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Abstract—One of the principal goals of graph modeling is
to capture the building blocks of network data in order to
study various physical and natural phenomena. Recent work
at the intersection of formal language theory and graph theory
has explored the use of graph grammars for graph modeling.
However, existing graph grammar formalisms, like Hyperedge
Replacement Grammars, can only operate on small tree-like
graphs. The present work relaxes this restriction by revising a
different graph grammar formalism called Vertex Replacement
Grammars (VRGs). We show that a variant of the VRG called
Clustering-based Node Replacement Grammar (CNRG) can be
efficiently extracted from many hierarchical clusterings of a
graph. We show that CNRGs encode a succinct model of the
graph, yet faithfully preserves the structure of the original graph.
In experiments on large real-world datasets, we show that graphs
generated from the CNRG model exhibit a diverse range of
properties that are similar to those found in the original networks.

Index Terms—vertex replacement grammar, graph model,
graph generators

I. INTRODUCTION

We consider the task of identifying the informative and
interesting patterns found in graphs. Because of their ability
to represent natural phenomena, graphs have been studied
extensively in various computing and scientific scenarios.
Arguably the most prescient task in the study of graphs
is the identification, extraction, and representation of the
small substructures that, in aggregate, describe the underlying
phenomenon encoded by the graph. These extracted models
contain the LEGO-like building blocks of real-world graphs,
and their overarching goal is to enable in-depth scientific
analysis and make predictions about the data.

Because of the prevalence of relevant data and the im-
portance of this line of inquiry, there exists a large body
of prior work in graph mining. Rooted in data mining and
knowledge discovery, subgraph mining methods have been
developed to identify frequently occurring subgraphs [12, 17].
Unfortunately, these early methods have a so-called “combina-
torial explosion” problem [45] wherein the search space grows
exponentially with the pattern size. This causes computational
headaches and can also return a massive result set that hinders
real-world applicability. Recent work that heuristically mines
graphs for prominent or representative subgraphs have been
developed in response, but are still limited by their choice of

heuristic [48, 34, 28, 43]. Alternatively, researchers character-
ize a network by counting small subgraphs called graphlets and
therefore forfeit any chance of finding larger, more interesting
structures[37, 30, 3].

Graph generators, like frequent subgraph mining, also find
distinguishing characteristics of networks, but go one step
further by generating new graphs that “look like” the original
graph(s). What a graph looks like includes local graph proper-
ties like the counts of frequent subgraphs, but can also include
global graph properties like the degree distribution, clustering
coefficient, diameter, and assortativity metrics among many
others. Early graph generators had parameters that could be
tuned to generate graphs with specific desirable properties. Ad-
ditional work in exponential random graphs [40], Kronecker
graphs [26, 7], Chung-Lu graphs [8], Stochastic Block Models
(SBMs) [18], and their many derivatives [36, 31, 4, 32, 21]
create a model from some example graph in order to generate a
new graph that has many of the same properties as the original
graph.

These graph models look for small pre-defined patterns or
frequently reoccurring patterns, even though interesting and
useful information may be hidden in latent and infrequent
patterns. Principled strategies for extracting these complex
patterns are needed to discover the precise mechanisms that
govern network structure and growth.

Recent advances in neural networks have produced graph
generators based on recurrent neural networks [49], variational
autoencoders [42], and generative adversarial networks [6]
each of which have their advantages and disadvantages, which
we explore later. Generally speaking, these neural network
models are excellent at generating faithful graphs but struggle
to provide a descriptive (i.e., explainable) model from which
in-depth scientific or data analysis can be performed.

The present work describes CNRG: a Clustering-based
Node Replacement Grammar (pronounced: ”synergy“) a vari-
ant of a vertex replacement grammar (VRG), which contains
graphical rewriting rules that can match and replace graph
fragments similar to how a context-free grammar (CFG)
rewrites characters in a string. These graph fragments represent
a succinct description of the building blocks of the network,
and the rewiring rules of the CNRG describe the instructions
about how the graph is pieced together.

Prior work has investigated the relationship between graph



theory and formal language theory by extracting Hyperedge
Replacement Grammars (HRGs) from the tree decomposition
of a graph [1]. The HRG framework can extract patterns from
small samples of the graph and can generate networks that
have properties that match those of the original graph [2].
In their typical use-case, HRGs are used to represent and
generate graph patterns through hyperedge rewriting rules,
where a nonterminal edge in the graph is matched with a left-
hand-side (LHS) rule in the HRG and replaced with its corre-
sponding right-hand-side (RHS). The composition of an HRG-
rule is entirely dependent on the graph’s tree decomposition.
Unfortunately, finding an optimal tree decomposition is both
NP-complete and non-unique. Heuristic tree decomposition
algorithms exist but still do not scale to even moderately sized
graphs. Furthermore, non-tree like graphs (i.e., graphs with
high treewidth) will produce large, clunky grammar rules that
are difficult to interpret.

Like HRGs, VRGs have previously been used to model
graph processes and generate graphs. Rather than replac-
ing nonterminal (hyper)edges with RHS-subgraphs, a VRG
replaces vertices with RHS-subgraphs. VRGs represent an
interesting complement to HRGs, but there currently does not
exist a means by which to extract a VRG from a graph auto-
matically. Instead, graph modelers must craft these grammars
by hand, which is a time-consuming process and introduces
human bias into the process. We desire an automatic, scalable,
and interpretable extraction algorithm that compactly models
the various structures found in the graph.

The present work describes such an algorithm1 that auto-
matically extracts a CNRG from any graph. Critically, the
extraction algorithm does not require a tree decomposition.
This permits the extractor to be both scalable and immune to
problems arising with non-treelike graphs. The output of the
CNRG extractor is a graph model with CFG-like production
rules. We show that the graph model is able to compress the
graph better than state-of-the-art graph summarization models
and generate graphs more faithfully than many state-of-the-art
graph generation methods.

II. PRELIMINARIES

We begin with a short introduction to the graph grammar
formalism and define important terms that are used throughout
the remainder of the present work.
Labeled multigraphs. A labeled multigraph is a 4-tuple
H = 〈V, E, κ, L〉 where V is the set of vertices; E ⊆ V ×V
is the set of edges; κ : E 7→ Z+ is a function assigning
multiplicity to edges; L is the set of labels on nodes and edges.
By default, each edge has a multiplicity value of 1. Although
the CNRG model can be used for directed graphs, the present
work treats all graphs as undirected for clarity of prose and
illustration. We use the terms node and vertex interchangeably
in the present work.
Clustering-based Node Replacement Grammars (CNRGs).
A CNRG is a 4-tuple G = 〈Σ, ∆,P ,S〉 where Σ is the

1Source code can be found at the Github repository.
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Fig. 1: (A) An example graph can be decomposed into a
CNRG. (B) An extracted CNRG containing four distinct rules,
each with an LHS and RHS. The LHS is a single nonterminal
node drawn as a square labeled with size ω (drawn inside the
node). The RHS is a subgraph with nonterminal nodes drawn
as squares and labeled (illustrated inside the node), terminal
nodes labeled with the number of boundary edges (drawn on
top of the node), and connecting edges (which do not have
labels in this example). The production rules on the right have
f = 3× and f = 6× indicating that they occur 3 and 6 times
respectively.

alphabet of node labels; ∆ ⊆ Σ is the alphabet of terminal
node labels; P is a finite set of productions rules of the form
X → (R, f ), where X is the LHS consisting of a nonterminal
node (i.e., X ∈ Σ \ ∆) with a size ω, and the tuple (R, f )
represent the RHS, where R is a labeled multigraph with
terminal and possibly nonterminal nodes, and f ∈ Z+ is the
frequency of the rule, i.e., the number of times the rule appears
in the grammar, and S is the starting graph which is a non-
terminal of size 0. This formulation is similar to node label
controlled (NLC) grammar [41], except that the CNRG used
in the present work does not keep track of specific rewiring
conditions. Instead, every internal node in R is labeled by the
number of boundary edges to which it was adjacent in the
original graph. The sum of the boundary degrees is, therefore,
equivalent to ω, which is also equivalent to the label of the
LHS.

A CNRG can be extracted from any graph or hypergraph
and may not be unique. That is, one graph may produce many
different CNRGs. The goal of the present work is to extract
CNRGs that capture the high-order structure of the graph. The
example in Fig. 1 shows an example graph and an example
grammar that can be extracted from it. In this example, the
original graph appears to have a regular structure akin to
a recursively arranged triangle of triangles. The extracted
grammar represents this triangle of triangles pattern, which
is represented by the grammar rules.

Like their HRG cousins [1], the extracted CNRG may also
be used to generate graphs that are similar to (or contain
similar high-level structures as) the original graph.

Model size. One way to compare the conciseness of a
grammar is by analyzing its size. For this task, we define
a description length (abbreviated as DL) for graphs and
grammars following prior work. Given a labeled multigraph H
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defined above, we compute its size in the following way. Let
lg(·) denote log2(·). Our approach is similar to that of Cook
and Holder [9] except that (i) we use Elias γ [10] encoding
instead of the Quinlan & Rivest encoding [38], and (ii) we
directly encode the multiplicity matrix M instead of encoding
a binary adjacency matrix A and its associated multiplicity
matrix M separately. First, lg |V| and lg |L| bits are required
to encode the number of vertices and the number of labels in H
respectively. Hence, the total number of bits required to encode
all the labeled vertices (v) is v = lg |V| + |V| · lg |L| bits.
Second, let M be a |V| × |V| multiplicity matrix where Mij =
κ(i, j) for (i, j) ∈ E, and 0 otherwise. We add 1 to each ele-
ment of M to use the γ-code, which can only encode positive
integers. Hence, the total number of bits required to encode all
the labeled edges (e) is e = lg |E|+ lg |L| ·∑ij |γ-code(Mij)|
bits. Therefore, the description length (DL(H)) of the graph
H is DL(H) = (v + e) bits.

Like the graph H, the CNRG G is also given a description
length. Each rule (P) is of the form X → (R, f ), where
X is a nonterminal of size ω, R is a labeled (multi)graph,
and f is the frequency. We encode the nonterminal size
ω and the frequency f using the γ-code. Mathematically,
the description length (DL(lP)) of the LHS is given by
DL(lP) = |γ-code(ω)|+ |γ-code( f )| bits.

Similarly, we define a description length (DL(rP)) for
the RHS. The labeled (multi)graph R is encoded similar
to H; additionally, we have to include the γ-encoding of
the individual boundary degrees (abbreviated as b deg) of
the nodes in VR. So, we have DL(rP) = |γ-code(R)|
+∑v∈VR

|γ-code(b deg(v))| bits. Therefore, the description
length (DL(G)) of the CNRG G is given by DL(G) =
∑P(DL(lP) + DL(rP)) bits.

With these definitions formally stated we can more-
concretely restate the task: given a (multi)graph H, we seek to
extract a CNRG G that succinctly and thoroughly encodes H.
A byproduct of extracting such a graph grammar is that the
production rules may also serve as a succinct representation
of the constituent structures found in the original graph.

III. EXTRACTING VERTEX REPLACEMENT GRAMMARS

As discussed earlier, many possible CNRGs can represent
the same original graph. An optimal CNRG ought to repre-
sent the original graph succinctly (i.e., with as few bits as
possible) and faithfully (i.e., without losing any information).
Unfortunately, such an optimal lossless compression is not
possible in all cases. Instead, we assume that H can be
clustered hierarchically [39] and that regular substructures can
be extracted as rules.

The remainder of this section describes the details of several
CNRG extraction methods and uses the minimum description
length principle to extract a grammar.

A. Hierarchical Graph Clustering

We begin with a labeled (multi)graph H. We first compute a
dendrogram from H using a hierarchical clustering algorithm.
We explored the Leiden method [46], the Louvain method [5],
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Fig. 2: (A) Original graph H. (B) Dendrogram created from
a hierarchical clustering algorithm, leaves of this dendrogram
are nodes of H. (C) Subtree η6 is selected. Leaf nodes and
edges of the induced subgraph are drawn in blue; boundary
edges are drawn in red. (D) Rule η6 extracted from the H. LHS
is a nonterminal labeled by ω=5; RHS is the induced subgraph
of the nodes in η6 labeled with their boundary condition (i.e.,
number of boundary (red) edges present). (E) New graph H′

with η6 removed and replaced by a nonterminal node 5 .

recursive spectral bipartion [15], and hierarchical spectral k-
means [33]; however, any hierarchical clustering method may
be used here.

As a running example, we introduce a 9-node, 16-edge
undirected graph in Fig. 2(A). Applying the recursive spectral
clustering algorithm on this graph results in the dendrogram
shown in Fig. 2(B). Non-leaf nodes of the dendrogram are
represented as ηi, and the leaves are nodes from the origi-
nal graph. We see that the dendrogram computed from the
example graph correctly separates the left and right sides
of the graph. A similar dendrogram is produced when other
clustering algorithms are applied.

B. Rule Extraction

Given an initial dendrogram D computed by applying a
hierarchical clustering algorithm on H, the next step is to
generate a graph grammar G. The summary of the rule
extraction process is as follows: (a) create production rules
from D, (b) find the best scoring rule and add it to the grammar
G, (c) contract the respective subgraphs to create a reduced
graph H′, and update D to reflect those changes. Finally, set
H ← H′ and repeat until D is empty.
Creating a Grammar Rule. Each internal node η ∈ D
corresponds to a grammar rule rη : X → (R, f ). Let Vη

represent the leaf nodes in the subtree rooted at η, which
correspond to nodes in graph H. Let bη represent the set
of boundary edges, i.e., edges in H which have exactly one
endpoint in Vη , and let ω = |bη |. bη is used to compute the
boundary degrees of the nodes in Vη .

We set X to be a nonterminal node of size ω as the LHS
of the new production rule. The RHS of the new production
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Fig. 3: All possible rules that can be extracted from the
dendrogram in Fig. 1B labeled by their corresponding subtrees
η1···8.

rule in the CNRG formalism is a labeled multigraph R ⊆
H with rule frequency f . Let R = 〈VR, ER, κR, LR〉 where
VR = Vη; ER = {(u, v) | u ∈ Vη ∧ v ∈ Vη ∧ (u, v) ∈
E}; κR(e) = k, where k is the multiplicity of edge e ∈ ER;
LR = {internal node, internal edge}. If this newly generated rule
already exists in the grammar, then the frequency of that rule
will be incremented by 1 (instead of storing duplicate rules).
Note that this leads to the creation of a many-to-one mapping
between the non-leaf nodes of the dendrogram and the rules.
Finally, each subtree, and consequently, each rule, is assigned
a score (sη) which is used for selection. The details of the
scoring functions are discussed in Sec. III-C.

Returning to the running example, Fig. 3 shows all possible
rules that can be constructed from the dendrogram introduced
in Fig. 2(B). Considering every possible production rule at
every step becomes computationally intractable for medium
and large-sized graphs. We also observe that certain internal
nodes towards the top of the dendrogram cover many leaf
nodes and therefore tend to create production rules with large
RHSs. Production rules with large RHSs do not align with our
aim of finding small, but topologically meaningful building
blocks of the graph. So, to prune the search space and restrict
the size of the RHS of the rules, we introduce a subtree
restriction parameter µ that removes subtrees larger than µ
from consideration.

Selecting the Best Scoring Rule. From all rules rη , we
pick the rule r∗η with the minimum score and add it to the
G, updating the necessary alphabet Σ, terminal nodes ∆, and
production rules P as needed. Note that multiple subtrees of
the dendrogram may correspond to the same rule. For example,
in Fig. 3 subtrees η3, η4, η7, and η8 all correspond to the same
rule.

Updating the Data Structures. Once a production rule is
created from the dendrogram, the next step is to create H′ by
contracting H by removing the RHS subgraph and inserting
the new nonterminal node.

Let H′ = H initially. For a selected η∗, we remove Vη

from H′, and insert a new nonterminal node X labeled with
ω (from the first step). We connect X to the rest of the graph
through the set of boundary edges in R where edges that were
connected to Vη are redirected to connect to X. Note, this
may lead to the creation of multi-edges in the new graph. H′

is now strictly smaller than H and contains new nonterminal
nodes.

With a new (smaller) H′, it may be prudent to re-run the
clustering algorithm and draw a new dendrogram. However,
in our initial experiments, we found that re-clustering is time
consuming and rarely results in significant changes to the
dendrogram. Instead, we simply modify D by replacing the
subtrees in η∗ with nonterminal nodes X labeled with ω.
Scores are also updated as needed based on the new graph.

Finally, we set H ← H′ and repeat this process until the
dendrogram is empty.

C. Scoring Functions

The choice of scoring function directly impacts the choice of
η∗, which directly impacts the extracted CNRG. Again note
that we ignore all η where |Vη | > µ. The simplest case is
to set sη = |Vη | − µ. But this simple case results in many
ties which need to be broken. For this task we consider three
policies:
• Random tiebreaking. Pick η∗ at random from candidates

equi-distant to µ.
• Greedy DL. Break ties by picking η∗ that minimizes the

overall DL of the grammar. Minimizing the DL of the
grammar is akin to finding a rule that already exists in
the grammar, or by selecting the rule that has the smallest
description length among all candidates according to the
description length calculation described in Sec. II. This
is more computationally expensive than other policies
because it requires the DL computation for each candidate
η. Among η’s with equal DL, ties are broken arbitrarily.

• Greedy Level. Break ties by picking η∗ that is at the
highest level in the dendrogram. This results in the
creation of fewer rules, because a larger portion of the
dendrogram, and consequently the graph, is contracted
at each step. Among subtrees with equal level, ties are
broken arbitrarily.

• Greedy level + DL. Break ties by picking η∗ using the
Greedy Level policy first and then by using the DL.

Previous work suggests that crude two-part MDL [14] is a
useful principle for selecting model parameters [22, 9]. There-
fore, the next policies to select η∗ mimic this. Specifically, let
sη = DL(rη) + DL(H | rη), which is the sum of the DL of
the rule and the DL of H compressed by rη respectively.

Based on this idea, our next task is to calculate DL(H | rη).
One important consideration is the case where multiple sub-
trees map to the same rule. Again consider the example
from Fig. 3 where the subtrees η3(f, g), η4(h, i), η7(c, d), and
η8(a, b) are all encoded in the same rule r. With this in
mind, two strategies are evident to us: local MDL and global
MDL. In the local MDL strategy, we calculate the scores
of each η independently, without regard to other subtrees
which result in identical rules. In the global strategy, we
recognize that identical rules can be compressed together and
therefore calculate DL(H | rη) such that all isomorphic rη’s
are compressed and stored simultaneously. In global MDL
strategy, η∗ is not a single rule, but rather a set of isomorphic
rules that are compressed together.
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Fig. 4: CNRGs obtained from Fig. 2(B) with µ = 4 using (A)
the Local MDL strategy and (B) the Global MDL strategy.

We hypothesize that the global MDL strategy will perform
best, but requires significantly more time to select η∗. Fig. 4
shows complete CNRGs extracted using the Local (A) and
Global (B) MDL strategies. The differences in this small
example are subtle. It is unclear which is better.

IV. GENERATING GRAPHS FROM VERTEX REPLACEMENT
GRAMMARS

The grammar G encodes information about the original
graph H in a way that can be used to generate new graphs.
How similar are these newly generated graphs to the original
graph? Do they contain similar structures and similar global
properties? In this section, we describe how to repeatedly
apply rules to generate these graphs.

We use a stochastic graph generating process to generate
graphs. Simply put, this process repeatedly replaces nonter-
minal nodes with the RHSs of production rules until no
nonterminals remain.

Formally, a new graph H′ starts with S , a single nonterminal
node labeled with 0. From the current graph, we randomly
select a nonterminal and probabilistically (according to each
rule’s frequency) select a rule from G with an LHS matching
the label ω of the selected nonterminal node. We remove the
nonterminal node from H′, which breaks exactly ω edges.
Next, we introduce the RHS subgraph to the overall graph
randomly rewiring broken edges respecting the boundary de-
grees of the newly introduced nodes. For example, a node with
boundary degree of 3 expects to be connected with exactly
3 randomly chosen broken edges. This careful but random
rewiring helps preserve topological features of the original
network. After the RHS rule is applied, the new graph Ĥ will
be larger and may have additional nonterminal nodes. We set

H′ = Ĥ and repeat this process until no more nonterminals
exist.

An example of this generation process is shown in Fig. 5
using the rules from Fig. 4(A). We begin with 0 and apply r1
to generate a multigraph with two nonterminal nodes and two
edges. Next, we (randomly) select the nonterminal on the right
and replace it with r2 containing four terminal nodes and 6 new
edges. There is one remaining nonterminal, which is replaced
with r3 containing two terminal nodes, one nonterminal node,
and 5 edges. Finally, the last nonterminal node is replaced
with r4 containing three terminal nodes and three edges. The
edges are rewired to satisfy the boundary degrees, and we
see that Ĥ = H. In this way, the graph generation algorithm
creates new graphs. The previous example conveniently picked
rules that would lead to an isomorphic copy of the original
graph; however, a stochastic application of rules and random
rewiring of broken edges is likely to generate various graph
configurations.

V. METHODOLOGY AND RESULTS

Our next task is to evaluate the CNRG model size and its
graph generation performance. For size, we measure how the
CNRG’s description length compares with other graph models.
For performance, we measure the accuracy of the stochastic
graph generator by comparing the generated graphs with the
original graph.

The goal of the first part of this section is to explore
the parameter space for CNRG extraction and generation
performance. After we select appropriate parameters, we will
compare against existing methods.

A. Datasets

Datasets were selected based on their variety and size.
Our implementation of the CNRG extractor is memory bound
at O(|V| + |E|), but it is computationally very fast. The
computational complexity of the extractor varies with the
choice of clustering algorithm and extractor policy; the graph
generation is in O(|V|+ |E|). The CNRG extractor can scale
to extremely large graphs. Alternative graph models are unable
to scale to the largest available graphs, so we selected graphs
that could be compared against existing models.

We selected five medium-sized graphs from various sources.
They are listed in Tab. I and were downloaded from
KONECT [24] and SNAP [25].

Current Graph H′ Current Graph H′New Graph Ĥ New Graph Ĥ

0 =⇒
r1

2 2 2 2 =⇒
r2

2

2 =⇒
r3

5 5
=⇒
r4

I II

III IV

S

Fig. 5: Generation algorithm. An application of the rules (in tree-order according to D) will regenerate G.
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TABLE I: Datasets

Name |V| |E|
EuCore Emails 986 16, 687
PolBlogs 1, 222 16, 717
OpenFlights 2, 905 15, 645
ArXiv GrQc 4, 158 13, 428
Gnutella 6, 299 20, 776
WikiVote 7, 066 100, 736
PGP 10, 680 24, 316

B. Selecting CNRG Parameters

To measure model size, we must first select from the
many parameters of the extraction model: clustering algorithm,
boundary information, extractor selection heuristic, and RHS
size (µ).

The methodology is as follows. We extract a CNRG for
each combination of the clustering algorithm, scoring function,
and µ ∈ {2, 3, . . . , 10}, which equates to 300 different
CNRG models for each dataset. To permit statistical tests and
confidence intervals, this process is repeated five times for a
total of 1,500 CNRG models for each graph.

For k-way recursive Spectral algorithm, we use k =√
n/2 [29]. The random hierarchical clustering method split

the graph into two (nearly) equally-sized but random clusters
in a top-down fashion.
Model Size. We define the size of the CNRG as the
number of rules present in the grammar and its overall
complexity. The number of rules is simply the count of the
number of distinct production rules. Usually, the grammar size
is sufficient to make decisions about the model. Smaller is
better.

The description length (DL) measures the size and complex-
ity of the grammar. CNRGs extracted from graphs of different
sizes should not be compared in absolute terms – a large
graph will almost certainly have a larger CNRG than a small
graph. In order to perform an apples to apples comparison
across different dataset sizes, we measure model size using the
reciprocal compression ratio: DL(G)/DL(H), where DL(G)
is the description length of the CNRG and DL(H) is the
description length of the original graph. Lower is better.
Model Performance. We define the performance of a
model as its ability to generate a graph Ĥ that is similar to
the original graph H. There are many ways to compare Ĥ
with H. In the present work we use the spectral distance (λ-
distance) [47] and DELTACON [23].

The λ-distance compares the spectrum of a graph,
which is typically defined as the set of eigenvalues s =
{λ1, λ2, . . . , λ|V|} are are ordered by their magnitude λ1 ≥
λ2 ≥ . . . ≥ λ|V|. The graph spectrum permits a distance to
be calculated:

λ-distance(Ĥ, H) =
√

∑
i
(ŝi − si)

2,

where the list of eigenvalues may be zero-padded if they are
not the same size.
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Fig. 6: λ-distance (lower is better) and compression ratio
(lower is better) for all runs (all µ, clustering method, η∗

selection policy) on all datasets. Results that are consistently
in the bottom-left corner are best. Leiden performs the best
consistently. This figure is best viewed in color.

DELTACON measures the difference in node affinities using
a belief propagation algorithm. The use of belief propagation
implicitly models the diffusion of information throughout the
graph and should be able to measure global and local graph
structures.

In addition, we count the number of three and four node
graphlets [3] that are present in the graph and directly compare
these counts. The graphlet correlation distance (GCD) is also
used to measure the rank correlation of graphlet orbital counts
between nodes in each graph [37, 30, 16].

Because these are all distance metrics, lower is better.

Selecting a Clustering Method. First, we consider the
selection of a clustering method. We used Random, Leiden,
Louvain, recursive spectral bipartition (i.e., Conductance),
and hierarchical spectral k-means (i.e., Spectral) clustering
methods. Each clustering method was applied to each dataset
using all available datasets, µ-values and η∗ selection policies.
Each unique configuration was repeated 5 times.

The model size and λ-distance for each graph is plot-
ted in Fig. 6. We observe that Spectral clustering results
in remarkably good graph generation, but bad compression.
Conversely, Conductance clustering results in remarkably good
graph compression, but bad graph generation performance.

As is typical, we generally observe a trade-off between
compression and model performance. The Leiden clustering
method appears to perform the best in both metrics consis-
tently; so we select Leiden clustering for further analysis.

Selecting an η∗ policy. Our next task is to find the η∗

selection policy that performs best. Using only the Leiden
clustering method, we group all runs (across all µ values) and
plot the mean reciprocal compression ratio and λ-distance in
Fig. 7. 95% confidence intervals are drawn as error bars.
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We observe that the choice of η∗ selection policy has mini-
mal effect on the model size and the generation performance.
We select Greedy Level + DL and Local MDL because they
performed (slightly) better than the other methods, but also
because they are much faster to compute than the Global MDL.

Selecting a µ Value. Next, we compare model size and
generation performance results for various values of µ. Recall
that µ is an upper bound for the number of nodes that appear
within a subtree of η∗; i.e., µ is the maximum number of
nodes that can appear in any extracted RHS.

We select µ by following the pattern as before. Using
the Leiden clustering method and Greedy Level + DL and
Local MDL η∗ selection policies, we plot the mean reciprocal
compression ratio and λ-distance in Fig. 8. 95% confidence
intervals are drawn as error bars.

We observe little difference between the η∗ selection poli-
cies. However, the size-to-performance trade-off becomes ev-
ident again as µ varies from small to large. Small values of µ
more complex models but more accurate models, while larger
values produce less complex models but less accurate models;
however, there are quickly diminishing returns as µ increases.

We select a µ = 4 because it appears to generate reasonably
small models with reasonable accuracy.

In summary, based on the decisions highlighted in this
section we select a parameterization for the CNRG that uses
Leiden clustering, the Greedy Level + DL for the η∗ selection
policy, and µ = 4. We will use these values throughout the
remainder of the present work unless otherwise specified.

C. Graph Model Size

Next, we compare the model size of CNRG, parameter-
ized as above, in bits against three other graph models:
the Vocabulary-based summarization of Graphs (VoG) [22],
SlashBurn [27], and SUBDUE [19]. Like the CNRG model,
VoG, SlashBurn, and SUBDUE maintain an encoding of the
graph, but their models are constructed in very different ways.
VoG summarizes graphs using a fixed vocabulary of structures.
SlashBurn recursively splits a graph into hubs and spokes
connected only by the hubs. SUBDUE creates a node-grammar
model, similar in principle to the CNRG model, by finding
substructures that maximally reduce the size (bits) of the
graph after each selection. These models are useful for graph
summarizing and graph understanding, but do not generate
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TABLE II: Model Size Comparison. Lower is better.

Graph DL(Model)/DL(H)

SUBDUE SlashBurn VoG CNRG

Karate 3.546 1.119 1.080 0.704
Dolphins 4.348 1.336 1.026 0.43
LesMis 3.546 1.05 0.875 0.924
EuCore – 5.54 0.986 0.182
PolBlogs – 0.873 0.881 0.388
OpenFlights – 0.888 0.869 0.412
GrQc – 1.154 0.851 0.133
PGP – 1.196 0.911 0.232
Gnutella – 1.045 0.967 0.306
WikiVote – 0.839 0.843 0.525

graphs; thus, they can only be compared to CNRGs by their
model size. Each of the models was run with their default
settings.

SUBDUE was unable to process the even the smallest of our
graph datasets, so we included three graphs: Karate, Dolphins,
and LesMis, representing well known small graphs, in Tab. II.
These results show that CNRG almost always produces the
best model sizes among the other models. This confirms our
hypothesis that CNRG compresses the original graph better
than the state-of-the-art methods.

D. Graph Generation Performance

Here we show that the CNRG model represents not only
a succinct encoding of the original graph but also a faithful
one as well. Keeping a tree ordering over production rules in
the CNRG will permit a generation close or isomorphic to the
original graph. This is an interesting, but not particularly useful
outcome of the CNRG model. Instead, we ask how well the
CNRG model generates new graphs. Are these graphs similar
to the original graph? How does the CNRG accuracy compare
to other graph models at generating graphs?

Graph generators have been studied intently for several
years. The idea being that we only truly understand a graph
if we can generate it faithfully. Practically speaking, graph
generators are often used to create null models for statistical
purposes. In a similar vein, graph generators are frequently
used to find anomalous patterns in real-world graphs.

Setup. We compare CNRG graph generation against many
of the state-of-the-art graph generators. We consider the
properties that characterize some real-world networks and
compare the distribution of graphs generated using the Kro-
necker graph model [26], the Block Two-Level Erdős-Rényi
(BTER) model [21], Chung-Lu’s configuration model [8], the
degree corrected Stochastic Block Model (DC-SBM) [18],
and the stochastic Hyperedge Replacement Grammar (HRG)
model [1, 2].

Like CNRGs, these other graph models learn parameters
that can be used to approximately recreate the original graph
or a graph of some other size such that the generated graph
holds many of the same properties as the original graph. The
generated graphs are likely not isomorphic to the original
graph. We can, however, still judge how closely the generated
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g32
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g43
g44
g45
g46

OpenFlights GrQc
g21
g31
g32
g41
g42
g43
g44
g45
g46

PGP Gnutella
g21
g31
g32
g41
g42
g43
g44
g45
g46

CL HRG SBM BTER KRON CNERG CL HRG SBM BTER KRON CNERG

Fig. 9: Relative graphlet2 counts as a heatmap. Color intensity
in each cell indicates disagreement between the number of
graphlets found in the generated graph and the number of
graphlets found in he original graph. CNRG consistently
performs the best. The grayed out columns indicate that the
method failed to produce graphs. This figure is best viewed in
color.

graph resembles the original graph by comparing several of
their local and global graph properties.

Exponential Random Graph Models (ERGMs) are another
type of graph model that learns a robust graph model from
user-defined features of a graph [40]. Unfortunately, this
model does not scale well and is prone to model degen-
eracy. Neural network graph models like GraphVAE [42]
and GraphRNN [49] are currently limited in their scalability.
Generative adversarial networks (GANs) have been shown to
scale to medium-sized graphs and perform on-par with existed
methods; however, the model size of NetGAN is many times
larger than the graph size [6]. We attempted to compare these
methods but were unable to because of problems with either
model degeneracy or scalability.

The main purpose of node embedding models like
LINE [44], node2vec [13], VGAE [20], and others [11] is
to learn vector representations of the nodes. They are not well
equipped to generate graphs and cannot be compared for this
task.

2Symbols are used to represent graphlet structures; g21 is an edge, g31
is a triangle, g32 is an open triangle, g41..6 represent clique, chordal cycle,
triangle with tail, cycle, star, and path respectively [3].
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TABLE III: Graph generation performance. Graphs generated by CNRG closely match the original graph and are consistently
the best or close to the best performing model. Lower is better, the best results are indicated by boldface.

EuCore PolBlogs OpenFlights
GCD λ-dist DELTACON GCD λ-dist DELTACON GCD λ-dist DELTACON

ChungLu 0.409 0.803 6661 0.466 1.234 8020 1.1116 0.614 14142
HRG 0.229 8.091 7841 1.196 4.407 8872 1.2442 2.761 15860
DC-SBM 0.180 2.057 5736 0.262 4.186 8023 0.8414 3.534 11450
BTER – – – 0.352 7.505 8444 0.832 4.936 13269
Kronecker 0.3164 11.802 4840 1.302 14.31 6140 1.83 10.459 8589
VRG 0.233 4.969 5793 0.212 4.276 7436 0.2832 3.581 11473

GrQc PGP Gnutella
GCD λ-dist DELTACON GCD λ-dist DELTACON GCD λ-dist DELTACON

ChungLu 2.657 0.389 21607 2 0.64 18503 1.02 0.42 34451
HRG 1.99 4.41 12153 – – - 2 5 20755
DC-SBM 2.065 2.202 14456 1.39 2.29 15216 – – –
BTER 2.231 0.439 14066 1.61 0.832 15161 1.10 0.474 32692
Kronecker 3.87 5.468 13173 2.882 3.54 12320 3.31 5.96 22145
VRG 1.067 0.723 13528 0.448 1.329 12257 0.41 0.20 30616

Evaluation. We generate 5 graphs using each model on
each dataset and compare each generated graph with the orig-
inal. To measure how well the local structures are preserved
in the generated graph, we counted the number of size-2, 3,
and 4 node graphlets [3] and compared those values to the
number of graphlets present in the original graph. The (mean
average) difference in graphlet counts is indicated as a heatmap
in Fig. 9. CNRG consistently outperforms the other models at
this task.

GCD, λ-distance, and DELTACON metrics are indicated
in Tab. III where bold indicates the best (mean average)
performance for each dataset and metric. Across all metrics,
the CNRG model performs consistently well, especially in the
graphlet counts and the GCD metrics. The ChungLu model
does a very good job at capturing the λ-distance; this is
expected because ChungLu directly (and only) models the
node degree, which is highly correlated with the eigenvalues.

VI. DISCUSSION

The present work describes CNRG, a variant of the ver-
tex replacement grammar model inspired by the context-free
grammar formalism widely used in compilers and natural
language processing. We described how a CNRG can be
extracted from a hierarchical clustering of a graph and then
show that the model succinctly encodes the structures present
in the original graph. Starting with an empty graph, if we apply
CNRG rules stochastically, then the CNRG model can generate
a new graph. We show that the newly generated graphs contain
global and local topographical features that are similar to the
original graph.

A potentially significant benefit from the CNRG model
stems from its ability to directly encode local substructures
and patterns in the RHSs of the grammar rules. Encoding
these local graphlet-like structures is probably the reason that
the CNRG model performed so well at the graphlet counting
task and the GCD metric. Forward applications of CNRGs
may allow scientists to identify previously unknown patterns
in graph datasets representing important natural or physical

phenomena [35]. Further investigation into the nature of the
extracted rules and their meaning (if any) is a top priority.

We also plan to investigate differences between the gram-
mars extracted from different types of graphs. What are the
implications of finding two graphs that have a significant over-
lap in their extracted grammars? What about graphs that seem
similar on the surface, but have little overlap in their grammar?
Another area of study that we are particularly interested in is
learning a temporal grammar from the dynamical processes
of an evolving graph. Additional applications of CNRGs are
possible on multi-level, multi-layer, and labeled graphs and
their various applications.
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