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Abstract

Shared mobility-on-demand services are expanding rapidly in cities around the world. As a prominent example, app-based

ridesourcing is becoming an integral part of many urban transportation ecosystems. Despite the centrality, limited public

availability of detailed temporal and spatial data on ridesourcing trips has limited research on how new services interact with

traditional mobility options and how they affect travel in cities. Improving data-sharing agreements are opening unprece-

dented opportunities for research in this area. This study examined emerging patterns of mobility using recently released

City of Chicago public ridesourcing data. The detailed spatio-temporal ridesourcing data were matched with weather, transit,

and taxi data to gain a deeper understanding of ridesourcing’s role in Chicago’s mobility system. The goal was to investigate

the systematic variations in patronage of ridehailing. K-prototypes was utilized to detect user segments owing to its ability to

accept mixed variable data types. An extension of the K-means algorithm, its output was a classification of the data into

several clusters called prototypes. Six ridesourcing prototypes were identified and discussed based on significant differences

in relation to adverse weather conditions, competition with alternative modes, location and timing of use, and tendency

for ridesplitting. The paper discusses the implications of the identified clusters related to affordability, equity, and competition

with transit.

Transportation network companies (TNCs) are

prominent in many urban transportation ecosystems.

The growth of ridesourcing patronage is attributed to

the convenience compared with traditional modes.

Widespread adoption of smartphones embedded with

GPS technology has enabled travelers to street-hail

rides through mobile applications, get real-time informa-

tion about waiting times, and make cashless e-payments,

as well as rating driver performance. More recently,

major operators have used algorithms to match passen-

gers along similar routes in real time, providing a new

generation of shared rides. However, the proliferation of

ridesourcing services has been a disruptive force in

the mobility landscape and many questions have been

raised about negative externalities and the socio-spatial

equity of supply. There is significant need for more

insight on ridesourcing use patterns for cities to prepare

policy, regulation, and infrastructure plans. Yet, this

mobility transformation has not been widely studied,

as many TNCs are reluctant to make their data

publicly available. Recent data-sharing agreements with

the City of Chicago, IL has enabled researchers to exam-

ine the role of ridesourcing in the transportation

ecosystem using detailed temporal and spatial data on
ridesourcing trips.

Several studies have characterized the adoption, fre-
quency, and attitudes toward ridesourcing (1–4), but
none have used trip data at the scale and scope provided
by the City of Chicago. This study uses this newly
released trip data, to develop insights about the role
ridesourcing plays in the transportation ecosystem.
The detailed spatio-temporal patronage data from oper-
ators Uber, Lyft, and Via is merged with local transit,
taxi, and weather observations. The goal of this research
was to investigate the variations in patronage of ridehail-
ing. By studying the emerging mobility patterns present
in the data and examining the uneven locational and
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pricing patterns we developed insights about the motiva-
tions of users.

This study utilized an unsupervised learning algorithm
to examine the underlying patterns in the data. Owing to
the mixed data types (i.e., data containing both numeric
and qualitative/categorical variables), the K-prototypes
algorithm was selected (5). This is an extension of the K-
means algorithm that deals with categorical data. The
model produces a classification of the data into K
number of prototypes, similar to K-means clusters.

This study contributes to the literature by providing a
closer look at large, relatively disaggregate TNC data
from a major metropolitan area. After tuning parameters
for the best fit, the optimal number of prototypes to
describe the data was six. The first group of users (i.e.,
prototype) contained trips that occurred in adverse
weather conditions such as rainy weather. The second
prototype involved trips that occurred in the evening.
The third prototype represented trips that were typically
longer in distance but not shared. The fourth prototype
was defined by the trip origin and destination being to
one of the two major airports in Chicago: O’Hare and
Midway International. The fifth prototype was defined
by short, solo trips occurring in areas that are well served
by transit. The sixth prototype was defined by nearly all
observations being shared rides.

This paper is structured with the following sections.
A Literature Review that covers the state-of-the-art in
TNC research follows. The Methodology section then
explains model development and attribute selection. The
subsequent section reviews the algorithm’s output and
leads into a policy discussion. Finally, the Conclusions
section contains a review of what was achieved in this
study, its limitations, and possible future works.

Literature Review

Since the inception of Uber in 2009, shortly followed by
Lyft, ridehailing has already undergone significant ser-
vice evolution, as discussed by Shaheen and Cohen (6).
Among these, shared ridehailing, or ridesplitting,
matches individuals in real time based on shared
routes; and microtransit, or curb-to-curb options,
match users into van-sized vehicles based on dynamic
or planned routing. For the major TNCs, riders can
now typically decide between solo travel or ridesplitting
in the same application. Authorizing sharing typically
results in lower fares but longer travel times, as the trip
now includes several stops that may cause the vehicle to
deviate from the optimal path for a single origin–desti-
nation pair.

Researchers have tried to develop a better under-
standing of ridesourcing travel, but data are scarce.
Uber and Lyft do not generally share comprehensive

trip level data in a several of its markets thereby imped-
ing the progress of empirical studies in this field. Owing
to empirical data scarcity, researchers have become cre-
ative to gain insights on usage and possible impacts.
Henao and Marshall went so far as to become a TNC
driver to collect trip information (7). Their research sug-
gested extra vehicle miles were generated by deadhead-
ing, a form of inefficiency that is difficult to map using
stated data. After accounting for deadheading mileage,
the average occupancy of a TNC vehicle was less than
one person. Such empirical approaches can offer new
insights but some caveats limit the generality. The trips
recorded in this study were a relatively small sample of
total rides in the entire region and are biased because of
all data coming from a single customer search strategy
(7). Other groups have utilized their own ridehailing
experiments to highlight competition with transit (8)
and equity compared with taxis (8,9), further highlight-
ing the need for a comprehensive dataset for analysts to
access. Along with access to data, connections between
stated and revealed preference data may also lead to
more informed policy decisions (10).

The current understanding of ridesourcing travel is
mostly informed by survey research. In the following
we briefly provide an overview of relevant ridesourcing
work and relate findings to the current analysis of real
large-scale data. Several studies delve into the trip pur-
poses of ridesourcing trips. Defined by its utilization of
large-capacity vehicles, microtransit (also known as
demand-responsive transit or on-demand transit) can
serve as a tool to address public transit overcrowding
and the first–last mile problem (11). It is mainly utilized
for commuting (11,12). Instead, trips made by the more
taxi-like TNCs are mostly for social/recreational trips
(7,13–15). Trip purpose is not included in the current
analysis because of data anonymization. However, in
future works, spatial examination of locations of interest
combined with other trip attributes could be used to infer
trip types.

The effects of TNCs on the transportation system,
specifically via the competition or complementarity
with other modes, is a core area of research. In particu-
lar, owing to the similarity of the services, the impact on
taxis has been widely studied. TNCs have significantly
reduced the demand for traditional taxi services such
that taxi drivers have altered their strategies to remain
profitable (16–21). Focusing on transit competition,
Schwieterman and Smith found that TNCs are preferred
over public transit, especially when origin–destination
pairs are not well served by transit (8). Along similar
lines, ridesourcing’s relationship with public transit was
found to be complementary within large cities with
small transit agencies (22). Further determinants of ride-
sourcing use relate to the travel environment. Frei et al.
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found that weather affects TNC usage (23). Though their
study focused on microtransit, other TNC services may
also be affected by adverse weather.

Owing to these observations, the ridesourcing trip
data used in this project were matched in space and
time with data on weather, equivalent origin–destination
transit travel times, and peak taxi demand.

Model Development

The data analysis used to examine patterns of ridesourc-
ing use in this project was an unsupervised learning tech-
nique called K-prototypes. K-prototypes is similar to
K-means, since both aim to cluster several observations
together according to their attributes. The advantage
K-prototypes has in this situation is its ability to also
accept categorical variables. More details on K-proto-
types development can be found in research by Huang (5).

The challenge of dealing with categorical variables has
been considered for segmentation analysis. The problem
is that the K-means algorithm relies on all variables
being numerical. Specifically, in the K-means algorithm,
for a continuous variable such as travel time, the distance
between an observation’s travel time and the proposed
cluster’s mean travel time is the key element for identi-
fying clusters among observations. With a categorical
variable such as vehicle type, distance is no longer
applicable. One strategy to include categorical variables
in the K-means algorithm is to code each category as a
dummy variable (0 or 1). The distance calculated by
K-means algorithm for a categorical variable is then 0
or 1, which is not informative. With the K-prototypes
algorithm the mode of the category is used as is a mea-
sure of a matching coefficient. The formulation from
Huang of the K-prototypes algorithm is summarized in
Equations 1 to 4 (5).

The matching of observations to prototypes involves
reducing the error or cost function. This cost function
represents the distance between observation data and the
assigned prototype center. Equation 1 shows that the
error, E, is the sum of distances from the prototype
center. Xi is the attributes of trip i, Ql is the center of
Prototype l, and yil is a dummy variable that is equal to 0
when trip i is assigned to Prototype l. This is then the
sum of squared distances for n TNC trips across k
number of prototypes. Equation 2 breaks down
dðXi;QlÞ into numerical and categorical components,
where the first term is the squared numerical distance
of attribute j of trip i from the center for attribute j of
Prototype l; the second term includes a component to
determine the weight, cl, of the categorical variables
to the total error E. The error of Prototype l is then
calculated in Equation 3, where Ec

l is further explained
by Equation 4: Cj is the set of all unique values of

categorical attribute j, and pðcj 2 Cj jlÞ is then the prob-
ability of unique value qj from set Cj being in Prototype

l.
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The advantage of using the K-prototypes algorithm
over other clustering algorithms is highlighted by

Equation 4. A common way to code categorical variables
for other data-driven methods is to use one-hot encod-

ing. Using this method, the unique values of a category
are coded as a dummy variable equal to 1 when denoting

the variable of interest and 0 otherwise. Algorithms using
one-hot encoded data fail to recognize that these unique

values belong to a categorical variable because categories
are reduced to 0 or 1. The advantage of the K-prototypes
algorithm lies in the recognition that these values denote

categorical variables and using the probability of a
unique value from a set Cj being in Prototype l.

This model was implemented and tuned with the R
programming language using the “clustMixType” pack-

age (24,25). Using this package, the error is minimized
and the weighting of the categorical error is optimized.

Much like other clustering methods, the number of pro-
totypes is a tunable parameter. The final tunable param-

eters are discussed in the Results section.

Data Description

The data used in this project were drawn from TNC trip
data provided by the City of Chicago (26). The trip data

began on November 1, 2018 and was updated monthly.
For the purpose of obtaining lower optimization times

and being able to match the equivalent transit travel
times, the data was partitioned to weekdays in
November 2018. Holidays were not included. This left

a total of 3,085,070 trips in the dataset. The trips were
grouped at the census tract level and include variables

such as travel time, travel distance, fare, whether it was a
shared trip (and if it was, how many other passengers
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were included), census tract origin–destination pairs, and
timestamp of pickup and drop-off rounded to the nearest
15-min increment.

The weather data were collected from
OpenWeatherMap, specifically for the City of Chicago
in November 2018 (27). The data were at the hourly level
and include amount of rain and snow in the previous
hour, a qualitative description of the weather (such as
raining, hazy, sunny, etc.), and temperature. The station
collecting the data was located at O’Hare International
Airport at the northwest tip of the city limits. The sup-
plementary transit travel times dataset was created for
each unique origin–destination–time–day tuple. Transit
travel time estimates were obtained using the Google
Distance Matrix (Advanced) API by providing the
census tract of origin, the census tract of destination,
travel mode (transit), and departure time (28). From
the API, approximate transit travel times between
point to point origin–destination pairs were collected.
This data included the expected access (walking to transit
stop) and expected wait time just as one would view them
from a navigation assistant device/app. Since the data
were only available from 6:00 a.m. to 10:00 p.m. for
much of the network, the TNC trips data, which are
publicly available and collected by the City of Chicago,
were also restricted to these hours. Even when available,
transit typically operates at reduced capacity after 10:00
p.m., so to enable a fair comparison we restricted the
analysis to these regular travel hours. The taxi trip
data used in this research corresponded to peak taxi
demand in 2014 and are further described by Chen
et al. (29). The data are the monthly taxi trips between
census tract origin–destination pairs, which are referred
to as monthly taxi frequency later in the analysis. These
data were included to characterize and compare the spa-
tial relationship of taxi usage by matching each ride-
sourcing trip with the total taxi flow between the same
origin and destination. Table 1 contains descriptive sta-
tistics for the numerical analysis data.

Analysis of Results

During the estimation phase, the K-prototypes algo-

rithm was tuned to select the optimal number of proto-
types. This was determined by developing models

including several prototypes ranging from 2 to 14 and

calculating the total cost across all observations. The

final number of prototypes chosen was six, based on
interpretability of segmentation variables and guidance

from the plot, which in Figure 1 shows a clear “elbow” at

six prototypes (30). An elbow occurs when adding more

clusters does not sufficiently improve the objective func-

tion. c is the tradeoff between numerical cost and cate-
gorical cost optimized by the “kproto” function in the

clustMixType package and was estimated to be 1.33 for

all prototypes as per Equations 2 and 4 (25). There is no

intuitive meaning to this value except that it can be user-
specified, and higher values mean that the categorical

variables receive a higher weight. Figure 1 shows how

many observations belong in each prototype cluster.

A summary of the top six origin and destinations, respec-

tively, are given in Table 2. The clustering results are
shown in Table 3 along with mean values of the explan-

atory attributes in each prototype.
An important observation related to variable selection

in the presence of potential correlation needs to be made.
In practice, transportation modeling often deals with

concerns surrounding the correlation among time, dis-

tance, and cost, either by interacting or dropping varia-

bles. Yet ridesourcing represents a special case because
of the dynamic demand-responsive pricing that relaxes

this typical correlation. While we cannot separate out

instances of surge pricing from this data we note that

some interesting relationships were discovered when

Table 1. Descriptive Statistics of Ridehailing, Transit, Taxi, and
Weather Data

Numerical variable Median Mean (SD)

Travel time (min) 13.32 15.47 (9.98)

Distance (mi) 2.70 3.79 (3.19)

Total fare ($) 10.00 11.24 (6.27)

Parties joined in trip 1 1.32 (0.77)

Humidity (%) 71.00 73.58 (11.89)

Wind speed (mph) 3.00 3.82 (2.33)

Rain last hour (in.) 0.00 0.061 (0.26)

Minute after midnight 930.00 887.5 (268.20)

Transit travel time (min) 17.95 21.10 (15.40)

Monthly taxi frequency 1004 14,976 (36,875.57)

Note: SD¼ standard deviation. Figure 1. Selection K number of prototypes.
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comparing prototypes. Notably, though the variables are

correlated, on average, within the specific clusters the
relationship revealed vast differences in per mile costs.

Table 4 and related discussions highlight these insights.
We now turn to summarize the contours of the six

user clusters. On the whole, the analysis did not produce

prototypes that were heavily differentiated by tempera-
ture or snow fall in the past hour. Yet weather effects

were evident in the first segment of users (Prototype 1 or

P1_weather). P1_weather was the second largest proto-

type and was characterized by its relatively low total

fares and short travel times and distances. This short-
distance travel, averaging 4 mi, was coupled with the

strongest weather impacts observed, namely the presence

of adverse weather seen with rain, humidity, and wind

speed. The distinct nature of Prototype 1 suggests the use

of ridesourcing for short-distance travel to cope with

adverse weather in the early part of the day.
Prototype 2 (P2_late-night) was the largest segment

with 30.2% of users. Though still representing shorter

trips, it was distinct from P1 owing to the trip timing

in the evening (average was 1,080 min after midnight
or 6:00 p.m.) and the lack of relationship to weather

conditions. Inspecting Table 5, these trips were most

heavily focused in the wealthy downtown and near

north areas. Furthermore, Table 2 illustrates that trips

in this cluster originated from areas with the highest bar

and tavern densities. This sizable cluster suggests a
strong tendency to use ridesourcing for evening travel,

which is in line with findings from Lavieri and Bhat (31).
Prototype 3 (P3_solo-non-transit) had longer travel

times, which tend to be associated with longer distances
(albeit not associated with airport travel), and higher

total charges. This large user segment (20.4% of usage)

suggests some transit gap-filling capacity of ridesourcing

in Chicago, whereas the origin–destination and time-

matched potentially available transit trip would take

30% longer on average with transit travel-time taken
as base. Notably, considering the fixed transit pricing

of $2.25, the ridesourcing trips were on average six

Table 2. Community Area Characteristics

Community area

Per capita

income ($)

Bar and tavern

density (per mi2)

Transit access

time* (min)

Chicago average 32,534 4.78 19.75

Near North Side 91,948 32.66 13.00

Near West Side 50,394 10.51 10.57

West Town 54,429 11.86 11.03

Loop 77,722 46.84 9.53

Lincoln Park 73,965 13.43 12.94

Lake View 67,066 19.15 11.17

Midway 28,925 3.27 33.79

O’Hare 27,212 0.17 84.64
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Table 4. Prototype Specific Average Costs and Speed

Prototype

Average $ per

mile traveled

Average $ per

minute travel time

Average speed

(mph)

% transit travel

time above ridesourcing

equivalent trip*

All trips 2.97 0.73 12.16 36.39

P1_weather 4.19 0.85 12.20 32.41

P2_late-night 4.28 0.88 12.40 33.80

P3_solo-non-transit 2.71 0.73 16.09 43.15

P4_airport 2.26 0.82 21.90 68.42

P5_transit_competitive 6.04 0.88 8.75 �12.44

P6_ridesplitting 1.54 0.34 13.17 17.05

*(Transit travel time – Ridesourcing travel time)/Ridesourcing travel time

Table 5. Prominent Prototype Origins and Destinations

Origins Destinations

Prototype Community % in prototype Prototype % in prototype

P1_weather Near North Side 22.62 Near North Side 24.22

Near West Side 13.63 Loop 15.40

West Town 9.638 Near West Side 14.15

Loop 9.537 West Town 5.280

Lincoln Park 5.878 Lincoln Park 5.012

Lake View 5.169 Lake View 4.561

P2_late-night Near North Side 24.96 Near North Side 23.78

Near West Side 12.84 Near West Side 13.16

Loop 12.11 West Town 8.932

West Town 7.502 Lincoln Park 8.162

Lincoln Park 7.224 Loop 8.085

Lake View 7.103 Lake View 7.664

P3_solo-non-transit Near North Side 16.77 Loop 18.21

Loop 10.47 Near North Side 12.07

Lake View 9.795 Near West Side 11.25

Near West Side 8.263 Lake View 7.916

Lincoln Park 7.144 West Town 4.967

West Town 6.115 Lincoln Park 4.723

P4_airport Midway 13.80 O’Hare 16.17

O’Hare 9.523 Midway 15.08

Near North Side 7.606 Near North Side 9.966

Loop 6.306 Loop 7.152

Near West Side 5.624 Near West Side 6.974

Lake View 4.607 Lake View 3.531

P5_transit-competitive Loop 45.57 Loop 54.35

Near North Side 32.15 Near North Side 21.88

Near West Side 8.719 Near West Side 8.013

Lake View 5.986 Lake View 5.982

West Town 3.156 West Town 4.160

Lincoln Park 2.688 Lincoln Park 3.112

P6_ridesplitting Near West Side 13.81 Near North Side 14.90

Near North Side 11.54 Near West Side 13.20

Loop 10.60 Loop 13.18

West Town 7.686 West Town 6.060

Lake View 6.510 Lake View 6.058

Lincoln Park 5.489 Lincoln Park 4.873

Note: Bold type denotes important prototype features.
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times more costly. Trips in this prototype were also typ-

ically not shared and concentrated in wealthier areas.

This finding mirrors observations by Schwieterman and

Smith that ridesourcing is used even in areas with a

wealth of transit options, although our analysis suggests

that transit speeds were relatively low (Table 4) a factor

that is easily tracked by travelers using real-time smart-

phone navigation tools (8).
Prototype 4 (P4_airport) represented a small group of

users with long travel times dominated by trips to and

from the main airports, O’Hare or Midway International

(Table 5). This prototype also had trips where the origins

and destinations were not served well by transit, as seen

with the average transit travel time being more than 70%

longer. Along with poor transit connectivity, this cluster

featured relatively low taxi frequency. The low taxi fre-

quency showed low demand for taxis between similar

airport-based trips, likely because airport trips were rel-

atively infrequent and could be completed by carpooling

with known associates such as a family member or

friend. These trips’ fares were more expensive than in

other prototypes, but relative to the cost of traditional

taxis, were still affordable. Given that it is also more

convenient to utilize ridehailing than to ask a family

member to drive, the strong connection between airport

travel and ridehailing is unsurprising. Taxi pickups at

airports are declining and other revenue streams such

as parking and rental cars have also been negatively

affected (32,33). This prototype highlighted the strong

competitive position against both transit and taxi for

airport access, albeit it did not account for the issue of

waiting time that might change this assessment in partic-

ular considering departures from Chicago airport where

TNCs have limited access.
Interestingly, Prototype 5 (P5_transit-competitive)

was a small cluster that stood out as representing the

shortest trips and for being the only case for which

trips could have been served better by transit. Notably,

the average transit travel times would have been 12.44%

lower than the observed TNC travel times. This is in

stark contrast to other prototypes, as Table 4 shows

that most other prototypes’ transit travel times were at

least 30% longer than the ridesourcing equivalent ride.

Most of these trips were in the Chicago Loop or just

north of it where transit is highly concentrated in the

core commercial area.
Prototype 6 (P6_ridesplitting) with 12.8% of users

was defined by representing nearly all shared authorized

trips. This segment appears to reflect a more cost-

conscious user group given that the ridesourcing price

per mile was the lowest, and the competition in relation

to price and time was closer to the potentially available

transit trip.

To further understand motivations of different users,
Table 4 highlights the insights from comparing tradeoffs
within clusters, namely fare per mile, fare per minute,
and average speed to the average reference of all ride-
sourcing trips. Table 4 shows that P1_weather, P2_late-
night, and P5_transit-competitive prototypes have a
more premium fare point with higher fare per mile and
fare per minute than their counterparts. The results also
show steep discounts for P6_ridesplitting as it had the
lowest fare per mile and fare per minute. These results
confirmed the prototype interpretations, as premiums
were expected (through surge pricing or similar dynam-
ics) for rides in bad weather, late at night when drivers
may be few and far between, when potential-riders are
unable to drive because of inebriation, and transit-
competitive trips mostly occurring in the Loop commu-
nity area, which is the core commercial area. Discounts
were also expected to appear with the ridesplitting pro-
totype, as reduced fares were expected with delays
incurred by the detours when picking up a different
party.

Discussion

The K-prototypes analysis was geared to finding rela-
tionships in the ridesourcing data by grouping similar
observations together. The merging of multiple datasets
further enabled the prototypes search to identify the
main ridesourcing profiles with regards to trip attributes
(e.g., travel time, fare, origin and destinations, being pri-
vate or shared), and competing mobility services (transit
and taxi), along with weather conditions. This discussion
section focuses on how the results relate to current
research and can inform future research directions.
Four areas of investigation are highlighted, centering
on weather impacts, competition with transit and taxi,
ridesplitting patterns, and spatial distribution of
ridesourcing.

Weather Dependence

We found that while weather did not have a pervasive
impact on ridesourcing across clusters, it did strongly
determine the choices in P1_weather highlighted by
higher average windspeed, humidity, and rainfall in the
last hour. The identification of this prototype provided
evidence that weather can have a significant impact on
TNC usage for as many as 25% of trips. Taken together
with results from Frei et al. demonstrating weather
impacts in a microtransit choice experiment, this illus-
trates the importance of including weather as an explan-
atory variable in future TNC analyses (23). Inclusion of
weather variables in TNC analyses could further explain
the interactions between ridesourcing and other modes.
For example, weather was shown to affect active modes
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of transport, so including weather as an explanatory var-

iable between the relationship of ridesourcing and active

mobility could inform demand in the future (34). This is

especially useful for understanding how TNCs might

relate to bikeshare, as adverse weather has been shown

to decrease its demand and contribute to increased rid-

ership of other modes (35). Brodeur and Nield (36) find

that ridesourcing demand increases during adverse

weather conditions and compared the supply of TNC

drivers to taxis. Their results illustrate the benefit of

TNCs, specifically, its dynamic pricing over taxis as a

tool to increase the supply of drivers and meet consumer

demand (36).

Mode Substitution with Transit and Taxi

The importance of understanding the relationship TNCs

have with other modes was further highlighted by

P4_airport and P5_transit-competitive prototypes. The

airport prototype showed that airport trips were a

major source of demand for ridesourcing because it pro-

vides more effective service than current transit options

for many users.
The P5_transit-competitive prototype illustrated the

competitive nature beyond travel time of TNCs.

Though Figure 2 shows that this is a smaller portion of

the trips, representing only 5.1% of the data, this is still

an interesting prototype because it emphasizes how

TNCs offer several advantages that go beyond shorter

travel times. As discussed by Lavieri and Bhat, this is

troubling because ridesourcing’s relationship with transit

is complex, as solo rides do not necessarily substitute

transit trips (31). With shorter transit travel times and

some demand previously met effectively by taxis, there is

a need to map out the difficult to measure variables such

as comfort, safety, and convenience that must be consid-

ered in conjunction with travel time. These insights may

be critical to understanding the differing user perspective
toward solo and shared ridehailing.

The relationship between taxis and ridehailing was
more straightforward as the services are more compara-
ble. Although the literature review section briefly dis-
cussed changes in the taxi industry, a thorough
investigation of the interaction between these modes
was completed by Nie (16). Ridesourcing was found to
be an attractive alternative to taxis, however, there still
remains a role for taxis in the transportation system as
they remain competitive in highly dense areas during
peak commuting hours. The substitution of taxis for
ridesourcing also (though unintended) led to improved
mobility equity in struggling communities as it is an
option for those who do not possess bank accounts,
credit cards, or smartphones (37).

Ridesplitting Patterns

Another major area of the literature focuses on the
potential for TNCs to be more efficient people movers
than privately driven vehicles. The dynamic ridesharing
literature examines the efficiency gains of ridesplitting
over private modes (38,39). Despite theoretical findings
on the advantages of ridesplitting, there has been limited
exploration of how this functions in real systems.
A notable result from this study was the low share of
split rides despite a relatively high share of riders indi-
cating that they would be willing to share their ride. For
the complete dataset, 26.7% of all trips were authorized
to be shared but of these only 68.5% were actually
shared. That implies that only 18.3% of the overall
rides were truly pooled, likely reflecting a lack of match-
ing travel itineraries that were close enough in space and
time for the matching to occur. The percentage of autho-
rized shared trips of all prototypes except for
P6_ridesplitting was well below the 26.7% figure.

When compared with the other prototypes, the rides-
plitting prototype showed that pooled trip making can
be seen as a separate profile of use. To further examine
the patterns of ridesplitting, Figure 3 shows the number
of trips by separate trip-makers within a pooled trip for
each prototype. P6_ridesplitting had a much higher share
of pooled trips including more than three riders.
However, this prototype only constituted 12.8% of the
data. With such a small share of trips being shared,
decision-makers that support TNCs should consider
strategies that increase the number of pooled trips.

Spatial Patterns of Use

Lastly, we discuss the spatial distribution of travel.
Notably, the majority of trips occurred in or around
the Chicago Loop or airports with standouts Near
North Side and Near West Side where there are typicallyFigure 2. Prototype shares among total ridesourcing trips.
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more residential units than in the Loop and overall
higher density compared with the rest of the city.
Table 5 confirms that the top six origins and destinations
hardly differ across prototypes. The strong concentra-
tion of flows is further illustrated in Figure 4, which
shows the location of the top origin–destination pairs
distinguished by bold borders. These areas tend to
have a higher influx of visitors, along with more leisure
landmarks such as restaurants and night clubs. The res-
idents of these community areas tend to have higher
average incomes and possess higher educational attain-
ments than the average Chicagoan. These results are in
line with findings from Clewlow and Mishra who found
those who are college-educated, younger, and living in
denser areas are more likely to adopt ridehailing (40).

Policy Implications

This study identified several patterns of ridehailing usage
across Chicago that highlight the need for careful policy
implementation. The discussion of policy implications

will focus on modal interactions and ridesplitting
owing to the need for insights to guide ongoing efforts
to tweak fares, promote partnerships, and regulate ride-
hailing to better serve the comprehensive mobility needs

of Chicago residents. The core questions that need to be
explored relate to a) the challenge of providing effective
service in areas with poor (or strong) transit options and

b) advocating equity in hailing-access by understanding
and promoting more affordable ridesplitting. Because
ridehailing has been a disruptive innovation and there
has been a lack of access to a comprehensive dataset

on TNC activity, there is limited understanding of its
relationship with other transport modes and the varia-
tion in ridesplitting adoption.

Much of the policy debate has focused on determining
whether ridehailing is complementary or a substitute for

other modes; this section discusses strategies that may
facilitate synergy in the transport ecosystem.

Ridesourcing and Air Mobility Accessibility

Given the identification of an airport prototype with

strong connections to the core commercial areas of
Chicago, one major policy trend has been to control
ridesourcing’s effect on airport infrastructure.

Examples of this include extra fees to ride into airports
and curbside management of drop-offs and pickups. This
prototype serves as evidence for continued development
of policies that will better manage the relationship

between airports and urban mobility including promi-
nent use of ridesourcing. With this prototype showing
a strong connection between the commercial core of

Figure 3. Number of travelers pooling a ride for actual shared trips.

Figure 4. Ridesourcing flows in the city of Chicago, with bolded
boundaries of prominent community areas.
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Chicago, policies should focus on connections that will
appeal to business travelers. This remains a challenging
area of research, as new options, including vertical urban
air mobility, are being tested in initiatives such as
UberElevate with electric vertical takeoff and landing
vehicles (41,42). This highlights the need to craft regula-
tions and partnership arrangements such as security
checkpoints and luggage drop-offs (43). The rise of
new services also highlights renewed equity and afford-
ability concerns as they might give rise to further erosion
of transit options.

Ridesourcing and Transit Performance

Conversely, the airport prototype also suggests the need
for policies to improve transit connections between
downtown Chicago and the airports. The segmentation
analysis revealed some intriguing patterns of competi-
tion. Ridesourcing appears to be used by a small group
of users even when transit is seemingly the better option
(P5_transit-competitive: 5.1%), and at the same time, a
sizable segment will turn to their mobility-apps in areas
where transit is in abundant supply but time-
performances is poor (P3_solo-non-transit: 20.3%).
This opens a debate about perception and motivations
of users, communicating options to travelers, and devel-
oping new partnerships.

With the transit-competitiveness prototype showing
that there are real possibilities for transit to be faster
than ridesourcing, a practical policy effort would be to
improve the dissemination of transit information. Local
transit agencies could develop advanced traveler infor-
mation systems that highlight cases for which transit is
competitive to increase their ridership (44). Other strat-
egies could be used in conjunction with MaaS (mobility
as a service) in multi-modal systems to nudge riders
toward transit. Studies have shown that travel behavior
can be influenced using soft strategies (45). These strat-
egies such as making transit the default option or
highlighting the broader benefits of supporting transit
through patronage can be facilitated through a naviga-
tion application. Although this type of policy improves
transit competitiveness, ridesourcing may still be domi-
nant in many areas and promotion of sharing is vital in
this situation.

More Ridesplitting?

Promoting ridesourcing naively may worsen traffic con-
ditions, however, promoting shared rides to increase the
demand for ridesplitting may be a reasonable solution.
Policies that incentivize shared rides such as a tax that
increases fees for exclusive rides could lead to higher
demand for sharing and increased transit ridership
(46). The tradeoff between delays and lower fares could

be used to promote sharing and even increase mobility
for disadvantaged groups where high fares turn them
away. Policies providing travel support for unemployed
and low-income residents via vouchers or further lower-
ing fares may increases travel and opportunities when
other modes are not feasible. The ongoing debate in
Chicago and cities around the United States has focused
on the lack of broader coverage, outside transit rich
areas, of ridesourcing. Figure 4 highlights the lower
share of rides occurring in and between historically
underserved communities on the south and west sides
of Chicago. Policies geared to promoting shared ride-
sourcing between underserved areas represent an oppor-
tunity to both reduce vehicle miles traveled and support
disadvantaged communities.

Conclusions and Future Work

This study examined a unique TNC dataset from
Chicago, IL by utilizing the unsupervised learning
K-prototypes algorithm that accepts categorical data.
The goal of this study was to identify patterns of TNC
patronage with regard to service attributes, weather,
transit, taxis, characteristics of origins and destinations,
and ridesplitting. The analysis revealed six distinct ride-
hailing user segments. The segments were identified in
relation to adverse weather conditions, evening trips,
longer trips, trips to the airport, trips that would be
better served by transit, and trips that are pooled. The
segments were discussed in the context of the relative
performance of ridesourcing as well as examining
the origin and destination of flows to better interpret
the spatial and performance variation.

The identification of these distinct trip types has
shown where future research is warranted. The discus-
sion in this study focused on how future research should
consider factors such as weather and other external fac-
tors when estimating the demand for TNCs and other
modes, airport-based mobility options in the future,
understanding why TNCs have competitive advantages
besides faster travel times, and why more trips are not
shared. The last point made in the discussion emphasized
how most of the trips were completed in and surrounding
the central business district of Chicago. In summary, the
concentration of trips in the downtown area where
mobility options and amenities are abundant, along
with notable variation in performance of ridehailing
across user clusters, prompted a deeper discussion of
where and for whom ridehailing enables mobility.

The main limitations of this study come from the con-
straints of the merged datasets. Firstly, the weather data
was collected at only one location. Considering the size
of Chicago and the location of the station, the data may
not be representative of local weather. Secondly, the
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TNC, taxi, and transit data were aggregated at the

census tract level. This aggregation was needed to jointly

analyze mode performance and supply but might have

led to less precise findings about competing transit ser-

vice. To increase the accuracy of these comparisons,

more data with smaller sizes of spatial aggregation and

trip details such as trip purpose are needed. Lastly,

future research should expand the analysis to a longer

panel of observations, thereby capturing more variation

in weather and other seasonal factors that determine

demand for mobility.
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