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ABSTRACT: Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their
adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of
thousands already synthesized), molecular simulation has frequently been used to rapidly evaluate the adsorption performance of a
large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many
instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative
screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained
a neural network—specifically, a multilayer perceptron (MLP)—as the first example of a machine learning model capable of
predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our
MLP on “alchemical” species— represented only by variables derived from their force field parameters—to predict the loadings of
real adsorbates. Alchemical species used for training were small, near-spherical, and nonpolar, enabling the prediction of analogous
real molecules relevant for chemical separations such as argon, krypton, xenon, methane, ethane, and nitrogen. MOFs were also
represented by simple descriptors (e.g. geometric properties and chemical moieties). The trained model was shown to make accurate
adsorption predictions for these six adsorbates in both hypothetical and existing MOFs. The MLP presented here is not expected to
be applied “as is” to more complex adsorbates with properties not considered during its training. However, our results illustrate a new
philosophy of training that can be built upon with the goal of predicting adsorption isotherms in not only a database of MOFs, but

also for a database of adsorbates, and over a range of relevant operating conditions.

1. INTRODUCTION

Advanced porous crystals are promising materials in a number
of technologies used to mitigate energy- and environment-
related problems. For instance, chemical separations requiring
large inputs of energy (e.g. cryogenic distillation) could instead
be performed using specially tailored porous materials to retain
one component selectively (and abundantly),'™ ultimately
allowing for separation at relatively mild (i.e. non energy-
intensive) conditions.’ Porous crystals include well-known
materials such as zeolites,® as well as emerging materials such
as porous organic cages (POCs),” covalent-organic frameworks
(COFs)® and metal-organic frameworks (MOFs).’ While crystal
tailoring for a specific application is perhaps most readily
achieved in MOFs,'"!" all these materials exhibit an
exceptionally large diversity of chemistries and architectures,
stemming from the use of different synthetic precursors.!!"!4
The number of possible synthetic precursor combinations
implies an overwhelming number of possible materials, a
number that would be impossible to exhaustively synthesize
and experimentally test to find optimal candidates for a specific
application.

Consequently, molecular simulation has been frequently
used to aid the discovery of porous crystals by performing
“computational experiments.”!® For instance, grand canonical
Monte Carlo (GCMC) simulations have been used to predict
adsorption capabilities in large material databases.!®!7 As the
development of more accurate descriptions of relevant

intermolecular interactions with new forcefields continues, the
matching between GCMC and experiments will continue to
improve.'32° By using GCMC, one can “narrow down” a large
database of materials to a smaller set of potentially
high-performing materials on which to devote experimental
efforts.2!2* Through this “hierarchical” approach, GCMC has
led to the identification of, for instance, NOTT-101 and
SBMOF-1 as high-performing MOFs for CO,/H, and Xe/Kr
separation, respectively.??*

However, depending on the size of the database, the number
and type of adsorbates involved, the operating conditions, and
the number of compositions to be tested, even GCMC
simulations can become prohibitively computationally
intensive for comprehensive screening. This is a critical
drawback if one must solely rely on GCMC for screening,
especially considering that recent improvements in algorithms
used to “computationally synthesize” porous crystals allow for
the creation of databases of unprecedented sizes.!!:?%%
Therefore, building on the hierarchical screening philosophy, a
computational “pre-screening” method that allows GCMC to be
devoted only to the most promising materials in a database is
not only desirable, but potentially necessary to maintain the
efficacy of computational high-throughput screening.

Several methods have been considered for pre-screening
databases, including estimation of performance metrics using
analytical equations with faster-to-calculate descriptors such as
Henry’s constants®=° and surface areas®'*? as inputs.
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Figure 1. The building blocks used for MOF database construction, dashed lines indicate connections to the rest of the framework;
a. inorganic (metal-containing) nodes, which include Cu (4-connected), Zn (6-connected), Cr (6-connected), and Zr (8- and 12-
connected) oxoclusters, b. organic nodes (the central part of multitopic organic linkers) c. connecting building blocks (the arms of

multitopic organic linkers or the body of ditopic linkers).

However, perhaps the most intriguing prospect is the use of
machine learning predictions for the pre-screening stage. Some
of the first efforts using machine learning to predict adsorption
were presented by Woo and coworkers, who used support
vector machines (SVMs) to predict methane adsorption using
crystal textural properties such as void fraction, surface area,
and pore size as performance descriptors.** The array of
descriptor values used to represent a material or molecule for
training a predictive algorithm is commonly referred to as a
“fingerprint”. Woo and coworkers also presented machine
learning-based predictions of CO, adsorption, made with more
complex fingerprints (e.g. atomic property-weighted radial
distribution functions) as inputs.>* In other prominent examples,
Smit and coworkers used random forests (RFs) and artificial
neural networks (ANNs) to predict Xe/Kr*® and hydrogen
adsorption,'’ respectively, but with a fingerprint that included
some simulation-calculated, energy descriptors. Using simple
descriptors instead, Fernandez and coworkers used decision
trees (DTs) and SVMs to broadly classify materials for CO»/N,
separation (e.g. as “potentially good”).>® Also using new, but
still easily-interpretable descriptors, (e.g. metallic percentage,
topology, and the chemical identities of building blocks)
Srivastava and coworkers predicted methane adsorption using
RFs,3” while Froudakis and coworkers predicted hydrogen and
CO, adsorption using RFs and SVMs, respectively.’®
Previously, we also predicted loading, selectivity, and working
capacity for CO, capture from gas mixtures with several
different algorithms, finding that the highest accuracy was
achieved with gradient boosting machines (GBMs).*

The above machine learning efforts have been constrained
to generally the same approach: i) GCMC is used to simulate
the adsorption of a given adsorbate or adsorbate mixture for
materials (e.g. MOFs) in a database at a specific operating
condition, and then i) an algorithm is trained to predict the
simulated adsorption data using material properties—i.e. a
material fingerprint—as inputs. It is often noted that the final
algorithm could be used to screen new adsorbents, which is an
endeavor that may be worthwhile if a new database emerges or
the original database grows drastically. However, algorithms
trained under this approach can only evaluate new materials for

the combination of adsorbates and operating conditions that
they were originally trained on. Clearly, this approach severely
limits the scope of the predictive algorithms, especially
considering that a need to explore the same database for other
adsorbates (or adsorbate mixtures) and/or other operating
conditions is more likely to arise than a need to explore another
database.

Recently, Sholl and coworkers® underscored the low
diversity of adsorbates so far considered in computational
screening by noting that most adsorption studies on material
databases focused on CO,, CH4 and H,. This focus is mainly
driven by interest in energy storage and carbon capture.
However, the potential of advanced porous crystals extends to
applications involving a much larger diversity of adsorbates.
For instance, current commercial applications of MOFs involve
unusual adsorbates such as 1-methylcyclopropene and boron
trifluoride.*’ Other potential applications in refrigeration,*?
medicine,* protection against chemical warfare agents,* and a
myriad of chemical separations,** involve many other
adsorbates (e.g. CH30H, O,, H,O, H,S). Separations relevant to
the oil and gas industry can involve complex mixtures of
C,H,,O:N,S. adsorbates.*® Recognizing the need for faster ways
to predict adsorption for a diversity of adsorbates, Sholl and
coworkers® tried predicting isotherms for 24 adsorbates using
the Langmuir model with simulation-calculated Henry’s
constants and saturation loadings. Two caveats to this approach
are its lack of extensibility to non-Langmuir-shaped isotherms,
and the need to calculate new Henry’s constants and saturation
loadings for new temperatures. However, these caveats could
be potentially overcome using machine learning.

In recent work,” we found that a single multi-layer
perceptron (MLP), a class of ANN, was able to predict full
hydrogen isotherms and isobars, which requires predicting
adsorption at temperatures and pressures not included in the
training data. That is, the algorithm is required to learn the
behavior of loading with changes in temperature and pressure,
for a diverse range of materials (and thus isotherm/isobar
shapes). In the cited work, we used inherent material properties
(similar to those discussed previously), temperature (T) and
pressure (P), and the relevant force field parameter describing
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Figure 2. Descriptors constituting the MOF fingerprint. a. Six textural properties: void fraction, gravimetric surface area, largest pore
diameter (LPD: dark blue sphere), pore limiting diameter (PLD: light blue sphere), pore size standard deviation (PSSD), and density.
b. 17 chemical motifs (boxed), for which their respective number density in each MOF was calculated. The percentage of MOFs in

the database that contain each motif'is listed at the top.

the “chemistry” of adsorbate/adsorbent interactions as our
descriptors. The success of including operational (T and P) and
adsorbate-dependent descriptors (force field parameters)
motivated us to investigate the suitability of machine learning
as a tool that could make universal adsorption predictions
possible. A prerequisite for such “universal” tool is the ability
to predict adsorption for molecules for which it was not
originally trained.

Given that there is ongoing debate on the scope of machine
learning and the best strategies to train machine learning models
even when focused on a specific adsorbate or mixture, a first
step toward the development of a universal model is to study
whether the same machine learning model that is used to predict
the adsorption of a given adsorbate can actually be used to
predict the adsorption of a different adsorbate. Accordingly, the
work herein focuses on demonstrating such capability,
considering the substantial increase in the complexity of the
data that arises when including different adsorbates (even
simple ones, as those considered here) along with different
operating conditions. Additionally, an underlying theme in our
work is to make the machine learning algorithm as accurate as
possible while keeping model inputs brief, easily interpretable,
and obtainable with minimal computational effort. To generate
training data, we focused on the adsorption of 200 alchemical
species (i.e. adsorbates that do not necessarily have force-field
parameters that replicate the structure, chemistry or physics of
any real atom or molecule) at room temperature in a relatively
small, topologically and chemically diverse database of 2,400
MOFs created using our Topologically-Based Crystal
Constructor (ToBaCCo) code.!%!! We tested the model on real
adsorbates (Ar, Kr, Xe, methane, ethane, and N) partly chosen
due to their relevance to several gas storage 314> and chemical
separation'3!* applications. We limited the number of MOFs
in our database to keep the number of simulations needed to
generate the requisite data reasonable.

2. DATA GENERATION

2.1 Database construction. The ToBaCCo-3.0 code'®!! was
used to “computationally synthesize” 2,400 MOFs of 50
topologies using the building blocks illustrated in Fig. 1. This
selection includes commonly observed oxometallic nodes and a
diversity of non-metal chemical moieties found in existing
MOFs. The selection of building blocks was made aiming to
maximize the diversity of topologies and framework-adsorbate
interactions in a relatively small database, which in turn helped
us maintain the number of simulations needed to generate
training data reasonable. Each MOF prototype constructed by
ToBaCCo was structurally optimized in LAMMPS (version 31
Mar 2017) % using the Dreiding®”’ force field. In Dreiding,
functional forms and force constants for bond and angle terms
are independent of atom types, but equilibrium bond lengths
and angles are unavailable for some metals. In such cases, we
used the crystallographic bond lengths/angles from
experimental CIFs as the equilibrium bond lengths/angles. For
the optimization, we used an iterative approach where in each
iteration the atom coordinates were first optimized using the fast
inertial relaxation engine (FIRE) algorithm developed by
Bitzek et al’® with a timestep of 10.0 fs with the MOF cell
parameters fixed. Then, the atom positions and unit cell
parameters were optimized together using a conjugate gradient
algorithm. For each iteration, the first and second step
optimizations were stopped when the change in energy between
consecutive geometries divided by the energy of the last
geometry was less than 1.0 X 10 and no atom experienced a
force larger than 1.0 x 10 kcal/mol A™'. The iterations were
stopped when the energy change from the previous iteration to
the current iteration was less than 1.0 x 10 kcal/mol.

2.2. Training, validation, and test set data generation.
Before any GCMC simulations were run, we randomly split our
2,400 MOFs into 1,800 training MOFs, 200 validation MOFs,
and 400 test MOFs.
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Figure 3. Histograms of the textural properties used as descriptors in the MOF fingerprint.

To generate our training data, we ran GCMC simulations for
200 one-, and two-atom alchemical adsorbates at fugacities of
1, 5, 10, 50, 75, and 100 bar in the 1,800 training MOFs
(fugacity was used as opposed to pressure, so we did not have
to calculate critical constants for each alchemical species). To
generate our validation data, we ran GCMC simulations for 200
one-, and two-atom alchemical adsorbates (all were entirely
different than any adsorbate used for computing the training
data) at fugacities of 2.5, 30, 60, 80, and 90 bar in the 200
validation MOFs. The LJ parameters, charges and bond-lengths
used to generate all of the alchemical species considered are
given in Tables S1-S4. To generate our test data, we ran GCMC
simulations for 12 real adsorbates (argon, krypton, methane,
xenon, nitrogen, ethane, helium, hydrogen, propane, butane,
isobutane, and benzene) at fugacities of 1, 2.5, 5, 10, 25, 50, 60,
75, 80, and 100 bar in the 400 test MOFs. Note that the real
adsorbates considered here were distinct from the alchemical
species used to generate the training/validation data, i.e. no real
adsorbate had the same LJ, charge, or bond-length parameters
as the alchemical ones. GCMC simulations for six real
adsorbates (argon, krypton, methane, xenon, nitrogen, ethane)
were run in 1,528 MOFs from the CoRE MOF database®-® at
fugacities of 1, 5, 10, 50, 75, and 100 bar for additional testing
data including experimental MOFs.

LJ parameters for helium correspond to those used by Smit
and coworkers,’! LJ parameters for argon were taken from
Perez and coworkers,? and LJ parameters for krypton, and
xenon correspond to those used by Sikora and coworkers.% The
parameters for these adsorbates are summarized in Table S5.
Methane, ethane, propane, n-butane, isobutane, benzene, and
nitrogen, were modeled according to the TraPPE force-field
developed by Siepmann and coworkers.®*® Accordingly,
methane, ethane, propane, n-butane/isobutane, and benzene are
modeled as a one, two, three, four, and six uncharged sites,
respectively, while nitrogen is modeled with three charged sites
in order to reproduce electric quadrupoles. For nitrogen, the two
atoms are each assigned LJ parameters and charges, while a
“dummy” site at the center of mass is only assigned a
charge.®*% L] parameters and charges for hydrogen were taken
from the Darkim-Levesque model,***” which is also a three-site
model, however, the two atoms are each assigned only a charge
while a dummy site at the center of mass is assigned LJ

parameters and a charge. Fig. S1 shows the generic one- and
two-atom force field models used for GCMC simulations.

2.3. MOF fingerprinting. We tested seven different MOF
fingerprints (see results in Table S7), and found that a
fingerprint combining six MOF textural properties—helium
void fraction (VF), gravimetric surface area (GSA), largest pore
diameter (LPD), pore limiting diameter (PLD), inverse
framework density (1/pg), and the pore size standard deviation
(PSSD)—together with the number density of 17 distinct MOF
chemical moieties resulted in sufficiently accurate predictions.
The descriptors for the fingerprint are illustrated in Fig. 2.
While we did identify another feature set—which we nominally
refer to as the bag-of-atoms—that provided slightly more
accurate predictions, we determined that the slight increase in
model accuracy was not worth the significant increase in model
complexity required to use this descriptor set (further details are
provided in Section S2).

The range of chemistries covered by our constructed MOFs
is shown in Fig. 2, with the associated percentages indicating
the frequency with which it appears in the database. The range
of textural properties covered by the constructed MOFs is
shown by the histograms in Fig. 3. Our optimal fingerprint can
be considered simple because it is limited to 23 easily-
calculated descriptors instead of the hundreds needed when
using atomic-property weighted radial distribution functions®*
or other high dimensional descriptors (e.g. bag-of-atoms). Vg
was calculated using the Widom insertion method with helium
as the probe molecule,®® while GSA was calculated by rolling a
nitrogen-sized spherical probe along the framework surface.®
Both of these calculations were implemented in RASPA-2.0.7
LPD and PLD were calculated using zeo++ (version 0.2.2).!
PSSD, as a measure of pore polydispersity, was calculated by
taking the weighted standard deviation of the pore size
distribution (also calculated using RASPA-2.0), where each
pore diameter was weighted by the distribution value. For each
MOF, the number density of a given chemical moiety was
calculated by counting the number of times that moiety
appeared in the unit cell and dividing by volume of the latter.

2.4 Adsorbate fingerprinting. Toward generalized adsorbate
predictions, we set out to demonstrate that the loading of real
adsorbates can be predicted using training data consisting
entirely of alchemical adsorbates. Additionally, we wanted to



show that an adsorbate (real or alchemical) can be represented
by a fingerprint, allowing adsorbate properties to become part
of the training data. As a first step, we focused on both one-site
(single atom) and three-site (two atom) alchemical and real
adsorbates, where three-site adsorbates had a dummy atom with
only a point charge at the bond center (typical of forcefield
representations of diatomic gases), where this charge may be
null. As simulated adsorption loadings depend both on
adsorbate-adsorbate and adsorbate-framework interactions, we
hypothesized that an operational adsorbate fingerprint should
include descriptors related to the adsorbate features that control
dispersion and electrostatic interactions. Ultimately, we used
effective LJ parameters (Eqfrective aNd  Opfrective) fOr each
adsorbate along with the maximum charge magnitude (which
corresponds to the dummy atom charge) and the bond length
(zero for single-site adsorbates), which allowed us to keep the
number of descriptors in the fingerprint identical regardless of
the adsorbate (a requisite for generality). For single-site
adsorbates, €ggective aNd Tpfreciive are exactly the €;; and oy;. For
two-atom adsorbates, Efective Was the sum of the €; of the
different sites, and O pgqiiye Was:

Oeffective — (zo-ii + rbond)/z (1)

which is the average of o;; and the end-to-end length of the
molecule if we consider the diameter of each atom to be g;;. For
the more complex adsorbates considered in Section 4.6, € ¢rective
was taken to be the sum of all €;; values, and G gecive Was taken
to be the average of the shortest dimension and longest
dimension (an extension of Eq. 1 to adsorbates with more than
one bond). Similarly, the bond length, rond, Was taken to be the
longest distance between atom coordinates in the lowest energy
geometry (as calculated according to the relevant force field,
see above). Fig. S2 shows an example of how the fingerprint
described above is calculated for both mono- and diatomic
adsorbates. Four other adsorbate fingerprints were considered,
these are discussed in detail in Section S2.

2.5. Adsorption Simulations. RASPA-2.0° was used to
perform all GCMC simulations. In grand canonical simulations
chemical potential, volume, and temperature are kept constant.
Chemical potentials were calculated directly from fugacity.
Simulations consisted of 2,000 initialization cycles (no data
recording) and 2,000 production cycles (data recording) for all
one and two atom adsorbates. Each cycle consists of N Monte
Carlo moves (translation, rotation, or insertion/deletion), where
N is the highest value between 20 and the number of adsorbates
in the simulation cell. For propane, n-butane, isobutane, and
benzene, simulations consisted of 15,000 initialization cycles
followed by 5,000 production cycles, and configurational bias
was used during insertion moves. Adsorbate-adsorbate
interactions were modeled using Lennard-Jones (LJ) potentials
to describe dispersion interactions and Coulomb’s law to
describe charge-charge interactions. Available Dreiding
forcefield’’ parameters were assigned to framework atoms,
otherwise UFF’? parameters were used. Framework-adsorbate
electrostatic interactions were ignored as the partial charges of
the adsorbates were small. The negligible effect of this choice
on loadings was shown earlier for N, adsorption at 77 K,% but
was tested and verified again here on our test set MOFs (Fig.
S3). This test was possible by assigning atomic charges to each
MOF according to our MBBB approach.” Lorentz-Berthelot

mixing rules were used to calculate parameters for interactions
between atoms not explicitly parametrized. Adsorbate force-
field parameters were assigned as discussed in Section 2.2.

3. NEURAL NETWORK TRAINING

3.1. Model training. Here we trained a multilayer perceptron
(MLP, see Fig. S4) to predict the adsorption data obtained from
GCMC simulations. All MLPs were trained using Keras™
through the SciKit-learn” Python package (all version numbers
for Python packages used during training are given in Table
S6). First, before training the final MLP, we investigated
different network hyperparameter configurations to determine
which hyperparameter values were likely to give an accurate
final model. During this procedure (called tuning) we assessed
model performance using both mean absolute error (MAE) and
mean absolute percentage error (MAPE) on the validation set.
These errors were selected as they both have useful and relevant
physical interpretations (and are what we are most concerned
with minimizing when predicting loading).

Tuning was performed using a two-step procedure. First, we
exhaustively investigated diverse neural network topologies
from one to eight hidden layers with between 10 and 50 nodes
(in increments of 10 nodes) in each layer, keeping all other
hyperparameters fixed, to find a class of network topologies
which generally gave the most accurate results. We found that
one, two, and three hidden layer networks, while making
reasonably accurate and reproducible predictions, had higher
error than deeper MLPs. On the other hand, we found that many
deep networks (more than five layers) had low minimum error
on the validation set, but were sensitive, i.e. we observed large
oscillations in the validation set error across epochs and with
slight changes in network topology for these networks.
Therefore, we selected a four-hidden-layer topology for our
final model, as it was both highly accurate, and robust in its
predictions. Second, and after settling upon this network
topology, we varied other important net hyperparameters on a
grid, keeping topology constant. The hyperparameters
considered and their final values (Table S8) are presented in
Section S2.

50 20 20 20

@

| 28 inputvariables

Figure 4. The configuration of our final model. The number of
nodes in each hidden layer are shown above the corresponding
layer.

The final model resulting from the above tuning procedure
was then tested on the real adsorbates in the test set MOFs, and
in the CoRE MOFs (see below). Additional data, demonstrating
the reproducibility of our model, is presented in Fig. S5. The
architecture of this final model is shown in Fig. 4. We reiterate
that there were no shared MOFs or adsorbates between the
training, validation, and test sets, during any model training.



50 | Epsilon
g -+ 50
T 40 1 1 o o | - 100
3 150
E 307 . 8|1 o o
jo)) o
£ 204 3 | )
;: 20 @ Sigma
= 104 o 8 8 E o 3
O_W _ | o 35

0 25 50 75 100 O 25 50
Fugacity [bar]

75 410 0 25 50 75 100 © 4
Fugacity [bar]

Fugacity [bar]

Figure 5. Isotherms for alchemical adsorbates considered in a. a representative small pore MOF (LPD=6.5 A), b. a representative
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topology. The large pore in each case is illustrated by a yellow sphere.

In addition, there were no shared fugacities between the training
and validation set. We considered both shared and unshared
fugacities between the training and test set. Every network
considered was trained for a maximum of 500 epochs. Early
termination with a patience of 20 epochs was employed to
prevent over-fitting. That is, if validation loss (MAE for the
final MLP) did not improve for 20 epochs in a row, training was
terminated and the lowest loss from the previous epochs was
taken to be the model error. A measure of importance for each
of the 28 descriptors used as input for the neural network is
given in Table S9.

4. RESULTS AND DISCUSSION

4.1. Model predictive ability for simple adsorbates. Before
discussing the overall predictive performance of our final MLP,
we discuss briefly, from an intuitive perspective, some of the
things that the model must learn. Fig. 5 shows adsorption
isotherms for a subset of the single-atom alchemical adsorbates
(from the training set) in three MOFs. These MOFs are
representative of structures with small (LPD ~ 7 A),
intermediate (LPD ~ 14 A, or near the first peak in the LPD
histogram shown in Fig. 3) and large (LPD ~ 20 A, or near the
second peak in the LPD histogram shown in Fig. 3) pores,
respectively. The adsorbates with the largest €;; and g;; have the
highest loading at low fugacities in all three MOFs. Thus, the
model thus must learn that intrinsic adsorbate-adsorbent
interactions play a dominant role in controlling adsorbate
loadings at low fugacity. However, the larger €;; and o;; are, the
more easily saturation is reached as fugacity increases, giving
rise to pore size limitations. For instance Fig. 5 shows that, at
high fugacity, and in small pore MOFs, a smaller molecule (0;;=
3) with a weaker interaction (e;= 100), can have a higher
loading than a larger molecule (o;= 4) with a stronger
interaction (€;;= 150). However, this is no longer the case in the
large pore MOF. The model, consequently, must learn that pore
size limitations play a dominant role for larger adsorbates in
smaller pores. Of course, this is just a brief glimpse into the
intricacies of the interplay between MOF and adsorbate

properties and fugacities (operating conditions) that determine
adsorbate loading, and which the model must learn.

Next, we consider the predictive performance of our final
model on a set of real adsorbates by comparing our model
predictions to GCMC calculated loading of argon, methane,
krypton, xenon, ethane, and nitrogen at 10 fugacities from 1 to
100 bar in the 400 test set MOFs. We computed several
measures of model performance for each adsorbate, which are
presented in Table 1. Specifically, we consider mean absolute
percentage error (MAPE), mean absolute error (MAE), and
Pearson correlation (R). Perfect predictions would have zero
MAPE and MAE and an R value of unity.

Table 1. Model performance metrics of our final model for
loading predictions made on the test set MOFs.

Adsorbate MAPE [%)] MAE R
[mol//kg]

Argon 4.4 0.17 0.999
Methane 4.6 0.24 0.999
Krypton 4.7 0.30 0.999
Xenon 4.5 0.42 0.999
Ethane 43 0.42 0.999
Nitrogen 4.0 0.14 0.999

Values of R close to one indicate a very strong linear
correlation between GCMC loadings and those predicted by the
MLP. As a point of comparison, our final model predicted the
validation set loadings (200 alchemical adsorbates in 200 MOFs
at 6 fugacities) with a MAPE of 3.0 % and a MAE of 0.18
mol/kg. We note that MAPE is biased towards adsorbates with
higher loadings, since a larger absolute error may still be a
relatively low absolute percentage error. For example, while
nitrogen and argon predictions are visibly accurate (and have
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Figure 6. Parity plots comparing the predictions of the final MLP model for the six indicated adsorbates versus GCMC-calculated
values in the 400 test set MOFs. Points color indicate the point density in the plot (the highest density is observed at low loadings).

the lowest MAE values), their MAPE values are relatively high.
On the other hand, MAE is biased towards adsorbates with
lower loadings, since the relatively small absolute errors may
be large in comparison to the actual loading value. This is why
we present multiple and diverse model performance metrics, as
no single metric can be used to fully assess model performance.

Parity plots showing the MLP predicted loadings (at all 10
fugacities considered in the test set) versus the corresponding
GCMC simulated loadings for each adsorbate provide a more
complete picture of the predictive capabilities of the final MLP
(Fig. 6). Perfect predictions would result in all the points in
these plots falling on the diagonal line. It is clear from Table 1
and Fig. 6 that the final MLP predicts loadings of the six
adsorbates considered here exceedingly well, as expected,
given that the same model predicted the loadings of 200 similar
alchemical adsorbates with similar accuracy. Parity plots,
however, do not give a complete picture of the performance of
a model trained to predict adsorption loading. Not only should
the model predict individual loading points correctly, but it
should also predict related points in the correct order and all
with a similar level of accuracy. That is, the model should be
able to reproduce full isotherms, which means it is accurate at
each point, and also predicts the shape of the isotherm.

4.2. Predictive ability for full isotherms. Now we proceed to
illustrate the ability of our model to predict full adsorption
isotherms. This is a necessary if one aims to, for instance,
couple machine learning predictions for pure components with
IAST theory (when applicable) to rapidly obtain mixture
adsorption data to screen MOFs for chemical separation
applications. Fig. 7 compares isotherms predicted by the MLP
(continuous line) and those obtained from GCMC simulations
(points) for methane and ethane (plots for the other adsorbates
are given in Fig. S6). To get a more accurate picture of the
GCMC-simulated isotherms we ran simulations in the test set
MOFs at fugacities not included in the training set (empty
points in Fig. 7).

As it is unfeasible to present the isotherm comparison for all
the test cases studied here (six adsorbates in 400 MOFs), we

chose to present five isotherms per adsorbate. However, to
provide a fair picture of prediction accuracy, we aimed to
present a range of “best to worst” cases. To do so, we first
ranked all the isotherms predicted by our MLP according to
their isotherm mean percentage error (IMPE). For each MLP-
calculated isotherm point for which we also had a GCMC-
simulated value (10 fugacities for each MOF), we estimated the
absolute percentage error (APE). The mean of this set of APE
values was taken to be the IMPE. The IMPE values were then
used to classify the MLP-predicted isotherms into five
quantiles—the 0.00 (Q1), 0.25 (Q2), 0.50 (Q3), 0.75 (Q4), and
1.00 (Q5) quantiles. Thus, Q1 isotherms are representative of
the best predicted isotherms according to our IMPE metric, Q5
isotherms are representative of the worst, and Q3 isotherms are
representative of an “average” (or median) prediction. Fig. 7
and Fig. S6 present one isotherm from each quantile (the one
nearest to the IMPE quantile value).

Q1 isotherms are quantitively correct for all adsorbates, Q5
isotherms tend to be qualitatively correct but can deviate more
significantly from GCMC-simulated values in some pressure
ranges. However, as machine learning predictions are intended
for use in high throughput screening of MOFs (or other porous
crystals) some less than stellar predictions are acceptable as
long as the vast majority of predictions are good. This is the
case even for isotherms in the Q3 and Q4 quantiles. For
instance, Q3 isotherms (the “average” prediction accuracy)
have IMPEs ranging from 3.23 % (for nitrogen) to 3.93% (for
krypton). As a point of comparison, Dokur and Keskin
showed that that a difference of well over 10% can be observed
in GCMC predicted loadings. of methane and nitrogen (albeit
in CO»/N> and CO,/CHs mixtures) when switching between
using UFF and Dreiding LJ parameters for MOF atoms, and that
these errors likely do not affect high throughput screening
results significantly. Accordingly, the accuracy reached by the
trained MLP is certainly suitable to accelerate materials
discovery by utilizing it as part of a hierarchical screening
strategy.
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4.3. Transferability of model for predictions on MOFs with
inaccessible pores. Some MOFs have pores that are
inaccessible to certain adsorbates due to large energy barriers
that separate these pores from the rest of the pore volume. Since
the GCMC algorithm can insert adsorbates into such
inaccessible pores, in some cases explicit “pore blocking” must
be done to obtain accurate adsorption predictions. However, we
did not use such blocking during the generation of training data
as this would have required preparing different blocking
schemes for each MOF depending on the force-field parameters
for each adsorbate considered (note that which pores are
inaccessible depends on adsorbate size and/or interaction
energy) before running GCMC simulations and calculating
textural properties. We reasoned that this procedure was
unnecessarily onerous because—as proven with our use of
alchemical adsorbates—the training simulation data does not
have to be “realistic” to be meaningful to teach the machine
learning model how adsorption depends on descriptor values.
Therefore, we posited that a model trained without pore
blocking considerations would still be able to correctly predict
adsorption in cases where pore blocking was necessary simply
by using the new set of textural properties that results from pore
blocking as input for the model. As discussed in Section S3 and
illustrated in the parity plots in Fig. S7, the above hypothesis
was shown to be true, further validating our training strategy.

4.4. Transferability of model for predictions on
experimental MOFs. Although we aimed to make our database
as chemical and topologically diverse as possible, one may
speculate as to whether this diversity is sufficient to train a
model that is applicable to the space of experimentally known
MOFs. One way to assess this is to test our model on a MOF
database that is not subject to the biases present in our database.
Thus, we tested our model predictions on 1,528 out of 12,479
structures in the CoRE MOF database, which is a collection of
experimental MOF  structures curated by Chung and
coworkers.’>®® The details of our CoRE MOF selection
procedure are described in Section S4, but the majority of
discarded CoRE MOFs simply had elements not encountered in
the database we used for training the model. Fig. 8, which
shows predictions on the CoORE MOFs, is analogous to Fig. 6 in

that it compares our model predictions for argon, methane,
krypton, xenon, nitrogen and ethane at six fugacities with
GCMC simulations. Although the MAE, MAPE, and R values
calculated from the model predictions (Table S10) on the
CoRE MOFs show a decrease in overall predictive ability, the
parity plots in Fig. 8 and histograms of MAPE values (Fig. S8)
show similar error distributions for predictions on the CoRe
MOFs and the test set for our constructed database, albeit with
a longer tail towards higher MAPEs for predictions on the
former.

Consistent with the errors for prediction of individual
adsorption loadings, full isotherm predictions by the model on
CoRE MOFs remained accurate, albeit with higher errors. For
instance, for the Q3 IMPE values in the CoORE MOFs vary
between 6.7 % (ethane) and 11.8 % (nitrogen). Analogous plots
to Fig. 7 for the CoRe MOFs are shown in Fig. S9. At this point
it is important to note that a significant portion of the CoRE
MOFs used in our testing have chemical motifs and building
blocks not seen in our database, which is likely the source of the
heightened model error. Our model naturally accounts for this
to a certain extent but cannot be expected to predict the
influence of all the different building blocks and chemistries
extant in the CORE MOFs. For instance, while the copper motif
in our database always corresponds to Cu in a paddlewheel, we
can consider any Cu atom in the CoRE MOFs to be part of the
copper motif, e.g. Cu as part of an “infinite” node (as in MOF-
74), or as a single-atom node, and not necessarily bound to
carboxylates. Such Cu motifs will influence the adsorption
differently than Cu in a paddlewheel, but likely in a manner that
is still correlated to the Cu number density. More specifically,
for any motif that consists of a unique element (i.e. -Br, -SH,
and the metals), we count any instance of that element when
computing number densities. But for motifs that correspond to
a particular type of an element (i.e. aromatic carbon, carbon in
the -CN functional group, etc.) we ensure that the element is
actually of that type when computing number densities.
Therefore, any types of certain elements present in the CoORE
MOFs that are not included in our fingerprint (e.g. triple-bonded
carbon) are not explicitly considered by our model, but will be
accounted for to a certain extent by the MOF textural properties.
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Figure 8. Parity plots comparing the predictions by the final MLP model for the six indicated adsorbates versus GCMC-calculated
values in 1,528 CoRE MOFs. Points color indicate the point density in the plot (the highest density is observed at low loadings).

4.5. Material ranking accuracy based on performance
metrics. For machine learning to be effectively used in
hierarchical screening, it needs to correctly rank MOFs (or
whichever type of porous crystal is being studied) according to
some performance metric. This way, it guarantees that the most
promising MOFs are studied with more accurate methods in
subsequent screening stages. Thus, here, we assess the ability
of our model to identify top-performing materials. One
important consideration at this point is that material
performance in chemical separations and gas storage often
depends on adsorption properties at more than one
pressure/fugacity. For instance, the working capacity, which is
the difference between adsorption loadings at a high and a low
pressure is a common performance metric. Thus, to evaluate the
ability of our model to rank MOFs, we decided to include the
ranking based on working capacities, in particular for the 100
bar & 5 bar fugacity swing, we calculated for the six real
adsorbates on the 400 MOF test set, and the CoORE MOF subset
introduced in Section 4.4.

To compare the “MLP rankings” and “GCMC rankings,” we
considered two approaches. In the first approach, the well-
known Spearman rank correlation coefficient (S) was
calculated. In the second approach, we focused on the ability of
our MLP model to identify MOFs in the GCMC “top 100.” This
latter approach is potentially more informative as during
hierarchical screening one is not necessarily concerned with
capturing exact rankings with the MLP model. Rather, one
would be satisfied with identifying the majority of the top
performing MOFs (even if not in the correct order) for
subsequent GCMC screening. Of course, S being equal to one
implies that the MLP model correctly captures all MOFs in the
top 100. However, the converse is not necessarily true, and the
two described approaches can be considered complementary.

The values of S and the number of correctly identified top-100
MOFs are given in Table 2 for both loadings (at 100 bar) and
working capacities (for the 100 bar <> 5 bar fugacity swing). As
an overall indication of the similarity between MLP rankings
and GCMC rankings notice that the values of S are very close
to one in all cases. As for the ability of the MLP model to
capture MOFs in the top-100 for each adsorbate case, when our
model was applied to the test MOFs, it was able to correctly

identify at least 98 (97) of the top 100 MOFs based on the
considered loadings (working capacities). When applied to the
CoRE MOFs, our model correctly picked at least 91 (93) of the
top-100 MOFs. Evidently, the MLP does a slightly better job
ranking MOFs in the test set than in the CoORE MOFs. This is
not surprising considered (i) the less accurate MLP predictions
in the CoRE MOFs, (ii) the one order of magnitude higher
number of CoORE MOFs considered here relative to the number
of test set MOFs, which makes the selection of the top 100
inherently more difficult. As a complement to Table 2, Figure
S10 shows our model performance for selecting the top N
MOFs (N ranges from 1 to 100) from both the test set and the
CoRE MOF subset. From Figure S10 we can observe that our
model makes accurate selections (above 90% correct
placement) even when considering N much less than 100. Based
on the above results, we can conclude our MLP model is able
to pick out the vast majority of high-performing MOFs from
diverse databases as a first screening step.

4.6. Testing the limits of the current MLP model
(extrapolation). In the preceding sections, we have
demonstrated that it is possible to train machine learning
models to predict adsorption of multiple adsorbates, which was
the major goal of this work. Moreover, the trained MLP is
sufficiently predictive to be applied as a first step in the
screening of MOFs for various important and challenging
separations involving mixtures of small nonpolar molecules
such as Xe/Kr and CH4/N,. However, our results should be
considered as a stepping-stone toward the training of “smarter”
models capable of predicting adsorption for a larger diversity of
molecules with different shapes, significant flexibility, and
larger polarities.

One way to inform the development of future models able to
predict adsorption for more diverse molecules, is to understand
how the current model “breaks” (if it does) when applied to
more “complex” adsorbates. Therefore, we applied the present
MLP model to adsorbates that have properties not captured by
the alchemical adsorbates used for training. The tested
adsorbates were helium (€ggective aNd Opfrective, Smaller than for
any alchemical species), hydrogen (LJ parameters at a non-
atom site), and select hydrocarbons (propane, n-butane,
isobutane and benzene), all of which have i) higher €ective and



Oetective> 11) more sites, and iii) significantly different shapes
than any alchemical species included in training. Thus, to make

adsorption predictions for these adsorbates, the MLP model
must extrapolate.

Table 2. Comparison of MOF rankings between MLP predictions and GCMC simulations as indicated by the Spearman rank
correlation coefficients (S) and the number of MOFs in the top-100 from GCMC simulation that were also found in the top-100 from

MLP predictions.
Adsorbate MOFs Correctly Placed in Top-100 S
Loading@100 bar Working Capacity Loading@100 bar Working Capacity
[mol/kg] [mol/kg] [mol/kg] [mol/kg]
Test CoRE Test CoRE Test CoRE Test CoRE
MOFs MOFs MOFs MOFs MOFs MOFs MOFs  MOFs
Argon 99 92 99 93 0.999 0.991 0.999 0.987
Methane 99 95 98 95 0.999 0.994 0.999 0.980
Krypton 98 94 97 95 0.999 0.994 0.999 0.980
Xenon 99 98 99 96 0.999 0.991 0.999 0.942
Nitrogen 98 91 99 94 0.999 0.991 0.999 0.988
Ethane 99 98 99 96 0.999 0.992 0.999 0.944
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Figure 9. Parity plots comparing the predictions of the final MLP model for the six indicated (extrapolated) adsorbates versus GCMC-
calculated values in the 400 test set MOFs. These adsorbates possess properties outside the ranges covered by the alchemical
adsorbates used during model training. Points color indicates the point density in the plot (the highest density is observed at low

loadings).

The parity plots in Fig. 9 provide a visual comparison
between MLP predictions and GCMC data for the six
“extrapolated” adsorbates (R, MAE and MAPE values are given
in Table S11). Despite the extrapolation, predictions for helium
and hydrogen remain quite good, making the present model
applicable to, for instance, screen MOFs for CH4/H, and
CH4/He separations. In contrast, adsorption predictions for
propane, n-butane, isobutane, and benzene generally fail, but do
so in an interesting fashion. Namely, MLP predictions and
GCMC values are linearly correlated, but with systematic
underprediction. Additionally, the linear correlations present a
notable number of outliers, most of which to correspond to low
loadings. Intriguingly, these “low-loading outliers” tend to
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center around the parity line. Further analysis of the predictions
for the hydrocarbons (Fig. S11) revealed that MLP
(under)predictions that linearly correlate with GCMC data
correspond to cases where the loading is more than ~50% of the
saturation value. On the other hand, MLP predictions clustering
around the parity line correspond to cases where the loading is
less than ~25% of the saturation value. Since a material
approaches saturation as fugacity increases, the MLP model is
expected to predict low-fugacity isotherm points better than
high-fugacity ones. This is confirmed by inspecting select
isotherms (Fig. S12-S13), where the MLP model seems to
capture the isotherm shape reasonably well but simply fails to
correctly capture the saturation loading.



What, then, did we learn from testing the model on
“extrapolated” adsorbates? Our MLP predicts the adsorption
of hydrogen and helium well, likely because these molecules
are small, non-polar, and near-spherical (resembling the
alchemical adsorbates used for model training). The fact that
the MLP was able to extrapolate well for these two adsorbates
suggests that the model learned some fundamentals about the
physics of adsorption. However, for the hydrocarbons, the
trends observed in the MLP predictions are likely related to the
non-spherical shapes of these adsorbates. Considering that the
MLP was trained to predict saturation loadings (which depends
on how molecules pack within MOF pores) of molecules that
are near-spherical, and that the highly non-spherical
hydrocarbons will pack differently than these near-spherical
adsorbates, the overserved systematic error is not surprising. In
fact, the packing of the hydrocarbons is likely to be more
efficient than our model predicts, given that ellipsoids (a shape
more representative of the geometries of the considered
hydrocarbons) can pack more densely than spheres of the same
volume.”””® In addition, the volume of a sphere with a diameter
of Ogrective 1S greater than the actual volume occupied by the
hydrocarbons in the GCMC simulation (when calculating this
actual volume as that occupied by overlapped spheres of
diameter o;;). This is likely why the MLP systematically
underestimates loadings for fugacities where the MOF is at or
near saturation, but not so for fugacities where the MOF is far
from saturation (where the molecules are isolated, and
framework-adsorbate interactions are more important). The
systematic loading underestimation near saturation follows the
order n-butane > propane > isobutane > benzene, which is
consistent with the order of asymmetry of these molecules.
Based on this, one would expect that future work on developing
an MLP applicable to more complex molecules than those
considered in the present work should include measures of
adsorbate shape/asymmetry as part of the adsorbate fingerprint
(perhaps along with descriptors of MOF pore shape). The
introduction these additional features could “correct the slope”
for the linear correlations in Fig. 9.

5. CONCLUSIONS

In this paper, we demonstrated that the same multilayer
perceptron (MLP) model can be used to predict full room
temperature adsorption isotherms of small, near-spherical,
nonpolar, mono- and diatomic adsorbates at different pressures
(fugacities). Key to accomplishing these predictive capabilities
was the inclusion of thermodynamic conditions (here fugacity),
and adsorbate force field parameters as model inputs, and (most
importantly) the inclusion alchemical adsorbates in training set.
Our MLP model, made, on average, quantitatively accurate
predictions of full isotherms in MOFs and for adsorbates not
included in the training set. In addition, our model shows
excellent performance in ranking MOFs according to maximal
loading and working capacity, the latter requiring predictions at
two pressures. Our results are a first step towards the ambitious
goal of universal prediction of adsorption in porous crystals,
which will greatly speed up high-throughput screening of
materials for adsorption applications. The next step toward
universal prediction of adsorption should focus on expanding
training sets to include multiple temperatures and a larger
diversity of adsorbates, including large, flexible adsorbates (e.g.
C. alkanes), and adsorbates with strong electrostatic
interactions with framework atoms (e.g. CO,, water, alcohols),
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with the goal of correcting predictions made on highly non-
spherical and flexible adsorbates. Such extension to more
diverse molecules will require further development of methods
for fingerprinting porous crystals and adsorbates.
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