Representation Learning in Heterogeneous
Professional Social Networks with Ambiguous
Social Connections

Baoxu Shi Jaewon Yang
LinkedIn LinkedIn
dashi@linkedin.com jeyang@linkedin.com

Abstract—Network representations have been shown to im-
prove performance within a variety of tasks, including classi-
fication, clustering, and link prediction. However, most models
either focus on moderate-sized, homogeneous networks or require
a significant amount of auxiliary input to be provided by the
user. Moreover, few works have studied network representations
in real-world heterogeneous social networks with ambiguous
social connections and are often incomplete. In the present
work, we investigate the problem of learning low-dimensional
node representations in heterogeneous professional social net-
works (HPSNs), which are incomplete and have ambiguous
social connections. We present a general heterogeneous network
representation learning model called Star2Vec that learns entity
and person embeddings jointly using a social connection strength-
aware biased random walk combined with a node-structure
expansion function. Experiments on LinkedIn’s Economic Graph
and publicly available snapshots of Facebook’s network show that
Star2Vec outperforms existing methods on members’ industry
and social circle classification, skill and title clustering, and
member-entity link predictions. We also conducted large-scale
case studies to demonstrate practical applications of the Star2Vec
embeddings trained on LinkedIn’s Economic Graph such as next
career move, alternative career suggestions, and general entity
similarity searches.

Index Terms—Network representation, Heterogeneous profes-
sional social networks

I. INTRODUCTION

Many important tasks in network analysis, for example
node classification [1], community detection [2], recommen-
dation [3], and link prediction [4], rely primarily on the
discovery and modelling of patterns hidden among the nodes
and edges in a network. To that end, recent advances in
network-based Representation Learning (RL) have shown the
ability to capture these patterns within a vector-embedding of
the network’s nodes. These embeddings can then be used for
a variety of network analysis tasks.

In order to learn good network embeddings on very large
heterogeneous professional social networks (HPSNs) such as
LinkedIn’s Economic Graph and power entity recommendation
or entity retrieval based products, an HPSN representation
learning model needs to:

« utilize the rich type information in HPSNSs,
o learn both person and entity representations in the same
semantic space,
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Fig. 1. Example professional social network represented as a heterogeneous
information network.
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« handle ambiguous and unobserved social connections in
HPSNS,

« handle networks with hundreds-of-millions of nodes and
billions of edges.

Unfortunately, few systems have addressed all four require-
ments. Most existing methods in this area focus on homoge-
neous (i.e., untyped) networks [5]-[7], which assumes that all
nodes share a single node type. Although these shallow models
have fewer parameters and can run on very large networks,
they ignore heterogeneity found in many networks. Recently
there has been some work to extend homogeneous network
models through the use of auxiliary features like node attribute
or content [8]-[11]. However, using supplemental features
explodes the parameter space and is prone to overfitting.

Although these augmented models achieve promising results
on homogeneous networks, real-world social networks, such
as LinkedIn and Facebook, are often heterogeneous networks
with multiple node types like person, school, company, in-
terest, and many others. Therefore, one major challenge with
learning representations in heterogeneous social networks is
to find proper ways to leverage their rich type information.
Metapath2vec [12] introduced a metapath-based method that
learns node-embeddings from heterogeneous networks; but
this approach is limited by human-curated metapaths, which
requires domain-specific knowledge and can be difficult to
generate on heterogeneous social networks with complex



semantics or a large number of node types. On the other hand,
researchers have also tried to model heterogeneous social
networks as attributed graphs where persons are the nodes
in the network and all other non-person entities are treated as
attributes. These methods such as SNE [13] and LANE [8]
treat attribute entities as input features instead of nodes and
cannot learn entity and person embeddings jointly.

Besides utilizing rich type information and learning both en-
tity and person embeddings, an HPSN representation learning
model also needs to handle both unobserved and observed but
ambiguous social connections that exist in professional het-
erogeneous social networks. The majority of social networks
are incomplete and do not contain all the social connections
people have in the real world. Moreover, the social connections
captured in social networks are often ambiguous. In real-world
scenarios, relationships often take many forms; for example,
a person-to-person social connection in an HPSNs could
represent spouse, coworker, acquaintance, etc [14]. However,
most networks do not distinguish among these relationships
and often use a single semantically ambiguous relationship
connectedTo or a few coarse relationships, e.g., friend and
follow, to represent them all [4].

Social networks usually model social connections with a
limited number of ambiguous relationship types because it
is often unfeasible to automatically or even manually dis-
ambiguate these relationships, not only because such a task
is costly but also because the relationship’s granularity and
interpretation are subjective. Throughout the present work we
will reference a simplified example network from LinkedIn
illustrated in Fig. 1 to aid in our discussion. In Fig. 1, the
social connection between Alice and Carol can be either
candidate-recruiter relationship or college friends. A1ice and
Bob, on the other hand, can be either close coworkers or
acquaintances who work at the same company. Moreover, the
social connection between people are transient and evolves
over time, which makes it even harder to disambiguate social
connections. Again take Fig. 1 as an example, Carol and Eve
might be coworkers at some point and later becomes recruiter-
candidate relationship after Eve moves to LinkedIn. Ideally,
an HPSN representation learning model ought to be able to
infer unobserved social connections and distinguish between
different ambiguous social connection types and their social
strengths. Unfortunately, most existing network embedding
models ignore the network incompleteness and the edge het-
erogeneity, and simply assume social networks are complete
and all existing social connections are the same [7]. As a result,
those models will not handle persons with limited number of
social connections well and learn similar representations for
nodes with common social connections regardless the actual
social relationship types and connection strength.

In addition to direct connections, ambiguous social connec-
tions also affect higher-order proximity which is also used to
measure node similarity in representation learning models [6].
An implicit assumption used in these models is that indirect
(i.e., second- or third-order) connections between two nodes
are reliable, but this assumption does not apply when there are

ambiguous social connections with different social strengths.

In fact, because direct social connections do not always

represent the same degree of similarity, the error will cascade

and cause further problems when using higher-order proximity.

Consider again Fig. 1, wherein second-order proximity models

that count common neighbors of, say, Alice and Carol will

be misled by Eve and Bob to believe that Alice and Carol
have similar characteristics.

The presence of ambiguous social connections affects most
network representation models. Higher-order proximity mod-
els [6], [15], [16] overlook this issue and implicitly assume
that network connections are always reliable in all scenarios.
This problem also has a more severe impact on all random
walk-based models [17] because these models optimize node
representations based on a false assumption that nodes con-
nected within k-steps are similar. In response, more recent
network models [8], [18] include text and labels as additional
signals. Although they show promising results by adding more
parameters, they do not get to the root of the ambiguous social
connection problems discussed above.

In the present work, we develop a fast and scalable HPSN
representation learning model called Star2Vec that requires
little human supervision, contains no auxiliary features, and
can run on very large real-world networks.To address the
problems raised above, Star2Vec has the ability to 1) automati-
cally weight social connections and leverage unobserved social
connections based on heterogeneous second-order proximity,
and 2) learn person and non-person entity embeddings jointly
with a node structure expansion mechanism. In summary we
make the following contributions:

o We describe Star2Vec, a scalable model that learns person
and entity representations on very large heterogeneous pro-
fessional social networks,

« We introduce a social connection strength-aware random
walk model to overcome social connection ambiguity and
leverage unobserved social connections without increasing
the number of model parameters,

« We introduce a node-structure expansion model to expand
person node into person-entity structures and learn person
and non-person entity embeddings in the same space,

« We perform extensive experiments on LinkedIn’s Economic
Graph and show the effectiveness of the learned HPSN
representations in a variety of tasks,

« We demonstrate that Star2Vec can be applied to other
heterogeneous social networks by evaluating Star2Vec on
available portions of Facebook.

The following of the work is organized as follows. We
first give formal definitions of the network representation
learning task on HPSNs in Sec. II. Section III gives a detailed
description of the proposed Star2Vec model. Then we present
our evaluation results on LinkedIn and Facebook datasets in
Sec. IV, followed by a discussion of related works in Sec. V.

II. PROBLEM DEFINITION

In this work, we define a heterogeneous professional social
network (HPSN) as a network where both nodes and edges



are labeled [19]. The formal definition of HPSN is as follows

Definition 1. A Heterogeneous Professional Social Network
is a graph G = (V,E, T,R) in which V, E, T, R are nodes,
edges, node types, and edge types respectively. person €
T and R = R, U Reys, where Ry, are person-to-person
edge types and R.,,; are person-to-entity edge types. |T| > 2,
|[Rppi| > 1, and |Rey:| > 1. Each node u is associated with
a type mapping function ¢(-) defined as ¢(u) = Ty, T, €
T. Similarly, each edge e = u — v is associated with a
relationship type mapping function ¢(e) = r,r € R.

Definition 1 defines an HPSN as a social network having
more than one type of node and more than one type of edge.
The main difference between an HPSN and other definitions
of heterogeneous social networks is that instead of modeling
casual social connections, an HPSN focuses on professional
entities and emphasizes professional social relationships. For
example, LinkedIn’s HPSN, call the Economic Graph, contains
person-nodes as well as entities such as skills, titles, schools,
degrees, companies, jobs, and many other professional entities.
As for edge types, besides the main person-to-person social
connections, there also exist professional connections such as
person-worksAt-company, person-knows-skill, etc.

Next, we define the path-based network representation
learning task on HPSNs to contain two sub-tasks: path gener-
ation and path-based network representation learning.

Definition 2. Given an HPSN G, Path Generation constructs
a collection of paths P = {ug ~ w;} as the input to the
network representation learner, where uy ~» u; denotes some
length-I path. The path generation process extends a length-
i path ug ~> wu; to a length-(¢ + 1) path wg ~> w; — u;qq
based on a biased random walk transition scoring function
P(ui,uitr1,G), which determines the probability of walking
from u; to u;y; on graph G with respect to the social
connection strength between u; and w;1.

Definition 3. Given a collection of paths P and an HPSN
G, Path-based Network Representation Learning learns a
W ¢ RIVIX4 node embedding matrix in which d < |V|
that minimizes some loss function £(-) using path set P’ =
{F(p,G)lp € P} s.t. F(-) is some optional post-processing
function.

Recall the primary challenge in learning embeddings on HP-
SNs is generating meaningful paths that carry reliable semantic
meaning [12]. However, in most real-world social networks,
generating such paths becomes more challenging due to the
connection ambiguity of its social connections. As we state
before, heterogeneous social networks like LinkedIn and Face-
book primarily use a coarse person-to-person relationship type
to denote a variety of social connection types including but not
limited to coworkers, friends, acquaintance, and many others.
When learning person and entity representations on those
networks, a model should be able to properly weight such
ambiguous person-to-person social connections so that the
ones carry less relevance signals, i.e., social strength, will play

a less important role compared to other social connections.

Therefore, the main focus here is how to design a biased
transition function P(-) that properly weights ambiguous so-
cial connections in HPSN. So we design the corresponding
post-processing function F(-) to generate high quality paths,
and the loss function £(-) to train the person and non-person
entity representations accordingly.

III. STAR2VEC

In this section, we present Star2Vec and its details in
three parts: (A) its social connection strength-aware, random
walk-based path generation method, (B) its node-structure
expansion-based path augmentation, and (C) its star-structure-
based person and entity representation learning method.

A. Social Connection Strength-aware Biased Random Walk

Models that operate on heterogeneous networks typically
enumerate constrained network paths so that the nodes on the
path conform to a sequence of types [20]. The path constraints
are typically called metapaths, and they are hand-curated by a
human designer. Specific metapaths are meaningful for specific
tasks; a typical example found in the related literature [21] sug-
gests that the path author—paper<«—author, which represents
co-authorship in a bibliographical heterogeneous network, is
important to identify communities of researchers. However,
it is not always clear which metapaths are meaningful for
heterogeneous professional social networks with many node
types, and human curators may miss important information or
introduce bias into the model. Moreover, the social connection
ambiguity nature of HPSNs and many social networks makes
manually composing reliable metapath even harder. In fact our
results in Sec. IV show that on networks with ambiguous social
connections, such as LinkedIn and Facebook, representations
learned from “intuitive” metapaths are even worse than the
ones learned from homogeneous models.

As we discussed above, social connections in HPSNs are
oftentimes ambiguous and have different connection strengths,
which makes it almost impossible to design reliable metapaths
for representation learning. To better model such ambiguous
social connections in HPSNs and general social networks, one
natural approach is to label each social connection with its true
relationship type. However, this labelling task is problematic
for two reasons. First, without sufficient signals beyond the
connection itself, the interpretation of a social connection can
be subjective. Second, the social connection between people
evolves over time.

Luckily, if an HPSN model can treat each social connection
differently based on its connection strength, then we no longer
need to disambiguate each person-to-person edge manually.
Moreover, by modeling the connection strength between two
persons, the model can even discover and leverage unobserved
social connections. Recall that the result of ambiguous social
connections is that different person-to-person edges with dif-
ferent social strengths are grouped into the same edge type
and treated equally. If we can properly model the connection
strength based on the network context, then we can weight
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Fig. 2. Path generation and embedding learning example of Star2Vec. Star2Vec first generates a length-2 person path using P, then expands the path into stars
of size ks = 2 using F, and finally optimizes the network representation of Bob using a structure-based skip-gram with window size k., = 5. Comparing to
traditional path-based skip-gram models show at the top of the figure, Star2Vec uses social connection strength-aware random walk and therefore can walk
on social connections with high strength (Alice-Bob) and unobserved but highly similar persons (Bob-Dan). Star2Vec is also likely to optimize nodes with
semantically similar person and entity neighbors because of its node-structure expansion function.

social connections using their connection strengths and reduce
the importance of social connections such as neighbors and
friends which represent ambiguous relationships.

To estimate the strength of social connections, we need
to first identify useful network context that can help model
the social connection. According to Def. 1, we separate the
nodes in HPSNs into two groups, person-type nodes and non-
person-type entity nodes. Although person nodes are the same
and person-to-person connections are often ambiguous across
different social networks, non-person entity types and person-
to-entity connections usually represent the special interests of
each social network and therefore are reliable and have consis-
tent semantic meanings within the same relationship type. For
example, unambiguous person-to-entity relationships on Face-
book include person-to-political preference and person-likes-
post, whereas on LinkedIn, unambiguous professional person-
to-entity relationships such as person-knows-skill, person-has-
title, person-worksAt-company, etc.

Based on this observation, we assume that edges between
person and non-person entity nodes (also called attribute
nodes) are often unambiguous, because they represent the
characteristics of the person nodes. With this assumption, next
we will discuss how to estimate the strength of social connec-
tions using other unambiguous person-to-entity relationships.

Consider the example illustrated in Fig. 1, where the so-
cial connection Alice-to-Bob is an ambiguous person-to-
person connection and its reliability is hard to determine
by simply examining a single edge. By looking at other

alternative, unambiguous person-to-entity connections among

. ks At
Alice and Bob, for example person ———"s company

and person M skill, we know Alice-Bob is a stronger
social connection than Alice-Carol because Alice and
Bob are more structurally similar because they are both
indirectly connected via many unambiguous person-to-entity
paths. Hence, we can estimate the connection strength of such
person-to-person edges by modeling unambiguous alternative
person-to-entity paths between two nodes. Here we formally
define the social connection strength as follows

Definition 4. Given an HPSN G and a social connection
edge u - v between two person nodes v and v, the social
connection strength of v = v is defined by some support
function S(u,r,v,G) that measures the structural similarity

between u and v with respect to some social connection
relationship 7.

To model the structural similarity between nodes using
alternative unambiguous connections between two person with
respect to some social relationship r, we borrow the concept
of second-order proximity from LINE [6] and define the
support function S of some social connection u — v as their
heterogeneous second-order proximity.

I(z,v
ZIEN(%DT) deg(z,¢(v))

, 1
N (u,D,)| M

S(U, U, g) =

where r € Ry, the relationship dependent neighbor set
N(u,D,) = {z|¢(x) € D,,(u,z) € E} represents the
neighbors z of person u with node type ¢(z) € Dy, I(x,v) is
an indicator function testing (x,v) € E, and deg(z, t) returns
the number of type-t nodes that = connects to. One can also
view Eq. 1 as a function measuring the heterogeneous second-
order proximity based on the probability that « can reach v in
two steps using only nodes within a given dependency type set
D,.. Note that one can also use Eq. 1 to measure the connection
strength of some unobserved social connection u — v. When
D, = T holds for all » € R, then Eq. 1 degenerates to a
homogeneous higher-order proximity scoring function [6].

To generate dependency set D, with respect to social
connection relationship r, one could first collect some o
examples, or use association rule mining [22], or predicate
path mining [23] to discover associated length-2 paths, and
then extract all intermediate non-person node types to con-
struct D,.. For example, in LinkedIn network, the dependency-
set of a simple person-to-person connection is Diopnect =
{title, skill}, which defines the social connection strength of
mutual connections by their common titles and skills. D,
can also be manually defined, e.g., the dependency set of
LinkedIn’s follower-influencer social relationship D 1100 =
{member, industry} if we are interested in modeling the con-
nection strength based on influencer popularity among their
followers’ social circle and common industry experience.

In Eq. 1 we limit the order of the proximity to 2 to simplify
the computation, but it can be easily extended to higher-orders
by modeling paths instead of neighboring nodes.

With Eq. 1, we define the epsilon-greedy style social con-
nection strength-aware transition function P that determines
the transition score from person u; to person u;4; as
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walk on existing social connections (2)
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walk on unobserved social connections

where the relationship set Ry, 4, ,) contains all relationships
7k that connect u; and w;11 in G, r is some person-to-person
relationship type from R,,;, which is defined in the HPSN
G, and « is some jump probability that allows the model to
walk on unobserved but highly possible social connections
between highly similar nodes measured by S. To reduce the
computational complexity on enumerating all possible ;4 1,
we limit u; 1 to person-type nodes that can be reached from
person u; within two steps.

Equation 2 addresses the problem of ambiguous social
connections by calculating the social connection strength of
person-to-person edges to avoid walking over ambiguous
social connections that do not contribute to the professional
similarity, such as Alice—Carol in Fig. 1. Moreover, by
considering the transition score between highly similar but not
directly connected persons (second term in Eq. 2), the model
will also generate social connection paths that are not directly
observed. For example, Alice—Bob could be extended to
Alice—Bob—Dan using P even though two structurally
similar nodes Bob and Dan are not directly connected.

Note that the random walker used in previous works [5],
[17] is a special case of Eq. 2, where « = 0, u, € V, |R| =1,
and S(u,7,v,G) = ﬁ

B. Node-structure Expansion

In the previous section we described a social connection
strength-aware random walk that generates paths using ob-
served and unobserved social connections with high connec-
tion strengths defined by Eq. 1. However, due to the lack of
non-person entities in the generated paths, this method cannot
learn person and entity embeddings jointly. If we explicitly
generate additional paths by specifying certain metapaths, e.g.,
person-skill-person or person-title-person, then the represen-
tations of each entity type is likely to be trained disjoint-
edly, which would produce incomparable node representations
across different node types. Such an approach may yield good
results in a node-type clustering visualization, but cannot be
used for cross-type inference, such as suggesting skills to
members, finding related skills given a title or find important
companies at some location, etc.

To remedy this issue and learn person and entity embed-
dings in the same semantic space so different type of entities
can be compared directly, we apply an extra node-structure
expansion post-processing function F on the path set P to
generate an expanded, diversified person-entity structure (i.e.,
a star) path set P’ to increase the entity-type coverage in P and
appropriately capture higher-order heterogeneous proximity in
the model.

To describe F, first recall that network representation
learning models inspired by Word2Vec view the nodes and
paths as words and sentences respectively, and learn node
representations by maximizing the similarity between a node
in some path and its surrounding nodes.

In Star2Vec, we extend this idea by replacing the single
person w in the path with a star-structure s(u) containing kg
neighbors of u with u as the star’s center. To continue the
analogy, s(u) essentially becomes a “phrase” in the overall
sentence, and we use nodes in nearby phrases to update
the representation of nodes in s(u). By doing so, we can
increase the context node similarity and diversity within a
given window size comparing to other models. In Fig. 2 we
illustrate this node expansion using a length-2 path generated
by P and expanding each node w in the path to s(u) with a
star size ks = 2. Here we define F as F(p,G) — {s(u1) —
= s(wy)|u; € p}, s(u) = {u} U{vi|vg ~ Pr(vi|u,G),v; €
N(u,T)} , |s(w)] = ks + 1, and Pr(v|u,7,G) is some
disproportionate stratified sampling probability defined as

@)

Pr(v|u, 7, G) IN(u, {p() D]’

3

where m € RITl is the parameter of ¢ ~ Multi(t|7), 7¢(*)
denotes the probability of selecting node type ¢(v). 7 can be
approximated by the confidence score of ¢(u;) ~» ¢(u;y1) via
T; for T; € T using AMIE [22] or some simple distributions
such as uniform distribution. |N (u, {¢(v)})| is the number of
¢(v) typed-nodes that connect to wu.

C. Structure-based Skip-gram

After we construct the star-structured paths P’, next we
discuss how to learn person and entity embeddings using
P’. In a standard random walk-based network representation
learning setting, the objective is often defined as

arg meaxz Z log(Pr(clu; 0)), 4)

u€V ceC(u)

where c is the context node of w defined by C'(u), which is
usually the neighbor of v in a random walk path p within a
window size k,,. Here we can not apply this objective directly
to the proposed Star2Vec model because it is unclear about
how to generate context nodes for v from star-shaped structure
paths s(up) ~ s(u;) instead of simple node paths uq ~> ;.

So, we first define k), = [ky/ks] that represents the
smallest star window size that covers at least k,, nodes. The
context nodes of u within a star window of size k!, on
s(up) ~ s(u;) is then defined as

"
KL

7,+2

U s(u)\ {u},u € s(u), )

in which s(u;) is the star-shaped structure centered at u; and
VP is the superset of the context nodes of w in path p. We
then extract k,, context nodes for u € s(u;) by randomly
sampling from VP and rewrite the objective as



TABLE I
EVALUATION DATASETS USED IN THIS WORK.
Dataset  #Nodes #Members #NodeType #Edges
Facebook 6,319 4,039 29 127,777
LinkedIn-60k  ~ 60K ~ 14K 10 > 500K
LinkedIn-44M  ~ 44M ~ 40M 10 > 6B

ko
arg mgaxgp;/ ;Eciwumf(vcu,p> log(Pr(c;|u; ),  (6)
where the conditional probability Pr(c|u; ) is actually the
log-normalized score of the embedding inner product de-
fined as exp(W,. - W)/ | exp(W, - W), in which
W ¢ RIVI*4 i the embedding matrix. We combine a negative
sampling function with Eq. 6 to define the loss function

kaw
L= Z Z ZECiNUnif(VC“’*”) <log(a(Wci -WIY)

uEZ];EP i (7)
+ ) By, wpist(u) log(o(— W, - W ))>,
J

in which o(z) = 1/(1 4 exp(—x)), Dist(u) is some negative
sampling distribution, kn, and k,, are the number of negative
samples and context window size respectively. We follow the
convention of previous works [24] and use stochastic gradient
descent with back propagation to optimize Eq. 7.

Training time complexity of Star2Vec is O(V') which is the
same as homogeneous network embedding models [5], [7] and
lower than rich feature models” O(V?) [8].

IV. EXPERIMENTS

We compare Star2Vec to other representation learning mod-
els on LinkedIn’s Economic Graph and a public available sub-
set of Facebook using a variety of tasks including industry and
social circle classification, skill / title clustering, and member-
entity link predictions. We also conduct extensive case studies
to demonstrate the possibilities of using the representations
learned from Star2Vec to solve real-world tasks LinkedIn is
facing such as skill recommendation, career suggestion, and
general entity retrieval on the LinkedIn’s Economic Graph.

A. Datasets

We consider LinkedIn as a heterogeneous professional so-
cial network and Facebook as a general-purpose heterogeneous
social networks with different focus on the social connections
and entity types. Table I shows a summary of the three
datasets. LinkedIn-60k and LinkedIn-44M are two subsets of
LinkedIn’s Economic Graph and Facebook is derived from
Facebook-egonet [25].

B. Experiment Setup

We compared Star2Vec with node embedding methods and
knowledge graph completion methods. Other matrix factor-
ization methods as well as rich-feature methods could not be

compared because of their high time complexity or the lack
of certain features. We use the best performing parameters
reported in each work for all tasks on the Facebook and
LinkedIn-60k. On the LinkedIn-44M network we limited the
embedding size to 64 and only generate 10 length-100 paths
per entity node for all node embedding models in order to
manage the memory and disk consumption. We generated
metapaths for the Metapath2Vec model by enumerating all
length-2 person to entity metapaths as suggested in the original
work. As in prior work, all networks are treated as undirected
graphs to avoid creating random walk sinks.

On the LinkedIn datasets, we set the dependency set of
person-to-person connection as Deopnectro = { title, skill,
company, school }. On the Facebook dataset, D opnectTo CON-
tains all non-person entity types. We set 7¢(*) to be a uniform
distribution for all datasets. As for other hyper-parameters,
we conduct a hyper-parameter test for the proposed Star2Vec
model and report the results at the end of this section. We
were unable to gather results of LINE and knowledge graph
completion models on LinkedIn-44M due to scaling issues.
The model was trained on a single machine with 48 cores,
and it took 9 hours to converge on the LinkedIn-44M dataset.

C. Multi-class and Multi-label Classification

First we explore the effectiveness of Star2Vec on multi-class
and multi-label classifications. In both cases we use external
labels with at least 10 members and train logistic regression
models on top of the learned embeddings to perform the
prediction. We vary the training size from 5% to 90% using
a stratified split w.r.t each class and treat the remaining data
as testing set. We repeat each experiment setting 10 times and
report the average Macro-F1 and Micro-F1 scores.

We perform the multi-class classification by predicting a
persons’ self-reported industry on LinkedIn because each
person has exact one label. Similarly, we perform multi-label
classification task on Facebook where social circles are used
as labels. Note that users may belong to multiple social circles
so a single user can have multiple labels.

The classification results of LinkedIn-60k and LinkedIn-
44M are shown in Tab. II and Tab. IV. Due to memory
limitation and high time complexity, we are not able to com-
pare LINE and Knowledge Graph Completion based models
on the LinkedIn-44M dataset. On both networks Star2Vec
outperformed other models on Macro-F1 by up to 37.8% and
up to 10.2% on Micro-F1. Interestingly, the improvement was
more significant on the large-scale LinkedIn-44M network.
We believe the difference in improvement is because the
smaller LinkedIn-60k network is well-curated so that the
network is more complete and the number of ambiguous
social connections is limited. The large improvement on the
less-curated LinkedIn-44M network indicates that Star2Vec is
robust on networks with ambiguous social connections due to
its social connection strength-aware random walk.

The results of the multi-label classification task on the
Facebook network are shown in Tab. III. We find that Star2Vec
works well especially when the amount of training data is



TABLE II
PERSON-TO-INDUSTRY CLASSIFICATION ON LINKEDIN-60K.

Training Set %

Metric  Model 5% 0% 20% 30% 10% 50% 60% 0% 80% 90%
Metapath2Vec ~ 0.0733  0.1060  0.1201  0.1491  0.1587  0.1658  0.1747  0.1746  0.1794  0.1811
LINE (1+2) ~ 0.0191 0.0199 0.0218 0.0234 0.0248 00261 0.0270 0.0282  0.0286  0.0302
Macro-FI  DeepWalk 0.1105 0.1381 0.1558 0.1724  0.1825 0.1890  0.1916  0.1963  0.1977  0.1945
Node2Vec 00504  0.0888  0.1251  0.1457  0.1648  0.1759  0.1864  0.1954  0.1981  0.1961
TransE 0.0240  0.0274  0.0358  0.0436  0.0491 _ 0.0537  0.0556 _ 0.0582  0.0592  0.0596
TransR 0.0245 0.0281  0.0375 0.0461  0.0521  0.0567  0.0599  0.0615  0.0649  0.0640
ProjE 00677  0.0889  0.1065  0.1225  0.1300  0.1373  0.1429  0.1472  0.1503  0.1415
Star2Vec 0.0943 0.1334 0.1617 0.1802 0.1902 0.1979 0.2056 0.2113 0.2131 0.2149
Metapath2Vec ~ 0.4888  0.5076  0.5215  0.5305  0.5336  0.5355  0.5390  0.5387  0.5421  0.5411
LINE (142) 04422 04477 04515 04543 04578 04603  0.4618  0.4654  0.4664  0.4675
Micro-F1 ~ DeepWalk 04990 05158  0.5258  0.5302  0.5364 0.5373  0.5373  0.5391  0.5434  0.5432
Node2Vec 04621 04919  0.5140  0.5246  0.5316  0.5330  0.5357  0.5399  0.5434  0.5402
TransE 04567 04648 04773 04845 04862 0.4902 04914  0.4937  0.4961  0.4949
TransR 04619  0.4700 04834  0.4903 04940  0.4964  0.4991  0.4999  0.5033  0.5068
ProjE 04108  0.4339  0.46290 04811  0.4882  0.4971  0.5028  0.5077 _ 0.5104 _ 0.5118
Star2Vec 05038 0.5197 05317 0.5368 05410 05436 0.5434 05466 0.5505 0.5500
TABLE III
PERSON-TO-SOCIAL CIRCLE CLASSIFICATION ON FACEBOOK.
Training Set %
Metric  Model 5% 0% 20% 30% 10% 50% 60% 0% 80% 90%
Metapath2Vec ~ 0.0504  0.0958  0.1338  0.1690  0.1960  0.2167  0.2414  0.2603  0.2666  0.2426
LINE (142) 01240 0.1697 0.2338  0.2616 0.2951  0.3143  0.3302 0.3509  0.3507  0.3371
Macro-F1  DeepWalk 02510  0.3249 0.4106 0.4509 04875 0.5048  0.5160  0.5250  0.5137  0.5019
Node2Vec 00517  0.1129  0.1949  0.2395 02703  0.2833  0.3053  0.3190  0.3292  0.3351
TransE 0.0755  0.1175  0.1580  0.1960  0.2117  0.2305  0.2443  0.2618  0.2746 _ 0.2830
TransR 00778  0.1197 0.1625 0.1982 02178  0.2393  0.2586 02772  0.2848  0.2885
ProjE 0.3102  0.3336  0.3620  0.3669  0.3663  0.3659  0.3598  0.3595  0.3603  0.3507
Star2Vec 0.1495 02390 0.3943 0.5055 0.5687 0.6210 0.6588 0.6866 0.6977 06135
Metapath2Vec  0.2233  0.3346  0.4139  0.4434 04746 04899  0.5050  0.5251  0.5296  0.5305
LINE (1+2) 04683 0.5292  0.6038  0.6240  0.6499  0.6579  0.6693  0.6934  0.6990  0.6958
Micro-FI ~ DeepWalk 0.6319 0.6947 0.7422 0.7659 0.7811  0.7899  0.7984  0.7994  0.8000  0.8070
Node2Vec 02490  0.4593  0.6146  0.6660  0.6962  0.7051  0.7207  0.7268  0.7392  0.7411
TransE 04176 04705 0.5144 0.5456 05548  0.5655  0.5680 05727 0.5791  0.5834
TransR 04198 04714 05163  0.5454  0.5564  0.5668  0.5723  0.5776  0.5818  0.5845
ProjE 05290  0.5389  0.5421  0.5363  0.5333  0.5281  0.5282  0.5215  0.5290  0.5243
Star2Vec 04435 05903 0.7145 0.7769 0.8101 0.8307 0.8511 0.8583 0.8661 0.8760
TABLE IV
PERSON-TO-INDUSTRY CLASSIFICATION ON LINKEDIN-44M.
Training Set %
Metric  Model 5% 0% 20% 30% 0% 50% 60% 0% 80% 90%
Metapath2Vec ~ 0.1688  0.1912  0.2097  0.2195  0.2246  0.2285  0.2315  0.2325  0.2343  0.2354
Macropy | DeepWalk 01820  0.2069  0.2250  0.2347  0.2410  0.2467  0.2481  0.2489  0.2526  0.2517
Node2Vec 01943  0.2218  0.2437  0.2539  0.2606  0.2658  0.2683  0.2691  0.2707 _ 0.2692
StarzVec 02421 0.2685 0.2908 03012 0.3067 0.3108 03122 0.3153 0.3170 0.3172
Metapath2Vec ~ 0.4101  0.4280  0.4419  0.4473 04502 04516 0.4540 04548  0.4564  0.4558
Microp  DeepWalk 04113 04284 04394  0.4445 04476 04501  0.4508 04514  0.4519  0.4508
Node2Vec 04259  0.4434  0.4555  0.4607  0.4637  0.4664  0.4671  0.4678  0.4694  0.4674
Star2Vec 04783 04919 0.5019 05069 0.5080 0.5101 05114 0.5122 05140 0.5151
greater than 30%. This improvement indicates that Star2Vec is =
. -
able to learn person embeddings that better capture a person’s é 30% | & Macro-F1 30% | & Macro-F1
characteristics by modeling non-person entities with people ¢ Micro-F1 Micro-F1
« . . . . o L il L i
jointly using the node-structure expansion function. g 20% 20%
Because many social networks are incomplete and follow a ' 10% | ] 10% | ]
power-law degree distribution, the ability of handling poorly — § 0% 0%
. . . . ._I' 0 - - ,‘ - 0 - - - -
connected nodes with many unobserved social connections is & 0 20 40 60 80 100 0 20 40 60 80 100
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a crucial factor for an HPSN representation learning model.
To better understand Star2Vec’s ability to learn embeddings
for nodes with limited connectivity, we further group the
person-nodes in LinkedIn-44M by their degree and plot the F1

Fig. 3. Classification improvement stratified by degree percentile (in ascend-
ing order) on LinkedIn-44M. Percentage is based on second best model.

improvement over the second-best performing model stratified
by the degree percentile in Fig. 3. These results clearly demon-
strates that Star2Vec works better than the best performing

model especially on nodes with low connectivity (left-hand
side of plots). This indicates Star2Vec’s social connection-
strength based path generation can implicitly increase the



TABLE V
TOP-3 SIMILARITY RESULTS OF PROVIDED QUERIES ON LINKEDIN-44M.

(Query, target node type) |

Top-3 Results

(Software Deyv, title)

(Software Dev 4+ KDB, title)

(Sr. Audit Accountant, fitle)

(Sr. Accountant Audit — Member of AICPA, title)
(FBI, skill)

(Medical Research, region)

(Deloitte, Title)

(Deep Learning, skill)

Junior Software Engineer
Quantitative Dev
Supervising Sr. Accountant

Counterintelligence
Iowa City, Iowa Area
Sr. Advisory Consultant
Machine Learning

0NN W RN =

TABLE VI
ADJUSTED MUTUAL INFORMATION (AMI) SCORE OF NODE CLUSTERING
RESULTS ON LINKEDIN-44M.
skill-to-domain

person-to-industry  title-to-specialty

Metapath2Vec 0.5965 0.1105 0.3878
DeepWalk 0.5918 0.1689 0.3663
Node2Vec 0.5969 0.1633 0.3850

Star2Vec 0.5992 0.3294 0.4200

connectivity of nodes with few connections, and therefore
learn better representations compared to other methods.

D. Node Clustering

Next, we performed three node clustering tasks on the
LinkedIn-44M network. We compare models on the Adjusted
Mutual Information (AMI) [26]. For these clustering tasks, we
used the trained node embeddings as input and assigned nodes
to clusters using k-means. The cluster labels used in each
task are summarized as follows: 1) in the skill-to-domain task
we assigned each skill to a single hand-curated domain, e.g.,
Java and Python are assigned to Computing; 2) the
person-to-industry task uses the same label as described in the
classification task; and 3) the title-to-specialty task divides job
titles by induced specialties, e.g., Junior Java Dev would
belong to Software Developer. In each task, the number
of clusters k is set to equal the number of labels observed in
the network. We present the results in Tab. VL.

We find that Star2Vec performs well on these tasks. How-
ever, the performance boost is most pronounced the person-
to-industry task. This performance boost is due to differences
in the connectivity patterns between person and non-person
entity nodes. Recall that in HPSNs ambiguous connections
are mostly person-to-person social connections, which means
person nodes are more vulnerable to ambiguity because, in
prior models, their representations were mainly defined by
their peers. On the other hand, entity nodes such as skill and
title are less likely to be affected because they usually have a
robust second-order connectivity pattern, i.e., a skill and a title
are likely to be similar if they connect to the same person.

This also explains why Metapath2Vec works well on some
clustering tasks, but not others. Under these conditions, metap-
aths such as person-entity-person tend to decouple entity node
types from each other during training. This decoupling leads
to poor person embeddings and poor clustering performance.

E. Link Prediction

In addition to the classification and clustering tasks, we also
evaluate Star2Vec on multiple person-entity link prediction

SVP Marketing Business Development

Software Dev Contractor

Front Office Dev

Audit Staff Accountant

SVP Human Resources Administration
Cybercrime Investigation

Gainesville, Florida Area

Sr. Associate Advisory

Neural Networks

Software Dev Team Lead

Financial Software Dev

Audit Sr.

SVP Strategy Business Development
Federal Law Enforcement
Washington D.C. Metro Area

Sr. Manager Advisory Services
Atrtificial Neural Networks

TABLE VII
AUROC SCORE OF LINK PREDICTION ON LINKEDIN-44M.
person-region

person-industry  person-skill

Metapath2Vec 0.5097 0.5189 0.5356
DeepWalk 0.5034 0.5034 0.5489
Node2Vec 0.5013 0.5080 0.5605
Star2Vec 0.6370 0.5840 0.7175

tasks. Here we use 70% of the data for training, 5% for
validation, and evaluate the model performance on the remain-
ing 25% with the same amount of negative edges, which is
generated by replacing a node on an existing edge with an
incorrect random node of the same type. This strategy results
in a more difficult but more realistic link prediction problem
comparing to previous settings [7]. To speed up the evaluation
on the LinkedIn-44M dataset, we sampled 50,000 edges at
random from 1 billion testing edges.

The area under the ROC (AUROC) score of link prediction
tasks are shown in Tab. VII. These consistent performance im-
provements indicate the proposed model can learn embeddings
that better captures the semantic meaning of nodes.

F. Case Studies

In addition to the applications that can be formed into
standard network analysis tasks, we are also interested in
applying the learned representations to other practical cases
and to gain insights from the HPSN. In this section, we
demonstrate how to employ the learned Star2Vec embeddings
to solve interesting entity retrieval tasks. We built a nearest
neighbor model that takes, as input, a query vector and a target
node type, and returns the top-k nearest nodes (in terms of
cosine similarity). The top-3 results of 8 example queries are
shown in Tab. V. Note that there are no direct relationships
between any of these query objects.

Next Career Move. The title of a person typically depends
on their skill set and experience. Thus, learning new skills
could potentially lead to new opportunities. To capture such
a change, we combine the vector of a person’s current title
with their most recent skill and suggest titles based on the
combined representation [27]. In Tab. V, we see that after a
software developer learns a new skill KDB, which is a
financial database, the job recommendation shifts from general
software development to jobs in the financial sector.

Alternative Career Suggestion. Oftentimes, individuals may
be interested in a particular job title, but do not possess the
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Fig. 4. Parameter sensitivity test for classification and clustering tasks on LinkedIn-44M.

necessary skill set. In this case, we may wish to show the alter-
native job titles that do not require certain skills. We achieve
this goal by subtracting the missing skill from the title’s
representation. Tab. V shows alternative job recommendations
for senior audit accountant without requiring a CPA
license. Note that the returned alternative jobs also preserves
the seniority of the given job title.

General Similarity Search. The learned representations can
also perform general similarity searches between arbitrary
nodes regardless of node types. These searches can be used
to infer relationships that are absent from the graph. These
inferred relationships allow members to gain valuable insights
to better their place in the network.

G. Hyper-parameter Sensitivity

Here we study the hyper-parameter sensitivity of Star2Vec
and report the relationship between Star2Vec performance as
a function of its various hyper-parameters. These include the
window size k., the node embedding size d, the star size kj,
the random walk length [, the number of walks per node w,
and the jump probability «. The hyper-parameter sensitivity
results on two tasks are illustrated in Fig. 4. We find that the
performance of Star2Vec is stable and largely insensitive to
most of the hyper-parameters. The primary exception is, as
excepted, the embedding size d. Another particularly interest-
ing finding is that the model’s performance remains largely
unchanged when kg or k,, is changed. This demonstrates that
training with long, reliable simple paths can achieve results
similar to models trained with shorter, star-structured paths
covering the same number of nodes.

V. RELATED WORK

A variety of Representation Learning (RL) models have
been developed to learn network embeddings in recent years.
Here we group them by their inputs.

Homogeneous  Network  Embedding. Inspired by
Word2Vec [28], a number of random walk-based RL
models have been proposed [5], [7], [29]. Just as Word2Vec
updates each word embedding to match those within the
same sentence, these models update each node-embedding to

match its neighboring nodes on truncated random walk paths.
LINE [6] and HOPE [30] take a different approach and learn
node-embeddings through matrix factorization-like objectives.
SNDE [15], on the other hand, uses an auto-encoder to
learn node-embeddings from second-order proximity data.
MVE [31] separates a network into multiple views and learn
node representations using attention. CTDNE [29] uses a
temporal random walk method to consider the temporal
neighborhood. Despite their differences, these models only
use un-typed topological information and therefore miss the
rich information encoded in the node types.

Network Embedding with Rich Features. To address the
limitations that accompany homogeneous network embedding,
several models have been proposed to augment the network
in order to generate better network representations. LANE [8]
uses an auxiliary attribute network and node labels to learn
node embeddings jointly. SNE [13], on the other hand, encode
attributes into embeddings and utilizes MLP to learn node
representations. TriDNR [18] uses two skip-gram models to
jointly train node embeddings from a node’s content and
neighbors. Although these methods have shown promising
results by augmenting the graph with additional features, they
either have a high O(V2) time complexity or require additional
features which may not be available in all networks. More-
over, these models were evaluated on limited sized networks,
which is not applicable to real-world online networks, such as
Economic Graph’s million-node scale. Recently, RGCN [32]
studies learning robust network embeddings against small
deliberate perturbations in graph structures, but it does not
address how to handle existing ambiguous social connections
that appear in many real-world social networks.

Heterogeneous Network Embedding. Metapath2Vec [12]
is a graph embedding model that guides the random walk
with human-curated metapaths over HINs. Other models have
extended this idea into meta-graph walks [33], [34]. How-
ever, the problem of generating informative metapaths is still
unclear. ImVerde designed a vertex-diminished random walk
method to boost the probability of visiting nodes from the
same class [35]. This approach can better separate nodes
from different classes but will penalize inter-class related-



ness. Knowledge Graph Completion methods [36]-[40] can
be viewed as heterogeneous embedding models, but they are
explicitly designed for link prediction and are not well suited
for node classification and clustering tasks, especially when
the relationship type is absent.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a heterogeneous professional
social network representation learning model that 1) addresses
the ambiguous social connection and incomplete network
problem by designing a social connection strength-aware
random walk method without introducing additional model
parameters, and 2) utilizes rich entity types to learn person
and entity embeddings jointly with a node-structure expansion
function. Star2Vec outperforms existing models on three het-
erogeneous social network datasets across different scales and
tasks, which highlights the necessity to rectify ambiguous so-
cial connections in heterogeneous social networks, leveraging
unobserved social connections, and modeling person and entity
embeddings jointly. We also conducted extensive case studies
to demonstrate how to use these embeddings to discover
professional insights and power other recommendation tasks.

As for future work, we will incorporate rich contextual
features into Star2Vec in a scalable way. Another interesting
extension would be to further improve the model’s ability to
estimate the social connection strength.
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