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ABSTRACT: Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their 

adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of 

thousands already synthesized), molecular simulation has frequently been used to rapidly evaluate the adsorption performance of a 

large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many 

instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative 

screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained 

a neural network—specifically, a multilayer perceptron (MLP)—as the first example of a machine learning model capable of 

predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our 

MLP on “alchemical” species— represented only by variables derived from their force field parameters—to predict the loadings of 

real adsorbates. Alchemical species used for training were small, near-spherical, and nonpolar, enabling the prediction of analogous 

real molecules relevant for chemical separations such as argon, krypton, xenon, methane, ethane, and nitrogen. MOFs were also 

represented by simple descriptors (e.g. geometric properties and chemical moieties).  The trained model was shown to make accurate 

adsorption predictions for these six adsorbates in both hypothetical and existing MOFs. The MLP presented here is not expected to 

be applied “as is” to more complex adsorbates with properties not considered during its training. However, our results illustrate a new 

philosophy of training that can be built upon with the goal of predicting adsorption isotherms in not only a database of MOFs, but 

also for a database of adsorbates, and over a range of relevant operating conditions.   

 

1. INTRODUCTION 

Advanced porous crystals are promising materials in a number 

of technologies used to mitigate energy- and environment-

related problems. For instance, chemical separations requiring 

large inputs of energy (e.g. cryogenic distillation) could instead 

be performed using specially tailored porous materials to retain 

one component selectively (and abundantly),1–4 ultimately 

allowing for separation at relatively mild (i.e. non energy-

intensive) conditions.5 Porous crystals include well-known 

materials such as zeolites,6 as well as emerging materials such 

as porous organic cages (POCs),7 covalent-organic frameworks 

(COFs)8 and metal-organic frameworks (MOFs).9 While crystal 

tailoring for a specific application is perhaps most readily 

achieved in MOFs,10,11 all these materials exhibit an 

exceptionally large diversity of chemistries and architectures, 

stemming from the use of different synthetic precursors.11–14 

The number of possible synthetic precursor combinations 

implies an overwhelming number of possible materials, a 

number that would be impossible to exhaustively synthesize 

and experimentally test to find optimal candidates for a specific 

application. 

     Consequently, molecular simulation has been frequently 

used to aid the discovery of porous crystals by  performing 

“computational experiments.”15 For instance, grand canonical 

Monte Carlo (GCMC) simulations have been used to predict 

adsorption capabilities in large material databases.16,17 As the 

development of more accurate descriptions of relevant 

intermolecular interactions with new forcefields continues, the 

matching between GCMC and experiments will continue to 

improve.18–20 By using GCMC, one can “narrow down” a large 

database of materials to a smaller set of potentially 

high-performing materials on which to devote experimental 

efforts.21–24 Through this “hierarchical” approach, GCMC has 

led to the identification of, for instance, NOTT-101 and 

SBMOF-1 as high-performing MOFs for CO2/H2 and Xe/Kr 

separation, respectively.23,25  

     However, depending on the size of the database, the number 

and type of adsorbates involved, the operating conditions, and 

the number of compositions to be tested, even GCMC 

simulations can become prohibitively computationally 

intensive for comprehensive screening. This is a critical 

drawback if one must solely rely on GCMC for screening, 

especially considering that recent improvements in  algorithms 

used to “computationally synthesize” porous crystals allow for 

the creation of databases of unprecedented sizes.11,26,27 

Therefore, building on the hierarchical screening philosophy, a 

computational “pre-screening” method that allows GCMC to be 

devoted only to the most promising materials in a database is 

not only desirable, but potentially necessary to maintain the 

efficacy of computational high-throughput screening. 

     Several methods have been considered for pre-screening 

databases, including estimation of performance metrics using 

analytical equations with faster-to-calculate descriptors such as 

Henry’s constants28–30 and surface areas31,32 as inputs. 



 2 

 

Figure 1. The building blocks used for  MOF database construction, dashed lines indicate connections to the rest of the framework; 

a. inorganic (metal-containing) nodes, which include Cu (4-connected), Zn (6-connected), Cr (6-connected), and Zr (8- and 12-

connected)  oxoclusters, b. organic nodes (the central part of multitopic organic linkers) c. connecting building blocks (the arms of 

multitopic organic linkers or the body of ditopic linkers). 

However, perhaps the most intriguing prospect is the use of 

machine learning predictions for the pre-screening stage. Some 

of the first efforts using machine learning to predict adsorption 

were presented by Woo and coworkers, who used support 

vector machines (SVMs) to predict methane adsorption using 

crystal textural properties such as void fraction, surface area, 

and pore size as performance descriptors.33 The array of 

descriptor values used to represent a material or molecule for 

training a predictive algorithm is commonly referred to as a 

“fingerprint”. Woo and coworkers also presented machine 

learning-based predictions of CO2 adsorption, made with more 

complex fingerprints (e.g. atomic property-weighted radial 

distribution functions) as inputs.34 In other prominent examples, 

Smit and coworkers used random forests (RFs) and artificial 

neural networks (ANNs) to predict Xe/Kr35 and hydrogen 

adsorption,17 respectively, but with a fingerprint that included 

some simulation-calculated, energy descriptors. Using simple 

descriptors instead, Fernandez and coworkers used decision 

trees (DTs) and SVMs to broadly classify materials for CO2/N2 

separation (e.g. as “potentially good”).36 Also using new, but 

still easily-interpretable descriptors, (e.g. metallic percentage, 

topology, and the chemical identities of building blocks) 

Srivastava and coworkers predicted methane adsorption using 

RFs,37 while Froudakis and coworkers predicted hydrogen and 

CO2 adsorption using RFs and SVMs, respectively.38 

Previously, we also predicted loading, selectivity, and working 

capacity for CO2 capture from  gas mixtures with several 

different algorithms, finding that the highest accuracy was 

achieved with gradient boosting machines (GBMs).39  

     The above machine learning efforts have been constrained 

to generally the same approach: i) GCMC is used to simulate 

the adsorption of a given adsorbate or adsorbate mixture for 

materials (e.g. MOFs) in a database at a specific operating 

condition, and then ii) an algorithm is trained to predict the 

simulated adsorption data using material properties—i.e. a 

material fingerprint—as inputs. It is often noted that the final 

algorithm could be used to screen new adsorbents, which is an 

endeavor that may be worthwhile if a new database emerges or 

the original database grows drastically. However, algorithms 

trained under this approach can only evaluate new materials for 

the combination of adsorbates and operating conditions that 

they were originally trained on. Clearly, this approach severely 

limits the scope of the predictive algorithms, especially 

considering that a need to explore the same database for other 

adsorbates (or adsorbate mixtures) and/or other operating 

conditions is more likely to arise than a need to explore another 

database.  

     Recently, Sholl and coworkers40 underscored the low 

diversity of adsorbates so far considered in computational 

screening by noting that most adsorption studies on material 

databases focused on CO2, CH4 and H2. This focus is mainly 

driven by interest in energy storage and carbon capture. 

However, the potential of advanced porous crystals extends to 

applications involving a much larger diversity of adsorbates. 

For instance, current commercial applications of MOFs involve 

unusual adsorbates such as 1-methylcyclopropene and boron 

trifluoride.41 Other potential applications in refrigeration,42 

medicine,43 protection against chemical warfare agents,44 and a 

myriad of chemical separations,45–47 involve many other 

adsorbates (e.g. CH3OH, O2, H2O, H2S). Separations relevant to 

the oil and gas industry can involve complex mixtures of 

CnHmOxNySz adsorbates.48 Recognizing the need for faster ways 

to predict adsorption for a diversity of adsorbates, Sholl and 

coworkers40 tried predicting isotherms for 24 adsorbates using 

the Langmuir model with simulation-calculated Henry’s 

constants and saturation loadings. Two caveats to this approach 

are its lack of extensibility to non-Langmuir-shaped isotherms, 

and the need to calculate new Henry’s constants and saturation 

loadings for new temperatures. However, these caveats could 

be potentially overcome using machine learning.  

     In recent work,49 we found that a single multi-layer 

perceptron (MLP), a class of ANN, was able to  predict full 

hydrogen isotherms and isobars, which requires predicting 

adsorption at temperatures and pressures not included in the 

training data. That is, the algorithm is required to learn the 

behavior of loading with changes in temperature and pressure, 

for a diverse range of materials (and thus isotherm/isobar 

shapes). In the cited work, we used inherent material properties 

(similar to those discussed previously), temperature (T) and 

pressure (P), and the relevant force field parameter describing 
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Figure 2. Descriptors constituting the MOF fingerprint. a. Six textural properties: void fraction, gravimetric surface area, largest pore 

diameter (LPD: dark blue sphere), pore limiting diameter (PLD: light blue sphere), pore size standard deviation (PSSD), and density.  

b. 17 chemical motifs (boxed), for which their respective number density in each MOF was calculated. The percentage of MOFs in 

the database that contain each motif is listed at the top. 

the “chemistry” of adsorbate/adsorbent interactions as our 

descriptors. The success of including operational (T and P) and 

adsorbate-dependent descriptors (force field parameters) 

motivated us to investigate the suitability of machine learning 

as a tool that could make universal adsorption predictions 

possible. A prerequisite for such “universal” tool is the ability 

to predict adsorption for molecules for which it was not 

originally trained. 

     Given that there is ongoing debate on the scope of machine 

learning and the best strategies to train machine learning models 

even when focused on a specific adsorbate or mixture, a first 

step toward the development of a universal model is to study 

whether the same machine learning model that is used to predict 

the adsorption of a given adsorbate can actually be used to 

predict the adsorption of a different adsorbate. Accordingly, the 

work herein focuses on demonstrating such capability, 

considering the substantial increase in the complexity of the 

data that arises when including different adsorbates (even 

simple ones, as those considered here) along with different 

operating conditions. Additionally, an underlying theme in our 

work is to make the machine learning algorithm as accurate as 

possible while keeping model inputs brief, easily interpretable, 

and obtainable with minimal computational effort. To generate 

training data, we focused on the adsorption of 200 alchemical 

species (i.e. adsorbates that do not necessarily have force-field 

parameters that replicate the structure, chemistry or physics of 

any real atom or molecule) at room temperature in a relatively 

small, topologically and chemically diverse database of 2,400 

MOFs created using our Topologically-Based Crystal 

Constructor (ToBaCCo) code.10,11 We tested the model on real 

adsorbates (Ar, Kr, Xe, methane, ethane, and N2) partly chosen 

due to their relevance to several gas storage 31,43,50 and chemical 

separation1,51–55 applications. We limited the number of MOFs 

in our database to keep the number of simulations needed to 

generate the requisite data reasonable.  

2. DATA GENERATION 

2.1 Database construction. The ToBaCCo-3.0 code10,11 was 

used to “computationally synthesize” 2,400 MOFs of 50 

topologies using the building blocks illustrated in Fig. 1. This 

selection includes commonly observed oxometallic nodes and a 

diversity of non-metal chemical moieties found in existing 

MOFs. The selection of building blocks was made aiming to 

maximize the diversity of topologies and framework-adsorbate 

interactions in a relatively small database, which in turn helped 

us maintain the number of simulations needed to generate 

training data reasonable. Each MOF prototype constructed by 

ToBaCCo was structurally optimized in LAMMPS (version 31 

Mar 2017) 56 using the Dreiding57 force field. In Dreiding, 

functional forms and force constants for bond and angle terms 

are independent of atom types, but equilibrium bond lengths 

and angles are unavailable for some metals. In such cases, we 

used the crystallographic bond lengths/angles from 

experimental CIFs as the equilibrium bond lengths/angles. For 

the optimization, we used an iterative approach where in each 

iteration the atom coordinates were first optimized using the fast 

inertial relaxation engine (FIRE) algorithm developed by 

Bitzek et al58 with a timestep of 10.0 fs with the MOF cell 

parameters fixed. Then, the atom positions and unit cell 

parameters were optimized together using a conjugate gradient 

algorithm. For each iteration, the first and second step 

optimizations were stopped when the change in energy between 

consecutive geometries divided by the energy of the last 

geometry was less than 1.0 × 10-6 and no atom experienced a 

force larger than 1.0 × 10-6 kcal/mol Å-1. The iterations were 

stopped when the energy change from the previous iteration to 

the current iteration was less than 1.0 × 10-6 kcal/mol.  

2.2. Training, validation, and test set data generation. 

Before any GCMC simulations were run, we randomly split our 

2,400 MOFs into 1,800 training MOFs, 200 validation MOFs, 

and 400 test MOFs.  
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Figure 3. Histograms of the textural properties used as descriptors in the MOF fingerprint. 

To generate our training data, we ran GCMC simulations for 

200 one-, and two-atom alchemical adsorbates at fugacities of 

1, 5, 10, 50, 75, and 100 bar in the 1,800 training MOFs 

(fugacity was used as opposed to pressure, so we did not have 

to calculate critical constants for each alchemical species). To 

generate our validation data, we ran GCMC simulations for 200 

one-, and two-atom alchemical adsorbates (all were entirely 

different than any adsorbate used for computing the training 

data) at fugacities of 2.5, 30, 60, 80, and 90 bar in the 200 

validation MOFs. The LJ parameters, charges and bond-lengths 

used to generate all of the alchemical species considered are 

given in Tables S1-S4. To generate our test data, we ran GCMC 

simulations for 12 real adsorbates (argon, krypton, methane, 

xenon, nitrogen, ethane, helium, hydrogen, propane, butane, 

isobutane, and benzene) at fugacities of 1, 2.5, 5, 10, 25, 50, 60, 

75, 80, and 100 bar in the 400 test MOFs. Note that the real 

adsorbates considered here were distinct from the alchemical 

species used to generate the training/validation data, i.e. no real 

adsorbate had the same LJ, charge, or bond-length parameters 

as the alchemical ones. GCMC simulations for six real 

adsorbates (argon, krypton, methane, xenon, nitrogen, ethane) 

were run in 1,528 MOFs from the CoRE MOF database59,60 at 

fugacities of 1, 5, 10, 50, 75, and 100 bar for additional testing 

data including experimental MOFs.  

    LJ parameters for helium correspond to those used by Smit 

and coworkers,61 LJ parameters for argon were taken from 

Perez and coworkers,62 and LJ parameters for krypton, and 

xenon  correspond to those used by Sikora and coworkers.63 The 

parameters for these adsorbates are summarized in Table S5. 

Methane, ethane, propane, n-butane, isobutane, benzene, and 

nitrogen, were modeled according to the TraPPE force-field 

developed by Siepmann and coworkers.64,65 Accordingly, 

methane, ethane, propane, n-butane/isobutane, and benzene are  

modeled as a one, two, three, four, and six uncharged sites, 

respectively, while nitrogen is modeled with three charged sites 

in order to reproduce electric quadrupoles. For nitrogen, the two 

atoms are each assigned LJ parameters and charges, while a 

“dummy” site at the center of mass is only  assigned a 

charge.64,65 LJ parameters and charges for hydrogen were taken 

from the Darkim-Levesque model,66,67 which is also a three-site 

model, however,  the two atoms are each assigned only a charge 

while a dummy site at the center of mass is assigned LJ 

parameters and a charge. Fig. S1 shows the generic one- and 

two-atom force field models used for GCMC simulations. 

2.3. MOF fingerprinting. We tested seven different MOF 

fingerprints (see results in Table S7), and found that a 

fingerprint combining six MOF textural properties—helium 

void fraction (VF), gravimetric surface area (GSA), largest pore 

diameter (LPD), pore limiting diameter (PLD), inverse 

framework density (1/𝜌F), and the pore size standard deviation 

(PSSD)—together with the number density of 17 distinct MOF 

chemical moieties resulted in sufficiently accurate predictions. 

The descriptors for the fingerprint are illustrated in Fig. 2. 

While we did identify another feature set—which we nominally 

refer to as the bag-of-atoms—that provided slightly more 

accurate predictions, we determined that the slight increase in 

model accuracy was not worth the significant increase in model 

complexity required to use this descriptor set (further details are 

provided in Section S2).  

    The range of chemistries covered by our constructed MOFs 

is shown in Fig. 2, with the associated percentages indicating 

the frequency with which it appears in the database. The range 

of textural properties covered by the constructed MOFs is 

shown by the histograms in Fig. 3. Our optimal fingerprint can 

be considered simple because it is limited to 23 easily-

calculated descriptors instead of the hundreds needed when 

using atomic-property weighted radial distribution functions34 

or other high dimensional descriptors (e.g. bag-of-atoms). VF 

was calculated using the Widom insertion method with helium 

as the probe molecule,68 while GSA was calculated by rolling a 

nitrogen-sized spherical probe along the framework surface.69 

Both of these calculations were implemented in RASPA-2.0.70 

LPD and PLD were calculated using zeo++ (version 0.2.2).71  

PSSD, as a measure of pore polydispersity, was calculated by 

taking the weighted standard deviation of the pore size 

distribution (also calculated using RASPA-2.0), where each 

pore diameter was weighted by the distribution value. For each 

MOF, the number density of a given chemical moiety was 

calculated by counting the number of times that moiety 

appeared in the unit cell and dividing by volume of the latter. 

 

2.4 Adsorbate fingerprinting. Toward generalized adsorbate 

predictions, we set out to demonstrate that the loading of real 

adsorbates can be predicted using training data consisting 

entirely of alchemical adsorbates. Additionally, we wanted to 
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show that an adsorbate (real or alchemical) can be represented 

by a fingerprint, allowing adsorbate properties to become part 

of the training data. As a first step, we focused on both one-site 

(single atom) and three-site (two atom) alchemical and real 

adsorbates, where three-site adsorbates had a dummy atom with 

only a point charge at the bond center (typical of forcefield 

representations of diatomic gases), where this charge may be 

null. As simulated adsorption loadings depend both on 

adsorbate-adsorbate and adsorbate-framework interactions, we 

hypothesized that an operational adsorbate fingerprint should 

include descriptors related to the adsorbate features that control 

dispersion and electrostatic interactions. Ultimately, we used 

effective LJ parameters (𝜖effective and 𝜎𝑒ffective) for each 

adsorbate along with the maximum charge magnitude (which 

corresponds to the dummy atom charge) and the bond length 

(zero for single-site adsorbates), which allowed us to keep the 

number of descriptors in the fingerprint identical regardless of 

the adsorbate (a requisite for generality). For single-site 

adsorbates,  𝜖𝑒ffective and 𝜎𝑒ffective are exactly the 𝜖𝑖𝑖 and 𝜎𝑖𝑖. For 

two-atom adsorbates,  𝜖𝑒ffective was the sum of the 𝜖𝑖𝑖 of the 

different sites, and 𝜎𝑒ffective was: 

 

  𝜎𝑒ffective =  (2𝜎𝑖𝑖 + 𝑟bond)/2             (1) 

 

which is the average of 𝜎𝑖𝑖 and the end-to-end length of the 

molecule if we consider the diameter of each atom to be 𝜎𝑖𝑖. For 

the more complex adsorbates considered in Section 4.6, 𝜖𝑒ffective 

was taken to be the sum of all 𝜖𝑖𝑖 values, and   𝜎𝑒ffective was taken 

to be the average of the shortest dimension and longest 

dimension (an extension of Eq. 1 to adsorbates with more than 

one bond). Similarly, the bond length, rbond, was taken to be the 

longest distance between atom coordinates in the lowest energy 

geometry (as calculated according to the relevant force field, 

see above). Fig. S2 shows an example of how the fingerprint 

described above is calculated for both mono- and diatomic 

adsorbates. Four other adsorbate fingerprints were considered, 

these are discussed in detail in Section S2. 

 

2.5. Adsorption Simulations. RASPA-2.070 was used to 

perform all GCMC simulations. In grand canonical simulations 

chemical potential, volume, and temperature are kept constant. 

Chemical potentials were calculated directly from fugacity. 

Simulations consisted of 2,000 initialization cycles (no data 

recording) and 2,000 production cycles (data recording) for all 

one and two atom adsorbates. Each cycle consists of N Monte 

Carlo moves (translation, rotation, or insertion/deletion), where 

N is the highest value between 20 and the number of adsorbates 

in the simulation cell. For propane, n-butane, isobutane, and 

benzene, simulations consisted of 15,000 initialization cycles 

followed by 5,000 production cycles, and configurational bias 

was used during insertion moves. Adsorbate-adsorbate 

interactions were modeled using Lennard-Jones (LJ) potentials 

to describe dispersion interactions and Coulomb’s law to 

describe charge-charge interactions. Available Dreiding 

forcefield57 parameters were assigned to framework atoms, 

otherwise UFF72 parameters were used. Framework-adsorbate 

electrostatic interactions were ignored as the partial charges of 

the adsorbates were small. The negligible effect of this choice 

on loadings was shown earlier for N2 adsorption at 77 K,69 but 

was tested and verified again here on our test set MOFs (Fig. 

S3). This test was possible by assigning atomic charges to each 

MOF according to our MBBB approach.73 Lorentz-Berthelot 

mixing rules were used to calculate parameters for interactions 

between atoms not explicitly parametrized. Adsorbate force-

field parameters were assigned as discussed in Section 2.2. 

3. NEURAL NETWORK TRAINING 

3.1. Model training. Here we trained a multilayer perceptron 

(MLP, see Fig. S4) to predict the adsorption data obtained from 

GCMC simulations. All MLPs were trained using Keras74 

through the SciKit-learn75 Python package (all version numbers 

for Python packages used during training are given in Table 

S6). First, before training the final MLP, we investigated 

different network hyperparameter configurations to determine 

which hyperparameter values were likely to give an accurate 

final model. During this procedure (called tuning) we assessed 

model performance using both mean absolute error (MAE) and 

mean absolute percentage error (MAPE) on the validation set. 

These errors were selected as they both have useful and relevant 

physical interpretations (and are what we are most concerned 

with minimizing when predicting loading).  

     Tuning was performed using a two-step procedure. First, we 

exhaustively investigated diverse neural network topologies 

from one to eight hidden layers with between 10 and 50 nodes 

(in increments of 10 nodes) in each layer, keeping all other 

hyperparameters fixed, to find a class of network topologies 

which generally gave the most accurate results. We found that 

one, two, and three hidden layer networks, while making 

reasonably accurate and reproducible predictions, had higher 

error than deeper MLPs. On the other hand, we found that many 

deep networks (more than five layers) had low minimum error 

on the validation set, but were sensitive, i.e. we observed large 

oscillations in the validation set error across epochs and with 

slight changes in network topology for these networks. 

Therefore, we selected a four-hidden-layer topology for our 

final model, as it was both highly accurate, and robust in its 

predictions. Second, and after settling upon this network 

topology, we varied other important net hyperparameters on a 

grid, keeping topology constant. The hyperparameters 

considered and their final values (Table S8) are presented in 

Section S2.  

 

Figure 4.  The configuration of our final model. The number of 

nodes in each hidden layer are shown above the corresponding 

layer.  

     The final model resulting from the above tuning procedure 

was then tested on the real adsorbates in the test set MOFs, and 

in the CoRE MOFs (see below). Additional data, demonstrating 

the reproducibility of our model, is presented in Fig. S5. The 

architecture of this final model is shown in Fig. 4. We reiterate 

that there were no shared MOFs or adsorbates between the 

training, validation, and test sets, during any model training.  
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Figure 5. Isotherms for alchemical adsorbates considered in a. a representative small pore MOF (LPD=6.5 Å), b. a representative 

intermediate pore MOF (LPD=13.7 Å), and c. a representative large pore MOF (LPD=19.5 Å). All the MOFs shown are of the mcn 

topology. The large pore in each case is illustrated by a yellow sphere. 

In addition, there were no shared fugacities between the training 

and validation set. We considered both shared and unshared 

fugacities between the training and test set. Every network 

considered was trained for a maximum of 500 epochs. Early 

termination with a patience of 20 epochs was employed to 

prevent over-fitting. That is, if validation loss (MAE for the 

final MLP) did not improve for 20 epochs in a row, training was 

terminated and the lowest loss from the previous epochs was 

taken to be the model error. A measure of importance for each 

of the 28 descriptors used as input for the neural network is 

given in Table S9. 

4. RESULTS AND DISCUSSION 

4.1. Model predictive ability for simple adsorbates. Before 

discussing the overall predictive performance of our final MLP, 

we discuss briefly, from an intuitive perspective, some of the 

things that the model must learn. Fig. 5 shows adsorption 

isotherms for a subset of the single-atom alchemical adsorbates 

(from the training set) in three MOFs. These MOFs are 

representative of structures with small (LPD ~ 7 Å), 

intermediate (LPD ~ 14 Å, or near the first peak in the LPD 

histogram shown in Fig. 3) and large (LPD ~ 20 Å, or near the 

second peak in the LPD histogram shown in Fig. 3) pores, 

respectively. The adsorbates with the largest 𝜖𝑖𝑖 and 𝜎𝑖𝑖 have the 

highest loading at low fugacities in all three MOFs. Thus, the 

model thus must learn that intrinsic adsorbate-adsorbent 

interactions play a dominant role in controlling adsorbate 

loadings at low fugacity. However, the larger 𝜖𝑖𝑖 and 𝜎𝑖𝑖 are, the 

more easily saturation is reached as fugacity increases, giving 

rise to pore size limitations. For instance Fig. 5 shows that, at 

high fugacity, and in small pore MOFs, a smaller molecule (𝜎𝑖𝑖= 

3) with a weaker interaction (𝜖𝑖𝑖= 100),  can have a higher 

loading than a larger molecule (𝜎𝑖𝑖= 4) with a stronger 

interaction (𝜖𝑖𝑖= 150). However, this is no longer the case in the 

large pore MOF. The model, consequently, must learn that pore 

size limitations play a dominant role for larger adsorbates in 

smaller pores. Of course, this is just a brief glimpse into the 

intricacies of the interplay between MOF and adsorbate 

properties and fugacities (operating conditions) that determine 

adsorbate loading, and which the model must learn.   

     Next, we consider the predictive performance of our final 

model on a set of real adsorbates by comparing our model 

predictions to GCMC calculated loading of argon, methane, 

krypton, xenon, ethane, and nitrogen at 10 fugacities from 1 to 

100 bar in the 400 test set MOFs. We computed several 

measures of model performance for each adsorbate, which are 

presented in Table 1. Specifically, we consider mean absolute 

percentage error (MAPE), mean absolute error (MAE), and 

Pearson correlation (R). Perfect predictions would have zero 

MAPE and MAE and an R value of unity.  

Table 1. Model performance metrics of our final model for 

loading predictions made on the test set MOFs. 

Adsorbate MAPE [%] MAE 

[mol//kg] 

R 

Argon 4.4 0.17 0.999 

Methane 4.6 0.24 0.999 

Krypton 4.7 0.30 0.999 

Xenon 4.5 0.42 0.999 

Ethane 4.3 0.42 0.999 

Nitrogen 4.0 0.14 0.999 

 

    Values of R close to one indicate a very strong linear 

correlation between GCMC loadings and those predicted by the 

MLP. As a point of comparison, our final model predicted the 

validation set loadings (200 alchemical adsorbates in 200 MOFs 

at 6 fugacities) with a MAPE of 3.0 % and a MAE of 0.18 

mol/kg. We note that MAPE is biased towards adsorbates with 

higher loadings, since a larger absolute error may still be a 

relatively low absolute percentage error. For example, while 

nitrogen and argon predictions are visibly accurate (and have  
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Figure 6. Parity plots comparing the predictions of the final MLP model for the six indicated adsorbates versus GCMC-calculated 

values in the 400 test set MOFs. Points color indicate the point density in the plot (the highest density is observed at low loadings). 

the lowest MAE values), their MAPE values are relatively high. 

On the other hand, MAE is biased towards adsorbates with 

lower loadings, since the relatively small absolute errors may 

be large in comparison to the actual loading value. This is why 

we present multiple and diverse model performance metrics, as 

no single metric can be used to fully assess model performance. 

     Parity plots showing the MLP predicted loadings (at all 10 

fugacities considered in the test set) versus the corresponding 

GCMC simulated loadings for each adsorbate provide a more 

complete picture of the predictive capabilities of the final MLP 

(Fig. 6). Perfect predictions would result in all the points in 

these plots falling on the diagonal line. It is clear from Table 1 

and Fig. 6 that the final MLP predicts loadings of the six 

adsorbates considered here exceedingly well, as expected, 

given that the same model predicted the loadings of 200 similar 

alchemical adsorbates with similar accuracy. Parity plots, 

however, do not give a complete picture of the performance of 

a model trained to predict adsorption loading. Not only should 

the model predict individual loading points correctly, but it 

should also predict related points in the correct order and all 

with a similar level of accuracy. That is, the model should be 

able to reproduce full isotherms, which means it is accurate at 

each point, and also predicts the shape of the isotherm. 

4.2. Predictive ability for full isotherms. Now we proceed to 

illustrate the ability of our model to predict full adsorption 

isotherms. This is a necessary if one aims to, for instance, 

couple machine learning predictions for pure components with 

IAST theory (when applicable) to rapidly obtain mixture 

adsorption data to screen MOFs for chemical separation 

applications. Fig. 7 compares isotherms predicted by the MLP 

(continuous line) and those obtained from GCMC simulations 

(points) for methane and ethane (plots for the other adsorbates 

are given in Fig. S6). To get a more accurate picture of the 

GCMC-simulated isotherms we ran simulations in the test set 

MOFs at fugacities not included in the training set (empty 

points in Fig. 7).  

     As it is unfeasible to present the isotherm comparison for all 

the test cases studied here (six adsorbates in 400 MOFs), we 

chose to present five isotherms per adsorbate. However, to 

provide a fair picture of prediction accuracy, we aimed to 

present a range of “best to worst” cases. To do so, we first 

ranked all the isotherms predicted by our MLP according to 

their isotherm mean percentage error (IMPE). For each MLP-

calculated isotherm point for which we also had a GCMC-

simulated value (10 fugacities for each MOF), we estimated the 

absolute percentage error (APE). The mean of this set of APE 

values was taken to be the IMPE. The IMPE values were then 

used to classify the MLP-predicted isotherms into five 

quantiles—the 0.00 (Q1), 0.25 (Q2), 0.50 (Q3), 0.75 (Q4), and 

1.00 (Q5) quantiles. Thus, Q1 isotherms are representative of 

the best predicted isotherms according to our IMPE metric, Q5 

isotherms are representative of the worst, and Q3 isotherms are 

representative of an “average” (or median) prediction. Fig. 7 

and Fig. S6 present one isotherm from each quantile (the one 

nearest to the IMPE quantile value).  

     Q1 isotherms are quantitively correct for all adsorbates, Q5 

isotherms tend to be qualitatively correct but can deviate more 

significantly from GCMC-simulated values in some pressure 

ranges. However, as machine learning predictions are intended 

for use in high throughput screening of MOFs (or other porous 

crystals) some less than stellar predictions are acceptable as 

long as the vast majority of predictions are good. This is the 

case even for isotherms in the Q3 and Q4 quantiles. For 

instance, Q3 isotherms (the “average” prediction accuracy) 

have IMPEs ranging from 3.23 % (for nitrogen) to 3.93% (for 

krypton). As a  point of comparison, Dokur and Keskin76 

showed that  that a difference of well over 10% can be observed 

in GCMC predicted loadings. of methane and nitrogen (albeit 

in CO2/N2 and CO2/CH4 mixtures) when switching between 

using UFF and Dreiding LJ parameters for MOF atoms, and that 

these errors likely do not affect high throughput screening 

results significantly. Accordingly, the accuracy reached by the 

trained MLP is certainly suitable to accelerate materials 

discovery by utilizing it as part of a hierarchical screening 

strategy. 
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Figure 7. Isotherms for methane (top) and ethane (bottom), for the Q1 (0.00), Q2 (0.25), Q3 (0.50), Q4 (0.75), and Q5 (1.00) quantiles 

of isotherm mean percentage error (IMPE, with corresponding values shown). Points are GCMC simulated values (filled points 

correspond to fugacities included in training, empty points were not included in training), and orange lines show MLP predictions. 

4.3. Transferability of model for predictions on MOFs with 

inaccessible pores. Some MOFs have pores that are 

inaccessible to certain adsorbates due to large energy barriers 

that separate these pores from the rest of the pore volume. Since 

the GCMC algorithm can insert adsorbates into such 

inaccessible pores, in some cases explicit “pore blocking” must 

be done to obtain accurate adsorption predictions. However, we 

did not use such blocking during the generation of training data 

as this would have required preparing different blocking 

schemes for each MOF depending on the force-field parameters 

for each adsorbate considered (note that which pores are 

inaccessible depends on adsorbate size and/or interaction 

energy) before running GCMC simulations and calculating 

textural properties. We reasoned that this procedure was 

unnecessarily onerous because—as proven with our use of 

alchemical adsorbates—the training simulation data does not 

have to be “realistic” to be meaningful to teach the machine 

learning model how adsorption depends on descriptor values. 

Therefore, we posited that a model trained without pore 

blocking considerations would still be able to correctly predict 

adsorption in cases where pore blocking was necessary simply 

by using the new set of textural properties that results from pore 

blocking as input for the model. As discussed in Section S3 and 

illustrated in the parity plots in Fig. S7, the above hypothesis 

was shown to be true, further validating our training strategy. 

4.4. Transferability of model for predictions on 

experimental MOFs. Although we aimed to make our database 

as chemical and topologically diverse as possible, one may 

speculate as to whether this diversity is sufficient to train a 

model that is applicable to the space of experimentally known 

MOFs. One way to assess this is to test our model on a MOF 

database that is not subject to the biases present in our database. 

Thus, we tested our model predictions on 1,528 out of 12,479 

structures in the CoRE MOF database, which is a collection of 

experimental MOF structures curated by Chung and 

coworkers.59,60 The details of our CoRE MOF selection 

procedure are described in Section S4, but the majority of 

discarded CoRE MOFs simply had elements not encountered in 

the database we used for training the model. Fig. 8, which 

shows predictions on the CoRE MOFs, is analogous to Fig. 6 in 

that it compares our model predictions for argon, methane, 

krypton, xenon, nitrogen and ethane at six fugacities with 

GCMC simulations. Although the MAE, MAPE, and R values 

calculated from the model predictions (Table S10)  on the 

CoRE MOFs show a decrease in overall predictive ability, the 

parity plots in Fig. 8 and histograms of MAPE values (Fig. S8) 

show similar error distributions for predictions on the CoRe 

MOFs and the test set for our constructed database, albeit with 

a longer tail towards higher MAPEs for predictions on the 

former. 

    Consistent with the errors for prediction of individual 

adsorption loadings, full isotherm predictions by the model on 

CoRE MOFs remained accurate, albeit with higher errors. For 

instance, for the Q3 IMPE values in the CoRE MOFs vary 

between 6.7 % (ethane) and 11.8 % (nitrogen). Analogous plots 

to Fig. 7 for the CoRe MOFs are shown in Fig. S9. At this point 

it is important to note that a significant portion of the CoRE 

MOFs used in our testing have chemical motifs and building 

blocks not seen in our database, which is likely the source of the 

heightened model error. Our model naturally accounts for this 

to a certain extent but cannot be expected to predict the 

influence of all the different building blocks and chemistries 

extant in the CoRE MOFs. For instance, while the copper motif 

in our database always corresponds to Cu in a paddlewheel, we 

can consider any Cu atom in the CoRE MOFs to be part of the 

copper motif, e.g. Cu as part of an “infinite” node (as in MOF-

74), or as a single-atom node, and not necessarily bound to 

carboxylates. Such Cu motifs will influence the adsorption 

differently than Cu in a paddlewheel, but likely in a manner that 

is still correlated to the Cu number density. More specifically, 

for any motif that consists of a unique element (i.e. -Br, -SH, 

and the metals), we count any instance of that element when 

computing number densities. But for motifs that correspond to 

a particular type of an element (i.e. aromatic carbon, carbon in 

the -CN functional group, etc.) we ensure that the element is 

actually of that type when computing number densities. 

Therefore, any types of certain elements present in the CoRE 

MOFs that are not included in our fingerprint (e.g. triple-bonded 

carbon) are not explicitly considered by our model, but will be 

accounted for to a certain extent by the MOF textural properties. 
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Figure 8. Parity plots comparing the predictions by the final MLP model for the six indicated adsorbates versus GCMC-calculated 

values in 1,528 CoRE MOFs. Points color indicate the point density in the plot (the highest density is observed at low loadings). 

4.5. Material ranking accuracy based on performance 

metrics. For machine learning to be effectively used in 

hierarchical screening, it needs to correctly rank MOFs (or 

whichever type of porous crystal is being studied) according to 

some performance metric. This way, it guarantees that the most 

promising MOFs are studied with more accurate methods in 

subsequent screening stages. Thus, here, we assess the ability 

of our model to identify top-performing materials. One 

important consideration at this point is that material 

performance in chemical separations and gas storage often 

depends on adsorption properties at more than one 

pressure/fugacity. For instance, the working capacity, which is 

the difference between adsorption loadings at a high and a low 

pressure is a common performance metric. Thus, to evaluate the 

ability of our model to rank MOFs, we decided to include the 

ranking based on working capacities, in particular for the 100 

bar ↔ 5 bar fugacity swing, we calculated for the six real 

adsorbates on the 400 MOF test set, and the CoRE MOF subset 

introduced in Section 4.4. 

To compare the “MLP rankings” and “GCMC rankings,” we 

considered two approaches. In the first approach, the well-

known Spearman rank correlation coefficient (S) was 

calculated. In the second approach, we focused on the ability of 

our MLP model to identify MOFs in the GCMC “top 100.” This 

latter approach is potentially more informative as during 

hierarchical screening one is not necessarily concerned with 

capturing exact rankings with the MLP model. Rather, one 

would be satisfied with identifying the majority of the top 

performing MOFs (even if not in the correct order) for 

subsequent GCMC screening. Of course, S being equal to one 

implies that the MLP model correctly captures all MOFs in the 

top 100. However, the converse is not necessarily true, and the 

two described approaches can be considered complementary. 

The values of S and the number of correctly identified top-100 

MOFs are given in Table 2 for both loadings (at 100 bar) and 

working capacities (for the 100 bar ↔ 5 bar fugacity swing). As 

an overall indication of the similarity between MLP rankings 

and GCMC rankings notice that the values of S are very close 

to one in all cases. As for the ability of the MLP model to 

capture MOFs in the top-100 for each adsorbate case, when our 

model was applied to the test MOFs, it was able to correctly 

identify at least 98 (97) of the top 100 MOFs based on the 

considered loadings (working capacities). When applied to the 

CoRE MOFs, our model correctly picked at least 91 (93) of the 

top-100 MOFs. Evidently, the MLP does a slightly better job 

ranking MOFs in the test set than in the CoRE MOFs. This is 

not surprising considered (i) the less accurate MLP predictions 

in the CoRE MOFs, (ii) the one order of magnitude higher 

number of CoRE MOFs considered here relative to the number 

of test set MOFs, which makes the selection of the top 100 

inherently more difficult. As a complement to Table 2, Figure 

S10 shows our model performance for selecting the top N 

MOFs (N ranges from 1 to 100) from both the test set and the 

CoRE MOF subset. From Figure S10 we can observe that our 

model makes accurate selections (above 90% correct 

placement) even when considering N much less than 100. Based 

on the above results, we can conclude our MLP model is  able 

to pick out the vast majority of high-performing MOFs from 

diverse databases as a first screening step.  

4.6. Testing the limits of the current MLP model 

(extrapolation). In the preceding sections, we have 

demonstrated that it is possible to train machine learning 

models to predict adsorption of multiple adsorbates, which was 

the major goal of this work. Moreover, the trained MLP is 

sufficiently predictive to be applied as a first step in the 

screening of MOFs for various important and challenging 

separations involving mixtures of small nonpolar molecules 

such as Xe/Kr and CH4/N2. However, our results should be 

considered as a stepping-stone toward the training of “smarter” 

models capable of predicting adsorption for a larger diversity of 

molecules with different shapes, significant flexibility, and 

larger polarities.  

One way to inform the development of future models able to 

predict adsorption for more diverse molecules, is to understand 

how the current model “breaks” (if it does) when applied to 

more “complex” adsorbates. Therefore, we applied the present 

MLP model to adsorbates that have properties not captured by 

the alchemical adsorbates used for training. The tested 

adsorbates were helium (𝜖𝑒ffective and 𝜎𝑒ffective, smaller than for 

any alchemical species), hydrogen (LJ parameters at a non-

atom site), and select hydrocarbons (propane, n-butane, 

isobutane and benzene), all of which have i) higher 𝜖𝑒ffective and 
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𝜎𝑒ffective, ii) more sites, and iii) significantly different shapes 

than any alchemical species included in training. Thus, to make 

adsorption predictions for these adsorbates, the MLP model 

must extrapolate. 

 

Table 2. Comparison of MOF rankings between MLP predictions and GCMC simulations as indicated by the Spearman rank 

correlation coefficients (S) and the number of MOFs in the top-100 from GCMC simulation that were also found in the top-100 from 

MLP predictions. 

Adsorbate MOFs Correctly Placed in Top-100 S 

Loading@100 bar 

[mol/kg] 

Working Capacity 

[mol/kg] 

Loading@100 bar 

[mol/kg] 

Working Capacity 

[mol/kg] 

Test 

MOFs 

CoRE 

MOFs 

Test 

MOFs 

CoRE 

MOFs 

Test 

MOFs 

CoRE 

MOFs 

Test 

MOFs 

CoRE 

MOFs 

Argon 99 92 99 93 0.999 0.991 0.999 0.987 

Methane 99 95 98 95 0.999 0.994 0.999 0.980 

Krypton 98 94 97 95 0.999 0.994 0.999 0.980 

Xenon 99 98 99 96 0.999 0.991 0.999 0.942 

Nitrogen 98 91 99 94 0.999 0.991 0.999 0.988 

Ethane 99 98 99 96 0.999 0.992 0.999 0.944 

 

 

Figure 9. Parity plots comparing the predictions of the final MLP model for the six indicated (extrapolated) adsorbates versus GCMC-

calculated values in the 400 test set MOFs. These adsorbates possess properties outside the ranges covered by the alchemical 

adsorbates used during model training. Points color indicates the point density in the plot (the highest density is observed at low 

loadings). 

     The parity plots in Fig. 9 provide a visual comparison 

between MLP predictions and GCMC data for the six 

“extrapolated” adsorbates (R, MAE and MAPE values are given 

in Table S11). Despite the extrapolation, predictions for helium 

and hydrogen remain quite good, making the present model 

applicable to, for instance, screen MOFs for CH4/H2 and 

CH4/He separations. In contrast, adsorption predictions for 

propane, n-butane, isobutane, and benzene generally fail, but do 

so in an interesting fashion. Namely, MLP predictions and 

GCMC values are linearly correlated, but with systematic 

underprediction. Additionally, the linear correlations present a 

notable number of outliers, most of which to correspond to low 

loadings. Intriguingly, these “low-loading outliers” tend to 

center around the parity line. Further analysis of the predictions 

for the hydrocarbons (Fig. S11) revealed that MLP 

(under)predictions that linearly correlate with GCMC data 

correspond to cases where the loading is more than ~50% of the 

saturation value. On the other hand, MLP predictions clustering 

around the parity line correspond to cases where the loading is 

less than ~25% of the saturation value. Since a material 

approaches saturation as fugacity increases, the MLP model is 

expected to predict low-fugacity isotherm points better than 

high-fugacity ones. This is confirmed by inspecting select 

isotherms (Fig. S12-S13), where the MLP model seems to 

capture the isotherm shape reasonably well but simply fails to 

correctly capture the saturation loading. 
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    What, then, did we learn from testing the model on 

“extrapolated” adsorbates? Our MLP predicts the adsorption 

of hydrogen and helium well, likely because these molecules 

are small, non-polar, and near-spherical (resembling the 

alchemical adsorbates used for model training). The fact that 

the MLP was able to extrapolate well for these two adsorbates 

suggests that the model learned some fundamentals about the 

physics of adsorption. However, for the hydrocarbons, the 

trends observed in the MLP predictions are likely related to the 

non-spherical shapes of these adsorbates. Considering that the 

MLP was trained to predict saturation loadings (which depends 

on how molecules pack within MOF pores) of molecules that 

are near-spherical, and that the highly non-spherical 

hydrocarbons will pack differently than these near-spherical 

adsorbates, the overserved systematic error is not surprising. In 

fact, the packing of the hydrocarbons is likely to be more 

efficient than our model predicts, given that ellipsoids (a shape 

more representative of the geometries of the considered 

hydrocarbons) can pack more densely than spheres of the same 

volume.77,78  In addition, the volume of a sphere with a diameter 

of 𝜎𝑒ffective  is greater than the actual volume occupied by the 

hydrocarbons in the GCMC simulation (when calculating this 

actual volume as that occupied by overlapped spheres of 

diameter 𝜎𝑖𝑖). This is likely why the MLP systematically 

underestimates loadings for fugacities where the MOF is at or 

near saturation, but not so for fugacities where the MOF is far 

from saturation (where the molecules are isolated, and 

framework-adsorbate interactions are more important). The 

systematic loading underestimation near saturation follows the 

order n-butane > propane > isobutane > benzene, which is 

consistent with the order of asymmetry of these molecules. 

Based on this, one would expect that future work on developing 

an MLP applicable to more complex molecules than those 

considered in the present work should include measures of 

adsorbate shape/asymmetry as part of the adsorbate fingerprint  

(perhaps along with descriptors of MOF pore shape). The 

introduction these additional features could “correct the slope” 

for the linear correlations in Fig. 9.   

5. CONCLUSIONS 

In this paper, we demonstrated that the same multilayer 

perceptron (MLP) model can be used to predict full room 

temperature adsorption isotherms of small, near-spherical, 

nonpolar, mono- and diatomic adsorbates at different pressures 

(fugacities). Key to accomplishing these predictive capabilities 

was the inclusion of thermodynamic conditions (here fugacity), 

and adsorbate force field parameters as model inputs, and (most 

importantly) the inclusion alchemical adsorbates in training set. 

Our MLP model, made, on average, quantitatively accurate 

predictions of full isotherms in MOFs and for adsorbates not 

included in the training set. In addition, our model shows 

excellent performance in ranking MOFs according to maximal 

loading and working capacity, the latter requiring predictions at 

two pressures. Our results are a first step towards the ambitious 

goal of universal prediction of adsorption in porous crystals, 

which will greatly speed up high-throughput screening of 

materials for adsorption applications. The next step toward 

universal prediction of adsorption should focus on expanding 

training sets to include multiple temperatures and a larger 

diversity of adsorbates, including large, flexible adsorbates (e.g. 

Cn alkanes), and adsorbates with strong electrostatic 

interactions with framework atoms (e.g. CO2, water, alcohols), 

with the goal of correcting predictions made on highly non-

spherical and flexible adsorbates. Such extension to more 

diverse molecules will require further development of methods 

for fingerprinting porous crystals and adsorbates. 
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