P5_transit-competitive prototype illustrated the
competitive nature beyond travel time of TNCs.
Though Figure 2 shows that this is a smaller portion of
the trips, representing only 5.1% of the data, this is still
an interesting prototype because it emphasizes how
TNCs offer several advantages that go beyond shorter
travel times. As discussed by Lavieri and Bhat, this is
troubling because ridesourcing’s relationship with transit
is complex, as solo rides do not necessarily substitute
transit trips (37). With shorter transit travel times and
some demand previously met effectively by taxis, there is
a need to map out the difficult to measure variables such
as comfort, safety, and convenience that must be consid-
ered in conjunction with travel time. These insights may
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Figure 2. Prototype shares among total ridesourcing trips.

be critical to understanding the differing user perspective
toward solo and shared ridehailing.

The relationship between taxis and ridehailing was
more straightforward as the services are more compara-
ble. Although the literature review section briefly dis-
cussed changes in the taxi industry, a thorough
investigation of the interaction between these modes
was completed by Nie (/6). Ridesourcing was found to
be an attractive alternative to taxis, however, there still
remains a role for taxis in the transportation system as
they remain competitive in highly dense areas during
peak commuting hours. The substitution of taxis for
ridesourcing also (though unintended) led to improved
mobility equity in struggling communities as it is an
option for those who do not possess bank accounts,
credit cards, or smartphones (37).

Ridesplitting Patterns

Another major area of the literature focuses on the
potential for TNCs to be more efficient people movers
than privately driven vehicles. The dynamic ridesharing
literature examines the efficiency gains of ridesplitting
over private modes (38,39). Despite theoretical findings
on the advantages of ridesplitting, there has been limited
exploration of how this functions in real systems.
A notable result from this study was the low share of
split rides despite a relatively high share of riders indi-
cating that they would be willing to share their ride. For
the complete dataset, 26.7% of all trips were authorized
to be shared but of these only 68.5% were actually
shared. That implies that only 18.3% of the overall
rides were truly pooled, likely reflecting a lack of match-
ing travel itineraries that were close enough in space and
time for the matching to occur. The percentage of autho-
rized shared trips of all prototypes except for
P6_ridesplitting was well below the 26.7% figure.

When compared with the other prototypes, the rides-
plitting prototype showed that pooled trip making can
be seen as a separate profile of use. To further examine
the patterns of ridesplitting, Figure 3 shows the number
of trips by separate trip-makers within a pooled trip for
each prototype. P6_ridesplitting had a much higher share
of pooled trips including more than three riders.
However, this prototype only constituted 12.8% of the
data. With such a small share of trips being shared,
decision-makers that support TNCs should consider
strategies that increase the number of pooled trips.

Spatial Patterns of Use

Lastly, we discuss the spatial distribution of travel.
Notably, the majority of trips occurred in or around
the Chicago Loop or airports with standouts Near
North Side and Near West Side where there are typically
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Figure 4. Ridesourcing flows in the city of Chicago, with bolded
boundaries of prominent community areas.

more residential units than in the Loop and overall
higher density compared with the rest of the city.
Table 5 confirms that the top six origins and destinations
hardly differ across prototypes. The strong concentra-
tion of flows is further illustrated in Figure 4, which
shows the location of the top origin—destination pairs
distinguished by bold borders. These areas tend to
have a higher influx of visitors, along with more leisure
landmarks such as restaurants and night clubs. The res-
idents of these community areas tend to have higher
average incomes and possess higher educational attain-
ments than the average Chicagoan. These results are in
line with findings from Clewlow and Mishra who found
those who are college-educated, younger, and living in
denser areas are more likely to adopt ridehailing (40).

Policy Implications

This study identified several patterns of ridehailing usage
across Chicago that highlight the need for careful policy
implementation. The discussion of policy implications
will focus on modal interactions and ridesplitting
owing to the need for insights to guide ongoing efforts
to tweak fares, promote partnerships, and regulate ride-
hailing to better serve the comprehensive mobility needs
of Chicago residents. The core questions that need to be
explored relate to a) the challenge of providing effective
service in areas with poor (or strong) transit options and
b) advocating equity in hailing-access by understanding
and promoting more affordable ridesplitting. Because
ridehailing has been a disruptive innovation and there
has been a lack of access to a comprehensive dataset
on TNC activity, there is limited understanding of its
relationship with other transport modes and the varia-
tion in ridesplitting adoption.

Much of the policy debate has focused on determining
whether ridehailing is complementary or a substitute for
other modes; this section discusses strategies that may
facilitate synergy in the transport ecosystem.

Ridesourcing and Air Mobility Accessibility

Given the identification of an airport prototype with
strong connections to the core commercial areas of
Chicago, one major policy trend has been to control
ridesourcing’s  effect on airport infrastructure.
Examples of this include extra fees to ride into airports
and curbside management of drop-offs and pickups. This
prototype serves as evidence for continued development
of policies that will better manage the relationship
between airports and urban mobility including promi-
nent use of ridesourcing. With this prototype showing
a strong connection between the commercial core of
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Chicago, policies should focus on connections that will
appeal to business travelers. This remains a challenging
area of research, as new options, including vertical urban
air mobility, are being tested in initiatives such as
UberElevate with electric vertical takeoff and landing
vehicles (41,42). This highlights the need to craft regula-
tions and partnership arrangements such as security
checkpoints and luggage drop-offs (43). The rise of
new services also highlights renewed equity and afford-
ability concerns as they might give rise to further erosion
of transit options.

Ridesourcing and Transit Performance

Conversely, the airport prototype also suggests the need
for policies to improve transit connections between
downtown Chicago and the airports. The segmentation
analysis revealed some intriguing patterns of competi-
tion. Ridesourcing appears to be used by a small group
of users even when transit is seemingly the better option
(PS_transit-competitive: 5.1%), and at the same time, a
sizable segment will turn to their mobility-apps in areas
where transit is in abundant supply but time-
performances is poor (P3_solo-non-transit: 20.3%).
This opens a debate about perception and motivations
of users, communicating options to travelers, and devel-
oping new partnerships.

With the transit-competitiveness prototype showing
that there are real possibilities for transit to be faster
than ridesourcing, a practical policy effort would be to
improve the dissemination of transit information. Local
transit agencies could develop advanced traveler infor-
mation systems that highlight cases for which transit is
competitive to increase their ridership (44). Other strat-
egies could be used in conjunction with MaaS (mobility
as a service) in multi-modal systems to nudge riders
toward transit. Studies have shown that travel behavior
can be influenced using soft strategies (45). These strat-
egies such as making transit the default option or
highlighting the broader benefits of supporting transit
through patronage can be facilitated through a naviga-
tion application. Although this type of policy improves
transit competitiveness, ridesourcing may still be domi-
nant in many areas and promotion of sharing is vital in
this situation.

More Ridesplitting?

Promoting ridesourcing naively may worsen traffic con-
ditions, however, promoting shared rides to increase the
demand for ridesplitting may be a reasonable solution.
Policies that incentivize shared rides such as a tax that
increases fees for exclusive rides could lead to higher
demand for sharing and increased transit ridership
(46). The tradeoff between delays and lower fares could

be used to promote sharing and even increase mobility
for disadvantaged groups where high fares turn them
away. Policies providing travel support for unemployed
and low-income residents via vouchers or further lower-
ing fares may increases travel and opportunities when
other modes are not feasible. The ongoing debate in
Chicago and cities around the United States has focused
on the lack of broader coverage, outside transit rich
areas, of ridesourcing. Figure 4 highlights the lower
share of rides occurring in and between historically
underserved communities on the south and west sides
of Chicago. Policies geared to promoting shared ride-
sourcing between underserved areas represent an oppor-
tunity to both reduce vehicle miles traveled and support
disadvantaged communities.

Conclusions and Future Work

This study examined a unique TNC dataset from
Chicago, IL by utilizing the unsupervised learning
K-prototypes algorithm that accepts categorical data.
The goal of this study was to identify patterns of TNC
patronage with regard to service attributes, weather,
transit, taxis, characteristics of origins and destinations,
and ridesplitting. The analysis revealed six distinct ride-
hailing user segments. The segments were identified in
relation to adverse weather conditions, evening trips,
longer trips, trips to the airport, trips that would be
better served by transit, and trips that are pooled. The
segments were discussed in the context of the relative
performance of ridesourcing as well as examining
the origin and destination of flows to better interpret
the spatial and performance variation.

The identification of these distinct trip types has
shown where future research is warranted. The discus-
sion in this study focused on how future research should
consider factors such as weather and other external fac-
tors when estimating the demand for TNCs and other
modes, airport-based mobility options in the future,
understanding why TNCs have competitive advantages
besides faster travel times, and why more trips are not
shared. The last point made in the discussion emphasized
how most of the trips were completed in and surrounding
the central business district of Chicago. In summary, the
concentration of trips in the downtown area where
mobility options and amenities are abundant, along
with notable variation in performance of ridehailing
across user clusters, prompted a deeper discussion of
where and for whom ridehailing enables mobility.

The main limitations of this study come from the con-
straints of the merged datasets. Firstly, the weather data
was collected at only one location. Considering the size
of Chicago and the location of the station, the data may
not be representative of local weather. Secondly, the
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TNC, taxi, and transit data were aggregated at the
census tract level. This aggregation was needed to jointly
analyze mode performance and supply but might have
led to less precise findings about competing transit ser-
vice. To increase the accuracy of these comparisons,
more data with smaller sizes of spatial aggregation and
trip details such as trip purpose are needed. Lastly,
future research should expand the analysis to a longer
panel of observations, thereby capturing more variation
in weather and other seasonal factors that determine
demand for mobility.
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