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Abstract—Deep neural network models, especially Long Short
Term Memory (LSTM), have shown great success in analyzing
Electronic Health Records (EHRs) due to their ability to capture
temporal dependencies in time series data. When applying the
deep learning models to EHRs, we are generally confronted with
two major challenges: high rate of missingness and time irreg-
ularity. Motivated by the original PACIFIER framework which
utilized matrix decomposition for data imputation, we applied
and further extended it by including three components: forecast-
ing future events, a time-aware mechanism, and a subgroup basis
approach. We evaluated the proposed framework with real-world
EHRs which consists of 52,919 visits and 4,224,567 events on a
task of early prediction of septic shock. We compared our work
against multiple baselines including the original PACIFIER using
both LSTM and Time-aware LSTM (T-LSTM). Experimental
results showed that our proposed framework significantly outper-
formed all competitive baseline approaches. More importantly,
the extracted interpretative latent patterns from subgroups could
shed some lights for clinicians to discover the progression of septic
shock patients.

Keywords-imputation; forecasting future events; irregular in-
terval; time-aware; subgroup; septic shock early prediction

I. INTRODUCTION

Electronic Health Records (EHRs) are large-scale system-
atic collections of sequential data which include both static
and dynamic information for each patient’s visit [1]. The static
information, such as age and sex, is often collected once per
visit and remains unchanged for the whole duration of the
visit; whereas dynamic information is generally collected with
different frequencies. For example, the body temperature is
often measured several times a day, while the white blood
cells are measured every other day. As a result of merging
such irregular dynamic information, real-world EHRs are often
plagued by missing data problem. To tackle this issue, vari-
ous imputation strategies have been explored. Some common
approaches include mean- or median-filling, carrying forward,
hot-deck, resampling [2], multiple imputation [3], and so on.
Recently, Lipton et al. indicated using missing indicators [4]
is highly effective for handling temporal missing data [5].
Kim et al. proposed a bio-inspired approach named Temporal
Belief Memory for handling the missingness in sequential data
with irregular intervals [6]. Some other approaches focused on
reconstructing missing entries using latent patterns extracted
from the original data, such as EM imputation [7], Autoen-
coder [8], and matrix decomposition based imputation methods

including SVDImpute [9], softImpute [10], Individual Basis
Approach (IBA) and Shared Basis Approach (SBA) [11]. In
this work, we focused on matrix decomposition based impu-
tation methods because of their robustness yet interpretability,
which are well-suited for EHRs. Specifically, the assumption
is that the observed features in EHRs can be mapped to some
latent medical condition, thus the matrix decomposition based
methods could impute the missing entries by exploring the
latent structures on both feature and time dimensions.

In our work, we extended the original PACIFIER framework
[11] by forecasting future events, incorporating a time-aware
mechanism, and employing a subgroups based approach. For
forecasting future events, we explored the potentials of apply-
ing the extracted latent patterns to forecast future events, and
then use these forecasted future events to further improve the
effectiveness of our model. The time-aware mechanism would
take the time irregularity into consideration and capture latent
patterns constrained by the irregular time intervals of inputs to
handle the missing data. The subgroups basis approach would
cluster patients into subgroups by static information and learn
latent patterns for each subgroup, since it is shown that static
information such as comorbidities, age [12], and gender [13]
are important predictors for many diseases such as Parkinson’s
disease. The subgroup basis approach can be considered as a
trade-off between either IBA that learns latent patterns for each
individual patient or SBA that learned latent patterns for the
entire population explored in [11]. We evaluated our extended
framework by comparing it to five competitive missing data
handling methods: carrying forward, mean imputation, and
three matrix decomposition based methods, i.e., SVDImpute
[9], IBA [11], and SBA [11]. The experimental results showed
that our proposed framework can effectively handle the EHRs
with high missing rate, and it outperformed all five baseline
methods including IBA and SBA. Consider the three extended
components in our framework, it is referred as Time-aware
subGroup Basis Approach with Forecasted events (TGBA-F)
hereinafter. Note that the forecasting future events, time-aware
mechanism, and subgroups basis approach tackle missing data
from three different perspectives in that the best performance
is obtained when we combine all three.

In recent years, Recurrent Neural Networks (RNNs) and its
variations such as Long Short-Term Memory (LSTM) [14],
Gated Recurrent Unit (GRU) [15], and Time-aware LSTM (T-
LSTM) [16], have achieved state-of-the-art results in many



real-word applications with multivariate temporal data through
deep hierarchical feature construction. Moreover, these varia-
tions are capable of capturing long-range dependencies in time
series data in an effective manner. Missing data imputation has
been widely studied in previous RNN-based works [17] and
applied for speech recognition and blood-glucose prediction
[18]. Recently, researchers tried to handle the missing data
problem in RNNs by concatenating missing entries, incorpo-
rating a time based decay function, and synchronizing different
sampling frequencies [5], [19], [20]. To our best knowledge,
no prior work has explored applying matrix decomposition
based imputation methods with RNN-based models, such as
LSTM and T-LSTM, to temporal data.

Herein, our task is early prediction of septic shock. Sepsis
is a life-threatening organ dysfunction caused by deregulated
host response to infection [21]. As the most severe stage of
sepsis, septic shock reaches a mortality rate as high as 50% and
the annualized incidence keeps rising [22]. Prior studies have
indicated that the early diagnosis and treatment of septic shock
can prevent about 80% of sepsis death. Besides, over the first
6 hours after the onset of recurrent or persistent hypotension,
every hour delay in antibiotic treatment leads to a 7.6% de-
crease in survival of septic patients [23]. One major challenge
associated with early prediction of sepsis/septic shock is its
subtle but fast progression at early stages. Sepsis has a wide
range of potential symptoms, and its common indicators such
as infection, fast heart rate, high/low body temperature, and
low blood pressure [24] are highly likely to progress to other
disease. Because of such delicate progression, variables in the
before-shock stage may either be measured infrequently or
not measured at all. As a result, the duration between two
clinical events in EHRs can be long and the missing rate can
be very high. For example, for the EHRs utilized in this work,
the missing rate is higher than 80% on average and several
variables’ missing rates are above 99.9%. Thus, missing data
handling is a key factor in our early prediction of septic shock.

The remaining parts of this paper are organized as follows.
In Section II, related works are reviewed. Section III presents
matrix decomposition, the three components in TGBA-F, and
two classifiers: LSTM and T-LSTM. In Section IV, we discuss
experimental setup and introduce early prediction models and
baselines. Section V presents the experimental results. Finally,
Section VI concludes the paper.

II. BACKGROUND

A variety of approaches have been proposed to cope with
the missing data in EHRs, including carrying forward, mean
imputation, k-nearest neighbors [25], autoencoder [8], and
several matrix decomposition based imputation methods, such
as SVDImpute [9] and softImpute [10], which are both Sin-
gular Vector Decomposition (SVD)-based methods. Closely
related to this work, Zhou et al. proposed a matrix decompo-
sition based imputation framework named PACIFIER (PAtient
reCord densIFIER) [11]. Their results showed that PACIFIER
can not only impute the missing data, but also imply some

macro phenotypes through decomposed latent patterns. In their
work, the imputed data would be fed into a logistic regression
classifier for early prediction.

In recent years, deep neural network models, especially the
RNN-based models, have shown great success in analyzing
EHRs due to their ability of capturing temporal dependencies
in time series data. Although RNNs are theoretically capable
of finding the long-term dependencies underlying the temporal
data, classical RNNs often cannot effectively capture the long-
term dependencies due to the vanishing and exploding gradient
problem [26]. As variations of RNNs, LSTM and GRU can
overcome these issues by incorporating multiple gating units
into RNN structure. The gating mechanism allows for explicit
memory delete and update, and controls flow of information in
hidden states. In standard LSTM, it is assumed that intervals
between consecutive events are uniform. To consider the time
irregularity, several previous works have been proposed with
RNN-based models [16], [27], [28]. Among them, Time-aware
LSTM (T-LSTM) [16] transforms time intervals into weights
to adjust the memory passed from the previous memory cell.

Standard imputation methods have been widely used when
applying RNN-based models. For instance, in [16], Baytas et
al. employed carrying forward for imputation when evaluating
the T-LSTM. As a frontier work of the missing data handling
in RNN-based models, [17] proposed an RNN structure for
both missing inputs and asynchronous data, which randomly
initialized missing values and optimized the imputed values by
backpropagation. In [18], they demonstrated a modified RNN
for missing data handling, which is combined with a linear er-
ror model and trained by expectation-maximization technique.
The experimental results showed that their method improved
the performance in glucose/insulin metabolism prediction with
respect to both conventional RNNs and various linear models.
Recently, [5] showed the effectiveness of Missing Indicators
(MI) with LSTM for a phenotype prediction task using EHRs.
In their work, they gave an insight that LSTM could implicitly
impute missing values based on its memory. About the same
period, a Phased LSTM [20] was proposed to extend LSTM
unit by adding a time gate to align asynchronous streams,
which allowed the feature learning only when the time gate is
open. Besides, [29] incorporated a carrying forward operation
for missing data in RNN and LSTM, and then tested it with a
clinical variable prediction task. More recently, GRU-D [19]
imputed missing values using a modified GRU, regulated by
a temporal decay function with trainable weights, and on a
wide range of tasks, the authors showed that GRU-D often
demonstrated performance comparable to MI. Furthermore,
Temporal Belief Memory (TBM) [6] could systematically im-
pute missing values in both forward and backward directions
within a reliable time window, and their results showed that
TBM outperformed a wide range of baseline methods.

In short, both matrix decomposition based and RNN-based
imputation methods have been widely explored in prior work.
However, as far as we know, no previous work has investigated
on applying matrix decomposition based imputation methods
with RNN-based models. On one hand, matrix decomposition



based imputation methods can extract meaningful and inter-
pretable latent patterns represented by the mappings from fea-
tures (symptoms) to latent patterns (medical conditions) from
the original data; on the other hand, RNN-based models can
capture temporal dependencies in time series data. Therefore,
we expect that by combining them two, we can not only learn
more interpretable latent patterns, but also achieve better early
prediction performance.

Our work in this paper is highly motivated by Zhou et al.’s
PACIFIER framework. Both their work and ours are conducted
on so-called event level early prediction task, that is, to predict
whether a patient will develop to a target medical disease τ
hours later. To do so, all sequences are right aligned by their
endpoint and only the truncated EHRs happened τ -hour before
the endpoint, referred as observation data, are used for early
prediction. Our work differs from the original PACIFIER in the
following four aspects. First, we applied the extracted latent
patterns to forecast future events. As a result, rather than only
using the observation data, we integrated the forecasted future
events with our observation data for early prediction. To fore-
cast future events, we explored using truncated EHRs or using
the entire sequences to induce the latent patterns while original
PACIFIER used truncated EHRs only. Second, while original
PACIFIER treated all time intervals equally, we proposed a
time-aware mechanism for the smoothness regularization when
doing matrix decomposition. It is done by using time intervals
as weights to control the smoothness of imputed data. Since
the events in EHRs were unevenly collected with irregular
time intervals, the time-aware constraints enabled the imputed
data to reflect the progression of sequence more accurately.
Third, we proposed a subgroup basis approach using static
information such as age and sex to partition patients into some
subgroups and learned latent patterns for each subgroup while
original PACIFIER framework investigated on either learning
latent patterns for each individual patient (IBA) or learning
latent patterns for the entire population (SBA). Last, original
PACIFIER framework was evaluated using logistic regression
while we evaluated our framework using two state-of-the-art
deep learning models: LSTM and T-LSTM.

III. METHOD

In a nutshell, our framework contains two stages: data impu-
tation stage using our proposed Time-aware sub-Group Basis
Approach with Forecasted events (TGBA-F) and classification
stage using LSTM and T-LSTM.

A. Data Imputation Stage

We have Xi ∈ Rm×ei denoting the sequence of a patient’s
visit i, with m features and ei events, and the total number of
visits (sequences) is N . Ωi is a location indicator vector for
accessing the observable entries in Xi. A projection operator
PΩi(Xi) is employed to reserve the observable entries and
to convert the missing entries to 0, i.e., if (p, q) ∈ Ωi,
then PΩi(Xi)(p,q) = Xi

(p,q); otherwise, PΩi(Xi)(p,q) = 0,
where p ∈ [1,m] and q ∈ [1, ei]. The core idea of matrix

decomposition approach is to decompose the original matrix
Xi into ÛVi, where Û ∈ Rm×k and Vi ∈ Rk×ei indicate the
mappings from m features to k latent patterns, and from these
latent patterns to ei events, respectively. The decomposition
result ÛVi is expected to keep the same entries as Xi at the
locations of Ωi, i.e.,

∥∥PΩi(Xi)− PΩi(UiVi)
∥∥2
F

is supposed
to be minimized.

In the original PACIFIER framework, the optimization pro-
cedure is done by introducing an intermediate matrix Si, which
is taken as a delegation for Xi, where PΩi(Si) = PΩi(Xi).
More specifically, the objective function is:

min
Si,Û,Vi

N∑
i=1

1

2ei

∥∥∥Si − ÛVi
∥∥∥2
F︸ ︷︷ ︸

D(Si,Û,Vi)

+λ1

∥∥∥Û∥∥∥
1︸ ︷︷ ︸

R1(Û)

+ λ2

N∑
i=1

1

2ei

∥∥∥Vi
∥∥∥2
F︸ ︷︷ ︸

R2(Vi)

+λ3

N∑
i=1

1

2ei

∥∥∥ViZi
∥∥∥2
F︸ ︷︷ ︸

R3(Vi,Zi)

(1)

s.t. PΩi(Si) = PΩi(Xi), Û ≥ 0

The effects of each term in Eq.(1) are as follows:
• D(Si, Û,Vi): Data fitting term which ensures the decom-

posed result ÛVi to be close to the intermediate matrix Si;
• R1(Û): Sparseness term which controls the sparseness of Û

via a l1-norm, therefore only the most significant features
are involved in mapping to each latent pattern;

• R2(Vi): Overfitting term which prevents the decomposition
from overfitting through an F-norm. It can circumvent large
variances in Vi, thereby controls the model complexity;

• R3(Vi,Zi): Smoothness term which enables temporal latent
patterns in Vi to develop smoothly. Herein, Zi ∈ Rei×(ei−1)

is defined in Eq.(2), so that ViZi indicates pairwise differ-
ences between consecutive events in Vi along the trajectory.

Zi(p,q) =


1 If q = p, for p ∈ [1, ei − 1],
−1 Elseif q = p− 1, for p ∈ [2, ei],
0 Otherwise.

(2)

Since features collected in EHRs are generally positive and
latent patterns represented by these features are also supposed
to be positive, Û is imposed to be larger than 0 in Eqs.(1). To
solve for the non-convex objective function in Eqs.(1), a block
coordinate descent (BCD) algorithm is used [11]. It follows a
turn-taking manner to solve the multiple variables one by one.
Specifically, for the three variables, i.e., Si, Û and Vi, in each
iteration, one of them is updated with remaining two fixed.
Each sub-problem can be solved by the existing optimization
solvers. Here, we used a MALSAR package [30].

Built upon the original PACIFIER, our TGBA-F extended
it with three components by forecasting future events, incor-
porating a time-aware mechanism, and exploring a subgroups



Fig. 1. Early prediction with (a) only OW and (b) both OW and FW.

basis approach. In the following sections, each component will
be described in more details.

1) Forecasting Future Events:

In this work, we focus on early prediction for septic shock.
To do so, we are given EHRs of a patient’s visit until τ hours
before an endpoint to predict whether or not this patient will
develop to septic shock τ hours later. For septic shock patients,
the endpoint is the onset time of septic shock; whereas for non-
septic shock patients, the endpoint is the end of sequences. As
shown in Figure 1 (a), from the start of a visit until τ hours
before the endpoint is denoted as observation window (OW),
while the τ -hour leading up to the endpoint is denoted as
hold-off window (HW).

In previous work, only EHRs in the OW were used to pre-
dict what would happen τ hours later, as shown in Figure 1 (a);
while in this work, we inferred events in a Forecasting Window
(FW) and applied it together with the actual EHRs from OW
for early prediction, as shown in Figure 1 (b). Specifically, we
extracted the mapping Û in Eq.(1) and employed it to forecast
future events for the next τ hours in FW. The forecasted events
can reflect the trend of septic progression and capture more
distinct latent patterns approaching the endpoint, thus they are
helpful for the early prediction task.

To forecast future events in FW, we firstly need to determine
the number of future events eFW . To do so, we defined eOW
as the number of events in OW and τOW as the duration of
OW in hours. Our assumption here is that the ratio of eFW to
the duration of τ is the same as the ratio of eOW to τOW , thus
we have eFW

τ = eOW

τOW
and then eFW = eOW

τOW
× τ . Once the

Fig. 2. Comparison of (a) original smoothness term and the proposed (b)
time-aware smoothness term.

number of forecasted future events was determined, their time
stamps were randomly set within the τ hours. Then we applied
Eq.(1) to impute all missing entries in OW and to forecast the
events in FW simultaneously.

2) Time-aware Mechanism:

For a patient’s visit Xi = {xi1, ..., xiei}, the time intervals
between consecutive events in Xi are denoted as: ∆Ti =
[∆ti1, ...,∆t

i
ei−1]. In EHRs, these ∆tij , j ∈ [1, ei−1] can vary

greatly from minutes to days. To incorporate these irregular
time intervals into the original Eq.(1), we rewritten the original
smoothness term R3(Vi,Zi) as R3(Vi,Zi, I), where I is
an unit matrix. Then rather than using the unit matrix I
which assumes equal time intervals, we introduced a diagonal
matrix ∆Ti. The entries of ∆Ti were determined by the
time intervals between two consecutive events and thus we
modified the R3(Vi,Zi) to be R3(Vi,Zi,∆Ti). In other
words, the original R3(Vi,Zi, I) controlled the variations
among consecutive latent patterns equally; while in EHRs,
we expected that the variation between two consecutive events
with smaller time intervals should be smaller than the variation
between two consecutive events with larger time intervals. As
a result, time-aware mechanism could promote the robustness
of data imputation to fit more general and practical situations.

More specifically, the ∆Ti was converted into weights via
an irregular interval transformation f unction iif(.) to constrain
a more smooth longitudinal transition of latent patterns. Then
the original R3(Vi,Zi) can be rewritten as:

R3(Vi,Zi,∆Ti) =
∥∥∥ViZidiag(iif(∆Ti)

∥∥∥2
F

(3)



Figure 2 shows the difference between original smoothness
term and our proposed time-aware smoothness term. In this
work, we had iif(∆Ti) = exp(−α∆Ti), with α being a
parameter to regulate the impact of iif(.). By using iff(∆Ti)
as diagonal, R3(Vi,Zi) could pose smoothness constraints to
the corresponding variations between consecutive latent pat-
terns. Specifically, when a time interval is small, we expected
the consecutive latent patterns should be more similar; while
when a time interval is large, the model should not punish
much even if the consecutive latent patterns are very different.
Consider the following two extreme cases: a) When an interval
∆tij , j ∈ [1, ei − 1] approaches 0, i.e. two consecutive events
happen simultaneously, and the function iff(∆tij) tends to be
1. In this case, the smoothness regularization term poses the
largest impact, and thus the missingness in latter event will be
primarily inferred from its previous event; b) when the interval
is large, the iff(∆tij) will be close to 0. In this case, impact
of the smoothness regularization term is omitted and the
sparseness term R1(Û) and overfitting term R2(Vi) contribute
more to constrain the decomposition, therefore missing entries
in latter event are mainly inferred from latent patterns that
generally exist among all other events.

3) Subgroup Basis Approach:

Original PACIFIER explored two approaches: the Individual
Basis Approach (IBA) assumed latent patterns to be hetero-
geneous, therefore each patient possesses a specific mapping
between features and latent patterns, i.e. Û = Ui; while the
Shared Basis Approach (SBA) assumed latent patterns to be
homogeneous for overall patients, i.e. Û = U.

In our proposed TGBA-F framework, the mapping between
features and latent patterns are shared within subgroups, i.e.
Û = U(l), l ∈ [1, L], where L is the number of subgroups. De-
note the size of patients’ visits in subgroups as N (l), l ∈ [1, L],
the objective function Eq.(1) can be rewritten for TGBA-F as
shown in Eq.(4).

min
S(l)i,U(l),V(l)i

L∑
l=1

[N(l)∑
i=1

1

2e(l)i
D(S(l)i,U(l),V(l)i)+

λ1R1(U(l)) + λ2

N(l)∑
i=1

1

2e(l)i
R2(V(l)i) (4)

+ λ3

N(l)∑
i=1

1

2e(l)i
R3(V(l)i,Z(l)i,T(l)i)

]
s.t. PΩi(S(l)i) = PΩi(X(l)i), U(l) ≥ 0

B. Two Classifiers: LSTM and T-LSTM

As a variation of RNN, LSTM can retain the long-term de-
pendencies through a gating mechanism [31]. Recently, LSTM
gained popularity in biomedical domain, as it can effectively
model temporal data and capture long range dependencies in
sequences. LSTM has a chain-like structure, which enables

the information to flow among different blocks at different
time stamps. Each block in LSTM consists of a memory cell
state and three gates: forget gate, input gate, and output gate.
The three gates interact with each other to control the flow
of information. More specifically, the forget gate determines
what information from previous memory cell state is expired
and should be removed; the input gate selects information from
the candidate memory cell state to update the current cell state;
the output gate filters the information from the memory cell
so that the model only considers information relevant to the
prediction task. Therefore, the memory cell plays a crucial role
in memorizing previous experiences.

Comparing to the architecture of LSTM, T-LSTM divides
the previous memory into short-term and long-term; then it
reserves the long-term memory and introduces a time-aware
mechanism to adjust the short-term memory to hold. One main
difference between LSTM and T-LSTM is how the memory
is controlled by forget gate. In LSTM, forget gate is directly
applied to the previous memory; while in T-LSTM, it acts on
the previous memory with short-term memory being adjusted
by the weights derived from time intervals. Both LSTM and
T-LSTM were employed in this work, with the input being
multivariate temporal sequence of patients, and output from
the last step being used to make prediction.

IV. EXPERIMENTAL SETUP

A. Dataset Description

This study used de-identified EHRs obtained from adult
patients (age > 18 years) hospitalized within the Christiana
Care Health System from July 2013 to December 2015, corre-
sponding to 119,968 unique patients and 210,289 hospitaliza-
tions. The EHRs contain both static and dynamic information.
Static information contains patient background such as age,
sex, race, etc. Dynamic information is collected multiple times
at irregular intervals during the patients’ entire hospitalization
and has a time stamp associated with each record. Along with
time stamps, identifiers, locations, and description, there are
four categories of main attributes as follows:

• Vital signs: mean arterial pressure (MAP), systolic blood
pressure (SBP), etc.

• Lab results: white blood cell count (WBC), Bands, BUN,
Creatinine, Bilirubin, sedimentation rate, etc.

• Intervention: oxygen source, change of oxygen source,
FiO2, drug administration, intravenous therapy, etc.

• Location: location type (emergency department, nurse,
step down, intensive care unit), code.

1) Target Population & Labeling:

The study population are patients with suspected infection
identified by the presence of any type of antibiotic, antiviral,
or antifungal administration, or a positive test result of Point
of Care Rapid, and it consists of 52,919 visits with 4,224,567
medical events. Note that the study population, the aforemen-
tioned rules for identifying suspected infection, and the rules



for septic shock labeling in next paragraph were determined
by two leading clinicians with extensive experience on this
subject from Mayo Clinic and Christiana Care Health System.

Supervised models depend heavily on the accurate label of
the training set. However, acquiring the true label (i.e., septic
shock and non-shock) can be challenging. Although diagnosis
codes, such as International Classification of Diseases, Ninth
Revision (ICD-9), are widely used for clinical labeling, solely
relying on ICD-9 can be problematic as it has been proven to
have limited reliability due to the fact that its coding practice
is used mainly for administrative and billing purpose. Indeed,
it has been widely argued that ICD-9 cannot be used for estab-
lishing reliable gold standards for various clinical conditions
[32], [33]. More importantly, ICD-9 cannot tell when septic
shock occurs at event level, which is essential for our task. On
the basis of the Third International Consensus Definitions for
Sepsis and Septic Shock [21], our domain experts identified
septic shock as any of the following conditions are met:

• Persistent hypertension as shown through two consecutive
readings (≤ 30 minutes apart).

- Systolic Blood Pressure (SBP) < 90 mmHg
- Mean Arterial Pressure (MAP) < 65mmHg
- Decrease in SBP ≥ 40 mmHg with an 8-hour period

• Any vasopressor administration.

When combing both ICD-9 and the domain experts’ rules,
we identified 1,869 shock positive visits and 23,901 negative
visits. Consider the highly imbalanced ratio between positive
and negative visits, we further conducted a stratified random
sampling on negative visits while keeping the same underlying
distribution of: age, sex, ethnicity, duration of stay and the
number of events. Finally, the dataset contains 3,738 visits
(1,869 positives and 1,869 negatives) with 145,421 events.

2) Time Irregularity & Missing Data Analysis:

Each patient’s visit in EHRs consists of multivariate events
with irregular time intervals. The time intervals between two
consecutive events in our data range from 0.94 seconds to
28.19 hours. Since different features are measured at different
events, plenty of missing entries exist in EHRs. For instance,
vital signs are generally measured every 8 hours, while lab
values are measured every 24 hours. Hence there may not be
available readings for lab results when a new event is created
for vital signs. Table I shows the missing rates of 14 structured
features selected from the dataset in our analysis. On average,
the missing rate is 80.37%.

B. Forecasting Future Events Settings: truncated vs. entire

Prior research on applying the matrix decomposition based
methods for disease prediction all utilized truncated EHRs
sequences, i.e., all events in OW shown in Figure 1 (a), to
extract meaningful latent patterns Û. However, when applying
such methods to forecast future events, we have the choices
of either using the entire training sequences or using the trun-
cated training sequences to learn Û. Entire means benefiting

TABLE I
RESPECTIVE MISSING RATE FOR EACH FEATURE AND THEIR AVERAGE.

Category Feature Missing Rate (%)

Vital Signs
Temperature 73.19

RespiratoryRate 56.10
HeartRate 53.41

Metabolic System

Bands 99.08
Lactate 97.83
WBC 93.07

Platelet 93.07

Cardiovascular System
MAP 68.86

SystolicBP 63.91

Respiratory System
FIO2 84.76

PulseOx 58.26

Renal System
BUN 92.84

Creatinine 92.84

Hepatic System BiliRubin 97.99

Mean 80.37

from the whole sequences of septic shock and non-septic shock
visits for latent pattern extraction; while truncated is referring
to adoption of the part of sequence included only in OW to
find latent patterns. The advantage of using entire sequences is
that the longer the sequences are, the more latent patterns can
be considered and discovered; while the advantage of using
truncated sequences is that the training data used in learning
Û and classification stage are the same as the testing data for
the classification task, thus the discovered patterns are more
likely to emerge and be representative for the early diagnosis
task. Thus, for learning Û, we explored using both the entire
(en) and the truncated (tr) sequences and named them as Ûen
and Ûtr, respectively. In both settings, we then applied the
learned mapping Ûen or Ûtr to forecast future events for both
training and testing data for the classification stage.

C. Subgroups

We explored different ways to partition patients into sub-
groups, including clustering [34] and dynamic time warping
[35], etc. Much to our surprise, the best results was achieved
when we using two basic demographic properties, i.e., age
and sex. Moreover, some prior literature has shown that age
and sex are often closely related to septic progression [36]
[37]. Indeed, our preliminary analysis showed that age and sex
are both highly dependent with the septic shock. Specifically,
we discretetized age into 4 subintervals with the breakpoints
of {30, 50, 70} and χ2 tests were performed to examine the
relationship between age and septic shock. We found that
there is a significant difference on the ratio of sepsis shock
among the four age groups: χ2 (3,N = 3, 738) = 307.38, p ≈
0 � 0.01, in that older patients are more likely to develop
septic shock than younger ones. Similarly, there is a significant
difference on the ratio of septic shock between Female and
Male: χ2 (1,N = 3, 738) = 7.58, p = 0.0059 < 0.01 in that
Male is more likely to develop septic shock. Combining the
age with sex, we got a total of 8 subgroups.



D. Setups
We conducted a series of experiments to evaluate the effec-

tiveness of proposed TGBA-F for septic shock early prediction
task using two classifiers: LSTM first and then T-LSTM.

For LSTM, we first explored the effectiveness of the original
IBA and SBA with forecasted future events induced by either
Ûtr or Ûen, and compared them against five baseline methods
without forecasted events: CF and MEAN, SVDImpute, and
the original IBA and SBA.

• Carrying forward (CF): fills the missing values with the
last observation until the next value is observed;

• Mean imputation (MEAN): fills all missing values with
the mean value of the corresponding feature;

• SVDImpute: independently treats all events from different
visits, stacks them into one matrix and then runs SVD [9];

• IBA: is Individual Basis PACIFIER Approach that learns
latent patterns for each individual patient [11];

• SBA: is Shared Basis PACIFIER Approach that learns
latent patterns for the entire population [11].

Note that Ûen is not applicable for IBA because IBA is
implemented individually for each patient, thus we can only
learn Ûtr for IBA. Our results showed that using Forecasted
future events could improve the effectiveness of IBA and
SBA in that IBA-Ftr and SBA-Fen achieved better overall
performance. As a result, we employed truncated sequences
for IBA and entire sequences for SBA hereinafter. Next,
with time-aware mechanism, our results showed that Time-
aware IBA-F (TIBA-F) using truncated sequences and Time-
aware SBA-F (TSBA-F) using entire sequences were indeed
more effective than IBA-Ftr and SBA-Fen without time-aware
mechanism. Finally, we explored the effectiveness of sub-
group basis approach with different ways of grouping patients
according to their age (a) and sex (s). The results showed
that the best performance was achieved by our proposed
TGBA-F, which combines all three components: forecasting
future events with Ûen learned from entire training sequences,
incorporating time-aware mechanism, and taking subgroup
basis approach based on both age and sex (a&s).

To further evaluate the effectiveness of time-aware mech-
anism, we compared GBA-F (TGBA-F without time-aware)
and TGBA-F with LSTM vs. GBA-F and TGBA-F with T-
LSTM. Herein, our motivation is to investigate whether the
latent patterns extracted by TGBA-F can be used to further
improve the performance of T-LSTM. In this experiment, we
forecasted future events using entire training sequences and
took subgroup basis approach based on (a&s).

To determine the optimal number of latent patterns in all
matrix decomposition based methods (i.e., TGBA-F, TIBA-F,
TSBA-F, etc.), we ran grid search and determined the optimal
number as 8 for all methods. For time-aware mechanism, we
used grid search to investigate the optimum value for the
parameter α in the function iif(∆Ti) = exp(−α∆Ti) and
our results showed that the optimum value was 0.2, which
enabled the iif(∆Ti) to have a nearly full distribution over
the range of [0,1]. For both LSTM and T-LSTM, we used

one hidden layer with 50 hidden neurons and 514 maximum
sequence length. We adopted the Adam optimizer [38] with the
batch size 50 and 30 epochs, and early stopping was employed
with 5 patience after minimum 10 epochs.

E. Evaluation Metrics

Metrics of accuracy (Acc), recall, precision (Prec), F-score
(F1) and area under the ROC curve (AUC) were employed for
evaluating our models. Accuracy is the proportion of patients
whose labels are correctly identified. Recall indicates what
proportion of patients that actually have septic shock can be
correctly diagnosed by the model as septic shock. Precision
tells what proportion of patients who are diagnosed as septic
shock actually have septic shock. F1 is the harmonic mean of
precision and recall that sets their trade-off. AUC calculates
the tradeoff between recall and specificity. Therefore, in the
following we will mainly use F1 and AUC to compare different
models. All models were evaluated by 5-fold cross validation.

V. RESULTS

A. Effectiveness of Three Components in Early Prediction

1) Performances of τ = 4 and Average of τ ∈ [1, 8]:

Based on the three components in TGBA-F, we divided ex-
periments into Baseline and three sub-sessions: 1) Forecasting
future events (F); 2) appending the Time-aware mechanism to
(F), i.e., (FT); and 3) appending the subGroup basis approach
to (FT), i.e., (FTG). Table II shows the performance on
two prediction tasks: prediction Task I (4-hour-before shock
prediction) and Task II (1-to-8-hour-before shock prediction
when the hold-off window varying from 1 hour to 8 hours by
1 hour increment). Specifically, the first column indicates the
sub-session; the second column is the missing data handling
method; columns 3 to 7 present our evaluation metrics for the
prediction Task I; and columns 8 to 12 present average (mean
± std) performance for the prediction Task II. For each sub-
session, the best results are marked in bold; in sub-session (F),
the best results are underlined; in sub-session (FT), the best
results are labeled with ∗; and the best performance in sub-
session (FTG) are labeled with both underline and ∗. Finally,
the best model across all sub-sessions are shaded. In the
following, we will report the performance in each sub-session
and then compare across them. Table II (Baseline) shows that
both IBA and SBA outperformed other three baseline methods
except that SVDImpute had the best precision among them.
IBA had slightly better performance than SBA.

(F) with Forecasted Future Events:

We explored whether the performance of IBA and SBA
could be improved with Forecasted future events using trun-
cated sequences, denoted as IBA-Ftr and SBA-Ftr respec-
tively, and using entire sequence for SBA only, denoted as
SBA-Fen. As discussed previously, entire sequence is not
applicable for IBA. Table II (F) shows that all three forecasted
models outperformed the five baseline methods for both Task I



TABLE II
COMPARISON OF DATA IMPUTATION METHODS FOR BASELINE METHODS AND THREE SUB-SESSIONS: (F) WITH FORECASTED FUTURE EVENTS;

(FT) WITH TIME-AWARE MECHANISM; AND (FTG) WITH SUBGROUP BASIS APPROACH.

Sub-
Method

Task I: τ = 4 Task II: Overall (mean ± std) of τ ∈ [1, 8]

session Acc Recall Prec F1 AUC Acc Recall Prec F1 AUC

B
as

el
in

e

CF .824 .731 .842 .783 .887 .813±.029 .775±.031 .802±.040 .787±.025 .888±.020

MEAN .804 .800 .761 .780 .892 .801±.028 .747±.055 .805±.028 .774±.033 .881±.024

SVDImpute .804 .674 .843 .749 .884 .783±.027 .741±.043 .769±.045 .753±.020 .865±.022

IBA .831 .869 .772 .817 .893 .831±.023 .811±.029 .814±.041 .811±.016 .892±.023

SBA .816 .863 .751 .803 .915 .827±.024 .818±.029 .802±.034 .809±.020 .900±.024

(F
)

IBA-Ftr .850 .869 .831 .849 .911 .848±.012 .842±.036 .852±.028 .846±.013 .909±.019

SBA-Ftr .844 .840 .840 .840 .919 .834±.021 .831±.029 .835±.026 .833±.021 .905±.021

SBA-Fen .850 .874 .827 .850 .922 .845±.024 .846±.015 .845±.037 .845±.021 .909±.022

(F
T

) TIBA-F .878* .903* .854 .878* .912 .874±.015* .864±.020 .881±.025* .872±.014* .917±.018

TSBA-F .872 .846 .886* .866 .928* .867±.021 .872±.032* .863±.035 .867±.020 .921±.018*

(F
T

G
)

TGBA-F

(a) .892 .914* .870 .891 .939 .881±.022 .891±.026* .873±.032 .881±.022 .928±.020

(s) .883 .863 .894 .878 .937 .878±.022 .862±.034 .892±.039 .876±.021 .930±.013

(a&s) .903* .857 .938* .896* .952* .894±.016* .874±.023 .910±.025* .891±.015* .941±.011*

- The bold numbers in Baseline are the best results among baseline methods;
- The bold numbers with underline in sub-session (F) are the best results with truncate (tr) or entire (en) sequences;
- The bold numbers with * in (FT) are the best results with time-aware mechanism. TIBA-F uses truncated sequences and TSBA-F uses entire sequences;
- The bold numbers with underline and * in (FTG) are the best results with entire sequences, time-aware mechanism, and subgroup basis approach based on:

age (a), sex (s) and age & sex (a&s);
- The shaded cells have the best performance among all sub-sessions.

Fig. 3. Comparison of TGBA-F (using entire sequences and grouping patients by (a&s)) and baseline methods (SBA & IBA) over a FW of 24 hours.

(except precision) and Task II. Among the three models, SBA-
Fen has the best F1 and AUC performance for the prediction
Task I, and IBA-Ftr have the best F1 and AUC performance
for the prediction Task II. Note that SBA-Fen outperformed
SBA-Ftr for both prediction tasks, thus we only considered
entire sequences for SBA in the following experiments.

(FT) with Time-aware Mechanism:

We evaluated the effectiveness of the time-aware mechanism
on the best models so far, i.e., IBA-Ftr and SBA-Fen, denoted
as TIBA-F and TSBA-F respectively. The results in Table II
(FT) shows that both TIBA-F and TSBA-F outperformed IBA-

Ftr and SBA-Fen on Task I and Task II. Additionally, there is
no clear winner between TIBA-F and TSBA-F in that TIBA-
F has better F1, while TSBA-F has better AUC for both
prediction tasks.

(FTG) with Subgroup Basis Approach:

To evaluate our subgroup basis approach, we compared it
against the best IBA model, i.e. TIBA-F, and the best SBA
model, i.e. TSBA-F, so far. To do so, we used entire sequence
setting and explored subgroup basis approach using three
different ways of partitioning the patients: (a) 4 groups by
age; (s) 2 groups by sex; and (a&s) 8 groups by age and sex



TABLE III
GBA-F VS. TGBA-F & LSTM VS. T-LSTM USING entire TRAINING SEQUENCES AND GROUPING PATIENTS BY (a&s).

Method Classifier
Task I: τ = 4 Task II: Overall (mean ± std) of τ ∈ [1, 8]

Acc Recall Prec F1 AUC Acc Recall Prec F1 AUC

GBA-F LSTM .872 .863 .873 .868 .930 .869±.019 .865±.030 .872±.037 .868±.018 .928±.015

TGBA-F LSTM .903 .857 .938 .896 .952 .894±.016 .874±.023 .910±.025 .891±.015 .941±.011

GBA-F T-LSTM .889 .903 .873 .888 .949 .886±.019 .881±.021 .889±.030 .884±.018 .939±.017

TGBA-F T-LSTM .911 .914 .904 .909 .961 .907±.011 .901±.022 .912±.016 .906±.012 .953±.012

- The bold numbers have the best performance.

Fig. 4. Visualization of mapping Ûen achieved from: (a) TSBA-F for overall patients; and (b) TGBA-F for subgroups. Notably, the columns in different Ûen

indicate different latent patterns.

collectively. Table II (FTG) shows all three subgroup basis
approaches outperformed TSBA-F and TIBA-F in terms of
F1 and AUC on both prediction tasks. Additionally, grouping
patients by either age or sex achieved similar results. When
combining age and sex together, the performance could be
further improved. Our results suggest that different age and
sex subgroups possess different latent patterns, therefore group
basis approach can not only achieve more specific latent
patterns for each group, but also provide more exact clues
for data imputation from patients with similar properties.

2) Performance of τ ∈ [1, 24]:

In order to fully evaluate the performance of TGBA-F which
achieved the best performance so far, using entire sequences
for forecasting, incorporating the time-aware mechanism, and
grouping patients by (a&s), it is further compared with the
two original PACIFIER approaches without any extensions:
i.e., IBA and SBA. Figure 3 shows that TGBA-F consistently
outperformed the original IBA and SBA on a 1-to-24-hour-
before shock prediction task. When τ becomes larger, it is
more challenging to early predict the septic shock. In this case,
the two baseline methods fluctuated heavily, while our TGBA-
F stays much more stable.

B. GBA-F vs. TGBA-F & LSTM vs. T-LSTM

To further evaluate the effectiveness of time-aware mecha-
nism, we compared GBA-F (TGBA-F without time-aware) and
TGBA-F with LSTM vs. GBA-F and TGBA-F with T-LSTM.

Both GBA-F and TGBA-F use entire sequences and group
patients by (a&s). Table III shows the predictive performance
on Task I (4-hour-before) & Task II (1-to-8-hour-before shock
prediction). Overall, for both GBA-F and TGBA-F, T-LSTM
outperformed LSTM and thus T-LSTM is indeed more suitable
for modeling EHRs. On the other hand, for both LSTM and
T-LSTM, TGBA-F outperformed GBA-F, thus our time-aware
mechanism is indeed more effective for imputing missing data.
As a result, we assumed that our time-aware mechanism and T-
LSTM could tackle irregular time intervals from two different
perspectives so that the best performance was generated by
combining the two approaches: TGBA-F and T-LSTM.

C. Visualization of Decomposed Latent Patterns
In Figure 4, we visualized the mapping Ûen that extracted

from TSBA-F for overall patients (Figure 4 (a)) and TGBA-F
for each subgroup (Figure 4 (b)). Herein, the rows indicate
features and columns are latent patterns. Features are sorted
by their summing of weights to all latent patterns, and ordered
from the largest (top) to the smallest (bottom). The darker the
color, the more contribution for the feature in representing the
corresponding latent pattern. Figure 4 shows overall shared
mapping is different from subgroups, and also different sub-
groups have heterogeneous mappings.

VI. CONCLUSION

In this paper, based on matrix decomposition, we proposed
a TGBA-F method which consists of three components in-



cluding: forecasting future events, time-aware mechanism, and
subgroup basis approach. The imputed data with forecasted
future events can be fed into deep learning classifiers, LSTM
and T-LSTM, for septic shock early prediction. Through exper-
iments, we demonstrated that our proposed TGBA-F approach
can significantly improve the performance of early prediction
comparing to the baseline methods. In future works, we will
explore other applicable approaches to partition subgroups. We
will also analyze the implications for the decomposed latent
patterns to find out their clinical meanings. Besides, a larger
set of features will be introduced in future analysis to explore
more sophisticated latent patterns.
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