Enabling Secure and Privacy Preserving Identity
Management via Smart Contract

Yaoqing Liu
liu@clarkson.edu
Clarkson University

Abstract—Biometrics have been used increasingly heavily for
identity authentication in many critical public services, such
as border passes or security check points. However, traditional
biometrics-based identity management systems collect and store
personal biometrical data in a centralized server or database,
and an individual has no control over how her biometrics will
be used for what purpose. Such kind of systems can result
in serious security and privacy issues for sensitive personal
data. In this paper, we design a novel approach to leveraging
biometrics and blockchain/smart contract to enable secure and
privacy preserving identity management. The basic idea is to use
blockchain to store an authority’s attestation and the transformed
value of an individual’s biometrics. The stored data on the
blockchain is then controlled by smart contracts which define
various access control policies, e.g., access parties, access times,
etc. The owner of the biometrical data can flexibly change
the access control policies through a white list, a timer and
other methods to any identity verifiers. We used the well-known
Ethereum platform to implement the proposed approach and
tested the effectiveness as well as the flexibility of various access
control policies.

I. INTRODUCTION

Identity is the distinguishing attribute of an individual. It is
widely referred to as the sum of attributes, such as biometrics,
height, and birthdate, or the designed attributes, e.g., driver
licenses and passports, associated to a person. It is not a
trivial job to manage individuals’ credentials that connected
to their Identities, since the attributes may change or be
lost over time. Currently, besides biometrics-based identity
management [1], there are three primary identity management
practices in the field: physical credentials, digital credentials
and cryptographic credentials.

Government issued credentials, such as passports, birth
certificates, and driver’s licenses, belong to physical creden-
tials. Their copies are kept in a centralized authority and
protected by digital storage. An individual needs to show their
hard copies to prove their identities first before receiving the
services, such as air travels and border passes. The potential
problems for this kind of identity management is that the
physical forms can be lost, stolen or damaged, and even faked.
The replacement incurs high costs as well. The second type of
credentials are enterprise issued credentials, such as Facebook
and Google accounts. When a user wants to prove herself
to access an online service, she can just link the service
to her digital credentials to be authenticated. This kind of
credentials can facilitate many online services and become
very popular recently. However, many critical public services

Guchuan Sun
sung @clarkson.edu
Clarkson University

Stephanie Schuckers
sschucke @clarkson.edu
Clarkson University

cannot be supported by them, e.g., opening a bank account
and security check. Other issues include the single point of
failures and potential data breach risks. For instance, Facebook
and Yahoo!’s user data had been breached and hundreds of
millions of users’ sensitive credentials were disclosed to the
public [2]. The third type of credentials are cryptographic
credentials. An individual requests a public/private key pair
through Public Key Infrastructure (PKI). The user verifies
herself through her digital signed document. However, such
kind of applications are limited to electronic operations and
the keys may be expired and lost as well. Also the requesting
procedure is cumbersome, costly and the PKI infrastructure
yields single point of failures.

The concerns for identity management include security,
privacy, credential revoking, credential recovery, flexible cre-
dential access control, etc. Traditional approaches cannot meet
all of the requirements well for a good identity management
system. One of the main challenges is the security issue, e.g.,
single point of failure issue, because most of them use a
centralized server or database to store the sensitive personal
identity data. If the system was compromised, the services
providing identity data will not be available to access, and the
data risks being stolen and abused. Regarding privacy, current
policies require keeping user data unaccessible by a third party
without the user’s permission [3], however, the implementing
mechanisms cannot guarantee or enforce such kind of policies
to be in effect particularly when the system was hacked. In
terms of flexible access control over an individual’s personal
data, current practices do not offer effective mechanisms to
realize, and the owner of their data can do nothing but trust
and rely on the service providers or government agencies to
not abuse their personal data. The situation worsens when the
data pertain to the user’s biometrical information. For instance,
malicious users may be able to access the biometrical data
and fake them for false identities [4]. Therefore, it is critically
important for users themselves to control what they own and
authorize who can access them.

To address these concerns and challenges, we explore
the state-of-the-art biometrical identification and Blockchain
technologies [5] to enable secure, privacy preserving, and
flexible identity management. Biometrcis, such as fingerprints,
face, voice etc., are something that an individual owns and
they are always with the person and unique as well. Most
of time, they are resist to loss and changes [6]. Combining
advanced technologies in biometrical identification, identity



management, Blockchain and smart contract, we make the
following contributions in the paper:

1) Framework: We designed and developed a new and
novel identity management framework that spans the whole
life cycle for managing an individual’s biometrical data for
authentication. It includes modules of identity collection, iden-
tity issuance, identity storage, identity transformation, identity
access control, and identity verification. The identity collection
and issuance are conducted by government-specified author-
ities, such as Department of Motor Vehicles (DMV). The
identity storage uses personal or secured public repositories to
protect information privacy, such as Dropbox or InterPlanetary
File System (IPFS) [7]. The identity transformation employs
well-known one-way hashing algorithms to ensure information
security. The identity access control polices are enforced by
public smart contract platform Ethereum. Finally, the identity
verification can be executed by any party specified in the smart
contract through a triple-way verification process.

2) Blockchain and Smart Contract: We built the framework
based on the platform Ethereum, which is an open-source,
public, blockchain-based distributed computing platform fea-
turing smart contract functionality. The platform can guarantee
the transparency and immunity of any state transitions via
a modified version of Nakamoto consensus algorithm. We
use the Ethereum platform as an anchor to provide trans-
formed ground-truth identity information for an indiviudal.
Meanwhile, the smart contract offers flexible programmable
capabilities to define who at what time has the permission to
access the ground-truth information.

3) Privacy Preserving: Our new identity management sys-
tem features privacy preserving functionality for individuals’
sensitive biometrical or other personal data. Traditionally, such
kind of data are required to store in a centralized server or
database for authorities to use as ground-truth information. In
our new design, we do have to use ground-truth information to
verify an individual’s identity, however, this information is not
the user’s raw data and we only store encrypted transformed
data in the blockchain. This ensures that the privacy of an
user’s data can be preserved.

4) Self Sovereign: In the new identity management system,
personal data do not store in a centralized storage and cannot
be used for any other purposes without the permission from
owners. Users can register, retrieve and even revoke the data
if they do not want to use them any more. In other words,
the owners have the real ownership of their data in terms of
where to store the data, how to share the data, who can access
the data as well as when to retrieve the data.

II. ETHEREUM AND SMART CONTRACT

Our framework relies on the smart contract platform-
Ethereum [8], a well-known blockchain application. In this
section, we introduce the background of blockchain, including
Bitcoin, hashing verification, decentralized structure, proof of
work concept and the smart contract.

A. First Blockchain Application

Since 2009 BitCoin was proposed with the famous white
paper by Satoshi [9], blockchain came into the public’s view
as a secure and distributed cryptocurrency. Bitcoin, as the first
blockchain application, proposed a new model of network
security and becomes the foundation of many blockchain-
based applications, such Litecoin, Ethereum etc. The security
and robustness of Bitcoin ecosystem are guaranteed by the
following features:

1) Hashing Verification: Blockchain is not just a list of
block objects, the information inside each block is well-
designed such that everyone is able to verify the correctness
of each block. Hash function is used in Blockchain, which
uses one-way function to transform big chunks of data into a
number with a fixed length. The return value of a hash function
are unique and asymmetric, which means the results of hash
functions are not predictable and a tiny change of the input will
lead to a totally different result. As a result, when a new block
is created, it hashes its previous block and records the result.
Since the previous hash of Genesis Block (the first block) is
well-known, it is easy to check the correctness of a blockchain
by hashing each block, and comparing it with the “’previous
block’s hash” value stored in the next one from the head all the
way to the tail. Therefore, it is very difficult, if not impossible,
to make any changes to the blockchain once a block is placed
deep in the blockchain.

2) Proof of Work: Every miner wants to add a new block
which contains many transactions so that the miner can be
rewarded with a certain number of Bitcoins. But how can the
minder win the reward while competing with other miners? In
order to solve this problem, Bitcoin holds a problem-solving
competition”. Every miner needs to find a hash input which
leads to the result hash value smaller than a target value.
The first one who successfully finds that value can add the
reward transaction into the new block. The work taken in this
competition is called Proof of Work (PoW), which reveals the
calculation power included in “mining” the new block. Since
hash function’s result is not predictable, trial and error is the
only way to obtain a desirable output, which takes longer time
when the target value becomes smaller. POW mechanism sets
a high barrier to those who want to make up a longer chain
from the start and attempt to replace the valid chain with a
invalid one.

3) Decentralized Structure: Blockchain is a unique data
structure which is shared among all of the participated nodes.
When a new block is created by a miner, it is broadcast to
the network and all other miners will verify its correctness,
which contains the correctness of transactions, hash values and
something other attributes. It is only when more than 50% of
the miner nodes consider this block valid can the block be
appended to the chain. All of the miners trust in the longest
chain, which indicates a higher calculation power. As a result,
all of the miners will eventually have the same blockchain. If
a malicious user wants to make up a block and let it become
valid, he must generate more than 50% hash power to compete
with other nodes, which is extremely hard.



4) Keys and Addresses: The security of a user’s access is
guaranteed by an asymmetric crypto algorithm, called Elliptic
Curve Digital Signature Algorithm, which is similar to RSA.
This algorithm generates a key pair for every user. One key
is called Public Key which is available to the public and
the other is called Private Key, which is kept secret by the
user. The public key actually is derived from the private key.
However, this process is only one way. With a public key, it
is theoretically impossible to find the private key. The user
can encrypt a file or message with one key and use the other
key to decrypt the result. This transaction verification acts in
this way: The user transforms their public keys to their user’s
receiving addresses. Every transaction indicates the BitCoin
comes from one address to another. When a user wants to
make a spending, he needs to prove that the balance of the
transaction belongs to him. Since his public key is known to
others and he does not want to share his private key, he signs
the spending transactions with his private key and broadcasts
the signature to the network. Miners decrypts his signature
through the public key to check if the decrypted content is the
same as the original transaction. Note that the address itself
is not the public key, it is derived from the public way using
a one-way hash function.

B. Ethereum and Smart Contract

As a new generation of blockchain applications, Ethereum
inherits the same principles of Bitcoin: it still uses hash func-
tion to verify the correctness of each block. Since Ethereum
transactions contain not only Ether transferring but Smart
Contract operations, there is more information needed to be
recorded into blocks. As a result, the blocks are generated
more frequently than Bitcoin. The proof-of-work in Ethereum
is similar to Bitcoin. The address generation process and
decentralized structure are similar to Bitcoin as well.

The most distinguishing difference between Bitcoin and
Ethereum is that Ethereum has Smart Contract functionality.
Smart Contract enables users with programming capabilities
in Ethereum and users can flexibly define rules and policies.
It implements user-defined protocols that can be executed into
Ethereum Virtual Machine(EVM). Users can program smart
contracts using Solidity, a special programming language to
define various variable, classes and methods, like program-
ming in an object-oriented programming environment. After
a smart contract is created, it can be deployed to Ethereum
platform by a user with some virtual currency in the form of
gas. A deployed contract has a unique address that is publicly
available for all users. Authorized users may access or even
use the contract’s methods through the address to change the
state of the smart contract.

III. FRAMEWORK OVERVIEW

As shown in Figure 1, the life cycle of a user’s authentica-
tion consists of three primary stages: user identity registration
and smart contract construction, access control management
via smart contract, and identity information retrieval and

verification. We will walk through these stages in detail as
follows.

A. Registration and Smart Contract Construction - Steps 1-5

To verify a user’s identity, a verifier needs to use ground-
truth or authority’s information to match against. Without
such kind of information, it is almost impossible to tell
the true identity of an individual. Therefore, the first stage
of the framework include steps to register a user’s ground-
truth information to a secure distributed system, or so called
blockchain through an authority party, and then to construct
a smart contract for the user (data owner) to manage access
control policies. In the following context, we use the user’s
fingerprint as the user’s biometrical data, Department of Motor
Vehicle (DMV) as an authority party, and IPFS as the user’s
personal storage.

First of all, the user takes government issued documents,
such as passport or driver license, to a local DMV to register
her personal information, such as name, address etc (Step 1).
Meanwhile, her fingerprint will be collected in the form of an
image. Rather than storing the raw fingerprint image to the
blockchain, the user stores them in a personal repository, such
as IPFS [7] (Step 2). The image can be encrypted for another
layer of security if necessary. The IPFS returns a hash ID as
a retrieval key to the user for the fingerprint image (Step 3).

Second, DMV combines the returned hash ID and the user’s
non-sensitive information into a single data block, then hash
the entire data block with a well-known hash algorithm, e.g.,
SHAZ256. Since hash function is a one-way calculation process,
it is impossible to infer the content of the data block through
the hash value itself. Afterwards, DMV signs the hash value
with their private key. Note that the corresponding public key
of DMV should be public, verifiable and traceable through
PKI infrastructure. This way, a verifier can check the validity
of DMV (issuer) through the signature.

Third, DMV integrates the signed attestation into a smart
contract via Ethereum platform (Steps 4-5). The smart contract
defines that the owner of the data is the registered user (with
a smart contract user address), and the owner can later control
the access policies to the data. Note that both DMV and the
user should have their own user accounts of smart contract
for these operations. In other words, the owner of the smart
contract is DMV, however, only the user can control how
to access the content of the smart contract. Furthermore, the
authority can invoke or disable the smart contract at any time
when necessary. For instance, DMV can disable the old smart
contract and deploy a new one when the user has updated her
biometrical information.

B. Access Control Management via Smart Contract - Step 7

After the construction of the smart contract by DMV, the
user should have the privilege to access the smart contract via
her smart contract user account. While communicating with
the smart contract, the user account address will be verified
by the smart contract every time when the user accesses it.
Once the user is able to enter the smart contract, she has



Hashed IPFS ID:
794ab3634b2423df3...

. 4

Contract

5

Contract address:
C39Bff3028eac...

(I
Authority

IPFS ID: 3
Qm1ru3224hkl7834py...

i 4F 4 A

Blockchain

Contract address:
C39Bff3028eac...

12
i Verifier's address:
42E3aB985cf78203...

“_..B_y

Hashed IPFS ID:

User

794ab3634b2423df3. .. Verifier
1
IPFS 1D: "
QAm1ru3224hki7834py...

Fig. 1: Life Cycle of a User’s Authentication

the privilege to program a whitelist that specifies what parties
(which smart contract user accounts) can read the data from
the smart contract, and how long the permission will be given.
For example, multiple verifiers can be added into the whitelist,
e.g., border patrol offices, security check points and other
critical public service agencies that require biometrical data
verification.

In our project, we have implemented two functionalities:
who and when. The capabilities can be further enhanced, such
as what information can be accessed by which party if there are
multiple pieces of information available in the smart contract.
Another example is that a verifier can access the information
no more than a specified number of times.

C. User Identity Retrieval and Verification - Steps 8-13

After the first two stages, the user’s transformed information
has been stored in the smart contract and the user has also
specified who and when can retrieve the information. This
third stage describes how the user’s identity is verified by a
verifier at a security check point, for instance.

First of all, the verifier does not have any information about
the user. The user needs to provide two pieces of information
to the verifier to pass the verification of her identity. The first
part is her original fingerprint image that was captured during
the initial registration stage at DMV, and the second part is to
collect her fingerprint information again on the scene (Steps
8 and 9).

To obtain the original fingerprint image, the user needs to
use her IPFS hash ID to retrieve from the IPFS storage system
and then decrypt it if the image was encrypted before (Steps
8, 9, and 10). This original image will then be compared with
the newly collected fingerprint image with any state-of-the-
art fingerprint comparison algorithm (Step 11). This step is
imperative to verify that the user has its own fingerprint image
(does not use others) showed to the verifier.

Although it can verify that the fingerprint image was owned
by the user, it still cannot prove that other identity information
such as name, or address of the user. The next step is for
the verifier to retrieve DMV’s attestation about the user’s
information (hash value of the IPFS hash ID and other personal
information) from blockchain/smart contract (Steps 12 and
13). Since the verifier is within the whitelist of the smart
contract, the DMV’s attestation can be retrieved with the
verifier’s smart contract address. Afterwards, the verifier needs
to check if the attestation was signed by DMV with its public
key. If this step passes, it indicates the information in the smart
contract is true.

Based on this, the verifier will combine the user information
and the encrypted IPFS hash into a data block, and conduct
a hash operation using the same hash function as DMV did
initially. The newly generated hash value should exactly match
the one obtained from the smart contract. If this step passes,
the verifier can confirm that the user is the same person who
claimed to be in DMV when she registered her identity. Here



we use a three-party verification: ground-truth info provided by
DMV, the user’s claim and her biometrical check for security
and privacy preserving identity verification.

IV. IMPLEMENTATION

We use Ethereum (0.11.1) and Go-ethereum (1.8.21) as our
smart contract platform. We build the smart contract with
Solidity (0.4.24) programming language. We use Python 3.6.4
programs to simulate different parties, including authorities,
users, and verifiers. The python programs connect to Ethereum
to deploy smart contract for an authority, to authorize per-
missions for a user, and to retrieve the user’s data for an
verifier. We employ IPFS (0.4.18) to store the user’s personal
biometrical information (encrypted if necessary). The python
programs also communicate with IPFS to upload or retrieve
the user’s data via a hash ID. In the following sections, we
describe the detailed algorithms and implementation.

A. Smart Contract

We introduce the smart contract template as shown in Al-
gorithm 1, which contains a constructor function to initiate a
smart contract, an authorize function for an owner to specify
access control policies, an access function for a verifier to
retrieve information, a revoke function for an authority to
disable the smart contract, and an Obtain Authority function
for permissioned parties to verify that the ownership of the
smart contract.

The smart contract includes five variables: the owner of the
smart contract, the biometrical hashing data of the owner, the
smart contract address of the authority, a flag to indicate if the
smart contract is active and enabled, and a whitelist to specify
who can access the smart contract. In the contructor function,
the first step requires that only the party that has the public
smart contract account address can create and deploy the
contract. Then the authority will assign the ownership to the
user who collected her biometrical information. Meanwhile,
the user’s transformed data is initialized through the variable
biohash. Note that although the authority creates the smart
contract, the owner of the contract is the user who can control
the access policies. The authorize function requires that the
message sender (smart contract visitor) is the owner, then
the owner can specify which verifiers, such as security check
points, can obtain access to the contract for how long time.

The conditions to trigger access function include: the
message sender is in the whitelist, the corresponding specified
access time is later than the current time, and the smart
contract is still active. The revoke function is designed for
the authority to disable the smart contract when necessary. For
instance, the data in the smart contract needs to be updated
with new data. The ObtainAuthority function is designed
for authorized verifiers to check the authenticity of the creator
(authority) of the smart contract.

B. User Registration by Authority

The whole identity management process starts from user
registration by an authority, such as DMV. As shown in

Algorithm 1 Smart Contract

1: procedure ContractOperations:

2: # Stores the address of this contract’s owner

3 address owner

4: # Stores the hashed IPFS ID

5: bytes biohash

6 # Stores the addresses of all the permitted users

7 mapping (address=>int) whitelist

8: # Has the authority’s address stored in the contract
before deploying

9: authority = contract address, e.g.,
”0x64a20b634734...”

10: # If the contract is enabled

11: bool enabled=true;

12: # A constructor function which sets up the owner and
load biometrical data to the smart contract

13: constructor (user, hash){

14: require(msg.sender==authority)

15: owner=user

16: biohash=hash

17: }

18: # An authorizing function which sets up who can
access the smart contract for how long time

19: authorize (verifier, time){

20: require(msg.sender==owner)

21: require(enabled==true)

22: whitelist[verifier|=now+time;

23: }

24: # An retrieving function which sets up who can access
the smart contract for how long time

25: access (){

26: require(whitelist[msg.sender]!=0)

27: require(whitelist[msg.sender] >now)

28: enabled==true

29: return biohash

30: }

31: # A revoking function which disables the smart con-
tract

32: revoke (){

33: require(msg.sender==authority)

34: enabled==false

35: }

36: # A retrieving function which returns the creator of
this smart contract

37: ObtainAuthority (){

38: require(whitelistfmsg.sender]!=0)

39: require(whitelist[msg.sender] > now)

40: require(enabled==true)

41: return authority

42: }

43: end procedure




Algorithm 2, the authority first needs to collect the user’s
biometrical information along with other personal information,
e.g., passport. We use fingerprint and passport ID to represent
this kind of information. Then the collected fingerprint image
is stored into IPFS distributed system with a return hash ID.
The next step is to transform the hash ID and passport ID into a
new hash value via a one-way hash function. Assume the smart
contract template written by solidity programming language
has been ready to use now, the authority will fill the required
info to the template and submit it to the Ethereum blockchain
system. Algorithm 3 uses the authority’s Ethereum account to
deploy the smart contract where the user account is specified
as the owner who can authorize access permissions later. Note
that the authority will not allow to store the collected image,
the returned IPFS ID and other personal information after the
user registration stage. The user has the full control privileges
over her data. Also both Authority and the user need to have
their own Ethereum user accounts beforehand.

Algorithm 2 Authority Operations

Passportl D,
AuthorityAccount,

1: procedure Register(Image,
ContractTemplate,
UserAccount) :

2: #Store a collected image into IPFS distributed system
with a returned hash ID

3: ID = Storelmage(Image)

: #Transform the ID and other personal info, e.g., Pass-
portID, to a new hash value

5: BioHash = TransformData(I D, Passportl D)

: #Deploy the transformed data to smart contract

7: ContractAddress = Deploy(ContractTemplate,

Authority Account, User Account, BioHash)
Return ContractAddress
9: end procedure

Algorithm 3 Smart Contract Deployment

1: procedure Deploy(ContractFile, AuthorityAccount,
User Account, BioHash):

: # Open the smart contract file in a json format

data=open(ContractFile);

# Extract the contract

contract = contract(data[’abi’], data[’bytecode’])

# Deploy the contract with a user account and gas

tx = contract(U ser Account,BioH ash)

transact(Authority Account, gas)

address = getTransactionReceipt(tz)

10: return address

11: end procedure

D A A

C. User authorization

After the smart contract is created and deployed, a user can
allow any verifier who has an Ehtereum account to access her

ground-truth biometrical information in the blockchain plat-
form. In order to offer the permissions, the user needs to know
the smart contract’s public address, the verifier’s Ethereum
account, the duration for that the verifier can access the smart
contract, and the user’s own Ethereum account. Algorithm 4
first checks if the provided smart contract address is valid, and
then obtains the contract information, and proceeds to issue
a new ’authorize’ transaction to the existing contract with the
aforementioned parameters. Note that this step will change the
state of the existing smart contract and thus will incur a new
transaction in the blockchain. This process requires the user to
pay a certain amount of gas as the service fee. The returning
value is a new transaction hash ID.

Algorithm 4 Authorization

1: procedure authorize(address,verifier,time, account):

2 # Validate smart contract address

3: Valid Address=CheckAddress(address)

4 # Obtain smart contract

5 contract=getContract(valid Address)

6 # Issue transaction

7 tx=Transact(contract, authorize’ (veri fier,time),
account, gas)

8: Transaction Hash=TransactionReceipt(tx)

9: return TransactionHash

10: end procedure

D. Identity Verification

Algorithm 5 describes the steps to finish an identity verifi-
cation. First of all, at the verifier’s side, e.g., a security check
point, a new fingerprint image needs to be collected on the
scene and it will be compared with the one stored in IPFS
by NIST Biometric Image Software (NBIS) system [10]. If
the comparison result is positive, that indicates the user is
the owner of the image stored in IPFS. Note that we use
NBIS to check if two fingerprint images are from the same
person in this implementation. The comparison module can
be replaced by any other fingerprint identification technology.
For example, machine learning techniques can replace NBIS
for higher accuracy and flexibility.

Second, the verifier obtains the creator account information
of the smart contract and confirms that it was the authority who
deployed the contract. Note that the authority’s smart contract
user account information should be publicly available for any
verifier to obtain and verify. Third, the verifier can retrieve the
transformed biometrical information from the smart contract.
The information is nothing but a hash value, through which,
however, the verifier is unable to infer the original data. The
verifier needs to use available data from the user to repeat the
process of data transformation executed by the authority and
converts them into a hash value. If the two values match, it
indicates that the user on the scene is the same person who
registered at the authority. Therefore, the verification passes.
If any step above fails, the identity verification cannot go
through.



Algorithm 5 Identity Verification

1: procedure Verify(address,
Verifier Account):

: Original Image=IPFS.getFile(IpfsI D)
3: match=NBIScompare(OriginalImage,
NewlImage)

if match==true then
Authority=0btainAuthority(address,
Verifier Account)

IpfsID, NewlImage,

AN

6: if Authority==DMVaddress then
7: Real Authority=true
8: end if
9: OldHash=Access(address, ‘retrieve’,
Verifier Account)
10: NewH ash=TransformData(IpfsID,
PassportI D)
11: if OldHash==NewH ash and
Real Authority=true then
12: Verification succeeds
13: end if
14: end if

15: end procedure

Algorithm 6 Smart Contract Access
Obtain Authority(Address,

1: procedure
Verifier Account):

2: # Validate smart contract address

3: ValidAddress=CheckAddress(address)

4: # Obtain smart contract

5: contract=getContract(valid Address)

6: # Access smart contract for data

7: biohash=Call(contract, ObtainAuthority’,
Verifier Account)

8: return biohash

9: end procedure

E. Evaluation Results

We used a fingerprint scanner to collect the fingerprint
images for our experiments. Table I illustrates the average
time each step takes. Overall, it takes less than one minute
to finish the whole process. And the verification itself takes
about 15 seconds without any optimization. Actually, except
the verification process that needs to be done on the scene,
other steps can be finished beforehand. Overall, the testing
results are promising to streamline identity verification at
critical public services, such as airport security check, without
introducing a long time delay.

F. Security Analysis

There are a few scenarios that may lead our system to
potential breaches. They are primarily located at the data en-
trance points, such as authority registration, user authorization
and data retrieval from verifiers. For instance, if any of the
systems is compromised, the corresponding private key may

TABLE I: Application test results

Process Attribute Time in sec
Registration Fingerprint collection ~3
Registration | IPFS uploading & hashing ~2
Registration Contract construction ~10

Authorization Add address to contract ~10
Verification Hash retrieval ~10
Verification Hash verifying ~1
Verification IPFS downloading ~2
Verification Fingerprint comparison ~1

be stolen and abused for malicious purpose. We also assume
that the verifier’s end will always discard all collected bio-
metrical information after the corresponding individual passes
the security check, otherwise, the person’s private information
may be disclosed to the public. The public key management
infrastructure is another possible point of weakness since
we rely on it for authority and ownership verification. A
decentralized solution may be applied to mitigate the risk, such
as SCPKI [5].

V. RELATED WORK

There are many related works that use Blockchain tech-
nologies for identity management [11], [12], including De-
centralized Identifiers (DIDs) [13], Self-Sovereign Identity,
Veridium [14], etc. Some of the works also can realize self-
sovereign feature. We introduce them as follows.

A. Decentralized Identifiers

Sovrin, Veridium, uPort and Veres One are using self-
sovereign identities, which means the owners have the absolute
and whole control to their registered data. A well-designed
self-sovereign identity may enable the owner to visit, modify
and revoke their data without permission from a third party.
Sovrin, Veridium and Veres One take advantage of Decentral-
ized Identifiers (DIDs) to implement self-sovereign identity
systems. DIDs are provide a standard way for individuals and
organizations to create permanent, unique, cryptographically
verifiable identifiers under their owners’ control. As a DID
is generated randomly by an algorithm [15], and it totally
belongs to the user instead of rentable to others, which is dif-
ferent from domain names, phone numbers and IP addresses.

A DID document has data required to interact with its DID.
Typically a DID Document has three parts: proof purposes,
verification methods, and service endpoints. Proof purposes,
together with verification methods, is responsible to specify
verification methods for given keys or protocols. Service
endpoints are used to set and initialize an already trusted
device. For example, in Veridium, the first part corresponds to
the mechanisms used to authenticate such as keys, biometric
templates and one share of a biometric data. The second part
corresponds to a set of authorization information which points
out what may modify the DID Document. The third part
corresponds to a set of service endpoints that may be used
to initiate interactions with devices.



B. Veridium and Horcrux Protocol

Proposed by Veridium, the Horcrux protocol is a method for
securing biometric information registration and access [14].
The protocol is generalized for two or more biometric shares
that can be stored across mobile devices and personal storage
providers with redundancy for availability and safety. In Verid-
ium, the biometric data’s owner is able to authorize others get
access to the data without permission from a third party. The
owner can assert the identity transaction claim or authorize a
verified and trusted third party to do so. The trust is diffused
in its self-sovereign environment and is not controlled by
any single or grouped organizations. Blockchain helps enable
this environment by creating multiple department nodes like
organizations and governments. As a result, department nodes
mutually form distributed consensus and data are recorded in
different places and hence, resistant to mistakes.

C. uPort

uPort allows the identity owners to control their personal
identity and corresponding keys and data [16]. Owners can
authorize others to access data, proceed digital services such
as signing documents, control and send values on a blockchain,
interact with smart contracts as well as applications, and en-
crypt data. The uPort enterprises can create identities for new
customers and employees; establish a Know-Your-Customer
process; build secure access-controlled environments with less
friction, hold little sensitive information to reduce liability,
maintain the network of vendors; establish an environment
where identities have specific roles and nothing to do with
actors.

D. Sovrin

In Sovrin, there are four principles for a developer to
consider to generate a successful self-sovereign identity system
[15]: (1) Governance: how to make others trust that this
application is secure enough that the data is very hard to
be stolen or accessed by others. (2) Performance: how can
the self-sovereign identity be provided in a large scale. (3)
Accessibility: how can the network ensure that identity is
available to all. (4) Privacy: how can privacy be guaranteed in
the network.

E. Comparison

One main difference between our work and the related
works lies in that our implemented framework does not
rely on the authentication over mobile devices. One key
assumption for other works, such uPort, is that mobile de-
vices are equipped with biometrical authentication capabilities
and are always trustworthy, through which an individual can
authorize blockchcain or other online transactions. However,
our approach requires that the individual re-take his/her live
biometrical information in the scene and compare it with the
one that was registered by an authority, then connect the
identification results to the ground-truth anchor in the smart
contract. This approach ensures a higher security level and
confidence of the identification outcomes for critical services,
such as airport security check and border pass.

VI. CONCLUSION

We designed and built a new identity management frame-
work that can integrate a user’s transformed biometrical data to
a smart contract through Ethereum blockchain platform. The
framework enables data security via a distributed public ledger,
privacy preserving via personal storage of sensitive biometrics,
and self sovereign via flexible programming capabilities of
smart contract. We used solidity programming language to
implement the smart contract template and deployed it in
the Ethereum test network. We also collected real fingerprint
images for the experiments. The testing results demonstrate
that the framework is promising to be used in practice. As
for future work, we will implement more diverse access
control policies and take advantage of the data model, format,
and operations that are supported by Decentralized Identifiers
(DIDs) to manage the identity framework.

VII. KNOWLEDGEMENT

This material is based upon work supported by the Cen-
ter for Identification Technology Research and the National
Science Foundation under #1650503.

REFERENCES

[11 A. K. Jain, P. Flynn, and A. A. Ross, Handbook of biometrics. Springer
Science & Business Media, 2007.

[2] “Yahoo! data breaches,” https://en.wikipedia.org/wiki/Yahoo!_data_
breaches.

[3] M. Hansen, P. Berlich, J. Camenisch, S. ClauBl, A. Pfitzmann, and
M. Waidner, “Privacy-enhancing identity management,” Information
security technical report, vol. 9, no. 1, pp. 35-44, 2004.

[4] F. Sabena, A. Dehghantanha, and A. P. Seddon, “A review of vul-
nerabilities in identity management using biometrics,” in 2010 Second
International Conference on Future Networks. 1EEE, 2010, pp. 42-49.

[5] M. Al-Bassam, “Scpki: a smart contract-based pki and identity system,”
in Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies
and Contracts. ACM, 2017, pp. 35-40.

[6] J. L. Wayman, “Biometrics in identity management systems,” [EEE

Security & Privacy, vol. 6, no. 2, pp. 30-37, 2008.

J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.

[81 G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.”

[9] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[10] “NIST Biometric Image Software (NBIS),” https://www.nist.gov/
services-resources/software/nist-biometric-image-software-nbis.

[11] O. Jacobovitz, “Blockchain for identity management,” The Lynne and
William Frankel Center for Computer Science Department of Computer
Science. Ben-Gurion University, Beer Sheva, 2016.

[12] S. Muftic, “Blockchain identity management system based on public
identities ledger,” Apr. 25 2017, uS Patent 9,635,000.

[13] “Decentralized Identifiers (DIDs) v0.12,” https://w3c-ccg.github.io/
did-spec/.

[14] A. Othman and J. Callahan, “The horcrux protocol: A method for
decentralized biometric-based self-sovereign identity,” arXiv preprint
arXiv:1711.07127, 2017.

[15] A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,”
The Sovrin Foundation, 2016.

[16] C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena, “Uport:
A platform for self-sovereign identity,” URL: https://whitepaper. uport.
me/uPort_ whitepaper_DRAFT20170221. pdf, 2017.

[7

—



